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Preface

Concerning errors in numerical integration of ordinary differential equa-
tions, there are three problems.

The first one is the problem of stable convergence, namely the problem
of determining necessary and sufficient conditions that, for sufficiently small
length of divided intervals, approximate solutions can be actually obtained by
numerical integration in any finite interval where the true solution exists;
and moreover, as the length of divided intervals tends to zero, these approx-
imate solutions converge to the true solution in that interval provided all
round-off errors including the errors of starting values tend to zero in a
suitable manner. In this paper, we say that an integration formula is stable
if it satisfies the above conditions. To the problem of stable convergence, so
far as the author knows, an almost complete answer has been given first by
G. Dahlquist [3, 4]* for general multi-step integration formulas. Of course,
before him, the problem has been studied by many scholars, for instance, by
J. Todd [14], H. Rutishauser [13], and F. B. Hildebrand [8]. But, by all of
these, it has been assumed that the initial differential equations, given in the
canonical form, are linear in the unknown functions with constant coefficients
and moreover, even for such equations, the treatment of the problem has been
illustrative rather than demonstrative. Dahlquist, on the contrary, has de-
rived necessary conditions for general differential equations that a general
multi-step integration formula may be stable and, after that, he has proved
that, for any multi-step integration formula satisfying the necessary con-
ditions derived, there actually exist numerical solutions satisfying that multi-
step integration formula with any prescribed accuracy and that the numerical
solutions obtained actually converge to the true solution as the length of di-
vided intervals and the sum of round-off errors in all steps tend to zero. But
he has not proved that, by means of the multi-step integration formulas
satisfying his necessary conditions, for sufficiently small length of divided
intervals, the numerical approximate solutions ean be actually constructed in

1) Mainly sponsored by the United States Army under Contract No. DA-11-022-ORD-2059,
Mathematics Research Center, United States Army, Madison, Wisconsin.
2) The numbers in brackets refer to the references listed at the end of the paper.
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a finite interval where the true solution exists. Indeed this fact does not fol-
low from the proof of Dahlquist, because his proof has been irrelevant to
actual construction of numerical solutions. The proof of Dahlquist, after-
wards, has been simplified and applied to proof of existence theorems of
solutions for differential equations by T. E. Hull and W. A. J. Luxemburg [9].
But, in their paper, the domain of definition of differential equations has been
assumed to be so broad that the numerical solutions can be always actually
constructed. This defect, however, can be easily removed by extending the
initial domain of definition to the broader one by the method used often in
the theory of differential equations.

In the present paper, after removing the above defect by the method
mentioned, the problem of stable convergence is completely solved by a method
quite different from those of Dahlquist or Hull and Luxemburg, and, more-
over, it is done in a unified form for three representative integration formulas
including not only the usual multi-step formulas but also compound multi-step
formulas? and general Runge-Kutta formulas [6,5].

The second of the problems is that of propagation of errors, namely be-
havior of growth of errors as the steps advance. While, in the problem of
stable convergence, the length of divided intervals is considered as a variable
tending to zero, in the problem of propagation of errors it is considered as a
fixed quantity. This problem has been studied separately in particular cases
by many scholars, for instance, by J. Todd [14], H. Rutishauser [13], M.
Lotkin [107], L. Collatz [1], F. B. Hildebrand [8], G. Dahlquist [4], R. W.
Hamming [7], W. E. Milne and R. R. Reynolds [11, 127, H. S. Wilf [19], ete.

In the present paper, in the same manner as in the first problem, the
problem is studied for general differential equations in a unified form for the
three integration formulas mentioned above. By the results of the present
paper, the behavior of growth of errors is made clear rigorously though most
of them are already known heuristically.

The last problem is the problem of estimation of errors. Estimates of
errors in terms of Lipschitz constants [1,8] are well known and they are
usually derived from the difference equations which are satisfied by the errors
of numerical solutions. But, as is well known, these estimates of errors are
too crude for practical use. Hence, it has been long necessary to get better
estimates of errors. Recently W. Uhlmann [15, 16] proposed a new method,
namely to obtain estimates of errors from the differential equations which
are satisfied by the errors of the continuously differentiable approximate so-
lutions obtained from discrete numerical solutions by interpolation. By this
method, he could obtain better estimates of errors. But, as Dahlquist stated
[4], Uhlmann’s method seems not to be suited to general integration formulas,
for example, to general multi-step formulas though it is very satisfactory for

1) For compound multi-step formulas, see 1.2.
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Adams’ formulas or Runge-Kutta formulas, etc. Afterwards, Dahlquist [4]
derived a new estimation formula for a particular multi-step integration
formula, but his estimation formula is confined to a very particular formula
and, in addition, is very complicated. On the other hand, for Runge-Kutta
formulas including the general one, new estimation formulas have been ob-
tained by J. W. Carr III [2], B. A. Galler and D. P. Rozenberg [5]! But, of
course, these are confined only to Runge-Kutta formulas.

In the present paper, a new estimate of errors is derived also in a unified
form for the three integration formulas mentioned in the beginning. And,
for estimation of errors, there are used quantities like

pplQ)=lim [PHAI=IP]

where P and Q are matrices and |...| denotes the norm of the matrix. The
above quantities are generalizations of the quantities introduced by Dahlquist
[4]. The estimate of errors which is obtained has properties analogous to
those obtained by the above people and is fairly better than the classical
estimates of errors in terms of Lipschitz constants.

In the present paper, there are first derived the difference equations which
are satisfied by the errors of the numerical solutions obtained by the three
integration formulas stated in the beginning. These equations are then re-
written as a simultaneous system of equations of first order. In the sequel,
by analysis of this system by means of the theory of matrices, the three
problems concerning errors are discussed.
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Chapter I. Difference equations for errors

1.1 Difference equations for errors of usual multi-step integration formulas

A usual multi-step integration formula can be written as
1.1 X4k = Q1 X et -+ A2 Xpsim2 + - A+ (Lo Fnsr + BLFnsko1F -+ Brba)

where % is a length of the divided intervals and % is the derivative of x with
respect to the independent variable :.

Let us derive the difference equations which the errors satisfy when the
above formula is applied to the N-dimensional differential system

dx
1.2) e = f(=, ¢).
For this equation, it is assumed that this equation has a solution x=x() in the
interval [z, —L, to+ L] and that, in the domain
D: |t—t|ZL, |x—x@)]|<r?,

f(x, ¢) is continuous in (x, ¢) and is continuously differentiable in x.
Put

2 =x(t)=a(to+ih)

and let %; be the approximate values of x,=x(;) computed by (1.1) in the do-
main D. Then evidently

(1.3) Xpah =1 Xpsp1T A2 Xppp_o+ -+ g %,

F+h{Bo fXnsks tar) + B1 [Fnsr1s task-1)F -+ Bi f(%ny L)} + T,y
(14) Xnh =01 Xpap-1+ 2 Fpypo2+ -+ X,

+h{Bo fFusks tari) + B1 fFusie1s task-1)+ -+ Bi (& t)} +R,,
where T, and R, are respectively the truncation and round-off errors. Put
(1.5) ¥—xi=e; @=0,1,2,...).

Then evidently the e; express the errors of the approximate solution computed
by the multi-step formula (1.1).
Subtracting (1.3) from (1.4), there is obtained

1) In the present paper, for norms of vectors and matrices, the following definitions are adopted:
|o| =max|v¥|, |4|=max}|a;],
v v

where v=(v") or A=(a}2) is an arbitrary vector or matrix respectively.
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(1.6) Cnik=Q1 Enip_ 1T Cpyp2t -+ age,
+h[30 {f<%n+ka tn-l—k) __f(xn-l-k, tn+k)}
+ oo Bl f Ry ta)— f (s t)} ]+ Ro— T

But, from the*continuous differentiability of f(x, ¢) and continuity of the so-
lution x=ux(¢), the quantities

S Gy t)— fx; 8) (i=n,n+1,...,n+k)
can be written as follows:
f@i, )= f(xiy 1) =F (%, 1) €+ D i _ne; G=n,n+1, ., n+k),
where F(x, t)=(F}) is the Jacobian matrix of f(x, /) with respect to x. Since
.7 ‘”w‘—n:S: F o+ s, 1)d0—F(x, 1),
it is evident that
1.8) @, ;_n=0() uniformly as |A]|, |e;|—0.

Then (1.6) can be rewritten as follows:

1.9) Chik =01 Cpsho1 A2 szt -+ ay e,
+1(Bo F ensrt B1 Fu €nsport -+ Bi Fien)
+h(Bo Dok nsrt B1 Pogot nser+ -+ Bi Pnyo €1)
+R,—T,,

where F,=F(x,, t,)=(F}). Since |F,]| is bounded in D, evidently
det (I—hB, F,)#0"
for sufficiently small [2]. Then (1.9) can be rewritten further as follows:

(1.10) enrn= {1 +1(Boar+ BF,} rsr-1+ {az+A(Bocs+ B2) Fu}€nsr—at -
+ {ar+h(Boar+ Bi)F .} e,
FAF ok bt n et CusiorF -+ 0 €1)

+8.,
where
Upr=A—=hBo F)" Bo Do,
Uonoi=U—hBo Fn)—l 81 Dn, -1
(111) L Lo F) e+ 18 F) = {ar+h(8o art BOFY ]

=(I_h60 Fn)_lﬁl (pn,k—l+0(lh[) (l:1> 27"'>k)a
Sn:(l—hBO Fn)—l(Rn_Tn)-

1) I denotes the unit matrix.
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(1.10) is a system of difference equations of order k. For simplicity of
handling, let us transform (1.10) into a system of equations of order one.
For this purpose, we put

1.12) er=el, el 1=er,..., ehp1 =0k v=1,2,..,N)
and consider the k-dimensional vector
(1.13) e, =(el
ey’
et
and the kN-dimensional vector

(1.14) e,=( el

Further let us introduce the notations
(1.15) Au(h) =8 a,+h(Bo s+ BOFL Y,
and consider the matrices

(1.16) Ah)=(Bi B} --- By \,

BY BY - By
n n n

where B, (v, p=1, 2,..., N) are matrices of order & such that

(1.17) Bi=( 0 0 0 for vp
0 0 0
Aul)  Apa(®) o Aa(®)
and
(1.18) By=/0 1 0
0 0 1 :
: LT .0
0 0 0 1
{;h(m iltk_l(h) t A:z(h) Ah(h)

1) &, isthe Kronecker delta.
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Then (1.10) can be expressed in a simple form as follows:

<119) en+1=An(h) en+h¢n(en+1> en) +sn>

where

<1'20) ¢n(en+1) en): ¢11z b} 8, = sxlz
" s;
o) o

Here ¢ and s; (v=1,2,..., N) are the k-dimensional vectors of which the first
(k—1) components are all zero and the k-th components are respectively the
v-th components of the quantities

(1.21) T\ ienrntToirensno1t -+ T oe, and S,.
From (1.11), it is evident that
(1.22) ¢u(eni1, e)=0(le,..| +]e,])  uniformly as |e,..]|, |e.|, |2 —0.
Let us assume that rounding is done always so that
(1.23) R.=o(|h]) uniformly as |A]|—0.
Then, since it can be always assumed that
(1.24) T,=o(|h]) uniformly as |[i]—0,
we see that
Is.] =o(]R]) uniformly as |A]—0.
Then (1.19) can be rewritten as follows:
(1.25) e,.1=Ah) e, +h ¢e.s1, €) Fhr,,
where r, are the quantities such that
(1.26) [r.] =0(1) uniformly as |A]|—0.

(1.25) is the equation of the desired form which the errors satisfy when
the multi-step integration formula (1.1) is applied to the N-dimensional dif-
ferential system (1.2).

