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Preface 

Concerning errors in numerical integration of ordinary differential equa- 
tions, there are three problems. 

The first one is the problem of stable convergence, namely the problem 
of determining necessary and sufficient conditions that, for sufficiently small 
length of divided intervals, approximate solutions can be actually obtained by 
numerical integration in any finite interval where the true solution exists; 
and moreover, as the length of divided intervals tends to zero, these approx- 
imate solutions converge to the true solution in that  interval provided all 
round-off errors including the errors of starting values tend to zero in a 
suitable manner. In this paper, we say that  an integration formula is stable 
if i t  satisfies the above conditions. To the problem of stable convergence, so 
far  as the author knows, an almost complete answer has been given first by 
G. Dahlquist c3, 41') for general multi-step integration formulas. Of course, 
before him, the problem has been studied by many scholars, for instance, by 
J. Todd [14], H. Rutishauser 11131, and F. B. Hildebrand [8]. But, by all of 
these, i t  has been assumed that  the initial differential equations, given in the 
canonical form, are linear in the unknown functions with constant coefficients 
and moreover, even for such equations, the treatment of the problem has been 
illustrative rather than demonstrative. Dahlquist, on the contrary, has de- 
rived necessary conditions for general differential equations that  a general 
multi-step integration formula may be stable and, after that, he has proved 
that, for any multi-step integration formula satisfying the necessary con- 
ditions derived, there actually exist numerical solutions satisfying that multi- 
step integration formula with any prescribed accuracy and that  the numerical 
solutions obtained actually converge to the true solution as the length of di- 
vided intervals and the sum of round-off errors in all steps tend to zero. But 
he has not proved that, by means of the multi-step integration formulas 
satisfying his necessary conditions, for sufficiently small length of divided 
intervals, the numerical approximate solutions can be actually constructed in 

1) Mainly sponsored by the United States Army under Contract No. DA-11-022-ORD-2059, 
Mathematics Research Center, United States Army, Madison, Wisconsin. 

2) The numbers in brackets refer to the references listed at  the end of the paper. 
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a finite interval where the true solution exists. Indeed this fact does not fol- 
low from the proof of Dahlquist, because his proof has been irrelevant to 
actual construction of numerical solutions. The proof of Dahlquist, after- 
wards, has been simplified and applied to proof of existence theorems of 
solutions for differential equations by T. E. Hull and W. A. J. Luxemburg [9]. 
But, in their paper, the domain of definition of differential equations has been 
assumed to be so broad that  the numerical solutions can be always actually 
constructed. This defect, however, can be easily removed by extending the 
initial domain of definition to the broader one by the method used often in 
the theory of differential equations. 

In the present paper, after removing the above defect by the method 
mentioned, the problem of stable convergence is completely solved by a method 
quite different from those of Dahlquist or Hull and Luxemburg, and, more- 
over, i t  is done in a unified form for three representative integration formulas 
including not only the usual multi-step formulas but also compound multi-step 
formulas1) and general Runge-Kutta formulas [6,5]. 

The second of the problems is that  of propagation of errors, namely be- 
havior of growth of errors as the steps advance. While, in the problem of 
stable convergence, the length of divided intervals is considered as a variable 
tending to zero, in the problem of propagation of errors i t  is considered as a 
fixed quantity. This problem has been studied separately in particular cases 
by many scholars, for instance, by J. Todd 1_14], H. Rutishauser [131, M. 
Lotkin j101, L. Collatz [I], F. B. Hildebrand [8], G. Dahlquist [4], R. W. 
Hamming [7], W. E. Milne and R. R. Reynolds 111, 121, H. S. Wilf [193, etc. 

In the present paper, in the same manner as in the first problem, the 
problem is studied for general differential equations in a unified form for the 
three integration formulas mentioned above. By the results of the present 
paper, the behavior of growth of errors is made clear rigorously though most 
of them are already known heuristically. 

The last problem is the problem of estimation of errors. Estimates of 
errors in terms of Lipschitz constants [1,8] are well known and they are 
usually derived from the difference equations which are satisfied by the errors 
of numerical solutions. But, as is well known, these estimates of errors are 
too crude for practical use. Hence, i t  has been long necessary to get  better 
estimates of errors. Recently W. Uhlmann [15, 161 proposed a new method, 
namely to obtain estimates of errors from the differential equations which 
are satisfied by the errors of the continuously differentiable approximate so- 
lutions obtained from discrete numerical solutions by interpolation. By this 
method, he could obtain better estimates of errors. But, as Dahlquist stated 
[4], Uhlmann's method seems not to be suited to general integration formulas, 
for example, to general multi-step formulas though i t  is very satisfactory for 

1) For compound multi-step formulas, see 1.2. 
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Adams' formulas or Runge-Kutta formulas, etc. Afterwards, Dahlquist [4] 
derived a new estimation formula for a particular multi-step integration 
formula, but his estimation formula is confined to a very particular formula 
and, in addition, is very complicated. On the other hand, for Runge-Kutta 
formulas including the general one, new estimation formulas have been ob- 
tained by J. W. Carr I11 [2], B. A. Galler and D. P. Rozenberg [5] !  But, of 
course, these are confined only to Runge-Kutta formulas. 

In the present paper, a new estimate of errors is derived also in a unified 
form for the three integration formulas mentioned in the beginning. And, 
for estimation of errors, there are used quantities like 

[Q] = lim ip+rzQ I - ipl 
/2 

, 
 to 

where P and Q are matrices and j . . . j denotes the norm of the matrix. The 
above quantities are generalizations of the quantities introduced by Dahlquist 
4 The estimate of errors which is obtained has properties analogous to 
those obtained by the above people and is fairly better than the classical 
estimates of errors in terms of Lipschitz constants. 

In the present paper, there are first derived the difference equations which 
are satisfied by the errors of the numerical solutions obtained by the three 
integration formulas stated in the beginning. These equations are then re- 
written as a simultaneous system of equations of first order. In the sequel, 
by analysis of this system by means of the theory of matrices, the three 
problems concerning errors are discussed. 
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Chapter I. Difference equations for errors 

1.1 Difference equations for errors of usual multi-step integration formulas 

A usual multi-step integration formula can be written as 

where 72 is a length of the divided intervals and x is the derivative of x with 
respect to the independent variable t. 

Let us derive the difference equations which the errors satisfy when the 
above formula is applied to the N-dimensional differential system 

dx --=f(x, t). 
dt 

For this equation, i t  is assumed that  this equation has a solution x=x(t) in the 
interval [to - L, to f L ]  and that, in the domain 

f(x, t) is continuous in (x, t )  and is continuously differentiable in x. 
P u t  

and let Zi be the approximate values of xi=&) computed by (1.1) in the do- 
main D. Then evidently 

where T, and R, are respectively the truncation and round-off errors. Pu t  

Then evidently the ei express the errors of the approximate solution computed 
by the multi-step formula (1.1). 

Subtracting (1.3) from (1.4)) there is obtained 

1) In the present paper, for norms of vectors and matrices, the following definitions are adopted: 

IvI =maxIvy l ,  jAI = m a x C I a L / ,  , Y P 

where v=(v'i) or A=(aL) is an arbitrary vector or matrix respectively. 
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(1.6) e,+k=al e,+k-lf  az en+,-zf . . . +  ah e,, 

+ h [PO { f ( k + k ,  tn+k)-f(~n+k, tntk)) 
+ . . . + P k  ( j ( % ,  tn) - f ( x n ,  tn)) I f Rn - Tn 

But, from the continuous differentiability of f ( x ,  t )  and continuity of the so- 
lution x = % ( ~ ) ,  the quantities 

( , t i ) - ( t i )  ( i = 7 ~ , ~ ~ + 1 , . . . , 7 ~ f k )  

can be written as  follows: 

where F(x ,  t ) = ( F i )  is the Jacobian matrix of f ( x ,  t )  with respect to x. Since 

(1.7) Q ,  = F(xi f 0ei ,  ti)dd - F(x,, t,), I. 
i t  is evident that  

(1.8) @ , , i , = ~ ( l )  uniformly as 1 h i ,  lei  j -0. 

Then (1.6) can be rewritten as  follows 

where F,=F(x,, t,) =(F;). Since i F, j is bounded in D, evidently 
n 

det (I- hPo F,)#O 

for sufficiently small jhj. Then (1.9) can be rewritten further as follows: 

(1.10) {a1 f h(Poal+ Pl)F,)e,+k-I+ {a2 f h(13oaz + Pz)F,)e,,+k-2 f 
+ {ak+h(Poakf Pk)F,)e, 

fh(p , ,ke ,+d-  P,,k-l en+k- l+ . . . f  P,,o en) 

+s,, 
where 

/ K,.,=(I-h P o  F,,)-l P o  @,,k,  ~ 

1) I denotes the unit matrix. 
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(1.10) is a system of difference equations of order k. For simplicity of 
handling, let us transform (1.10) into a system of equations of order one. 

For this purpose, we put 

and consider the k-dimensional vector 

and the kN-dimensional vector 

Further let us introduce the notations 

and consider the matrices 

where Bi (v, p ,= l ,  2,. . ., N) are matrices of order k such that  
m 

and 

1) 6; is the Kronecker delta. 
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Then (1.10) can be expressed in a simple form as follows: 

where 

+7,,(erL+1, en)=( '1 , s ,=/  s,l, . 
2 1  I 'Pn ' 

t i i : !  
~ s:2 ~ 

N I 
'Pn 1 . s i  

Here p;l and s: (Y = 1,2,. . ., N) are the k-dimensional vectors of which the first 
(k - 1) components are all zero and the k-th components are respectively the 
Y-th components of the quantities 

(1.21) q n , k e n + k f  ~ n , k - l e , + k - l + . ~ . t ~ n , o e n  and S,. 

