# A Unique Imbedding of a Torus Homotopic to 0 in a 3－manifold 

Akira Tominaga<br>（Received February 21，1961）

In 1958，R．H．Bing 〔1〕 proved among other things the following：Let $M_{1}$ be the 3 －manifold obtained by removing a polyhedral tubular neighbourhood of a trifolium（i．e．Kleeblattschlinge，［3］p．2，Fig．2）from $S^{3}$ ，that is，by piercing a hole along the knot and let $M_{2}$ be a torus．If $M$ is a simply con－ nected 3 －manifold such that $M=M_{1} \cup M_{2}$ and $M_{1} \cap M_{2}=\mathrm{Bd} M_{1}=\mathrm{Bd} M_{2}$ ，then $M$ is topologically $S^{3}$ ．Furthermore he stated in［1］，p．36，＂It has been pointed out to me by C．D．Papakyriakopoulos that，by using a combination of the methods of homology and homotopy，it can be shown that $M$ is topologically $S^{3}$ no matter how the hole is knotted．＂

Let $T$ be a torus in a 3 －manifold $M . T$ is called to be homotopic to 0 in $M$ ， provided that there exists a continuous mapping $f$ of the product space $T \times I$ into $M$ such that $f(x, 0)=x$ and $f(x, 1)=p$ for each $x$ in $M$ ，where $I$ is the unit interval and $p$ a fixed point in $M$ ．In this paper we shall prove the fact in a more general form，which is as follows：

Theorem．Let M be an orientable 3－manifold，compact or not，with boundary which may be empty．Let $T$ be a polyhedral torus homotopic to 0 in $M$ and T＊ a torus．If $M^{*}$ is a 3－manifold such that $M^{*}=(M-T) \cup T^{*},(M-\operatorname{Int} T) \cap T^{*}=$ $B d T=B d T^{*}$ and $T^{*}$ is homotopic to 0 in $M^{*}$ ，then $M^{*}$ is topologically $M$ ．

Proof．We may suppose without loss of generality that $T \cap \mathrm{Bd} M=\phi$ ． For if not，it is sufficient to thicken $\mathrm{Bd} M$ ．Since $T\left(T^{*}\right)$ is homotopic to 0 in $M\left(\right.$ in $\left.M^{*}\right)$ and $\operatorname{Bd} T\left(\mathrm{Bd} T^{*}\right)$ is of genus 1 ，there exists a longitude $l\left(l^{*}\right)$ of $T\left(T^{*}\right)$ such that

$$
\begin{equation*}
l\left(l^{*}\right) \sim 0^{(1)} \text { in } M-\operatorname{Int} T \tag{1}
\end{equation*}
$$

（cf．〔2〕 pp．153－154）．If $m$ is a meridian of $T$ conjugate to $l$ ，we can find in－ tegers $a$ and $b$ such that $l^{*} \simeq a l+b m^{(2)}$ on $\operatorname{Bd}(M$－Int $T)$ ．Hence by（1）we have

$$
\begin{equation*}
a l+b m \sim 0 \text { in } M-\text { Int } T . \tag{2}
\end{equation*}
$$

Since $l^{*}$ not $\sim 0$ in $T^{*},|a|+|b| \neq 0$ ．Furthermore $a \neq 0$ ．For if not，$b m \sim 0$ in $M$－Int $T$ and $b m=\partial Z_{1}$ ，where $Z_{1}$ is a 2 －chain in $M-\operatorname{Int} T$ ．On the other hand
（1）$\sim$ means homologous to．
（2）$\simeq$ means homotopic to．
$b m \sim 0$ in $T$ and $b m=\partial Z_{2}$, where $Z_{2}$ is a 2 -chain in $T$. Let $K$ be a core (Seele) of $T$. Then the linking number of $K$ and the 2 -cycle $Z_{1}-Z_{2}$ is equal to $b \neq 0$, which contradicts the fact $K$ is homotopic to 0 in $M$.

From (1) and (2), we conclude $b=0$ for the same reason as above. Since $l^{*}$ is a simple closed curve, $|a|=1$. Therefore $l^{*}$ circles $T$ once and hence by the standard method it follows that $M^{*}$ is topologically $M$.

Corollary. Let $K$ be a knot in $S^{3}, T$ a closed, polyhedral, tubular neighbourhood of $K$ and $T^{*}$ a torus. If $M$ is a simply connected 3-manifold, such that $M=\left(S^{3}-T\right) \cup T^{*}$ and $\left(S^{3}-T\right) \cap T^{*}=B d T=B d T^{*}$. Then $M$ is topologically $S^{3}$.

## References

1. Bing, R. H., Necessary and sufficient conditions that a 3-manifold be $S^{3}$, Ann. of Math. 68 (1958), 17-37.
2. Dehn, M., Ueber die dreidimensionalen Raumes, Math. Ann. 69 (1910), 137-168.
3. Seifert, H. and W. Threlfall, Lehrbuch der Topologie, Chelsea, 1947.

College of General Education, Hiroshima University