1.2 Difference equations for errors of compound multi-step integration
formulas

Previously, in order to obtain the periodic solutions of van der Pol’s
equation as accurately as possible, the author devised a new method of nu-
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merical integration by combining the integrated Stirling’s interpolation for-
mula with the ordinary Adams’ extrapolation formula [18]. Though the com-
putation is a little more complicated than usual multi-step formulas, as is
shown in the computation of solutions of van der Pol’s equation in the paper
[18], this new method is excellent in accuracy and stability compared with
usual multi-step formulas. So, in the present paper, this new method is also
brought into consideration even though it is not yet popular.
The formula in question can be written in its general form as follows:

Xtk = A1 Xp g1 T AXppp_2+ -+ Q12041
+ (B 1%nirs1F BoXnrr + Bifinsre1+ -+ Bre1%ne1),

1.27)
} Rnake1=Q0 Xnak T Q1 Xngr-1F -+ + A1 Xna1

\ + 7(Bo Fner+ B Fnakort -+ B Fn)
where %,,;.1 and #,.., aré respectively the subsidiary approximate values of
% and x for t=t, 541.

As in the preceding paragraph, let us apply the above formula to the
equation (1.2) and let % be the obtained approximate values of x;,—the true
values of the solution of (1.2) for ¢t=¢=t,+i~ Y. Then, as in (1.3) and (1.4),

Xk = Q1 Xpak-1T 02 Xpyp—2T -+ Ap_1 Xns1

Fh{B-1 fnsrsts tarks1) F Bof Gnsks basr) + -+ Bic1 f(Xns1, o)}
+T,,
(1.28)
Lpakal = Q0 Xpak T Q1 Xpap-1+ -+ Q1 Xna1 '
+h{[§0 f(xn+k, tn+k)+él f(x“k—l, ln+k—1)+ c +ékf(xn7 ln)}
+ f’";
Kk = Q1 X1 T 02 Xzt oo+ Qo1 Xy
+0{B-1 fRusksts tarir1) F Bo fFusks tasi) + -+ Bict fRnats tar1)}
J +R.,
(1.29) ¢
Rpshs1 = Q0 Xpak T U X1+ - T Qo1 X1
+h{B0 f(-%n-!-lc: tn+k)+ él f(%n-l-k-—l) tn+k—l)+ e + ék f(-%n, tn)}
+R,?,

where (7T, 7.) and (R., R, are respectively the truncation and round-off er-
rors. Put

(1.30) B—xi=e, Ki—xi=6 (=0,1,2,...).

Then evidently the ¢; are the errors of the approximate solution computed by

1) Here, of course, (&, t;) are assumed to lie in the domain D.
2) Here, of course, (£;, t;) are assumed to lie in the domain D.
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the formula (1.27) and the ¢é; are the errors of the subsidiary approximate
values #;.
Subtracting (1.28) from (1.29), there are obtained

Cnsk =01 Cuyp_1t A€ot -+ 1 €1
+ h[ﬁ—l {f(-%n+k+1> tn+k+l) —f(xn+k+17 tn+k+l)}
+ B0 f Fasks tasi) — f Hnsks lasi)} + -

+Bk-—l ~n+lg n+l) n+ly Un+l +Rn_~Tn7
s {fGners tae1) = f(@ns1, tas)} ]

bniks1=Q0 it Q1 Cpupo1t -+ Qo1 €y
+h[ B U Gnsts tass) = Fonas tari)}
+ B1{fFasi-15 tasi-1) = f @nsio1s tasi-)} + -
. + B f Gy ) — (T ta)} 1+ Ru— T

In the same way as in the preceding paragraph, these can be written as fol-
lows:

[ Cnsr =01 Cnyp 1+ A2 Crap2t -+ Qo1 ai
+0(Bo1 Fubpsiir+ Bo Frenrnt o+ Bro1 Frenir)
+h(B_1 éu,k+1 brsts1F Bo PutCosit -+ Bic1 Dr1 €ns1)

+R,—T,,
(1.32) )

ke 1=0Q0 €1 Erppo1t - F Qo1 Eri
+h(Bo FrnertBr Frariort+ -+ B Fuen)
+ 1(Bo Dot s+ B1 Pt €ariom1 -+ Bie Do €2)
+R,—T,,

where F,=F(x,, t,) and
B, i1 =0(1) uniformly as ||, [é.sie1]—0,
(1.33) ’
| @..=o(1)  uniformly as |&], [e,:| >0 (=0, 1,..., k).
As in the preceding paragraph, for R, and T,, we assume that
(1.34) R., T,=o0(|h]) uniformly as |[h]|—0.
But, for R, and 7',, we assume the weaker condition that
(1.35) R,, T.=0(1) uniformly as |h]|—0.
From the second of these conditions, it is evident that
(1.36) [6aske1|—0 uniformly as |&], [e.i] >0 G=0,1,..., k).

Consequently, for @, ., in which é,,,,, is replaced by the second expression
of (1.32), we have
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(1.37) b, o1=0(1) uniformly as |&|, |es:] >0 (=0, 1,..., k).

Then, substituting the second equation of (1.32) into the first equation of
(1.32), we have

(1.38) Crak =01 Cpup-1T A2 Cpup_2t -+ Ap_1€441
+hF,{(B-160+ Bo)ensr+ (B_1 @1+ B)ensr-1+ - +(Bo1 Qh1+ Brc1)€nsr}
+ 0Tk laskt Trhet aspo1+ - +Tnoe)+Sh,

where
(1.39) Fai=hB_1 B F,(Fo+ @)+ 81 & @n,k+l
+hB_1 B O i1 (Fot P imt) + By Dot
=0(1) (1=0,1,.--, k)
uniformly as [4], |e,.:]|—0 @=0,1,..., k),
and
(1.40) So=R,~To+hB_1(Fot 0, 111)(R,—T.)

=o(|h]) uniformly as |A]|—0.

Since |F,| is bounded in D, evidently det{I—Aa(8_1 &+ Bo)F.} #0 for suf-
ficiently small [2|. Consequently (1.38) can be rewritten as follows:

(1.41) s =[ a1 +A{B_1(q a1+ a1)+(Bo a1+ B1)} Frlewsr-1
+Las+h{B-1(t ars+as)+(Bo wz+ B2)} Folensn2

+[Lar-1+h{B-1(d0 ai1+ 1)+ (Bo i1+ Br-1)} Frlensn
+}l(’F,,k [ S +’p‘n,0 en)+Sn,

where
( ¥pir={I—h(B_1 co+ B)F} " P ey (=0, k),
Vonr={I—h(B_1 &+ BO)F,} ! T
b AL M(Bo G BOF} kKB dut BIF)
(1.42)

—A{a; +h(B_1(q0 ar+a)+(Bo ar+ B))F.} ]
= {I—h(ﬂ—l d0+ BO)F'n}—1 w‘:z,k—l'{—O(”ll) (lzla 23"‘; k_]“)a

S,={I—h(B_1 &+ Bo)F,} 'S.,.
From (1.39) and (1.40), it is evident that
{ Warr=0(1) (=0, 1,-.., k)

(1.43) uniformly as |A], |e..:]—0 (i=0,1,..., k),
|

|

¢ S,=o0(|k|) uniformly as |a]|—0.
The equation (1.41) is of the same form as (1.10). But, in (1.41), the order
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of the approximate linear difference equation® is £—1 while it is % in (1.10).
This difference is important.
As in the preceding paragraph, let us introduce the notations

j All(h)ZB,’i a+h{B_1(q as+a)+(Bo s+ BYF;  (1=1,2,.,k—1),

(1.44) )
L A2y =0.

Then, similarly to (1.10), the equation (1.41) can be rewritten in the same
form as (1.25) as follows:

(1.45) en1=A(h) e+ h P(ens1, €)+hF,

where A,(h), ¢, and #, are of the same form as 4,(2), ¢, and r, except that 42,

n

in B} are replaced by A42,.

Thus we have the conclusions:

The difference equation which the errors of a compound multi-step in-
tegration formula satisfy is of the same form as that which the errors of a
usual multi-step integration formula satisfy. Ome of the important differences
18 that the order of the approximate linear difference equation of the former is
less by ome than that of the latter having the same value of k.

1.3 Difference equations for errors of general Runge-Kutta formulas
By [6], the general Runge-Kutta formula reads as follows:
(1.46) X1 =%+ (@ kn1 + 0 Fnz + ¢ knz +d k),
where
knl :f(xn ’ tn))
Fnz = f (% +mhk,1 , t,+mh),
1.47)
kpz=f {2, + (p—r)hkp +rhknz, t,+ ph},
kus = f {2, + (g — s —whk,1 4 shk,s 4 ubkyg, 1,4 gh}
and (a, b, ¢, d; m, p, g, 1, 5, u) are the constants satisfying the equations
a+b+ct+d=1, cmr +d(pu+ms)=1/6,
bm+cp+dg=1/2, cmpr +d(pu+ms)qg=1/8,
(1.48)
bm* +cp* +dg* =1/83, cm’r+d(p'u+m’s)=1/12,

N bm®+cp® +dg*=1/4, dmru=1/24.

1) This means the equation obtained by neglecting the terms A% n, k-1 €n+k-1 ({=0, 1,-.., k) and S,.
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Let %; be the approximate values obtained for x,”—the true values of the
solution of (1.2) for t=¢,=x,+ih. Then evidently

(149) Xp41— Xp, + h(a knl + b knz +c an + d kn4) -+ T,,
for

knl :f(xn ] tn))
an :f(x,, + mhknl 5 ln + mh),

(1.50)
leus = f{%6n+ (p—1)hkns +rhknz, 1, ph},

L oot = f{otn+ (g — 5 — Wk + shkz + uhkins , 6+ qh}
and
(1.51) Fnp1 =%, + 1@ by +b kaz+ ¢ Buz+d Fu) + R,
for

[k =f R, tn) + 101,

o= fGn+mhkyy, t+mh)+102,

(1.52)

7;2”3 :f{in + (p - T)]ZE,A + rhk.nz 5 I +p]l} + T;s,

D

Fens = fAZn+ (q— s — whkn + shkuz + uhkas, tn+ph} +10s>.

Here T, is a truncation error and R,, r.1, raz, a3, a4 are round-off errors.
Put

(1.563) F—xi=¢ i=0,1,2,...).

Then evidently the e; express the errors of the approximate solution computed
by the general Runge-Kutta formula (1.46).

Let us consider the differences k., —k,; (=1, 2, 3, 4) successively. From
the first equations of (1.50) and (1.52), follows readily

(1.54) Fut — ka1 =f Ry ta) = f (ny ta) F 11 =Fr e+ @py €+ 101,
where

(1.55) Tl =Tn1

and

1) It is assumed that (%; ¢;) € .D.
2) It is assumed that (%, +mhky,), t,+mh), {Z,+(p—r)hkn +rhky, to+pht, {Xn+(g—s—u)hky +shkay
“+uhkys, to+qh} € D.
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1
(1.56) c/»,,l—:go F(wutOeny 1) d0—F(x, t.)—0(1)  uniformly as |e,|—0.

Then, from the second equations of (1.50) and (1.52) follows

(1.57) Fu—kaz=F, e+ @z e,+102.
Here

(1.58) Dro=Um—F)+mhJn(F,+ @),
(1.59) T2 =mhJu1 Ta1 +102,
where

1
(1.60) Ju= S F[ %, +mhk,, + 04e,+mh(F,+ @,))e, +mhr.}, t,+mh]do.
0

Since

(1.61) Ju=F,+0(1) uniformly as |z], |e,|—0,
it is evident that

(1.62) D2=0(1) uniformly as [%], |e,|—0.