From (1.11), i t  is evident that  

(1.22) qn(en+l, eiL)=o(/ en+l j + en ) uniformly as / en+l [ ,  je,L 1 ,  hi  -0. 

Let us assume that  rounding is done always so that  

(1.23) R,=o( 112 I )  uniformly as lh +O. 

Then, since i t  can be always assumed that  

(1.24) T, ,=o(hl)  uniformly as j h l +O, 

we see that  

Isn] x o ( j l ~ ] )  uniformly as h j -0 

Then (1.19) can be rewritten as follows: 

(1.25) e,+l =ArL(I~) e , +  12 yl,(e,+l, e,") + h r,, 

where r, are the quantities such that  

(1.26) r = ( l )  uniformlyas I?z j+O.  

(1.25) is the equation of the desired form which the errors satisfy when 
the multi-step integration formula (1.1) is applied to the N-dimensional dif- 
ferential system (1.2). 

1.2 Difference equations for errors of compound multi-step integration 
formulas 

Previously, in order to obtain the periodic solutions of van der Pol's 
equation as accurately as possible, the author devised a new method of nu- 
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merical integration by combining the integrated Stirling's interpolation for- 
mula with the ordinary Adams' extrapolation formula [18]. Though the com- 
putation is a little more complicated than usual multi-step formulas, as is 
shown in the computation of solutions of van der Pol's equation in the paper 
C181, this new method is excellent in accuracy and stability compared with 
usual multi-step formulas. So, in the present paper, this new method is also 
brought into consideration even though i t  is not yet popular. 

The formula in question can be written in its general form as follows: 

where 2,+,+, and 2n+k+l are respectively the subsidiary approximate values of 
.i and x for t= tn+k+l .  

As in the preceding paragraph, let us apply the above formula to the 
equation (1.2) and let 2,  be the obtained approximate values of x,-the true 
values of the solution of (1.2) for t=t,=to + i  h I). Then, as in (1.3) and (1.4), 

where (T,, ?,J and (R,, 3,) are respectively the truncation and round-off er- 
rors. Pu t  

Then evidently the ei are the errors of the approximate solution computed by 

1) Here, of course, (2, ti) are assumed to lie in the domain D. 
2) Here, of course, (Bi, ti) are assumed to lie in the domain D. 



Theory of Errors in Numerical Integration of Ordinary Differential Equations 11 

the formula (1.27) and the g i  are the errors of the subsidiary approximate 
values ki. 

Subtracting (1.28) from (1.29), there are obtained 

In the same way as in the preceding paragraph, these can be written as fol- 
lows : 

where F,=F(x,, I,) and 

, , k + l = ~ ( l )  uniformly as j h i ,  ja,+,+, j -0, 
(1.33) 

Q,, i = o (1) uniformly as j h I ,  j e,b,i j -0 (i=O, I,..., k). 

As in the preceding paragraph, for R, and T,, we assume that 

(1.34) Rn, Tn=o(lhl) uniformly as j h 1-0. 

But, for R,, and f,, we assume the weaker condition that  
A h  

(1.35) uniformly as j h j +0. 

From the second of these conditions, i t  is evident that 

(1.36) je^n+k+l / -+O uniformlyas (hj,je,+i/-O ( i=O, l , . . . , k )  . 

Consequently, for &,,k+l in which Snck+, is replaced by the second expression 
of (1.32), we have 
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(1.37) 6 , ,k+l=~(1)  uniformly as j hi, 1 j -0 (i=O, 1 ,-., k). 

Then, substituting the second equation of (1.32) into the first equation of 
(1.32), we have 

where 

(1.39) P ; L , ~ - ~ = J Z P - ~  81 FIL (Fn+ Qn,k-l)+ P-1 8 1  6 , , k + l  

+ ~ P - I  81 i n , k + i  (Fn+@,,k-l)+ PL @,,s-~ 

=o(l)  (1=0, I , . . . ,  k) 
uniformly as 1 12 j , j 1 -0 (i=O, I , . . . ,  A), 

and 

(1.40) s;=R,-T,&f / ~ P - i ( F , , + ~ , , k + l ) ( ~ ~ - ~ ~ )  

=o(ilzj) uniformlyas lhj-tO. 

Since IF, j is bounded in D, evidently det {I- h ( ~ ? - ~  so + B,)F,) f 0 for suf- 
ficiently small i 12 1 . Consequently (1.38) can be rewritten as follows : 

+ . . . . . .  
+i]ak-l+k{~-l(&o a~-1+&-1)+(80 uk-1+ ~k-l)}F,]e,+l 
+ /z(F,. k e n + k  + . . . + Fn, en) + S,, 

where 

From (1.39) and (1.40), i t  is evident that  

Pn*,-,=,(I) (1=0, I , . . . ,  li) 

(1.43) uniformly as j h 1 ,  j en+; j -0 (i=O, 1 ,..., k), 

, S , = O ( ~  h i )  uniformly as j 1x1 -0. 

The equation (1.41) is of the same form as (1.10). But, in (1.41), the order 
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of the approximate linear difference equation') is k - 1  while i t  is k in (1.10). 
This difference is important. 

As in the preceding paragraph, let us introduce the notations 

A:l(h)=8: as+h{P-l(Bo al+irs)+ ( P o  al f Bl))F: (1=1, 2, , k -  I ) ,  
n 

(1.44) /, 

A^ik(h) = O. I n 

Then, similarly to (1.10), the equation (1.41) can be rewritten in the same 
form as (1.25) as follows: 

where A&), 4, and f ,  are  of the same form as An(h), y7, and r ,  except that  Ail 
n 

in B; are  replaced by A;, . 
n 

Thus we have the conclusions: 

T h e  d i f e rence  equat ion  w h i c h  the  e r ror s  o f  a compound mu l t i - s t ep  in- 
t egra t ion  f o r m u l a  s a t i s f y  i s  of  the  same  f o r m  as tha t  w h i c h  the  e r ror s  of  a 
u s u a l  mu l t i - s t ep  in t egra t ion  f o r m u l a  s a t i s f y .  One  of  the  i m p o r t a n t  d i f e rences  
i s  t ha t  the  order of the  approx ima te  l i near  d i f e r e n c e  equat ion  of the  f o r m e r  i s  
Less by  one t h a n  tha t  o f  the  la t ter  hav ing  the  same  value o f  k .  

1.3 Difference equations for errors of general Runge-Mutta formulas 

B y  [ 6 ] ,  the general Runge-Kutta formula reads as  follows: 

where 

) kn2 = f (x ,  + mhk,,~, t,, f mh), 
I 
1 kn3 = f {x,, f ( p  - r)hk,l f rhkn2, tn + ph} , 

and (a,  b, c ,  d ;  7n, p, q, r ,  s, U) are  the constants satisfying the equations 

' a + b f c + d = l ,  crnr f d(pu + ms) = 1/6, 
~ 

1) This means the equation obtained by neglecting the terms hYn,k-1 en+k-1 (1=0, 1 ,  ..., k) and S,. 
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Let 3, be the approximate values obtained for %,')--the true values of the 
solution of (1.2) for t =ti =xo + i  12. Then evidently 

(1.49) x,+l =x, + h(a k , ~  + b kn2 f c kn3 + d kn4) + T, 

for 

and 

(1.51) %+I=%,+ h(a &,I+ b E,zf c jEn3+d Ln4)+ R, 

for 

./ k,1= f (Z,, tn) + rL1, 
I ' 

= f ( Z ,  + rnh&,l , t, + mh) + r i z ,  
(1.52) 

k,, = f { Z ,  + ( p  - r)h&,1 + rh&,2, tn + ph) + rks,  

Here T, is a truncation error and R,, r',l, r k Z ,  r k 3 ,  rk4 are round-off errors. 

P u t  

(1.53) 2,-xi=ei (i=O, 1, 2,. . .). 

Then evidently the ei express the errors of the approximate solution computed 
by the general Runge-Kutta formula (1.46). 

Let us consider the differences Lni-k,, ( i=l ,  2, 3, 4)  successively. From 
the first equations of (1.50) and (1.52), follows readily 

where 

(1.55) 

and 

1) It is assumed that (Zi ,  ti) E D. 

2) It is assumed that (l,+mhk,,, t,+mh), {a,+(p-r)f~k,, +rhLnz, t,+ph), j~,+(q-s-u)hk,, +shknz 
+uhk,,, t , t qh )  E D. 
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(1.56) @,,,= F(x,+de,,,t ,)dB-F(x,,t ,)=o(l) uniformlyas /e,J-0. C : 
Then, from the second equations of (1.50) and (1.52) follows 

(1.57) i,&z - kiL2 = Fn en f @,z en f rn2 . 
Here 

where 

Since 

(1.61) Jnl =F,+o(l)  uniformly as I h 1 ,  j en i -0, 

i t  is evident that  

(1.62) @n2=o(l)  uniformlyas ! h ! , / e , ! - O .  