Likewise, from the third and fourth equations of (1.50) and (1.52), it follows
successively that

(163) k,,,?,—kns:Fn en+(/)n3 8,,,+T,,,3,

where

1
(168 T\ Flxut (p— b + 1l
+0{e,+ (p—r)A(Fo+ Par)en+1a1) + 1h((Fy+ Dr)en+142)} , o+ phldo,

(1 '65) ¢n3 = (JnZ - Fn) + (P - T)thZ(Fn + ¢nl) + TthZ(Fn + ¢n2)
=0(1) uniformly as |&], |e,|—0,

(1.66) Tus=(p =TSz Tar + 1] 02 Tuz + 173,

and

(1.67) Fens = bns=F, €+ Dug €4+ Taa
where

1
(1.68) Jng_——g Fl x4 (q—s—u)hkn + shk,s +uhl,s
0

+ 9 {en + (q —Ss— u)h((Fn + wnl)en + rnl) + 'Sh((Fn + (l)nz)en + rnz)
+ Uh((Fn + wnB)en + rnB)} s bn + (]]l] daa



16 Minoru UrABE

(1.69) Prs=Jus— Fo) + (= s —whJas(Fut @) + shTus(F 4 Crz) + uh Joz(Fo+ @,3)
=0(1) uniformly as [%], |e,|—0,
(1.70) Pat=(g— 5 — T3 a1+ ShJ 3 Tz -+ URT 3 T3 +Tra.
Now, by (1.49) and (1.51),
(1.71) enir=en+h{a (ks —ka1) +b (Fuz — kin2)

+c (En(i_ n3)+d (En4_kn4)} +Rn— Tn-

Consequently, subsituting (1.54), (1.57), (1.63) and (1.67) into the above equa-
tion and using the first equation of (1.48), we have

(1.72) ens1=A, () e+ h pien) + 5,
where
( A(W)=I+hF,,
1.73) J Puen)=(a P +b iz +c @3 +d D) €,
ss=harm+brpt+cras+drg)+R,—T,.
From (1.56), (1.62), (1.65) and (1.69), it is evident that
(1.74) pale)=0(le.|) uniformly as |&], [e,|—0.
Now, if the round-off errors r,i, rns, rus, ra4 Satisfy the condition that
(1.75) Tnls Tnzs Tngs Tra=0(1) uniformly as || —0,
then, from (1.55), (1.59), (1.66) and (1.70), it is evident that
Tals Ta2 Tugs Faa=0(1) uniformly as |A]—0.

Then, in addition, if R, satisfies (1.23), from the last equation of (1.73), it fol-
lows that

(1.76) sa=o(|h]) uniformly as |[h|—0,

because (1.24) is evidently valid for the present 7, for any continuous differ-
ential system of the form (1.2). The property (1.76) says that the equation
(1.72) can be rewritten as

(177) €n+l :An(h) enth (/'),,(6,,) +hr,
and that

(1.78) rn=0(1) uniformly as |z]—0.

1) This means the differential system dx/dt=f(x, t) for which f(x, t) is continuous with respect to
x and ¢.
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The equation (1.77) is of the same form as (1.25) and moreover ¢,(e,) and
r, satisfy respectively the conditions (1.74) and (1.78) corresponding to (1.22)
and (1.26).

The important point is that, for a general Runge-Kutta formula, the ap-
proximate linear difference equation is of order one; consequently, for a general
Runge-Kutta formula, there is no need of the substitution of the form (1.12)
which is needed for usual multi-step formulas in order to transform the ap-
proximate linear difference equation to a system of equations of order one.
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Chapter II. Stable convergence of integration formulas

2.1 Consistency conditions for multi-step integration formulas®

In (1.24) and (1.34), we have assumed that the truncation errors are of
order higher than one in 4. From these conditions, it is evident that (1.1).and
the first formula of (1.27) are true for any poynomial x(z) of degree at most 1.
Also, in (1.85), we have assumed that the truncation errors of the second for-
mula of (1.27) are infinitesimal as |A]—0. From this condition, it is also
evident that the second formula of (1.27) is true for any constant x.

Then, after simple calculations, we find that the coefficients of integra-
tion formulas must satisfy the following relations:

for a simple multi-step formula,

\/ art+ag+ - +ak:1,
2.1)
U BotBit o+ Br=ar+2as+ . +kay;
for a compound multi-step formula,
( a1+a2+~-~+ak_1:l,
(2.2) B_i+BotBit+ -+ Brr=ar+2az+ -+ (k—Day-y,
L &+ar+ - Fa=1.

Conversely, when the coefficients of integration formulas satisfy the above
conditions, from

lni
ts) = 21(t0) + St ) dt,

it readily follows that the truncation errors of the integration formulas really
satisfy (1.24) or (1.34) and (1.35) for any continuous differential system of the
form (1.2). ,

Thus the conditions (2.1) or (2.2) are respectively the mecessary and suf-
fictent conditions that the truncation errors of multi-step integration formulas
may satisfy (1.24) or (1.34) and (1.35) for any continuous differential system of
the form (1.2).

According to the nomenclature of Hull and Luxemburg [9], let us call
the conditions (2.1) and (2.2) the consistency conditions.

1) For brevity, in the sequel, we call both of the usual multi-step integration formulas and the
compound multi-step formulas of 1.2 simply the multi-step formulas. And, if necessary, we call the
former the simple multi-step formulas and the latter the compound multi-step formulas.
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2.2 Necessary conditions for stability for multi-step formulas

We assume the consistency conditions for multi-step formuas.
Let us consider the case where the multi-step formulas are applied with-
out any rounding to the one dimensional differential equation

dx _

(2.3) W

Then, since the solutions of (2.3) are constants, no truncation error ap-
pears by the consistency conditions. Also, by the assumption, no round-off
error appears. In addition, in the present case,

F(x, t)=0,
consequently
¢n,k—l:én,k+1:wn,k—l20 (ZZO, 1, Ty k).

Thus, for errors, by (1.25) and (1.45), we have the equation of the form as fol-
lows:

(2.4) €1 :AO €,
where
(2.5) Ay=r 0 1 0 0
0 0 0 1
U oag Ap—1 ag 231

Here a,=0 for a compound multi-step formula.
From (2.4) readily follows

(2.6) e,=Ase,  (n=0,1,2,...).

Now, as is readily seen, the eigenvalues of 4, are the roots of the equa-
tion

@2 POVENF — (M ah 2 4 g+ ) =0

and to each eigenvalue of 4, corresponds only one eigenvector. Therefore,
if we denote by \; (i=1, 2, ...) the distinct roots of the equation (2.7) and by
m; (i=1, 2,...) their multiplicities, then the Jordan canonical form of 4, becomes
the direct sum of the matrices
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(2.8) By 0 0 (i=1,2,.)
Y :
0 S N
o L0
0 - 5

of the order m;, where & is an arbitrary positive number.
Let 4, be the matrix of this Jordan canonical form and let

(2.9) Ts'Ay To=,.
Then, by substitution

(2.10) e,=Tse,,
(2.6) can be rewritten as

(2.11) e, = A5 eg.

Here A} is the direct sum of the matrices

212) /'y 0 - 0 "= A2 0 0
( & N\ : (ONF7'8 N}
0 5" BN 8 (NS
: . A .. : e ' 0
0 - 8 N (ONELS A
(i=1,2,..),

because 4, is the direct sum of the matrices (2.8).
Now, in order that the integration formulas be stable, e, must be bounded
for any e, provided |e,| is sufficiently small. This implies that, for any e
such that its norm is sufficiently small and Te; is real, e, determined by (2.11)
must be bounded. Now, for any ¢t=~z,
n:%om—»oo as |h|—0.

Therefore, from (2.12), we see that, for stability of the integration formulas,
the following two conditions are necessary:

»‘/ 1° the roots of the equation (2.7) are all at most one in absolute value;
(2.13) -

| 2° the roots whose absolute values are one are simple.

These are the desired necessary conditions. In the sequel, these two conditions
are called the stability conditions.

Remark. The roots of the equation (2.7) are the eigenvalues of the matrix
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A4,(0) in the case where an integration formula is applied to any one dimen-
sional differential equation. On the other hand, for a general Runge-Kutta
formula, evidently A4,(0)=I as is seen from (1.73). Consequently, when a
general Runge-Kutta formula is applied to any one dimensional differential
equation, 4,(0)=1, in other words, the eigenvalue of A4,(0) is merely 1. This
says that we may suppose that the stability conditions are always satisfied
by general Runge-Kutta formulas.

2.3 Stability of integration formulas

In this paragraph, we prove in a unified form stability of the general
Runge-Kutta formulas and the multi-step formulas which fulfill both the con-
sistency conditions and the stability conditions.

As in proof of Perron’s existence theorem, first, we extend the function
f (=, £) to f(x, t) such that

flx, )=f(x,¢) in D
and
flx, )=f(&, ¢) for |t—to| <L, |x—x()|=r,

where x=(&") is a point connected with x=(x") as follows:

X=x" for v such that |[v’—x@) | <Zr,

¥=x"(t)+r for v such that x*—x"(¢)>r,

¥ =x"(@t)—r for v such that »"—x"(t)<<—r.
Then it is evident that, in the domain

D:lt—t| <L, |x—x()| < o,

the function f(x, ¢) is continuous and satisfies a Lipschitz condition with re-
spect to x, because f(x, ¢) is continuously differentiable with respect to x in
the closed bounded domain D.

Corresponding to the initial differential system (1.2), let us consider the
differential system

(2.14) P 0.

Then, evidently, the solution x=x(z) of (1.2) is also a solution of (2.14).

For (2.14), the approximate numerical solution can be actually constructed
in the interval |t—¢| <L by any one of the integration formulas under con-
sideration—multi-step formulas and general Runge-Kutta formulas, provided
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|#] is sufficiently small in the case of multi-step formulas®.

In constructing a numerical solution, we suppose that rounding is done
so that the round-off errors satisfy (1.23), (1.34) and (1.35), or (1.75) and (1.23)
in accordance with the formulas used.

For the approximate solution obtained, on replacing f(x, ¢) by f(x, ¢), we
have (1.6), (1.31) or (1.71) in accordance with the formulas used. Let us denote
here (1.6), (1.31) and (1.71) respectively by (1.6"), (1.31") and (1.71").

Since (1.23) and (1.24) hold, (1.6") can be written in terms of the notations
(1.14) as follows:

(215) €nil =A e,+h ¢n(en+17 en) +h (2%
where
(2.16) A= A, (direct sum of N A,’s)

| .

( " g

and

217 0.=o(1) uniformly as |A|—0.

Since f(x, t) satisfies a Lipschitz condition, for certain positive constants K;
and Kz,

(218) l¢n(en+l> en)ngl,len+l,l +K2'en!~

Likewise the first equation of (1.31") can be written in the same form as
(2.15) replacing R,irs1—%nsre1=ér41+1 DY the second equation of (1.31"). But,
in this case, (2.18) is replaced by

(2'19) I¢n(en+1> en)léKl;en+ll +K2Ienl +O—n>
where
(2.20) an=0(1) uniformly as |#]—0.

For the general Runge-Kutta formula (1.46), by the Lipschitz bound-
edness of f(x, t), we have

(2.21) [ i —Fui| <Ky lea| +1 (=1,2,8,4)

for certain positive constants K, (=1, 2, 3, 4). Here r,; (i=1, 2, 3, 4) are
quantities such that

ra=0(1) (=1, 2,3, 4) uniformly as [#]—0.

1) This means that the points (X,4x, tn+x) can be actually computed successively by solving the
integration formulas with respect to &,4% Or (Zpiks £nik+1) Py means of the iteration method. For
details of this fact, see the author’s paper [177].
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Consequently we see that (1.71") can be written in the form

(2.22) €nr1=ent+Ilrilen) + pn,
where

pn=0(1) uniformly as |A]—0
and
(2.23) [Vralen) | < Kze,] +om

for a certain positive constant K,. Here the o, are the quantities such that
on=0(1) uniformly as |[h|—0.

(2.22) is a special case of (2.15), and (2.18) and (2.23) are special cases of
(2.19). Thus, for study of (1.6"), (1.831") and (1.71’), we need only to consider
the equations (2.15) for which (2.19) hold.

Now, by the stability conditions (2.13), we can choose 8 >0 so small that

(2.24) 3+ <1

for any multiple eigenvalue of 4,. On the other hand, one of the eigenvalues
of 4, is 1 by the consistency conditions or by the remark at the end of 2.2 and
moreover such an eigenvalue is simple by the stability conditions. Thus, by
the stability conditions, we see that

(2.25) | Ao| =1.

Then, if we put

(2.26) T:( T, (direct sum of N Ty’s)
T
L
and
(2.27) T4 T=4,

we see from (2.9) that

(2.28) A= A, (direct sum of N 4,’s),
o)
. )
from which, by (2.25), follows
(2.29) 4] =1.

Let us put
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(2.30) e.=Te,, 0.=To,
and
(2.31) T ¢(Teps1, Te,)=¢u(ens1, €n).

Then, from (2.19) and (2.17), follows readily

(2.32) [gn(€rs1, €)| <K:|ens| +K2|e,] +o,
and

(2.33) |on] =0(1) uniformly as [4|—0,
where

(239 1=[T|T|Ky, K;=|T""[|T|K,
and

(2.35) on=|T"'on=0Q) uniformly as |A|—0.

Let us take a positive number %, such that
(2.36) ho K3<1V,

Evidently, by (2.833) and (2.35), for any positive number ¢, we can take a
positive number 7; (<hy) so that

(2.37) ‘ || + |0n| <<’ for any A such that [A]<h;.

Now, by the substitution (2.27), (2.30) and (2.31), the equation (2.15) is
written as follows:

(2.38) e.i=Ae,+h¢(en.1,e)+ho,.

Then, for ~ such that 2] <h,, by (2.29), (2.32) and (2.37), we have:
Jeni|<|en| +|a](Ki|ensi| +K3|en )+ [R] <

which, due to (2.36), can be written as follows:

1+ |A|K?
1—|A|K;

4] /

(2.39) lena| = [en] +TT}ZIKT e.

But, as is verified easily, for # such that || <h,,

1+ [h]|K Ki+K;
K =T 1o M

1) In the case of multi-step formulas, for & such that |h|=<h,, the integration formulas can
be actually solved with respect to %4 OF (Ry4k £nik+1) DY the iteration method [17]. So, for A such
that |A|<h,, an approximate numerical solution can be always actually constructed in the interval
|t—2y| = L by any one of the integration formulas under consideration.
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and

7] Al
].— IlllKl = 1—]10K,1

Therefore, from (2.39), follows

(2.40) ennr (1S B2 1nT) e+l

Then, by induction, we have:

(2.41) el ( K'+K2lholeu
}lo
1 Ki+K5 a } ,
T RIIK {<1+ 1-m K, ’h]> 1je
(r=0,1,2,..),
from which follows
(2.42) et =(exp g L )l
1 Ki+K; _ }/
T RIEK, Ke XDy K L) Lje
(71:07 1, 23 )

because n|h|=|t,—| L.

Due to (2.37), the inequalities (2.42) imply that |e,|—0 uniformly as |e; |
and |%| tend to zero. By (2.30), this implies that |e,|—0 uniformly as |e,|
and [A4]| tend to zero.

Then, evidently, for sufficiently small |e,] and %], all the points

(Fay t0)y (R L)y

(Rp+ mhk,y, t, -+mh),

{Z, +(p—1)liys +rhkys, to+ph},
{Z,+(g—s— Whkyy + shkyy +uhk,s, t, -+ gh}

computed for the differential system (2.14) lie in the domain D. This means
that all the above points are nothing but the points computed for the initial
differential system (1.2), because, in the domain D, f(x, ¢) coincides with f(x, 2).
Then this says that the approximate numerical solution of the initial differ-
ential system can be actually obtained in the domain D by any of the inte-
gration formulas under consideration.

For such approximate numerical solution, as is mentioned above, |e,|—0
uniformly as |e;| and || tend to zero, namely the numerical solution obtained
tends to the true solution uniformly in the interval [t—¢ | <L as the starting
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values tend to the true values and at the same time the length of divided in-
tervals tends to zero.

The above two facts prove that the integration formulas under consider-
ation—the general Runge-Kutta formulas and the multi-step formulas which
fulfill both the consistency conditions and the stability conditions—are stable.

2.4 Conclusions

The results obtained in the present chapter are summarized as follows:

A necessary and sufficient condition that a multi-step formula satisfying
the consistency conditions be stable is that the stability conditions are valid for
it, provided computation is rounded so that round-off errors may satisfy either
(1.283) for a simple multi-step formula or (1.34) and (1.85) for a compound
multi-step formula.

A general Runge-Kutta formula is always stable, provided computation s
rounded so that round-off errors may satisfy (1.75) and (1.23).
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Chapter III. Propagation of crrors

In this and the next chapter, we suppose that the multi-step formulas
under consideration always fulfill both the consistency conditions and the sta-
bility conditions, namely that they are always stable.

As has been shown in the preceding chapter, by means of such multi-step
formulas or general Runge-Kutta formulas, we can actually construct an ap-
proximate numerical solution lying in D by taking sufficiently accurate star-
ting values and sufficiently small [2] if we do the computation sufficiently
minutely—namely if we round the computation so that round-off errors satisfy
the conditions (1.23) or (1.34) and (1.35) or (1.75) and (1.23) in accordance with
the formulas used. ‘

In this and the next chapter, the errors of the approximate numerical
solutions obtained in the above way are discussed.

3.1 Local approximate error formulas

Let us divide the given interval [ —L, #,+ L] into subintervals so that
F{x(¢), t} varies but little in each subinterval and let us consider the error for-
mulas inside such subintervals.

By the way, the error formulas (1.45) for compound multi-step formulas
and (1.77) for general Runge-Kutta formulas are of the same form as (1.25)
for simple multi-step formulas. So, in the sequel, we shall represent all the
error formulas by (1.25).

Let L, be the length of any such subinterval I, and A4(%) be a common ap-
proximate value of A,(h) corresponding to a certain common approximate
value of F(x., t,)’s in I,. Then, by any one of (1.15), (1.44) and (1.73),

| A(h)— AW/ [ k]
are always small in [, consequently, shifting the term
{4.(h)— AW} e,
into the term Ag.(e..1, e.), in I, we can write (1.25) as follows:
(3.1) en1=Ah) e, +h g€, €)+hr,.
From this, it readily follows that

(32) en+no:An(h) €y,
+h{A" () 1oy + A" (R) Pagir + - A AD) Ty in_2 - Toinon}
+ h(A" (R @uy+ A" A (R) @uyir + -+ AR) Crgin—2+ Gugn-1}

for tm,) tn9+1)"') r’n0+n>"' € IO-
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Now, as is seen from any one of (1.15), (1.44) and (1.73), A(h) is always
of the form

(3.3) Ah)y=A+hG,,
where A4 is a matrix given by (2.16). Then, from (2.27) and (2.29), follows

34) AR = | T(A+r )T ZITTH(1+ 2] ]G]),
where
(3.5) G=T"1G, T.

On the other hand, by the definition of present ¢, and (1.22), for any positive
number e, there exist postive numbers v, A; and /, such that

(3.6) [@ens, €)]| <c(|e,1] + |e.])

whenever |e,..|, je,| <7y, [h|<h, and Ly<_1l,. Also, by stable convergence of
integration formulas, if |e)| and || are sufficiently small, it holds always
that

3.7 le, ] <.
Therefore, by (3.4) and (3.6), we have:

jh{Aﬂ—l(h) ¢n0+An—2(h) ¢ng+l+"' +A(h) ¢nn+n—~2+¢n0+n—l} |
STRITHTHAQ+ RG] + (14 [R] |G 2 4 41} e » 2y

_ 2ey| T[T RPN
o @ lRlIG -1

|G]
This says that, in the right-hand side of (3.2), the sum

~ 27T |77 (e!¢11 1),

h {An—l(h') ¢ng + An—Z(h) ¢n0+1 + s + A(h) ¢n0+n——2 + ¢ng+n-—1}

is small compared with the magnitudes of |e,|". So, neglecting this sum, we
can write (3.2) approximately as follows:

(3‘8) en+nﬂ =An(h) enﬂ
+h{A N (B) 1oy + A" R) Tgir + -+ AR Trgin2+ Ty snr} -

In the sequel, we shall call this formula the local approximate error formula.

3.2 Natural additional conditions for multi-step formulas

For multi-step formulas (1.1) and (1.27), let us consider the polynomials

1) Hitherto, this fact seems to have been assumed without strict proof.
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pOV) =\F— lkzal AL
=1
(3.9) g (r(x):lﬁﬁm"",
=0
L =2 (@=0)
=0

The first of these polynomials is p(\) as defined in (2.7).

For a simple multi-step formula, as has been remarked by Dahlquist
[8,4], we may assume that p(A) and o(\) are relatively prime. For, if p(\)
and «(\) have a common factor d(\)=~const. so that

pM)=d\)p:(v) and o(\)=d(\)a1(M),
then, by means of the operators E and D such that
(3.10) Ex,=x,,1 and Dx,=x,,
the integration formula (1.1) can be written as follows:
{p(E)—h o(E)D} x,=d(E){p1(E) —h o1(E)D} %, =0,

which says that the initial integration formula (1.1) can be reduced to the
simpler one

{pr(E)—h o1(E)D} ,=0

of the same form but with smaller k.
For a compound multi-step formula, «; = 8,=d; =0, consequently the poly-
nomials of (3.9) are written as

{ POV =2pi(V),

(3.11) a(\)=na1(\),

|
|
U r)=xm(V),

where p;(\), o:(\) and 7;(\) are polynomials of degree at most k—1. And, by
means of the operators of (3.10), the integration formula (1.27) is written as
follows:

Y [p(E)—h{B1E**" +0(E)} D ]x,=0,
(3.12)

, .
{ B =B+ >3 1 B D

=0
Consequently, by eliminating E**'Dx,, there is obtained

(3.13) LE{p1(E)—h(B_1 m(E)+a1(E))D} —hzﬂ_ll}j_(.‘; 8, E*'D*]x,=0.

k A
But, as is seen from (1.44), the term #*g_>} 8, E*~'Dx, affects the error only
1=0
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in the term 4 ¢,(e,.1, e,) of (1.45). However, as is shown in like manner as in
the preceding paragraph, the term 4 ¢.(e,.1, e,) has little effect on the errors
themselves, because such effect is very small compared with the magnitudes

k A
of the errors”. Therefore, neglecting the term A*g_,>)3, E*"'D? x,, we may
=0

write (3.13) approximately as follows:
(3.14) Lpi(E)—h{p_1 m1(E)+01(E)} D ]x,=0.

Then, as in the case of simple multi-step formulas, we may assume that p,(\)
and g_; m1(\)+o1(\) are relatively prime.

Thus, in the sequel, for multi-step formulas, we shall assume the con-
ditions mentioned above, namely the conditions that

{ 1° for simple multi-step formulas, p(\) and o(\) are relatively prime;

(3.15) L 2° for compound multi-step formulas, py(\) and B_, m1(\)+o1(\) are

relatively prime.

As is seen from the consistency conditions, these conditions are fulfilled
for Adams’ formula—namely simple multi-step formulas such that a;=1, «;
=...=a,=0; 8,70, and for compound multi-step formulas such that a; =1, a;
= :ak—lzo, Bk—ﬁko, d():l, Q= :dk—IZOZ)-

Note: A proof that the term 2 ¢.(e..1, e,) has little effect on the errors
themselves is sketched below.
From (1.45), follows
en:fin—l I‘in—z- : %‘io (=)
A h(Ayy. Ay Bo4Aur. AsPrA A Ay Foa A Fut)
th(Ayy Ay @o+ Anor- Az Gr+ -+ Ay Puz - Pusr).
If we put
A(h)=A+hG, and max|T"'G,T| =G,
then, in the same way as in the preceding paragraph, assuming
i@n(en+1) en)fée(ierwl" + ’enj) and ienié‘}’,

we have:

]h(én—-l"‘él ¢0+A‘n-—l"‘14,‘2 ¢1+ +14An-1 ¢n—-2+¢n—1)i

1

269|777 - - 2 -1),

Since ¢ is a small arbitrary number, this proves the desired fact.