Likewise, from the third and fourth equations of (1.50) and (1.52), i t  follows 
successively that  

where 

(1.64) J n z = ~ ~ ~ [ ~ , + ( p - i ) b k n l + i h k n r  

+ o{e,+ ( p  - r)lz((Fn+ @,den f r n l )  + rh((Fn+ @,Z)e,, + r,,z)), tn f ph] dB, 

(1.65) On3 = (Jnz - Fn) + ( p  r)hJ,dF, + @,I) + iiiJn2(Fn + On2) 

= o ( l )  uniformly as j h [ ,  je,l -0, 

(1.66) rn3 = ( p  - r)hJ,z r,l + r h J , ~  r,z + r k 3 ,  

and 

(1.67) i T L 4  - kn4 = F, en f @,A en + r,4, 

where 

(1.68) Jn3 = F [x, + (q  - s - u)J~k,l t s i ~ k , ~ ~  + uhkns 1: 
+ 6' {en + (q  - s - u)12((Fn + @,,)en + r,l) + sh((F, + c/,,z)e, + r,z) 

+ &(F, + @,den + r ,s ) ) ,  tn + qh] dB, 
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(1.69) Qn4 = ( Jn3 - F,) f ((I - s - u)hJn3(Fn + @,I) + shJn3(Fn + @n2) + uJ~Jn3(Fn + @n3) 
= o(1) uniformly as j h 1 ,  I e, 1-0, 

Now, by (1.49) and (1.51), 

Consequently, subsituting (1.54), (1.57), (1.63) and (1.67) into the above equa- 
tion and using the first equation of (1.48), we have 

where 

A,(lz)= I+ hF,, 
I 

(1.73) 
' 

qn(en) = (a @,I + b @,2 + c On3 + d Qn4) en, 
I 

sn=h(a r , l+b rn2+crn3+ d re4)+Rn-T, 

From (1.56), (1.62), (1.65) and (1.69), i t  is evident that  

(1.74) Fn(e,) =o( I en I )  uniformly as I h 1 ,  1 en j -0. 

Now, if the round-off errors r l l ,  rhz, r',s, rh4 satisfy the condition that  

(1.75) , , , ,  
r n l ,  rn2, rn3, rn4=0(1) uniformly as Ihj-0, 

then, from (1.55), (1.59), (1.66) and (1.70), i t  is evident that  

r,l, r , ~ ,  rn3, rn4=0(1) uniformly as 1 hj-0. 

Then, in addition, if R, satisfies (1.23), from the last equation of (1.73), i t  fol- 
lows that  

(1 -76) s,=o(lhj) uniformlyas jlt]-O, 

because (1.24) is evidently valid for the present T,& for any continuous differ- 
ential system of the form (1.2)l). The property (1.76) says that  the equation 
(1.72) can be rewritten as 

and that  

(1.78) rn=o(l) uniformly as 1 hi-0. 

1) This means the differential system dx/dt=f(x, t) for which f(x, t) is continuous with respect to 
x and t. 
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The equation (1.77) is of the same form as (1.25) and moreover ?,(en) and 
r, satisfy respectively the conditions (1.74) and (1.78) corresponding to (1.22) 
and (1.26). 

The important point is that, for a general Runge-Kutta formula, the ap- 
proximate linear diference equation i s  of order one; consequently, for a general 
Runge-Kutta formula, there i s  no need of the substitution of the form (1.12) 
which is needed for usual multi-step formulas in order to transform the ap- 
proximate linear difference equation to a system of equations of order one. 
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Chapter 11. Stable convergence of integration formulas 

2.1 Consistency conditions for multi-step integration formulas1) 

In (1.24) and (1.34), we have assumed that  the truncation errors are of 
order higher than one in h. From these conditions, i t  is evident that  (1.1) and 
the first formula of (1.27) are true for any poynomial x(t) of degree a t  most 1. 
Also, in (1.35), we have assumed that  the truncation errors of the second for- 
mula of (1.27) are infinitesimal as lhl- tO.  From this condition, i t  is also 
evident that  the second formula of (1.27) is true for any constant x. 

Then, after simple calculations, we find that  the coefficients of integra- 
tion formulas must satisfy the following relations: 

for a simple multi-step formula, 

for a compound multi-step formula, 

Conversely, when the coefficients of integration formulas satisfy the above 
conditions, from 

it  readily follows that  the truncation errors of the integration formulas really 
satisfy (1.24) or (1.34) and (1.35) for any continuous differential system of the 
form (1.2). 

Thus the  condit ions (2.1) o r  (2.2) are  respectively the  necessary a n d  s u f -  
ficient condit ions t ha t  the  t runca t ion  e r ror s  of  mu l t i - s t ep  in t egra t ion  fo rmu las  
m a y  s a t i s f y  (1.24) or  (1.34) a n d  (1.35) f o r  a n y  cont inuous  d i f f e ren t ia l  s y s t em  of  
the  f o r m  (1.2). 

According to the nomenclature of Hull and Luxemburg [9], let us call 
the conditions (2.1) and (2.2) the consistency condit ions.  

1) For brevity, in the sequel, we call both of the usual multi-step integration formulas and the 
compound multi-step formulas of 1.2 simply the multi-step formulas. And, if necessary, we call the 
former the simple multi-step formulas and the latter the compound multi-step formulas. 
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2.2 Necessary conditions for stability for multi-step formulas 

We assume the consistency conditions for multi-step formuas. 
Let us consider the case where the multi-step formulas are applied with- 

out any rounding to the one dimensional differential equation 

Then, since the solutions of (2.3) are constants, no truncation error ap- 
pears by the consistency conditions. Also, by the assumption, no round-off 
error appears. In addition, in the present case, 

consequently 

(/, ,,,- L=d,,k+l=Y,,k-l=O ( 1 ~ 0 ,  1, , . , ,  k ) .  

Thus, for errors, by (1.25) and (1.45), we have the equation of the form as fol- 
lows : 

where 

Here a,=O for a compound multi-step formula. 
From (2.4) readily follows 

Now, as is readily seen, the eigenvalues of A. are the roots of the equa- 
tion 

and to each eigenvalue of A. corresponds only one eigenvector. Therefore, 
if we denote by hi (i= 1, 2, . . .) the distinct roots of the equation (2.7) and by 
rn, (6=1, 2,. . .) their multiplicities, then the Jordan canonical form of A. becomes 
the direct sum of the matrices 
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of the order mi, where 8 is an arbitrary positive number. 
Let A, be the matrix of this Jordan canonical form and let 

Then, by substitution 

(2.6) can be rewritten as 

Here A; is the direct sum of the matrices 

because do is the direct sum of the matrices (2.8). 
Now, in order that  the integration formulas be stable, e, must be bounded 

for any eo provided Jeo 1 is sufficiently small. This implies that, for any eh 
such that  its norm is sufficiently small and Teb is real, e: determined by (2.11) 
must be bounded. Now, for any tf t o ,  

Therefore, from (2.12), we see that, for stability of the integration formulas, 
the following two conditions are necessary: 

1" the  roots of the  equat ion  (2.7) are  all a t  mos t  one in absolute va lue ;  
(2.13) 

2" the  roots whose absolute values a re  one are  s imple .  

These are the desired necessary conditions. In the sequel, these two conditions 
are called the s tabi l i ty  condit ions.  

Remark. The roots of the equation (2.7) are the eigenvalues of the matrix 
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A,&(O) in the case where an integration formula is applied to any one dimen- 
sional differential equation. On the other hand, for a general Runge-Kutta 
formula, evidently A,L(0)=I as is seen from (1.73). Consequently, when a 
general Runge-Kutta formula is applied to any one dimensional differential 
equation, A,&(O)=l, in other words, the eigenvalue of A,(O) is merely 1. This 
says that  we may suppose that  the stability conditions are always satisjied 
by general Runge-Kutta formulas. 

2.3 Stability of integration formulas 

In this paragraph, we prove in a unified form stability of the general 
Runge-Kutta formulas and the multi-step formulas which fulfill both the con- 
sistency conditions and the stability conditions. 

As in proof of Perron's existence theorem, first, we extend the function 
f (x, t) to ?(X, t )  such that  

and 

.f(x,t)=f(Z,t) for I t - t , jSL,  1%-~( t ) j>r ,  

where Z=(Zv) is a point connected with x=(x') as follows: 

2' = x-) for r, such that  1 x" - x"(t) / I r  , 

Z" = x"(t) + r for P such that  xY-x'(t)>~., 

= x'yt) - r for Y such that  x" - x"(t) < - I . .  

Then i t  is evident that, in the domain 

the function f(x, t) is continuous and satisfies a Lipschitz condition with re- 
spect to x, because f ( ~ ,  t )  is continuously differentiable with respect to x in 
the closed bounded domain D. 

Corresponding to the initial differential system (1.2), let us consider the 
differential system 

(Ex - 
- -  = f(r, t). 
dt 

Then, evidently, the solution x=x(t) of (1.2) is also a solution of (2.14). 
For (2.14), the approximate numerical solution can be actually constructed 

in the interval I t-to I L L  by any one of the integration formulas under con- 
sideration-multi-step formulas and general Runge-Kutta formulas, provided 
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I 11 j is sufficiently small in the case of multi-step formulas I). 

In constructing a numerical solution, we suppose that  rounding is done 
so that  the round-off errors satisfy (1.23), (1.34) and (1.35), or (1.75) and (1.23) 
in accordance with the formulas used. 

For the approximate solution obtained, on replacing f(x, t) by f ( x ,  t), we 
have (1.6), (1.31) or (1.71) in accordance with the formulas used. Let us denote 
here (1.6), (1.31) and (1.71) respectively by (1.6'1, (1.31') and (1.71'). 

Since (1.23) and (1.24) hold, (1.6') can be written in terms of the notations 
(1.14) as follows: 

where 

(2.16) A= Ao 1 (direct sum of N Ao's) 
A0 

and 

(2.17) p,=o(l) uniformly as j 1z 1-0. 

Since f(x, t )  satisfies a Lipschitz condition, for certain positive constants K1 
and K2, 

Likewise the first equation of (1.31') can be written in the same form as 
(2.15) replacing i?,+,+, - x ,+ ,~+~ = e ^ n + k + l  by the second equation of (1.31'). But, 
in this case, (2.18) is replaced by 

where 

(2.20) ~ , ~ = o ( l )  uniformly as I h 1-0. 

For the general Runge-Kutta formula (1.46)' by the Lipschitz bound- 
edness of J(x, t), we have 

for certain positive constants K(,) (;=I, 2, 3, 4). Here rni ( i=l ,  2, 3, 4) are 
quantities such that  

rni=o(l) ( i = l , 2 , 3 , 4 )  uniformlyas jhj-+0. 
-~ - -  . ~ 

1) This means that the points (Z,+ii, t n + ~ )  can be actually computed successively by solving the 
integration formulas with respect to X,L+r, or (Z,+k, by means of the iteration method. For 
details of this fact, see the author's paper [17]. 
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Consequently we see that  (1.71') can be written in the form 

where 

p,=o(l) uniformly as j h j -0 

and 

for a certain positive constant K2.  Here the F, are the quantities such that  

( 1 )  uniformly as I h 1-0. 

(2.22) is a special case of (2.15), and (2.18) and (2.23) are special cases of 
(2.19). Thus, for study of (1.60, (1.31') and (1.711), we need only to consider 
the equations (2.15) for which (2.19) hold. 

Now, by the stability conditions (2.13), we can choose 6>0 so small that  

for any multiple eigenvalue of Ao. On the other hand, one of the eigenvalues 
of A. is 1 by the consistency conditions or by the remark a t  the end of 2.2 and 
moreover such an eigenvalue is simple by the stability conditions. Thus, by 
the stability conditions, we see that  

Then, if we put 

(2.26) T= T o  (direct sum of N To's) 
To 

I . .  I 
To 

and 

we see from (2.9) that  

(2.28) A=( A, I (direct sum of N AO7s), 

I AO. . .  ~ 
I A0 

from which, by (2.25), follows 

Let us put 
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and 

(2.31) T-' $,(Te',+l, Te',)=$',(e;+~, e6). 

Then, from (2.19) and (2.17), follows readily 

(2.32) I$',(ebtl, e',)ISK;je',+lj +K;IekI +F', 

and 

(2.33) / p', 1 =o(l) uniformly as Ih! -0, 

where 

(2.34) K;=jT-l!  jTIK1, K;=~T- ' ]  IT]Kz 

and 

(2.35) h = T j = o ( l )  uniformly as jll] -0. 

Let us take a positive number lzo such that  

(2.36) ko K; < 1 I). 

Evidently, by (2.33) and (2.35), for any positive number E', we can take a 
positive number It1 ( ( h O )  SO that  

(2.37) ' , 
/ F, I + 1ph I c e '  for any 71 such that  Iltj(1~~ 

Now, by the substitution (2.27), (2.30) and (2.31), the equation (2.15) is 
written as follows: 

(2.38) e h + ~ =  A e', + 12 +',(ehcl, eh) +- h 0: .  

Then, for h such that  j 12 1 l l z l ,  by (2.29), (2.32) and (2.37), we have: 

which, due to (2.36), can be written as follows: 

But, as is verified easily, for 12 such that  jl~j ( l~,  , 

1) In the case of multi-step formulas, for h such that I/~l(h~, the integration formulas can 
be actually solved with respect to En+I, or ( ~ , & + k ,  f ,+k+, )  by the iteration method C171. So, for /L such 
that I h 1 tho, an approximate numerical solution can be always actually constructed in the interval 

/ t - t o  1 ( L  by any one of the integration formulas under consideration. 
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and 

Therefore, from (2.39), follows 

, K ;  + K', Ihl 
e + ~ l + - ~ - - ~ ? ~ l ) ~ e ~ , j  - lo K ,  + 1 -ho - K ,  e l .  

Then, by induction, we have: 

from which follows 

because 7 1  I 11 I = 1 i,, - i o  / 5 L . 
Due to (2.37), the inequalities (2.42) imply that  e:, -z0 uniformly as 1 eh , 

and h l tend to zero. By (2.30), this implies that  e n  l + O  uniformly as , eo 
and 1 h 1 tend to zero. 

Then, evidently, for sufficiently small I eo i and 1 !t 1 ,  all the points 

computed for the differential system (2.14) lie in the domain D. This means 
that  all the above points are  nothing but the points computed for the initial 
differential system (1.2), because, in the domain D, J(x ,  i) coincides with f(x, 1). 

Then this says that  the approximate numerical solution of the initial differ- 
ential system can be actually obtained in the domain D by any of the inte- 
gration formulas under consideration. 

For such approximate numerical solution, as is mentioned above, 1 e,, + O  
uniformly as Ieo 1 and I h tend to zero, namely the numerical solution obtained 
tends to the true solution uniformly in the interval 11 -to ( S L  as the starting 
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values tend to the true values and a t  the same time the length of divided in- 
tervals tends to zero. 

The above two facts prove that  the integration formulas under consider- 
ation-the general Runge-Kutta formulas and the multi-step formulas which 
fulfill both the consistency conditions and the stability conditions-.are stable. 

2.4 Conclusions 

The results obtained in the present chapter are summarized as follows: 

A necessary a n d  su f i c i en t  condi t ion  tha t  a mu l t i - s t ep  f o r m u l a  s a t i s f y i n g  
the  consistency condit ions be stable i s  t ha t  the  s tabi l i ty  condit ions a re  valid f o r  
i t ,  provided compu ta t ion  i s  rounded so tha t  r o u n d - o f  e r ror s  m a y  s a t i s f y  e i ther  
(1.23) f o r  a s imp le  mu l t i - s t ep  formu1.a o r  (1.34) a n d  (1.35) f o r  a compound 
mul t i - s tep  fo rmu la .  

A general R u n g e - K u t t a  f o r m u l a  i s  a lways  stable, provided compu ta t ion  i s  
rounded so tha t  round-of  e r ror s  m a y  s a t i s f y  (1.75) a n d  (1.23). 
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Chapter 111. Propagation of crrors 

In this and the next chapter, we suppose that  the multi-step formulas 
under consideration always fulfill both the consistency conditions and the sta- 
bility conditions, namely that  they are always stable. 

As has been shown in the preceding chapter, by means of such multi-step 
formulas or general Runge-Kutta formulas, we can actually construct an  ap- 
proximate numerical solution lying in D by taking sufficiently accurate star- 
ting values and sufficiently small jhj if we do the computation sufficiently 
minutely-namely if we round the computation so that  round-off errors satisfy 
the conditions (1.23) or (1.34) and (1.35) or (1.75) and (1.23) in accordance with 
the formulas used. 

In this and the next chapter, the errors of the approximate numerical 
solutions obtained in the above way are discussed. 

3.1 Local approximate error formulas 

Let us divide the given interval [_to - L,  i o  + L ]  into subintervals so that  
F{x( t ) ,  I }  varies but little in each subinterval and let us consider the error for- 
mulas inside such subintervals. 

By the way, the error formulas (1.45) for compound multi-step formulas 
and (1.77) for general Runge-Kutta formulas are  of the same form as (1.25) 
for simple multi-step formulas. So, in the sequel, we shall represent all the 
error formulas by (1.25). 

Let Lo be the length of any such subinterval lo and A(1z) be a common ap- 
proximate value of A,L(h) corresponding to a certain common approximate 
value of F(n,,, t,)'s in Io. Then, by any one of (1.15), (1.44) and (1.73), 

are always small in lo, consequently, shifting the term 

into the term I~g,(e,+~, e,,), in I,,, we can write (1.25) as follows 

From this, i t  readily follows that  

for t,,,, t rZ,+~, . . ,  t,,+,&,... E 10. 
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Now, as is seen from any one of (1.15), (1.44) and (1.73), A(h) is always 
of the form 

(3.3) A(h)=A+h Go, 

where '4 is a matrix given by (2.16). Then, from (2.27) and (2.29), follows 

where 

(3.5) G = T-lGo T. 

On the other hand, by the definition of present q, and (1.22), for any positive 
number E ,  there exist postive numbers y, h2 and lo  such that 

whenever j 1 ,  j en I y ,  / h j 5 h 2  and Lo 2 l o .  Also, by stable convergence of 
integration formulas, if /eel and j hi are sufficiently small, i t  holds always 
that  

Therefore, by (3.4) and (3.6), we have: 

This says that, in the right-hand side of (3.2), the sum 

is small compared with the magnitudes of e,i I). So, neglecting this sum, we 
can write (3.2) approximately as follows: 

In  the sequel, we shall call this formula the local approximate error formula. 

3.2 Natural additional conditions for multi-step formulas 

For multi-step formulas (1.1) and (1.27), let us consider the polynomials 
--- -- 

1) Hitherto, this fact seems to have been assumed without strict proof. 



Theory of Errors In Numerical Integration of Ordinary D ~ f f e r e n t ~ a l  Equations 29 

I 

I ~ ( h )  = $&! x"-' (kk  =o). 
l = O  

The first of these polynomials is p(h) as defined in (2.7). 
For a simple multi-step formula, as has been remarked by Dahlquist 

[3,4], we may assume that  p ( ~ )  and a(X) are relatively prime. For, if p(h) 
and ~ ( x )  have a common factor d(x)# const. so that  

p ( ~ )  = d(k)pl(x) and C(X) = ~ ( x ) ~ ~ ( x ) ,  

then, by means of the operators E and D such that  

(3.10) EX, = x,~+ and Dx, = x, , 

the  integration formula (1.1) can be written as follows: 

which says that  the initial integration formula (1.1) can be reduced to the 
simpler one 

of the same form but with smaller k .  
For a compound multi-step formula, ax = bk =kk  =0, consequently the poly- 

nomials of (3.9) are written as 

where pl(h), m,(h) and T ~ ( x )  are polynomials of degree a t  most k -  1. And, by 
means of the operators of (3.10), the integration formula (1.27) is written as 
follows : 

1 r p ( E ) - h { ~ - l E L + l + a ( E ) ) D ] ~ , = O ,  

Consequently, by eliminating E"'Dx,~, there is obtained 

But, as is seen from (1.44), the term h ' ~ - ~ $  31 Eh-LD2r, affects the error only 
I = O  
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in the term JZ en) of (1.45). However, as is shown in like manner as in 
the preceding paragraph, the term h en) has little effect on the errors 
themselves, because such effect is very small compared with the magnitudes 

of the errors1). Therefore, neglecting the term h2g-15d, C-'D' zn, we may 
1 = 0  

write (3.13) approximately as follows: 

Then, as in the case of simple multi-step formulas, we may assume that  p1(x) 
and ,,(A) + cl(x) are relatively prime. 