1) See the note added at the end of this paragraph.
2) The formula applied to van der Pol’s equation in the paper [18] is of this type with k=4.
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3.3 Eigenvalues of 4(h)
Let us consider the characteristic equation of A(%):
(3.16) {A(R) —\I} e¢=0.
Here ¢ is a kN-dimensional eigenvector such that
3.17) c=(e ),
C2
cy
where ¢, (v=1, 2,..., N) are k-dimensional vectors such that

(3.18) c,=(ci .

o

cé
Then, by (1.16), from (3.16), it follows that
—Xey +¢; =0,
( — A2 _+c§ =0,

(3.19) —ch;l+c,,=0,

~Ab+ 3} 3} A0 ¢k =0
Jroms B e
(wv=1,2,..., N).
Since from the first (¢—1) equations follows
ci=cin, d=ci N\, ch=ci N
(3.18) can be rewritten as follows:

(3.20) c,,=c,,(1 N

Lx’“'l/

Then the last equation of (3.19) can be written as follows:

=

(3.21) — e M) i AL(h) e, NP =0 (v=1,2,..., N).

a=11=1

31
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This equation can be rewritten in accordance with the respective defini-
tiens of A;,(h)—(1.15), (1.44) and (1.73)—as follows:

(322) Mo = 8o pOY 2 Fiea=p e, =12, V)

for simple multi-step formulas;

(3.28) K817 + 000 — (-1 o+ Bo} pOV)] i Fre,=p(\e,
(V:_—l, 2)"‘) N)

for compound multi-step formulas;
N
(3.24) PN Fle,=0—Dec, (=1,2..,N)
p=1

for the general Runge-Kutta formulas,
where F=(F}) is the common approximate value adopted for the F(x,, ¢,)’s in
Io.

Now, when |A] is small, as is seen from the forms of A(%), the eigenvalues
of A(%) lie near the eigenvalues of 4(0), namely of 4. But, from (2.16) and
(2.7), the eigenvalues of 4 are the roots of the equation

(3.25) {pOV} =0.

Hence, in order to seek the eigenvalues of A(%)for small |%], it suffices to con-
sider the equations (3.22)—(3.24) only in the neighborhood of the roots of
(3.25).

First, let us consider the equation (3.22). Let ), be any root of (3.25).
Then evidently )\, is a root of (2.7). Let m be its multiplicity as a root of (2.7).
Then, in the neighborhood of A, p(\) can be expressed as follows:

(m)
(3.26) p)=F" 0D (D () £0),
Consequently, in the neighborhood of X\,, the equation (3.22) can be written as
’ P(m)O‘O) m N‘ v
(8.27) o)+ o' o)k =) oo = Bo = E (= ho)" =} 23 i
(m)
U0 oyt e=12, ).

But, by 1° of (3.15), ¢(2)=~0 and, by (3.20), at least one of ¢,’s (v=1,2,...,N) is
not zero. Consequently, from (3.27), we have:

1) The dots denote a sum of terms of higher order than those written explicitly. This convention
is used without notice in the sequel.
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(m)
328) P00 oy
m!
(m)
=i W)+ Q) A =r0) + = o £ OO gy,
where « is an eigenvalue of F. From this it readily follows that

, Lo(hg)
29 = 1/"'/@)0_ 0/ lim
(3.29) R e R
This is an expansion formula for an eigenvalue of A(h). Now F has N eigen-
values «, (v=1, 2,..., N), consequently, by (3.29), in the neighborhood of X,
we obtain mN eigenvalues of 4(k) as follows:

(3.30) =X +lzlv’"'<ﬂé,;?gi) KV)”"’JF =12, N
p™ (o)

Here, of course, the m-th root represents any one of m values of the m-th root.
Since the number of roots )\, (multiplicity being taken into consideration) is
k, the total number of the eigenvalues given by (8.30) is just kN. This says
that all the eigenvalues of A(%) are given by (3.30) as should be so.

Secondly, let us consider the equation (3.23). As in the former case, let
Ao be any root of (3.25), namely any root of (2.7), and let m be its multiplicity
as a root of (2.7). Then, since (3.11) holds for compound multi-step formulas,
in the present case, A\, becomes a root of multiplicity m or m—1 of the equation

(3.31) p1i(\)=0
according as Ao==0 or =0 and further the equation (3.23) becomes

A=0,
N
AL B_1 i\ +a1(N) — {B-1d0+ Bo} pr(\)] >_, Flc.=p(Me
(»=1,2,..., N).

(3.32)

The first equation of (3.32) expresses the fact that (3.23) holds for arbi-
trary values of ¢, for A=0, in other words that A(4) has N linearly independent
etgenvectors for a zero eigenvalue. This says that A(%) has at least N zero
ergenvalues.

The second set of equations of (3.32) is of the same form as (3.22) because
p(\) and B_; 7i(\)+a1(\) are relatively prime by 2° of (3.15). Therefore, as
for (8.22), in the neighborhood of the root », of (3.31), there are obtained mNN
eigenvalues

QO En0) 1

(3.33) K:)\O‘I‘hl;m[ pl(m)(xo)

(v=1,2,.,N)
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for \y==0 and (m—1)N eigenvalues

(m—D'{B_1 1(0)+ o1 (0)} /=D
P 0(0) o]

(3.34) th“‘""”[
(1)=]., 2a"'> N)

for no=0.

As is readily seen, the total number of the eigen values obtained above is
just £N. Then, by letting F}, vary by a small amount if necessary, we see
that all the eigenvalues of A(%) are given by (8.33), (3.34) and N zeros®.

Lastly, let us consider the equation (8.24). This equation expresses the
fact that \—1)/% is an eigenvalue of F. Therefore we see that, in this case,
all the eigenvalues of A(%) are given by

(335) r=1+h«, (V:1> 2, N))
where «, (v=1, 2,..., N) are eigenvalues of F.
The above results are summarized as follows:

The eigenvalues of A(h) are given by the formulas of the forms:
1° (3.30) for simple multi-step formulas;
2° (3.33), (3.34) and N zeros for compound multi-step formulas;
3° (8.35) for the general Runge-Kutta formulas,
where \y 18 an m-ple root of (2.7) and «, (v=1, 2,..., N) are the eigenvalues of F.

Here, without loss of generality, we may assume that the eigenvalues
w, v=1,2,..., N) are all distinct and differ from zero, because, by our as-
sumption, F can be varied arbitrarily by a small amount. Under this as-
sumption, the eigenvalues of A(A) become all distinct except for N zeros
which appear for compound multi-step formulas. But, for such N zero
eigenvalues, there exist N linearly independent eigenvectors as was shown
already. Thus it follows that, under the present assumption, the Jordan ca-
nonical form of A(h) is diagonal.

3.4 Formulas for propagation of errors

In this paragraph, using the results of the preceding paragraph, we re-
write the local approximate error formula (3.8) so that the behavior of the
propagation of errors may appear more explicitly.

First, let us note the following fact which follows readily from the forms

1) When some of the values given by (3.34) are zero, we let F; vary by a small amount so that
the values given by (3.34) may all differ from zero. Then, for such A(h), our assertion evidently
holds. Then, by letting such 4(h) vary back to the initial A(%), we see our assertion holds also for the
initial A(k) on account of continuity of eigenvalues.
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of A(h) and r (cf. (1.16) and (1.20)):
When A7(h)r (p=0, 1, 2,...) are expressed as
Ar(h) r=( v,
v;

N
Up /-

where v, (v=1, 2,..., N) are k dimensional vectors, the first (k—p—1) com-
ponents of v) are all zero.
 From this fact it readily follows that the first components of v} are all
zero for p=0, 1, ..., k—2.
Let A(h) be the Jordan form of A(%) such that

U rA(h) U =A(h).

Then, as is mentioned in the preceding paragraph, A4(%) is a diagonal matrix
whose diagonal elements are the eigenvalues \,; (v=1, 2,..., N;i=1, 2,..., k) of
A(h) determined in the preceding paragraph. Consequently, if we put
U=@.), U=
(V’ /1'=1; 23N> i ]:1> 2:“" k),

from the local approximate error formula (3.8), we have

1 i
(3.36) SRS SIS 7DV /jc R

Jol=1 po=1
n— k N
1 PO
> 20 20w N Ul Sy 14n-p
-1 j= Moy @ =
(v=1,2,., N),

E N
1

4
p=

because

o
1=

) ‘1 upi Ny UBL S2 _14n-p=0 for p=0,1,..., k-2

s

-

€
]

j=

as is remarked above.

But, since 2] and |e,| are small and, in actual computation, all bounds
of round-off errors are of the same order, by (1.11), (1.40), (1.42) and (1.73)
respectively, it holds excluding the small quantities of higher order that

(3.37) S.=R,— T, for simple multi-step formulas,
(3'38) S,=R,—(T,+hB_1 FT) for compound multi-step formulas,
(3.39) S.=R,—T, for the general Runge-Kutta formulas.

Then, by the same reason as that by which (8.2) has been written approxi-
mately as (3.8), the formula (3.36) can be written approximately as follows:
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k N
v Y Al vliNn wj @
(3.40) Cnyin = Upj Mo Ul €3 411
Jil=1p,o=1
n—1 k N
@l | QA v1 15 @

+ ZJ U j 7\‘;}Zj w{: Rn0—1+n—p
p=k-1 j=1 pae=1

n—1 k N
_\" Y N S,V P mj @

>, upg M UG T ram-p

p=k=1 j=1 p,0=1

(V:]-’ 2"“’ N),
where

[ T, for simple multi-step and the general Runge-Kutta

341) T,= formulas,
l T.+h8_ FT, for compound multi-step formulas.

The formula (3.40) is the desired formula for propagation of errors.
Indeed it expresses explicitly the behavior of growth of errors, or, in other
words, the behavior of propagation of errors.

3.5 Analysis of propagation of errors

As is seen from (3.40), the rates of growth of errors are the eigenvalues
N (v=1,2,....N;i=1,2,..., k) of A(h)determined in 3.3. Hence, for integration
formulas, it is desirable that these \,; are all small as possible in absolute
value. But, by the consistency conditions (2.1) and (2.2), one of the ), is 1
and, by the stability conditions (2.13), [xo|<<1 for all ry’s. Therefore, from
the present point of view, among the various integration formulas under con-
sideration, the best will be the general Runge-Kutta formula or the multi-
step formula for which

(342) (,(1:1, a2:a3:“':ak'_'—'0,

and the worst is the formula for which all \y’s are 1 in absolute value.

The simple multi-step formulas for which (3.42) is valid are exactly
Adams’ formulas. For Adams’ formulas, due to (2.1), from (3.30), the values
of \,; are found as follows:

Mi=14+hwr,+. .,
(3.43)
Ny =AY D g e YD

(i=2,3, .., k;v=1,2,..., N).

For the compound multi-step formulas for which (8.42) is valid, due to
(2.2), from (3.33) and (3.34), the values of )\,; are found as follows:
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Mmi=1+4+hw,+ ...,
( Ny =R ED L~ (B 1@+ B} +
G=2,38,..., k—1),
U Me=0 =1, 2,..., N).
For the general Runge-Kutta formulas, from (8.35), the values of ), are
evidently ‘

(3.45) M=1+h«, (=1, 2,..., N).

(3.44)

Comparison of (3.43), (8.44) and (3.45) yields the conclusion:

Among the multi-step formulas and the general Runge-Kutta formulas, the
best three in the sense that growth of errors is least are as follows:

1st: the gemeral Runge-Kutta formula,
2nd: the compound multi-step formula for which (3.42) is valid,
3rd: Adams’ formula.

But, for the integration formulas, as is seen from (3.40), it is desirable
that, besides the rates of growth of errors, the truncation errors are also
small as possible. As is well known, the truncation errors of the general
Runge-Kutta formulas and the multi-step formulas for which (38.42) is valid
are respectively O(|A|°) and O(||***). However, as has been shown by
Dahlquist [ 3, 4], among the simple multi-step formulas, there are formulas
such that their truncation errors are O(|%#|**®). But such formulas can exist
only for even k and moreover, for such formulas, the roots », of the equation
(2.7) are all 1 in absolute value [3, 4]. As is stated in the beginning of this
paragraph, this means that such formulas are the worst ones in the sense
that growth of errors is largest.