Thus, in the sequel, for multi-step formulas, we shall assume the con- 
ditions mentioned above, namely the conditions that  

lo for simple multi-step formulas, p(h) and c(h) are relatively prime; 
I 

(3.15) 1 2' for compound multi-step formulas, pl(h) and B-l  rl(X)+cl(h) are 

relatively prime. 

As is seen from the consistency conditions, these conditions are fulfilled 
for Adams' formula-namely simple multi-step formulas such that  a , = l ,  a2 
- - aIc = O ;  Bkf 0, and for compound multi-step formulas such that  a, =1, a, 
- - a ! b - l = O ,  - D k - l #  0, &(,=I, &1==. . .=&k-l=02) .  

Note: A proof that  the term h @,,(e,+l, e,,) has little effect on the errors 
themselves is sketched below. 

From (1.45), follows 
A A 

e,=A,L-l A,-z...Ao eo 

+ ~ L ( A , - ~ . . ~ A ~ ~ ~ + A ~ - ~ . . . A ~ ~ ~ + . . . + A ~ - ~ ~ , , - ~ + ~ ~ - ~ )  
+ J ~ ( A , - ~ . . . A ~  Q ~ + A ~ - ~ . . . A ~  4n-2+4n-1). 

If we put 

A,@) =A + h C;, and max / T-lG,T =G, 
n 

then, in the same way as in the preceding paragraph, assuming 

l&(en+l, e n ) j S ~ ( j e , + l j  + ie,l) and l e , l l r ,  

we have : 

Since E is a small arbitrary number, this proves the desired fact. 

1) See the note added at  the end of this paragraph. 

2) The formula applied to van der Pol's equation in the paper 1181 is of this type with k=4. 
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3.3 Eigenvalues of A(h) 

Let us consider the characteristic equation of A(h): 

(3.16) {A(h)-XI)c=O. 

Here c is a kN-dimensional eigenvector such that  

(3.17) c = /  c1 ' , 
1 I I C Z  I 

I 
i C N /  

where c, (u=l, 2, , N) are  k-dimensional vectors such that  

Then, by (1.16), from (3.16), i t  follows that  

/ -xc;+c;=o, 

Since from the first ( k -  1) equations follows 

(3.18) can be rewritten as follows: 

Then the last equation of (3.19) can be written as follows: 
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This eguation can be rewritten in accordance with the respective defini- 
tiom of A;,(h)-(1.15), (1.44) and (1.73)-as follows : 

for simple multi-step formulas; 

for compound multi-step formulas; 

for the general Runge-Kutta formulas, 
where F=(F:) is the common approximate value adopted for the F(x,, t,Js in 
10. 

Now, when / IL j is small, as is seen from the forms of A(h), the eigenvalues 
of A(h) lie near the eigenvalues of A(O), namely of A. But, from (2.16) and 
(2.7), the eigenvalues of A are the roots of the equation 

Hence, in order to seek the eigenvalues of A(h) for small i h 1 ,  i t  suffices to con- 
sider the equations (3.22)-.(3.24) only in the neighborhood of the roots of 
(3.25). 

First, let us consider the equation (3.22). Let Lo be any root of (3.25). 
Then evidently xo is a root of (2.7). Let m be its multiplicity as a root of (2.7). 
Then, in the neighborhood of l o ,  p(x) can be expressed as follows: 

Consequently, in the neighborhood of xO, the equation (3.22) can be written as 

K 
(3.27) 11 {r(ko) f c/(Xo)(k - Xo) + - . . - P o  - f ("')(*o) (x- x ~ ) ~ ~ ~  - , , , }  2: F ;  C,u 

7TL ! ,- 1 

= { P ( ~ ~ o ) ( \ - ~ ~ ) ~ ~ + . . . ~ ~ , ,  ( ~ = 1 , 2 ,  . . . ,  N ) .  
m .  

But, by 1' of (3.15), n(xo)f 0 and, by (3.20), a t  least one of c,'s (L =1, 2,. . ., N) is 
not zero. Consequently, from (3.27), we have: 

1) The  dots denote a sum of terms of higher order than those written explicitly. This convention 
is used without notice in the sequel. 
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,)'f"' (x,) 
= ~ h { ~ - ( h ~ ) + ~ ~ ' ( h ~ ) ( h - X ~ ) f  PO - - - (X-Xo)"--..), 

m !  

where IC is an eigenvalue of F. From this i t  readily follows that 

This is an expansion formula for an eigenvalue of A(h). Now I;' has N eigen- 
values IC,  (v=l,  2, , N), consequently, by (3.29), in the neighborhood of \,, 
we obtain I ~ L N  eigenvalues of A(h) as follows: 

Here, of course, the IIL-th root represents any one of rn values of the m-th root. 
Since the number of roots Xu (multiplicity being taken into consideration) is 
Ir, the total number of the eigenvalues given by (3.30) is just 1rN. This says 
that  all the eigenvalues of A(h) are given by (3.30) as should be so. 

Secondly, let us consider the equation (3.23). As in the former case, let 
X, be any root of (3.25), namely any root of (2.7), and let m be its multiplicity 
as a root of (2.7). Then, since (3.11) holds for compound multi-step formulas, 
in the present case, A, becomes a root of multiplicity 771 or n/ - 1 of the equation 

according as x,#O or - 0  and further the equation (3.23) becomes 

(!,=I, 2 ,..., N).  

The first equation of (3.32) expresses the fact that  (3.23) holds for arbi- 
trary values of r ,  for -0, in other words that  A(h) h a s  N l i n e a r l y  i n d e p e n d e n t  

e igenvec to rs  f o r  a xero  e igenva lue .  This says that  A( / ) )  hus at least  N xero 

e igenva lues .  

The second set of equations of (3.32) is of the same form as (3.22) because 
pl(x) and P - l  r,(h) i- C J ~ ( X )  are  relatively prime by 2 of (3.15). Therefore, as 
for (3.22), in the neighborhood of the root A,, of (3.31), there are obtained nzN 
eigenvalues 
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for Xof 0 and (m- l ) N  eigenvalues 

for ho=O. 

As is readily seen, the total number of the eigen values obtained above is 
just kN. Then, by letting F ;  vary by a small amount if necessary, we see 
that  all the eigenvalues of A(h) are given by (3.33), (3.34) and N zeros1). 

Lastly, let us consider the equation (3.24). This equation expresses the 
fact that  (X- l)/h is an eigenvalue of F. Therefore we see that, in this case, 
all the eigenvalues of A(h) are given by 

(3.35) X=l+hrc, (v=l,  2 , . . . ,  N), 

where K., ( V  =1, 2,. . ., N) are eigenvalues of F. 

The above results are summarized as follows: 

The eigenvalues of A(h) are given by the formulas of the forms: 

lo (3.30) for simple multi-step formulas; 

2" (3.33), (3.34) and N zeros for compound multi-step formulas; 

3" (3.35) for the general Runge-Kutta formulas, 

where \, i s  an m-ple root of (2.7) and K ,  (v-1, 2, , N) are the eigenvalues of F. 

Here, without loss of generality, we may assume that  the eigenvalues 
K., (u=l, 2,. .., N) are all distinct and differ from zero, because, by our as- 
sumption, F can be varied arbitrarily by a small amount. Under this as- 
sumption, the eigenvalues of A(h) become all distinct except for N zeros 
which appear for compound multi-step formulas. But, for such N zero 
eigenvalues, there exist N linearly independent eigenvectors as was shown 
already. Thus i t  follows that, under the present assumption, the Jordan ca- 
nonical form of A(h) i s  diagonal. 

3.4 Formulas for propagation of errors 

In this paragraph, using the results of the preceding paragraph, we re- 
write the local approximate error formula (3.8) so that  the behavior of the 
propagation of errors may appear more explicitly. 

First, let us note the following fact which follows readily from the forms 

1) When some of the values given by (3.34) a re  zero, we let F i  vary by a small amount so that 

the values given by (3.34) may all differ from zero. Then,  for such A(/L), our assertion evidently 
holds. Then,  by letting such A(h) vary back to the initial A(~L), we see our assertion holds also for the 
initial A(h) on account of continuity of eigenvalues. 
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of A(h) and r (cf. (1.16) and (1.20)): 
When Ar(h) r (p=O, 1, 2,.  . .) are expressed as 

where v; (v=l, 2,. . ., N) are k dimensional vectors, the first (k-p- 1) com- 
ponents of vi are all zero. 

From this fact i t  readily follows that  the first components of vi are all 
zero for p=O, 1, . .., k-2. 

Let ~ ( h )  be the Jordan form of A(h) such that  

Then, as is mentioned in the preceding paragraph, 8(h) is a diagonal matrix 
whose diagonal elements are the eigenvalues kVi (b =I, 2,. . ., AT; i = l ,  2,. . ., k) of 
A(h) determined in the preceding paragraph. Consequently, if we put 

U=(U'<) u-I =(U".) 
&I , @ I  

(L, p = l ,  2 , . . .N;  i, j-1, 2 , . . . ,  k ) ,  

from the local approximate error formula (3.8), we have 

because 

h K 

2: X u;j X i j  U;! S;,-l+ ,,-, =0 for p=O, 1 , . . . ,  k-2 
] = I  p.,w=l 

as is remarked above. 
But, since j hi and en! are small and, in actual computation, all bounds 

of round-off errors are of the same order, by (1.11), (1.40), (1.42) and (1.73) 
respectively, i t  holds excluding the small quantities of higher order that  

(3.37) &=R,& - T, for simple multi-step formulas, 

(3.38) S , , = R , - ( T , + ~ ~ _ ~ F ~ ' , )  for compound multi-step f o r ~ u l a s ,  

(3.39) S,L =R, - T,, for the general Runge-Kutta formulas. 

Then, by the same reason as that  by which (3.2) has been written approxi- 
mately as (3.8), the formula (3.36) can be written approximately as follows: 
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n-1 k N 

-C 2: Z: u;; X;j UEL T:o-l+n-p 
p = k - 1  j = l  p , w = l  

(.=I, 2, . . . ,  N), 

where 

T ,  for simple multi-step and the general Runge-Kutta 

(3.41) TrL= formulas, 

! T,L - t ? ~ 8 - ~  F ?, for compound multi-step formulas. 

The formula (3.40) is the desired formula for propagation of errors. 
Indeed i t  expresses explicitly the behavior of growth of errors, or, in other 
words, the behavior of propagation of errors. 

3.5 Analysis of propagation of errors 

As is seen from (3.40), the rates of growth of errors are the eigenvalues 
X,, (v=l,  2, , N; i = l ,  2, , k )  of A($) determined in 3.3. Hence, for integration 
formulas, i t  is desirable that  these \,, are all small as possible in absolute 
value. But, by the consistency conditions (2.1) and (2.2), one of the ko is 1 
and, by the stability conditions (2.13), X o l  21 for all xo7s. Therefore, from 
the present point of view, among the various integration formulas under con- 
sideration, the best will be the general Runge-Kutta formula or the multi- 
step formula for which 

and the worst is the formula for which all he's are 1 in absolute value. 
The simple multi-step formulas for which (3.42) is valid are  exactly 

Adams' formulas. For Adams' formulas, due to (2.1), from (3.30), the values 
of ;L,,; are found as follows: 

X." l= l+?z /c ,+  . . . ,  

;L~ =lL1 @-I) ( -  /j )I ( /" - I )+  
iL k K,d . , . 

(i=2, 3, . . . ,  k ;  ~ = l ,  2, . . . ,  N). 

For the compound multi-step formulas for which (3.42) is valid, due to 
(2.2), from (3.33) and (3.34), the values of x,; are found as follows: 
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X. iL . =/~l '(~- ' ){- ( ~ - ~ a ~ - ~  + Pk-l)~.#) + . . . 
I (i=2, 3 , . . . ,  k-I), 
I 

\- XUk = O  (v-1, 2, ..., N ) .  

For the general Runge-Kutta formulas, from (3.35), the values of 1, are 
evidently 

(3.45) X , = l + h ~ ,  (v-1, 2, . . . ,  N). 

Comparison of (3.43), (3.44) and (3.45) yields the conclusion: 

Among the multi-step formulas and the general Runge-Kutta formulas, the 
best three i n  the sense that growth of errors i s  least are as follows: 

1st : the general Runge-Kutta formula, 
2nd: the compound multi-step formula for which (3.42) i s  valid, 
3rd : Adams' formula. 

But, for the integration formulas, as is seen from (3.40), i t  is desirable 
that, besides the rates of growth of errors, the truncation errors are also 
small as possible. As is well known, the truncation errors of the general 
Runge-Kutta formulas and the multi-step formulas for which (3.42) is valid 
are respectively O ( !  h1 5, and O(Ih1 ""2). However, as has been shown by 
Dahlquist [3, 41, among the simple multi-step formulas, there are formulas 
such that  their truncation errors are 0( 112 1 "3). But such formulas can exist 
only for even k and moreover, for such formulas, the roots Xo of the equation 
(2.7) are all 1 in absolute value [3, 41. As is stated in the beginning of this 
paragraph, this means that  such formulas are the worst ones in the sense 
that  growth of errors is largest. 

As is seen from the second of (3.41) and (3.44), for a compound multi-step 
formula satisfying (3.42), the effect of the second formula on both growth of 
errors and truncation errors is small. Consequently, without any serious 
change of effects, we may take any integration formula as the second formula. 
For this reason and for simplicity, let us take, for the present, Adams' ex- 
trapolation formula as the second formula. 

\formulas ' Adams' formulas I compound multi-step 
\ 

k 1, I extrapolation ~nterpola t~on 1 formulas 
I - ( P O = O )  - 
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The above table shows the values of T ,  of multi-step formulas satisfying 
(3.42), namely of the Adams' formulas and of the compound multi-step for- 
mulas mentioned just above. From this table, i t  is readily seen that  the 
values of T ,  of the compound multi-step formulas under consideration are less 
than those of the Adams' formulas. Combined with the first results about 
growth of errors, this says that  the compound multi-step formulas  mentioned 
above are  always  preferable to the Adams' formulas  w i t h  respect to  both growth 
of errors  and truncat ion errors.  

But, for k = 3, since the truncat ion errors of the multi-step formulas  are  
of the same order a s  those of  the general Runge-Kut ta  formulas ,  the latter will  
be preferable to the former  o n  account of the i r  superior i ty  w i t h  respect to growth 
of errors.  

The simple multi-step formulas given by Dahlquist, namely those of 
which the truncation errors are O ( j h j k + 3 )  will not be preferable when the 
formulas are applied in many steps, because the growth of errors is very large 
as  is mentioned formerly. 
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Chapter IV. Estimation of errors 

The formula (2.41) or (2.42) is, of course, a kind of estimates of errors. 
But, as is seen from its derivation, i t  is too crude. So, in this chapter, as- 
suming Lipschitz conditions upon F(x, t) ,  we shall derive a mclre precise esti- 
mate of errors by improving the above estimate. 

In this chapter, we are concerned with estimation of errors of the ap- 
proximate numerical solution obtained in the domain D by means of the multi- 
step formulas satisfying both the consistency conditions and the stability con- 
ditions or by means of the general Runge-Kutta formulas. Since these for- 
mulas are stable as is shown in 2.4, i t  is needless to say that, by means 
of these formulas, there is actually constructed a numerical solution in the 
domain D. 

4.1 Lemmas on matrices 

For estimation of errors, Dahlquist [4] introduced the quantities like 

~ I + ~ z Q ~ - I  lim - 
h-+O h =I. CQl, 

where I is a unit matrix and Q is an arbitrary matrix. In the present paper, 
generalizing the above quantities, we introduce the quantities like 

; P + ~ Q I  - iPi - + lim - 
h-+O h - P P  CQ1, 

where P and Q are arbitrary matrices. 
In this paragraph, about such quantities, some lemmas which will be 

necessary for estimation of errors are stated. 

Lemma. 1. For arbitrary matrices P and Q, there exist always the l imi t s  
in the left-hand side of (4.1). 

This lemma follows readily from convexity of the function of x :  i P+  x Q I .  

Lemma 2. When  norms of matrices are defined as in Chapter I, for P=(p:) 

and Q=(q", ((L, /*=I, 2, , N ) ,  /*$[Q] are given by 
- - 

max 1 ptqtfptq?,  1) PS LQ7 {, X' - - - x i , 
ip?I 

n 

1) This means 
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where 
the bars over the letters denote conjugate imaginaries; 

a: are the indices such that P j = 2: I p? j ; 
'#=I 

C' i s  a sum over the indices v such that j p ?  j f 0 ;  
i 

x" i s  a sum over the indices /A such that lp", =O. 
r 

Proof. Let K: be a number such that  

+1 for h>O, 
l C =  

I -1 for h<O. 

From the definition of a,  for sufficiently small i h i , 
N 

(4.3) / P f  /zQi = ~ ~ x C I ~ I : + ? Z ~ ? ~ .  
a . r = l  

Since 

I lchIq:j for ip?I =0, 

from (4.3), i t  follows that  

from which (4.2) readily follows. 

Corollary. 

and, for A of (2.28), 

max 
&[Q] ){+(ezaa 3 + e-"ffi 

where a i s  a numbcr of the row in A where Xi such that / X i  j =1 i s  located and 
eieffi i s  a value of such xi. 

Lemma 3. 

(4.4) i ~ l f C Q I i l i Q I .  

This lemma follows readily from the inequalities 

1) M (q:)  means the real part of q;. 
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IP! -!Jz!  ! Q ! S ~ P + ? L Q ! ( ~ P ~  -t jh! I Q ! .  

Lemma 4. 

XpfCQ] for X > O ,  
1.5 [xQl= 

XpZ[Q1 f o r X < O ,  

Proof. (4.5) follows readily from 

(4.6) follows from the inequalities: 

according as  72 > 0 or ?L< 0. 

Lemma 5. 

(4.7) i 1.f CQlI - 14 [Qzl i 5 I Q1- Q2 i . 
Proof. By (4.6) and (4.4), for arbitrary Q1 and Q2, i t  holds tha t  

(4.8) pP' CQ11- p; [ Q z l  i pp+ CQ1- QzIS ! Q1 - Qz i 

and 

I*P CQII - / * P  C Q ~ I ~ I / - P  [QI-4212 - I Q1 -Qz  I ,  

namely 

Since Q1 and 92 are  arbitrary, (4.8) and (4.9) hold also when (2, and Q2 are in- 
terchanged with each other. These inequalities combined with the initial ones 
prove (4.7). 

Corollary. p$ [Q] i s  cont inuous  w i t h  respect t o  (2. 

Lemma 6. I n  the de f in i t i on  o f  I/-$ [Q;], the  convergence i s  locally u n i f o r m  
w i t h  respect to  Q. 

Proof. In thc definition (4.1) of /L$ [Q], the quantity 
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converges to [Q] monotonically as h+ -c 0 due to convexity of the function 
of x: I P + x  Q 1 .  And evidently the above quantity is continuous with respect 
to Q for fixed h. Besides, the limits pf [Q] are also continuous with respect 
to Q by Corollary of Lemma 5. Thus the lemma is valid by the theorem of 
Dini. 