As is seen from the second of (3.41) and (3.44), for a compound multi-step
formula satisfying (3.42), the effect of the second formula on both growth of
errors and truncation errors is small. Consequently, without any serious
change of effects, we may take any integration formula as the second formula.
For this reason and for simplicity, let us take, for the present, Adams’ ex-
trapolation formula as the second formula.

formulas Adams’ formulas compound multi-step
i extrapolation interpolation formulas
(81=0) (8 #0)
2 k S pglin “ — Loy Loy L sty
12 | 24 24 32
. 3 ity N 1 psv_ 251 gepv
3 8 hix " 750 hix 7201sz 17980 hiFx
251 450y 3 v W oo v 36l v
* 720 % | 160 "* 1440 M'*V — giazg ' P
5 _233 hixV1 !
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The above table shows the values of 7', of multi-step formulas satisfying
(3.42), namely of the Adams’ formulas and of the compound multi-step for-
mulas mentioned just above. From this table, it is readily seen that the
values of T, of the compound multi-step formulas under consideration are less
than those of the Adams’ formulas. Combined with the first results about
growth of errors, this says that the compound multi-step formulas mentioned
above are always preferable to the Adams’ formulas with respect to both growth
of errors and truncation errors.

But, for k=38, since the truncation errors of the multi-step formulas are
of the same order as those of the general Runge-Kutta formulas, the latter will
be preferable to the former on account of their superiority with respect to growth
of errors.

The simple multi-step formulas given by Dahlquist, namely those of
which the truncation errors are O(|A[***) will not be preferable when the
formulas are applied in many steps, because the growth of errors is very large
as is mentioned formerly.
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Chapter IV. Estimation of errors

The formula (2.41) or (2.42) is, of course, a kind of estimates of errors.
But, as is seen from its derivation, it is too crude. So, in this chapter, as-
suming Lipschitz conditions upon F(x, t), we shall derive a more precise esti-
mate of errors by improving the above estimate.

In this chapter, we are concerned with estimation of errors of the ap-
proximate numerical solution obtained in the domain D by means of the multi-
step formulas satisfying both the consistency conditions and the stability con-
ditions or by means of the general Runge-Kutta formulas. Since these for-
mulas are stable as is shown in 2.4, it is needless to say that, by means
of these formulas, there is actually constructed a numerical solution in the
domain D.

4.1 Lemmas on matrices

For estimation of errors, Dahlquist [4] introduced the quantities like
: L I+rQ|—1 _
illlﬁr?o h w01,

where ] is a unit matrix and Q is an arbitrary matrix. In the present paper,
generalizing the above quantities, we introduce the quantities like

1) lim PFRQI =Pl oy,

hot0 h

where P and Q are arbitrary matrices.
In this paragraph, about such quantities, some lemmas which will be
necessary for estimation of errors are stated.

Lemma. 1. For arbitrary matrices P and Q, there exist always the limits
in the left-hand side of (4.1).

This lemma follows readily from convexity of the function of x: [P+x Q].
Lemma 2. When norms of matrices are defined as in Chapter I, for P=(p}.)

and Q=(q1) (v, p=1,2,..., N), yi5[Q] are given by

+ — max 1 ~vpga§%+[75qg V7 d,'}l)
(4.2) P [Q]_<min,{72_%-' —*—Iﬁ"”‘*i‘% ,(]u! ,

1) This means

ppre1=man{ L5y BOLEE sy

np[Q] =n{1”in{~é_. 5 ...Q"_q_"';;le — %“ I g%l } .
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where
the bars over the letters demote conjugate imaginaries;
N
a are the indices such that |P] =3 [p%];
v=1
SV is a sum over the indices v such that |pS|+#0;

SV is a sum over the indices i such that |p%] =0.
M

Proof. Let « be a number such that
| +1 for >0,
szf\ -1 for A<0.
From the definition of «, for sufficiently small |z,
(4.3) |P+h Q| =max %lip‘f+hqi”[.

Since

el b PEEEPEGE
[pe] g PP o(lal) for [pE]0,

dhlgs|  for [ps[=0,

IpS+hql| =

J
)
|
|
\

from (4.3), it follows that

iP+hQ|=]|P| +max{]7l SV Pﬁf;fg T gt ST [ ] +o<mi)},
@ v v lad
from which (4.2) readily follows.

Corollary.
wTQ1=(T) g+ x3li1}
and, for A of (2.28), V
/ﬁ[QF(ﬂ?ﬁ){—;—(e‘“ gi+e gz 33 g3l |

where a 1s @ number of the row in A where \; such that [\;] =1 is located and
e« is a value of such ;.
Lemma 3.

44 Q1 =[Q].

This lemma follows readily from the inequalities

1) %(gy) means the real part of gy,
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[Pl = [h|1QI=IP+hQ|=|P| +|A]]Q].

Lemma 4.
1 ME Q] for A>0,
(4.5) pENQ]=
U oneE Q] for A <0,
\'/ p[Q1+Q2) < pt[Q1]+ it [Q:2],
(4.6)

pi [Q1+Q2] = pr [Q1]+ pr [Q2].
Proof. (4.5) follows readily from
[P+mQ| — [Pl _|P+mQI~[P|,

h A\

(4.6) follows from the inequalities:

[P+h(Q14+Q)| —[P| [(P+2rQ1)+(P+2hQy)| —2|P]

h 2hn

~ ll 2/lQ1| Ill |1 21lQ2| iP’
> 1 + ==

[}

according as A>0 or 2<0.

Lemma 5.
(4.7) #[Q ]~ [Q:]1 1@~ Qs

Proof. By (4.6) and (4.4), for arbitrary Q, and Q,, it holds that
(4.8) pb [ Q] = pp [ Q)= pt [Q1— Q2] = [Q1— Qe
and

i [ Q1] = pp [Qe]= pp [Qi— Q)= — [Q1 — Q2 ],

namely
(4.9) pp [ Qe = [Qr]=[Q1— Q2.

Since Q; and Q; are arbitrary, (4.8) and (4.9) hold also when Q, and Q, are in-
terchanged with each other. These inequalities combined with the initial ones
prove (4.7).

Corollary. u#[Q] is continuous with respect to Q.

Lemma 6. In the definition of pF[Q], the convergence is locally uniform
with respect to Q.

Proof. In the definition (4.1) of xF[Q], the quantity
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[P+h Q| —|P]
h

converges to yF [ Q] monotonically as ~— +0 due to convexity of the function
of x:|P+xQ|. And evidently the above quantity is continuous with respect
to Q for fixed 2. Besides, the limits x#F[Q] are also continuous with respect
to Q by Corollary of Lemma 5. Thus the lemma is valid by the theorem of
Dini.

4.2 Preliminary estimation of some quantities

As is mentioned in the beginning of this chapter, we assume Lipschitz
conditions upon F(x, ) as follows:
| ]F(xla t)—F(xﬂa t)'ng ix/—x”] for (x/a t), (x”> t) € D)
410 , ) _ -
LR, Oy —F{x("), 1"} | < Lo |t —¢"|  for ¢, 4" € [to—L, to+L].

Let us suppose that, in the domain D,

(4.11) [flx, O] =My, |F(x, )] <M,
(R |RIE,Z|RIE, |RI<E.<E,
(4.12) ' ) o
Ir:tlla ’rnzl, lrn3’> ,rn4’§nn§77>
(4.18) [T <|hl6.<|hlE, T <. <€.

In (4.12) and (4.13), by the assumptions ((1.23), (1.24)), ((1.34), (1.85)) and,
((1.75), (1.23)), we may assume that

(414) &) C’ g} é’ 77~’O as Ih'—>0
First, let us seek a rough estimate of max|e,| by means of the formula

, o Ki+ K5 >. ,
(2.42) el = (exp {2t SRS L) e
L foxp KitK: 1) }
TR K <e"‘p1—1h;K’1 )1}

(n“——O, 1’ 2,"'),

which is a slight modification of (2.42) and whose validity is evident from the
derivation of (2.42).

In order to find K%, K: and ¢’ in the above formula, we have only to know
K, K, o, and p, because of (2.34) and ((2.30), (2.85), (2.37)). Now, due to the
second inequality of (4.11), we have a Lipschitz condition:

1) These are valid provided F(x, t) € Ci,y[D].
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(4.15) | f(, )= flx", t)] < M|x"—«""| for («,¢), («,¢) €D.
Hence, after elementary calculations, we find:

for a simple multi-step formula,

( K1=M|Bol, KZ=M£]IBIII7
(4.16) ¢ t=t

1\ =0, [0.| =& +Cus
for a compound multi-step formula,

¢ Ki=M{]Bo| +|8-1](Jao] 4+ || M| 8]},

k-1 k-1 A LI
(4.17) 1 Kzlexls,H[3_1I<2ldz[+|hIMz}lel)},
{(I=1 l=1 I=1 /
co=M| B |G 48D, |0u| ZEAE
for the general Runge-Kutta formula,

KI:O, KZZMW,

(4.18)
o_n:Wﬂn) ]pn,§§n+§lz
where
(MZ:Mlmla
My=M{|p—r|+ |r|(1+ |[2| Mp)},
4.19) |

L Mo=M{|q—s—u| + |s|(L+ || Mx)+ |u] A+ | 2| M3},
W=la|+ |b|(1+ [h| M)+ [c|(1+ [R]| M3)+ |d]| (14 [h] My).

From these, by (2.34) and ((2.30), (2.85), (2.37)), K1, K% and " are found as fol-
lows:

(4.20) Ki=|T7"[|T|Ky, Ki=|T""|[T|Ks;
( |T-](+¢)  for a simple multi-step formula,

oy o= 1771 {E+D+E+OM| B[}
’ T for a compound multi-step formula,

L (E+&+nW)  for the general Runge-Kutta formula.

Hence, by substitution of these values for K/, K4 and <" in (2.42"), a fol-
lowing rough estimate v of max|e,| is obtained:
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- Ki+Kp

(4.22) max|e,|<7=|7| |77 [eo] exp| {10 1 |
_JL< Ki+K: ;4]
+K’1+K§{eXp1—]h]K’1 ) 1}5'

Next, let us seek estimates of the second and third terms in the right-
hand sides of the error formulas (1.25), (1.45) and (1.77). These estimates are
obtained after elementary calculations as follows:

for a simple multi-step formula,

(423) I¢nléellen+1l+€2]en]) Jr"léwna
where
. LB . kLy| 8ol
S 7 R S AN
Llliuﬂzi
[PV £ S
4.24) 1—1hIMlkﬂol
lgl[leﬁolzlazl+{leﬂo[+(k*l)Lz}lel]
Finl = (A 5o] ’
W, = étL+§"
" 1—|h|M|Be]’
and
1
(4.25) 4] < it
for a compound multi-step formula,
(426) Iﬁn[§€lleu+11+€2ien17 lfﬂléwna

where

[ L= DLty LM+ L) 3 18]+ (011 33 6D A1l
(4.27) )
L Li=M+vL >, lau] + || Ls+(E+ O,

a=m(18allal 3wl + 18] )

| 4 B {La| 81| |G| + KL | Bo| + (M +5Ly+ | R kL)Ls | 81| | Bo |}

oL lal ] /- M8 ] + o)),
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ez=[vL1’g<]B_1l ldzlgldil +Jﬁzl>+lh1§}{f43]3—1l la| +(k—DL: |81
(4.28) (M 4Ly + |h|(k—DL)Ls | 81| | 8]
+MP(| 81| [ao] + 180 (J8-1] @] + [BoD e + [8-1] |l + [ B}
+(E+EO)L1|B8-1] ’gldil]/{l—lhl'M(lﬁ—llldol+Iﬁo[)}’
o= et Lt (Gt CI |6
" 1= [h[M(| 81| [a0] + [Bo])’
and
(4.29) [h]< .

M8 [ao] + [Bo])’

for the general Runge-Kutta formula,
(4.30) [pol Zezleal, |l <o,
where
L5 = ]m I {Lz + 2L1M1 + (M+ ')’L1)2 +?7L1} s

Le=|p—r|{Ly My+(M+vLy)*+ 9Ly}
+ || {Ly My+(M+vLy) (M+vLy + || Ls)
+ L1+ |h| M2)} + [p| (Lo + Ly M),

(4.31)
Ly=|q—s—u|{Li My +(M+vL)*+nL:}
+ |s| {Ly My +(M~+Ly) (M~+vLy, + |h|Ls) +nLi(1 + [h| M2)}
+ |u]| {Ly My +(M+ L) (M+vLy+ | h| Le) + L (1 4 | k| M3)}
+ gl (Le+ Ly M),
es=vL(|a| + b + |c| + [d])+ [A](Ls |b] + Le|c| +Lr{d]),
(4.32)

0, =&+ + . W.

Since we are concerned only with the case where |A| is small, we may
suppose that the conditions (4.25) and (4.29) are always fulfilled. 'Then, as the
estimates of the second and third terms in the right-hand sides of the error
formulas, we can really use (4.23) or (4.26) or (4.30) in accordance with the
formulas used.

4.3 Estimation of errors

The error formulas (1.45) and (1.77) are of the same form as (1.25). So,
in this paragraph, by (1.25), we shall represent all the error formulas under
consideration, namely those given by (1.25), (1.45) and (1.77).
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As is seen from (1.15), (1.44) and (1.73), A4,(%) is of the form
(4.33) A ()y=A+hG(t,)

where 4 is a matrix given by (2.16). Consequently, from (2.27),

(4.34) T4, T=A+1G,,
where
(4.35) G.=C(t)=T"'6@,) T.

Therefore, in like manner as (2.30) and (2.31), let us put .
( =Te,, r,= Trna
(4.36)
l T_l ¢n(T e:z—l-l, Te;)=¢;l(e:,+1, e;).
Then, by this substitution, the error formula (1.25) is rewritten as follows:
(4.37) e =(A+hG))e,+h oy (e, e)+hr,
Now, by (4.23), (4.26) and (4.30),
[¢n(en+17 en)liellerw—ll +€Z!enl3
L] <o

Consequently, if we put

(eh=|T |T|er, =T |T]e,
(4.38) {
t\ o= ’T_llwn 5
by (4.36), it holds that

O on(enst, €)| <ei|eni| +eblen],

(4.39)
L <ol

Then, from (4.87), it follows that
len+1|<|A+hGl :LI + |h|(€1len+1| +€2'en|)+ |h|wn,

which can be written as

(4.40) [en+1 ’hl ‘en, Ihl wn’

because [A| is small. Corresponding to (4.40), let us consider the linear differ-
ence equation

|A+hGy|+|hleh p LB

(4.41) = T B T o
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and let E; be a solution of this equation such that
(4.42) Eo=|es].
Then, by induction, it is readily seen that

len| <E, n=0,1,2,...),
which, by (4.36), implies
(4.43) le.|<|T[E,  (r=0,1,2, ).

Consequently, in the sequel, we shall seek an estimate of the solution E, of
(4.41) satisfying the initial condition (4.42).

First, let us seek bounds of E;.

As is seen from (4.33) and (4.35),

(4.44) GO =M,

where

k
[THTIM >3 ([ 8ol [l + [8:])
for a simple multi-step formula,

WAD M= M S (U8 ol + B ]+ 821 L + [82])

for a compound multi-step formula,

‘\ M for the general Runge-Kutta formula.
Also, as is seen from (4.39),
(4.46) w0, < o,

where

|77 - T—ﬁﬁfgﬂ_ﬁ_} for a simple multi-step formula,
—h|M]Bs

, L EFEHEFOLIB|
@4 =1 T T e Taol + 8D

for a compound multi-step formula,

E+E+9W) for the general Runge-Kutta formula.
Hence, due to (2.29), from (4.41), it follows that

L+ |A|(M +e8) [A] /
, < : - E’L g 5
U= R +1—-lh]a’lw
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M+€1+€2lh(}E/ th 0.)/1).

={1+ 4] 1—[h]<]

This has the form analogous to (2.40). Consequently, according to (2.42), we
have:

’ 1 odef v o, vM,+€1+€§ _
(4.48) By 2ty - exp| MR ] |

1 < M+€1+52 )_1} ’
+M'+e'1+s’2{ exp 1—|h|es = ®
(n:(), 1: 25)

The [, are the desired bounds of E, .

Now, let us transform the difference equation (4.41) to an equation of the
differential form. To do this, we construct a continuous function E’(z) cor-
responding to the solution E;, so that

( Eit)=E,,
(4.49) .
l

E()=E, +t—‘hﬁ (Elor—EL) £Or ¢ € [ty tae1)? .

Also, corresponding to ,, we construct a step function «'(z) so that
(4.50) o' ()=o) for ¢ € [t tar1)-
Then, from (4.41), we have:

o'(t)  for i€ [t,, tas1),

sy O L (1ATRCL2het_1)prye T

dt N — |h|ef hlel

where the upper signs are taken for 2>0 and the lower signs are taken for
h< 0¥,
Now, the first term in the right-hand side of (4.51) is equal to

1 ‘A-{"‘LG;['—I 7 ’ 4

which, for small ||, due to (2.29), is nearly equal to

(4.52) [l @1+ i+ DIEG.

1
1—|hles

Moreover their difference is estimated by using Lemmas 3,5 and 6 of 4.1 as
follows:

1) Here £,=0 (»=0, 1, 2,---) as is seen from (4.41) and (4.42).
2) This means that £, <t<tf,4| Or £ ==£>8,, according as h>0 or A <0.
3) This convention is kept in the sequel whenever the double signs are used.
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(4.53) i%({_AMé )E (t)— w4 [G’(t)] +(e1 +eb) E'G)| < 40),

= ZThle;
where
h
k
[RIT]T7H Lz 23 (16o] Teu| +8:])
(4.54) for a simple multi-step formula,

) T T LSS (U6 o] + 8ol + 1821 1] + [81])

for a compound multi-step formula,

|| L, for the general Runge-Kutta formula,

and 4(¢) is a step function such that

e3te (M +ei+e5\2) -
(4.55) )= { e +1h|(——_weg )}r
+ ]h]—Mﬁlz—ff); o'(2) for 1 €[4, tyer).

Hence, from (4.51) and (4.53), in each interval [4, t,.,), we obtain differential
inequalities as follows:

( dE’ (t)< ,uA[G'(z)]-k(el—kez)E, for 1>0
dt 1—he} ’
@ ©)~ pal6'®]—(ei+<h)
3 4 4 1T €2) e,
L 7 = 1+ hel E'@)— 1+h c0'(t)—4@)  for h<O.

Then, since E'(z) and {u5[G'() ]+ (e +¢4)} /(1 —|hle}) are all continuous in the
interval |¢—i| <L, the above differential inequalities are solved as follows:

@S EQSE 0w 0] oo L o) dmfar
where
(4.58) Hi@:g; AR (r)]I ZI(: +eb) g
Thus, by (4.42) and (4.43), we have:
(4.59) len| SESL| T[T | @] e
+ |7 eHi“n)S ::e—”*m T }h @@+ A }dT

(=0, 1,2, ).
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This is the desired estimate of errors.

4.4 Comparison of various estimates of errors

As is seen from (4.22),

(4.60) 7= 71|77 |eolexp £ E e —nol |
7| Ki+Ks o\l
" ’1+K’2{<exp1—|th§'t"’ ul)-1}s
(n=0,1,2,..)

is an estimate of errors. Also, as is seen from (4.48),

_ -1 MI+€i+eé -
(4.61) r.=|T||T Ileolexp[—ﬁl_lhleiilzn |
|T| { M e +ehy, )_1},,
Wt e el (XD T Tale; |l @

(TL:O, 1, 2)' )
is also an estimate of errors.
But, by ((4.16)—(4.21)) and ((4.45), (4.47)), the quantities K} +K5, M, ¢

and o’ are as follows:

for a simple multi-step formula,

KR Ka= (7] T Mol + 338D,

J

]\ M’=|THT—1lM(IBOII§;"al| -I-lé IB'I))
J’ ¢’ = [T (E+D),

U o' =T |E+6)/A— |k M|Bo]);

for a compound multi-step formula,
. . k-1 k-1
( Ki+Ko=|T| | T M{(|B-1] | @] 4+ |Bo])+ | B-1] ?:}1 | +1=21' [8:]

+RIM 8] 33 1A

t W= T M8 o]+ 8D S ] 161 S5 [l + 5 18,13,
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¢ =T {E+E+E+OM|B.]},
o =T {E+C+E+OLs| 81|}/ {1— R M([B-1] G0 + [Bo])}
(Le=M-+9L S |a] + || e+ (B +OL);

for the general Runge-Kutta formula,
| Ki+Ke=MW,
M=M
J e =E+E+W),
| o=@+e+nm).

Hence, we see that, for small [4| and |eo|, v, and I', have no essential differ-
ence between them, since, for such % and e, ¢; and ¢ are small compared with
M.

Next, let us compare /”, with the estimate E, given by (4.59).
To do this, we first prove a lemma.

Lemma. If g(t) is a continuously differentiable function such that

{ d%t)égl Jor t1=1, or
(4.62)
L df;gt)Z_“gz Jor t=t,
then
gi(eé"“"‘”—l) for 1=, or
| ¢ 1
(4.63) }egmg e dr| <

e 1) for 1<so

82

respectively, where, for g=0 or g,=0, the right-hand sides of (4.63) mean

lim L (el —D=[s—1]  G=1, 2).

gi—0 g,;

Proof. Put

¢
s eoar
to

(4.64) ¥0)=

Then this satisfies the differential equation
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lezg’y+1 for >,

(4.65) ~f (g’=4g@)
1 dt
| *A_gy——l for tgto
N dt

and also the initial condition

(4.66) y(t6)=0.

Of course, by (4.65), we mean that, at t=t,, the right derivative of y(¢) is equal
to +1 and its left derivative is equal to —1. Corresponding to the equation
(4.65), let us consider the equation

( %:le—{—(l—{-e) for t=u,
(4.67)
%z—ng—(H—e) for 1 <1,

where ¢ is an arbitrary positive number. And let Y.(¢) be a solution of (4.67)
(in the same meaning as y(¢) is a solution of (4.65)) satisfying the initial con-
dition

(4.68) Y(z,)=0.

Then, comparing ((4.67), (4.68)) with ((4.65), (4.66)), from (4.62), we have
(4.69) y@) ZY:(),

because

i 1;5{8-@'1%»-%!«1}20 for t>1,,
1

(4.70) Y.)=

|
C Ltegmient 1320 for 1<s.
\ 82

Here, of course, for g, =0 or g;=0, the right-hand sides mean

lim L ot =00l 1y —(14e) [1—10| = 0.

gi=0 g1

Now ¢ is an arbitrary positive number, consequently, letting ¢—0, from (4.69)
and (4.70), we obtain (4.63). This proves the lemma.

Let us return to the estimate E, given by (4.59).
By Lemma 3 of 4.1 and (4.44), let us assume that

(4.71) palCOI=C"=M, pil6'O]=z—C=—-M.
Then, from (4.58), follows
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+ CE¥+e) +es (M el +es
4.72 H¥(p)< = "SiTeep g < D Te1es
( ) (t>: 1 ’llsl lt tO'-—_. 1 lhle/l ’t t()[,

and

AH™(t) - C*+eiter M +eiteh
[ di = 1—|hlet = 1—Jafes
(4.73)
] AH (&) _ C +ei+eh o M +ei+es
di = 1—[hleh = 1—[a[e

Consequently, by the above lemma, from the expression of E, given by (4.59),
we have:

4.74) E,<Vi+VE<I,+1I,,

=i

A

where

[

yr= 1|7 o] - exp[ AR ]

|

l{ [T C* + e +¢eh

| 1 €2 . i . 7
J +Ci+e;+eg{<exp 1= [he; | t°|> 1}"”
]

e | T|(A— &J?Q{(exp C;Teiﬁ;fé]tn_too—l} x max 4{),
1““[h1€1 Tto,stn]

(4.75)

s i

CT¥+cf+eh

A ___7|T|(1—[h]e’1){< M +eit+eh L\ }
S\I’,, W el exp T T(h]e |2, t(,]> 1 xgg?:):jA(z).