4.2 Preliminary estimation of some quantities 

As is mentioned in the beginning of this chapter, we assume Lipschitz 
conditions upon F(x, t) as follows: 

I F t) - F(xf' t) 5 L 1 ' - '  1 for (x', t), (x", t) E D, 
(4.10)') 

I F{x(zf) , t') - F{x(tff) , z") I 5 L2 j t' - t" ( for t', t" E [to - L, to + L ]  . 
Let us suppose that, in the domain D, 

In (4.12) and (4.13), by the assumptions ((1.23), (1.24)), ((1.34), (1.35)) and, 
((1.75), (1.23)), we may assume that  

First, let us seek a rough estimate of max 1 en i by means of the formula 

which is a slight modification of (2.42) and whose validity is evident from the 
derivation of (2.42). 

In order to find K;, K; and E' in the above formula, we have only to know 
K,, K,, C, and p, because of (2.34) and ((2.30), (2.35), (2.37)). Now, due to the 
second inequality of (4.11), we have a Lipschitz condition: 

1) These are valid provided F(x ,  t )  t C ~ , , [ D ] .  
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(4.15) / f(x', t )  - f ( ~ " ,  t ) !  (Mi X' -x" / for (x', t ) ,  (x", t )  E D. 

Hence, after elementary calculations, we find : 

for a simple multi-step formula, 

for a compound multi-step formula, 

K ~ = M { I  i.lo( -t I P -~I(IBOI + I ~ I M I ~ o I ) } ,  

l 
(4.17) K ~ = M { % ~ ~ \  , I = I  + 1 B - ~ I ( % I B ~ I  I = I  + I ~ ~ I M ~ I J L I ) } ,  

I 
I = 1  1 

I I - l l ( n + L ,  llonI56.+i.; 

for the general Runge-Kutta formula, 

where 

,I nf2 = M j nl, 1 , 
I 

I h&=hf{!p-~.i + IrI(1-t I ~ ~ M Z ) ) ,  
(4.19) 

s -u l  + l s l ( 1 t  !h!A42)+ l u ! ( l +  ! h ! n % ) ) ,  1 M 4 = M { / q -  , . 

, W= 1.1 + l b / ( l +  lizlMz)+ l c / ( l +  l h M d +  d ( I + ! ? ~ / ~ f i ) .  

From these, by (2.34) and ((2.30), (2.35), (2.37)), K:, K'i and E' are found as fol- 

lows : 

1 T-I  [ ( S f  c) for a simple multi-step formula, 

(4.21) E' = 
I ~ T - ~ I { ( ~ + ~ ) + ( ~ + ~ ) M ! P - ~ I $  
I for a compound multi-step formula, 

I ( E  + c  f 7 , lT ' )  for the general Runge-Kutta formula. 

Hence, by substitution of these values for K:, K4 and r' in (2.42'), a fol- 
lowing rough estimate 7 of max 1 e,] is obtained : 
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Next, let us seek estimates of the second and third terms in the right- 
hand sides of the error formulas (1.25), (1.45) and (1.77). These estimates are  
obtained after elementary calculations as follows: 

for a simple multi-step formula, 

where 

and 

for a compound multi-step formula, 

(4.26) /4nj(~l jen-L1j  f ~ 2 i e , \ ,  ! f n I S ~ e ,  

where 
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and 

for the general Runge-Kutta formula, 

(4.30) ! ~ n ! S ~ ~ l e n ! ,  ! r , j L ~ , ~ ,  

where 

Since we are concerned only with the case where I hl is small, we may 
suppose that  the conditions (4.25) and (4.29) are always fulfilled. Then, as the 
estimates of the second and third terms in the right-hand sides of the error 
formulas, we can really use (4.23) or (4.26) or (4.30) in accordance with the 
formulas used. 

4.3 Estimation of errors 

The error formulas (1.45) and (1.77) are of the same form as (1.25). So, 
in this paragraph, by (1.25), we shall represent all the error formulas under 
consideration, namely those given by (1.25), (1.45) and (1.77). 
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As is seen from (1.15), (1.44) and (1.73), A,(h) is of the form 

(4.33) A,(h) =A+ h G(t,) 

where A is a matrix given by (2.16). Consequently, from (2.27), 

where 

(4.35) G:, =G'(tn) = T-l  G(tn) T. 

Therefore, in like manner as (2.30) and (2.31), let us put 

Then, by this substitution, the error formula (1.25) is rewritten as follows: 

(4.37) e h + ~ = ( A f  hG',) e',+lz ~ ' , (e ' ,+~,  e',)+ h r', . 

Now, by (4.23), (4.26) and (4.30), 

Consequently, if we put 

by (4.36), i t  holds that  

Then, from (4.37), i t  follows that  

which can be written as 

because jhj is small. Corresponding to (4.40), let us consider the linear differ- 
ence equation 
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and let E:, be a solution of this equation such that  

Then, by induction, i t  is readily seen that  

ieLI(E; (n=O,1,2,.. .),  

which, by (4.36), implies 

Consequently, in the sequel, we shall seek an estimate of the solution Ek of 
(4.41) satisfying the initial condition (4.42). 

First, let us seek bounds of Ek. 
As is seen from (4.33) and (4.35), 

where 

I for a simple multi-step formula, 

(4.45) I f =  
I  IT-'^ ! T I M % ' { ( ~ ~ - I I  1 - 1  idol + i 8 0 1 ) a l  + 8 - 1  IhlI + 8 1 )  
I for a compound multi-step formula, 

. M for the general Runge-Kutta formula. 

Also, as is seen from (4.39), 

where 

IT- ' !  .- t + C  for a simple multi-step formula, 
I 1- I/~!M!3oj 

1 for a compound multi-step formula, 

, iE+5+v117) for the general Runge-Kutta formula. 

Hence, due to (2.29), from (4.41), i t  follows that  
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This has the form analogous to (2.40). Consequently, according to (2.42), we 
have : 

1 M ' f  e : f  E; 

M'+e;+~:{(exp 1- ] h a :  

The r; are the desired bounds of EL. 
Now, let us transform the difference equation (4.41) to an equation of the 

differential form. To do this, we construct a continuous function Ef ( t )  cor- 
responding to the solution Ek so that  

; E/,(t,)=E/,, 
(4.49) t - i, 

I EJ(i)=EL +--- h (Eh+l-E6) f o r t  6 [t,, t,&+d2) 

Also, corresponding to o:,, we construct a step function ol(t) SO that  

(4.50) ol(t) =wL for t E [t,,, t,+J 

Then, from (4.41), we have: 

d ~ y i )  1 ( I A + ~ G : I  i ~ ~ ~ i - ~ ) ~ . ( ~ ~ ) ~  (4.51) -- I , w'(i) for r 6 [in, i.1). 
dt h \ 1 - j h l e ;  1- l h l e ,  

where the upper signs are  taken for 11 > 0  and the lower signs are taken for 
h<O3). 

Now, the first term in the right-hand side of (4.51) is equal to 

which, for small Ih 1 ,  due to (2.29), is nearly equal to 

Moreover their difference is estimated by using Lemmas 3 , 5  and 6 of 4.1 as 
follows : 

1) Here E:,20 ( n = O ,  1, 2,..  ) as is seen from (4.41) and  (4.42). 

2) This means that t , ( t<t ,+,  or t , z t>t ,+l  according as h>O or h <@. 
3) This convention is kept in the sequel whenever the double signs a re  used. 
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where 

IA+/zGhI -1 
c3 = max ( . [ G I  0 (1) as 1 h 1-0. 

h  

I h  IT! ! T - ~ I L ~ $ ( I P O !  a , !  + P Z ~ )  
/ = I  

for a simple multi-step formula, 

E q  = I 
~ h !  ! T I  I T - ~ I L ~ ~ I ( I B - I J  I = I / & I  + I P O I ) J ~ ~ I  + J B - ~ I  \aL! + 1 ~ ~ 1 )  

for a compound multi-step formula, 

, JZ j for the general Runge-Kutta formula, 

and A(t) is a step function such that  

(4.55) ~3 f € 4  M'f E: + E: 

, , E l  1- Ilz!E; 

for t E [I., a+]). 

Hence, from (4.51) and (4.53), in each interval [L,, tncl), we obtain differential 
inequalities as follows : 

Then, since Ef(z) and {& [Gf(z)l i ( e :  + ei )}  / ( I -  I h I E : )  are  all continuous in the 
interval I t -to I (L, the above differential inequalities are solved as follows : 

where 

Thus, by (4.42) and (4.43), we have: 

(4.59) ]e,lIE,%ITI IT-lI . . ~e~je"*(~n) 
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This is the desired estimate of errors. 

4.4 Comparison of various estimates of errors 

As is seen from (4.22), 

is an estimate of errors. Also, as is seen from (4.48), 

is also an estimate of errors. 
But, by ((4.16)-(4.21)) and ((4.45), (4.47)), the quantities Ki +KL, M', E' 

and of are as follows: 

for a simple multi-step formula, 

for a compound multi-step formula, 
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for the general Runge-Kutta formula, 

Hence, we see that, for small 1 h 1 and j eo I, y, and r, have no essential differ- 
ence between them, since, for such h and eo ,  E: and E L  are small compared with 
&if1. 

Next, let us compare r, with the estimate En given by (4.59). 
To do this, we first prove a lemma. 

Lemma. If g ( ~ )  i s  a continuously dijferentiable function such that 

ggl for t r t o ,  or [ "- 

then 

1 -- / 2-92 for I Z ~ O ,  
\ dl: 

respectively, where, for gl=O or gz=O, the right-hand sides of (4.63) mean 

Proof. Put  

Then this satisfies the differential equation 
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dr  - = g t y f l  for t r t , ,  
dt 

(4.65) 
dY - -g!y - 1 dt 

for t(t, I dt 

and also the initial condition 

Of course, by (4.65), we mean that, a t  t=to,  the right derivative of y(t) is equal 
to +1 and its left derivative is equal to -1. Corresponding to the equation 
(4.65), let us consider the equation 

' d Y - g l ~ + ( l + i )  for I B ~ O ,  1 dt- 
(4.67) 

-- d Y - - g r ~ - ( l + c )  for r s t , ,  
I dt 

where E is an arbitrary positive number. And let Y,(t) be a solution of (4.67) 
(in the same meaning as y(t) is a solution of (4.65)) satisfying the initial con- 
dition 

(4.68) YE(tO) = 0. 