Now, by (4.55), for small |2, max 4(z) is small compared with /°,.
Therefore, from the rightest side of (4.74), we have

(4.76) E.<I, approximately.
This says E, always gives a better estimate of errors than I, .

Then, has E, any serious difference from /', ?
To answer this question, let us conider VE and V. Evidently the func-
tions of the forms

eslin=t] and L(eqltn—tol_l)
g

are both monotonically increasing with respect to g in (—oo, o). Conse-
quently, from (4.71) and (4.75),
VE<I, and VE<TI,,

and moreover the differences I",—V=* and I',—V* become larger and larger
as M’ —C* increase. In particular, these differences become quite marked
when the C* become negative. This fact says that E, can be quite different
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from [, consequently from v,. This says that E, is a more precise estimate
of errors than /', and v, .

4.5 Remarks

1° Once E, has been found in the above way, we can improve this E, fur-
ther in the following way:

i) replacing v by maxE,, we calculate ¢; and ¢, again by (4.24) or (4.28)
or (4.32),

ii) replacing I'}, by E,/|T|, we calculate 4(¢) again by (4.55),

iii) for e, e, and 4(z) obtained newly, we calculate E, again by (4.59).

This process can be continued indefinitely so long as the new E, is smaller
than the old E, .

2° When actual computation of H*(¢) is difficult, as is readily seen from
(4.74), we can take
VELVE

as an estimate of errors choosing C* as small as possible. As is mentioned in
the preceding paragraph, even this gives a considerably better estimate than
", and v, if C* are chosen sufficiently small.

3° When the different multi-step formulas are applied to each component
of the given differential system, we can get also the similar estimates of er-

rors if we replace the scalar coefficients a;, as, .-, ax; B-1, Bo, B1,--, Ba; do,
Q1,5 Qu-1; Bo, B1s -+, B by the diagonal matrices whose diagonal elements are
respectively the different scalar coefficients ay, az, -, ai; 8-1, Bo, B1,--+» Bi; Qo,
A1y vy Qpoty Bo, él,"') ék~

4° As is readily seen, the results of the present paper are valid also for
the complex differential system derived from the real differential system by
the complex linear transformation.

5° In this section, for generality, we are concerned with the complex
differential system mentioned in the above section.
For multi-step formulas for which (8.42) is valid, from (2.5),

A=(0 1 0 - 0,
0 0 1 - 0
0 0 - 0 1
0 0 - 0 1)

consequently, as T, in (2.9), we may take
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To=(1 0 - 0 1
: 6 0
: & :
0o .
s L 0
0 ceeeeeen 0

For such Ty, from (4.35), we readily see that

G()=T""G@) T=(G"1@)),

where
v 1 v v
ul :T (A;u - S[L al)
and
. ‘
¢u= X 6u 876 0 8Gha Gu ).
* X eeeees * *
* k0 seesen * * /{

Then, by Lemma 2 of 4.1, we see that,

for Adams’ formulas,

WEE@T=(0) [RF0 = 33 1Fi0)]
£ ]+ 880 ] + |8 33 IFRO) |

and, for the compound multi-step formulas satisfying (3.42),

w6 @) =) [RFr@ + PHIO)

min
’ . N
@B drt Bl o 8B da B ) 25 le(tDI]-

For the general Runge-Kutta formulas, from (1.73), 40=1I and G&)=F(),
consequently, by Corollary of Lemma 2 of 4.1, it readily follows that

W6 1= [P0+ 33 L0

\min
v

Examples.
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For Adams’ formula

(251 w44+ 646 %,,3—264 %,,5+ 106 %,,.1—19 %,),

Xp4d =%p13+ 554

720

OIS Ly [%F:@i S [P0

min
v

_720 (264 52+106 5 +19) z [F*@]J

For the compound multi-step formula

(=19 2,5+ 346 %,, 4+ 456 %,,5— T4 %00 +11 5,01),

. Xn4d = n+3+

720

|
JL Rs5 = X4 +720 (1901 sy — 2774 5,43+ 2616 5,00 — 1274 5,1 + 251 %,),

. [G'(t)]:<m?'x> [&RF:(t) = 31 [FL0)|

min
_720 (74 8*+115) 2, !F"(t)l_l

4.6 Numerical examples

By way of example, let us compute the various estimates of errors of
some integration formulas applied to the Cauchy problem such that the given
equations are

(4.77) ‘f; —ex  (x:scalar, e—+1)

and the initial condition is
(4.78) x(0)=1.

Evidently the true solutions of the above problem are
(4.79) x(t)=exp(et).

Let us consider the solutions in the domain

D: 0<x<1.7, 0<:<<0.5.

Then, since
(4.80) F(x, t)=¢,
it readily follows from (4.10) and (4.11) that
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(4.81) Li=L,=0, M;=1.7, M=1.
The integration formulas taken into consideration in this paragraph are

IZ Xn4d = x,,+3+720 (251 xn+4+646 xn+3-—264 96,,.,.2’]‘106 x,,+1-—19 x,,)
(Adams’ formula);

II: Xn4d = xn+2+ (29 xn+4+124 xn+3+24 xn+2+4xn+l )

Xp+d =—Xp+3 T+ 720 ( 19 Xn+5 + 346 x,,+4 + 456 x,,+3 - 74 xn+2 + 11 xn+1),

—

III:
Rns5 =Xnsd + som 720 (1901 #,,4—2774 %,,3+2616 &,,,— 1274 %,,, +251 4,)
(ecompound multi-step formula);
IV: Xpsel1 = 6 (knl + 2kn2 + 2kn3 + kn4), Where

ke :f(xn ’ Zn):

b= [, + % by, 4+ _;, w),

Fous = f (0, + % Fuzs 1 +~é— h),

kn4=f(x,,+h kng, f/n+h),
(Runge-Kutta formula).

As is readily seen, the truncation errors of these formulas are estimated
as follows:

[T ] g%hﬁ max |x"'| for I;
[ T ] <GZ8 max|x"'| for II;

].1 VIj 95 6 VI .
ITI_1440 max|x"'|, [Ti<288 max|x"'| for IIL;

|T.| < cr  for IV.

Here C is a constant which can be computed for any given differential equa-

tion.
Now, for the solutions of the present problem lying in the domain D,

|| = 17 for =1,
max =
{ ’ 11 for e——1;
(4.82) L ) ) .
1 1 1.7/120 or e=1,
C= )
120 "= 190 for e o1,
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Consequently, if we take
h=0.01,
then, by (4.13), we have:
J/ 0.081875 x 107*° (e=1),

for I, &=«
1 0.018750 x 10710 (e=—1);
£ 0.018364 x 1071° (e=1),
for II, ¢=,
1 0.010802 x 10-1° (e=—-1);
£0.012986 x 10-1° (e=1),
for III, ¢=/{
 0.0076389 x 10~1° (e=—-1),
" 0.0056076 x 10~° (e=1),
=
| 0.0032986 x 10~1° (e=—1);
1 1.41667 x 1071° (e=1),
for IV, ¢=

“ 0.83333 x 101° (e=—-1).
To get the estimates of round-off errors, we shall prove a
Lemma. When the vector equation
x=X(x)
1s solved numerically by the method of iteration, vt holds that

148

li—X()| < 173

€

in the state of numerical convergence, where ¢ is a bound of the round-off er-
rors arising in the computation of X(x) and S is a positive constant less than 1
such that

[ X (%) — X (x")| < S|« —="|
Jor any two values ' and " of «.

Proof. Let % be a true solution of the given equation, and let xy, xa.1, -,
ZXusm D€ the computed values of x in the state of numerical convergence. Then
it readily follows that

1) When the given equation is solved numerically by the method of iteration, in the process of
computation, there always appears the state in which a certain number of computed values of x are
repeated. Such a state is called ¢he state of numerical convergence [177].
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IxM+1—“5AV]§S[xM*.’®] +€,

lxM+z—::\\$l§SlxM+1—‘ﬁ[ +E,

JxM+m_5%’§S}xM+m—l‘—-’%) +e,

|em—2] <S|xmem—2| +e.
Consequently it follows that
| o —2| <S™*xpy—&] +e(1+S+S*+ ... +5™),

namely that

ay—&[ <

€
1-S°
Then

[om— X)) | Z]am—2] + [ X@R)— X (an) | < }%e

This proves the lemma.

Then, if the computation is rounded off correctly to ten decimal places,
for the round-off errors, we have:

_ 251 e -10.

for I, S~7«2m0 h, &,=£=50.34983 x10"'°;

29 . ~10.

for I,  S=29 7, £ =£=50.32326x10""%;
for TII, 521792901 h, £—E—52.711885 10",

£,=£=0.52712x10"17;
for IV, S$=0, & =£=50.00000x 101

By the definition of the matrix 7, we can take 7" so that,

forTandIIl, 7=1 0 0 1\, T'=/0 0 0 1 °;
(1 0o 5 0 I R .
18 0 0 ] 510 —8
1 0 o0 o) 1 0 0o -1,
forll, 7=/1 1 0 1], T=0 01 b,
1 -1 s 0 o 0 & -4
1 1 0 0 k 0 &' 0 —5
1 -1 o o) 1 0 -1 o0,
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Then, if we take

§=0.9,

we see from (4.54) that
for I, [T]=2, |T7'|=2.46914,

1.45589 (e=1),

wilGh]=
—0.54411 (e=-—1),
e3=0;

for I, IT| =3, |T°!'|=222222,

i [GL]=1.44778,
€3 :0;
for I, |T|=2, |T-'|=2.46914,

_ { 1.09700 (e=1),
pilGL]=
l —0.90300 (e=—1),
€3 :0;
for IV, |7T|=|T""| =1,
W [G;]:EJ
€3 =0

Using the above values, we compute the error estimates v,, [, and E, by
means of (4.60), (4.61) and (4.59). The results are shown in the table of the
next page. In this table, £, are the values of E, improved by the process

mentioned in 1° of 4.5.
The reason why E,>I", for n=40, 50 in the case of II is due to the fact

that max 4(¢) is not small compared with /7,. Indeed their values are

(3349328913107 (o=1)
max A(z) =
vsiz0d | 384932663100 (= —1),

[ 14846.89895 x 107 (e=1),

)
i
|
(

max A(t) =

0£¢=0,5

14845.06739 x 10-1° (e=-1).

Anyhow the table of the next page shows the superiority of the estimates
E, compared with v, and /..
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Formulas 3 n 1010+, 100, 1010 E, 100F, 100,
10 47 46 35 34 0
20 156 152 92 79 ~1
+1 30 425 408 222 146 0
40 1083 1030 578 256 +1
50 2698 2536 1632 462 +1
1
10 47 46 34 34 +1
20 156 152 81 69 -1
-1 30 425 408 176 109 -2
40 1083 1028 412 154 0
50 2697 2536 1050 206 0
10 87 84 62 56 0
20 419 396 262 163 ~1
+1 30 1736 1608 1263 488 -2
40 6952 6288 6507 — —~1
50 27706 24324 33346 — ~1
I
10 87 84 62 56 0
20 419 396 262 163 0
-1 30 1735 1608 1263 488 0
40 6951 6288 6507 — 0
;50 27702 | 24321 33342 — 0
10 42 42 34 34 0
20 117 114 76 72 —1
+1 30 259 248 138 120 0
40 529 500 244 181 +1
50 1039 972 . 449 261 +1
111 —
10 42 42 30 30 +1
20 117 114 61 57 —1
—1 30 259 248 101 84 —2
40 529 500 162 111 0
50 1039 972 270 137 0
10 6 6 6 — ~1
20 12 12 12 - -2
+1 30 19 19 19 - -2
40 26 26 26 e —1
50 34 34 35 —- —~1
v
10 6 6 5 —_ +1
20 12 12 10 - —1
—1 30 18 18 14 — —2
40 26 26 17 — 0
50 34 | 34 21 — 0
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