Then, comparing ((4.67), (4.68)) with ((4.65), (4.66)), from (4.62), we have 

because 

1 l+ijerl i - t o  - 1) > 0 for t t i o  , 
(4.70) 

gi 
YE($) = 

I I l + i  _ { e r z t t - r ~  - 1 ) k O  for t ( to .  
Rz 

Here, of course, for g,  = O  or gz =0, the right-hand sides mean 

Now ,- is an arbitrary positive number, consequently, letting i-0, from (4.69) 
and (4.70), we obtain (4.63). This proves the lemma. 

Let us return to the estimate En given by (4.59). 
By Lemma 3 of 4.1 and (4.44), let us assume that  

(4.71) / * n L G ( l ) S L  + ' " < C + < A f ,  - p>[G'(t)]>-C->-M' 

Then, from (4.58), follows 
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and 

Consequently, by the above lemma, from the expression of En given by (4.59), 
we have : 

where 

Now, by (4.55), for small 1 h 1 ,  maxA(t) is small compared with IT,. 
Therefore, from the rightest side of (4.74), we have 

(4.76) En rn approximately. 

This says E, always gives a better estimate of errors than I',, . 

Then, has E ,  any serious difference from r, ? 
To answer this question, let us conider V 2  and ?$. Evidently the func- 

tions of the forms 

are  both monotonically increasing with respect to g in ( -  m, a). Conse- 
quently, from (4.71) and (4.75), 

and 

and moreover the differences r,&- V $  and P,&-?; become larger and larger 
as  M' - C' increase. In particular, these differences become quite marked 
when the C' become negative. This fact says that  En can be quite different 
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from I',, consequently from y,. This says that  En is a more precise estimate 
of errors than r, and 7 , .  

4.5 Remarks 

1' Once En has been found in the above way, we can improve this E ,  fur- 
ther in the following way: 

i) replacing y by max E,, we calculate i l  and E~ again by (4.24) or (4.28) 
or (4.32), 

ii) replacing r b  by En/  I T I ,  we calculate A(t) again by (4.55), 
iii) for E ~ ,  E~ and A(t) obtained newly, we calculate E, again by (4.59). 
This process can be continued indefinitely so long as  the new En is smaller 

than the old E n .  

2' When actual computation of H"(i) is difficult, as is readily seen from 
(4.74), we can take 

as  an  estimate of errors choosing C" as  small as possible. As is mentioned in 
the preceding paragraph, even this gives a considerably better estimate than 
I', and y, if C' a re  chosen sufficiently small. 

3 When the different multi-step formulas are applied to each component 
of the given differential system, we can get  also the similar estimates of er- 
rors if we replace the scalar coefficients al, a,..., ak; P-1, PO, PI , . . . ,  Pk; kO,  
81,. . ., ; Po,  P1 ,. . ., Pi, by the diagonal matrices whose diagonal elements are  
respectively the different scalar coefficients a1 , a2 ,. .., a , ;  P-1, PO, P1 ,. . ., PA; kO,  

A A 

& I , . ' , ,  kk-1; 80,  P I , . . ' ,  P k .  

4" As is readily seen, the results of the present paper are valid also for 
the complex differential system derived from the real differential systern by 
the complex linear transformation. 

5" In this section, for generality, we are  concerned with the complex 
differential system mentioned in the above section. 

For multi-step formulas for which (3.42) is valid, from (2.5), 

consequently, as 7; in (2.9), we may take 
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For such To, from (4.35), we readily see that  

where 

and 

Then, by Lemma 2 of 4.1, we see that, 

for Adams' formulas, 

and, for the compound multi-step formulas satisfying (3.42), 

max 
,L; [ ~ t ( t ) ] = ( ~ ~ ~ )  [ a ~ ; ( t )  * 2: !~:(t)  I 

y ~ =  r 
i 

For the general Runge-Kutta formulas, from (1.73), Ao=I  and G(t)=F(t), 
consequently, by Corollary of Lemma 2 of 4.1, i t  readily follows that  

Examples. 
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For Adams' formula 

For the compound multi-step formula 

max 
[cf(t)l ) [ ~ x t )  * Z: I ~ : ( t )  I 

l i * Y  
v 

4.6 Numerical examples 

By way of example, let us compute the various estimates of errors of 
some integration formulas applied to the Cauchy problem such that  the given 
equations are  

(4.77) dx - -  - 
dt 

sx (X : scalar, z = + 1) 

and the initial condition is 

(4.78) x(O)=l. 

Evidently the true solutions of the above problem are  

(4.79) x ( t )  =exp(~t) .  

Let us consider the solutions in the domain 

D: O(x21.7, O<c<O.5. 

Then, since 

(4.80) F(x, t)=a, 

i t  readily follows from (4.10) and (4.11) that  
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The integration formulas taken into consideration in this paragraph are 

I : h 
~ , + 4 = ~ , , + 3  f - (251 2,+4 + 646 %+3 - 264 xn+2 + 106 - 19 jc,) 720 

(Adams' formula) ; 
12 IT: ~,+4=x,+z + -- (29 k,+4 f 124 k,,+3 +24 f 4 -k,); 
90 

h 
,+4=,+3 + - (- 19 1,+5 + 346 k,,, + 456 k,,, - 74 in+? + 11 in+,), 

I S  720 

II1: I h 
kn+s = ~ , & + s  + - (1901 xm+4 - 2774 x,+, +2616 in+2 - 1274 _in+, + 251 jc,) 

720 
(compound multi-step formula); 

12 IV:  x,+~=x,+--- (k,, +2knz-k2kn3 fkna),  where 
6 

, kn4 = f (xn + JZ kn3, t, + h), 

(Runge-Kutta formula). 

As is readily seen, the truncation errors of these formulas are estimated 
as follows : 

]Tnl(C1z5 for IV. 

Here C is s constant which can be computed for any given differential equa- 
tion. 

Now, for the solutions of the present problem lying in the domain D, 

(1 .7  for ~ = 1 ,  
rnax!rvlI =: 

I 1 for E = - 1 ;  

1 , 1.7/120 for e =1, C= - m a x z j =  
120 1,420 for E =  -1 
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Consequently, if we take 

then, by (4.13), we have: 

0.018364 x 10-lo ( E  = 11, 
for 11, r =  

0.010802 x lo-'' ( E  = - 1) ;  

0.012986 x lo-'' ( E  = 1), 
for 111, r=  

0.0076389 x 10-lo ( E  = - I ) ,  

, 1.41667 x 10-lo ( E  = I ) ,  
for IV, r=  

0.83333 x 10-lo ( E  = - 1). 

To get the estimates of round-off errors, we shall prove a 

Lemma. When the vector equation 

i s  solved numerically by the method of iteration, i t  holds that 

in the state of numerical convergence1', where E i s  a bound of the round-of er- 
rors arising in the computation of X ( x )  and S i s  a positive constant less than 1 
such that 

for any two values x' and xu of x .  

Proof. Let k be a true solution of the given equation, and let x,, x ~ , , , .  . ., 
x ~ + , ,  be the computed values of x in the state of numerical convergence. Then 
i t  readily follows that  

1) When the given equation is solved numerically by the method of iteration, in the process of 

computation, there always appears the state in which a certain number of computed values of x are 
repeated. Such a state is called the state o f  numerical conver~geme [17]. 
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Consequently i t  follows that  

namely that  

I x M - a / s  -5 
1 - S '  

Then 

This proves the lemma. 

Then, if the computation is rounded off correctly to ten decimal places, 
for the round-off errors, we have: 

251 for 1, S= - - / L ,  f,, =f=50.34983 x 10-lo; 
720 

29 for 11, S= - 11, f,,=t=50.32326 x 
90 

1901 for 111, S= - I ) ,  E,,=E=52.71188 x 10-lo, 
720 

$,,=g=0.52712 x lo-''; 

for IV, S=O, [,,=(=50.00000 x 10-lo. 

By the definition of the matrix l', we can take ?'so that, 

for 1 and 111 7 '  1 0 0 , = 

1 0 s  

1 6 L  0 0 

I 1  0 0 0 1.1 

for 11, 7'= 1 1 
I 

1 -1 

1 1 0 0 I 
I 
I 1 -1 0 0 
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Then, if we take 

we see from (4.54) that  

for I, / TI =2, 1 T-I 1 =2.46914, 

for 111, / T / =2, I T-I 1 =2.46914, 

for IV, j TI = 1 T-' / =1, 

Using the above values, we compute the error estimates y,, r, and E, by 
means of (4.60), (4.61) and (4.59). The results are  shown in the table of the 
next page. In this table, E, are the values of E, improved by the process 
mentioned in 1" of 4.5. 

The reason why En > r, for 12-40, 50 in the case of I1 is due to the fact 
that  max A(t) is not small compared with r,. Indeed their values are 

, 3849.32891 x (E = 11, 
max A(t) = 

0 5 t S 0 . 4  1 3849.32663 x lo-'' (E = - I), 

, 14846.89895 x 10-lo (e =I) ,  
max A(t) = 

Ostz0,5 14845.06739 x lo-'' (E = - 1). 

Anyhow the table of the next page shows the superiority of the estimates 
E, compared with y, and r , .  
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1 Formulas I i 1 l0l0yn lolor, ~ O ~ Q E ,  1 0 1 0 ~ ~  1 0 l ~ r ~  I 
I 
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