J. Scr. HirosuiMa Univ. SEr. A-T
26 (1962), 27-36

On a Lemma of Peetre

Ken-ichi Mivazaxi

(Received February 20, 1962)

By H®, — oo <5< oo, we shall understand the space of temperate distri-
butions f defined on Euclidean n-space R” such that the Fourier transform f
is a function satisfying

171z = 1L F@ra + 1217y < oo,

Let #° be the space of distributions f such that f ¢ H*® for any ¢ € 2, and x*
be the space of distributions composed of elements of H® with compact support
[4]. A sequence of functions \r; € 2, j=1,2,..., is called uniform partition
of a function - € # when the following conditions are satisfied:
(1) >Wri(x) =(x) for any x € R".
J

@ii) {yr;} is bounded in &.

(iii) For any compact set 4 CR”, at most n, of the supports of +; can
meet 4, where n, is a positive integer depending on the diameter of A.

(iv) The diameters of the supports of +r; are uniformly bounded. If, in
addition, =1 and »; >0, j = 1, 2,..., we shall say that {y;} is a uniform
partition of the unity.

In connection with the estimates of differential inequalities J. Peetre has
established the following lemma with slightly weaker definition of uniform
partition ([2], Lemma 1, p. 65).

Lemma. Let s=0. If {y;} is a uniform partition of «r € &, there exists a
constant C, 4y such that

2
s

%H‘I’J‘f”f = Cewpllfi

for any fe H°.
Conversely, if f is a distribution of £° such that there exists a uniform
partition {p;} of the unity with >3||¢;f||2< oo, then fe€ H".
J

He carried out the proof by making use of the norm ,||/] ** =SH fa—fII?/

la|"** da, 0 <s< 1, and of induction with respect to s. But he says nothing
about the case s < 0. His method of the proof seems not to be available in this
case. The main purpose of this paper is to show the following lemma which
may be regarded as a generalization of his lemma.

Lemma A. Let s be any real number.
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() If {yr;} 18 @ uniform partition of - € B, there exists a constant C;, g 7
such that we have

@ 2iflls = G wpllfils for any fe B,

B) If {¢;} is a uniform partition of the unity, there exist two positive
constants Cs, ¢, 3, Cs, (43 Such that we have

@) Ce. oAl = 25lbs AIIE = s oplIf:

for any fe H'. Therefore f— | fls and f—(S3(¢; filH} are equivalent norms in
J
B,
(v) Conversely, if f1s a distribution of £° such that there exists a uniform
partition {p;} of the unity with >/|¢; fl|? < oo, we have f€ H.
J
The lemma may be effectively applied to the estimates of differential

inequalities in the uniformly hypoelliptic case contemplated in Peetre’s work

([2], pp. 65-69).
The definitions and the notations of L. Schwartz [3] with respect to the
spaces of functions or distributions will be used without further reference.

1. Let p be a fixed indefinitely differentiable function defined on R* with
support in the unit ball B; such that p =0 and Sp(x)dle. We put p(x)=
1 (’i)
& P\e)

In H?, s<0, there have been considered by L. Hormander [1] the follow-

ing two norms || « ||, ., and || « |l .,, each equivalent to the original norm || - [[;
of H*:

® 1120 = 112+ &3] )12 ae.

@ [ SO°;| Prpdl2ae e,

In these expressions & denotes any positive number. He proved that there
are positive constants C; and C, depending only on s such that Ci||fils,:o <IIflls,e,
=ZCollflls, ., for any fe H".

For our later use we need the Friedrichs’ lemma established by Hsrmander
([1], Lemma 5.2) but in somewhat precise form:

LemMma 1. Let a€ 92,5 <0. Then there exists a constant C, depending on s
such that

(5) S;"Ha(f*Ps) — (af)spel|2se~21 ds

<cl fnf_l,so(s 6@+ g =g |, fem,0< =<1,
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When s is bounded, Cs 1s also bounded.

This is immediately verified by estimating the constants C; and Cs; con-
sidered in his proof of the lemma.

From this lemma we have

Cororrary. If {yr;} is @ uniform partition of r € &, then there exists a
constant C depending on {y;} and s such that

SOD ri(frpe) = (g frxpellZo67* 7 de
§ C”U‘JH?—I)S()) ff Hs—l, 0 < EO —S: 1.

Proor. Let a; be any vector which lies in the support of , j=1, 2,....
By the definition of uniform partition of +- the set {r,, \;} forms a bounded

VN
subset of 2. Hence the set {r,;} is bounded in &, so that there exists a

A A
constant €’ depending only on the set {r,;\;} such that (1+ [&[)™*"*® |7, )]
<C,j=1,2,.... Consequently we have

[l + 12 ae
N\
i@t gpae < clas e ae<eo.

The preceding lemma together with these inequalities will complete the proof
of the corollary.

2. This section is devoted to the proof of Lemma A. Let {¢;} (resp. {y-;})
be a uniform partition of the unity (resp. of any element - € %).

We shall begin with the proof for the case s<0. Since the set {supp.
¢; + Bi} (resp. {supp. yr; + Bi}), B: being the closed unit ball with center 0 in
R", is bounded in diameter, there exists, by definition, a positive integer [ such
that at most [ of +r; (resp. ¢.) cannot vanish identically on supp. ¢; + By (resp.
supp. \;+By) for any given j, j=1,2,.... Let f be any element of H°. Let
0<&<1. Then

I fI2, e = — s SZ"H(% Prpellze s2-1as
(6) < =21 oo = e frpOlzaE ™ de

= 25| Il e e

We write >Y¢, to denote the sum of ¢, whose support intersects supp.

Yrj+By. Noting that the number of such ¢, is at most /, and that (\r; f)*p.=
(i O be) xpe and ri(fxpe) = i (e f) *pe), we get by the Corollary to

Lemma 1
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=25 (G 0. = (el €75 de

(M < — 25CICY dflI3 -1,
<2(—s+1) Ca’l>Y NI fUI3 e,

where C is a constant depending on {v;} and s but not on &.
Combining (6) and (7) and summing up with respect to j, we have

Sl Sl S 20— s+ 1) Ce 1330y fI1, o,
® |
=325l ol de

Setting M = sup >}|;(x)|% we have
J

3325 "ol £ de S 2MUFIE

which together with (8) yields

9) SN fIE ¢y S 2(— 5+ 1) C & & S, + 2MIAIL o,

Now suppose that Z,HIqufIIIs ., < co. Substituting ; by ¢; in (9) (with C,
M’ in place of C, M) and taklng & so small that 2(— s + 1) €' &* I? and 2(—s+1)
C &F IP< %, we get
(10) Z,Illq‘)Jﬂll, o < AMIFIIZ, <,
which together with (9) yields

(11 S fIE, 2y < 2M+MOIFIE, <

We shall show that (10) and (11) hold for any f€ H°. To this end we con-
sider a sequence of multiplicators «; such that a;f—f in H*. The inequali-
ties (10) and (11) hold for «; f since Z,Iihp, aifll? ., is finite. Hence passing to

the limit as i — oo, we see that (10) and (11) hold for any fe H°. On account
of the equivalence of two norms || ¢ [I,,;, and || - [|;, we see that the inequality
(1) and the second part of the inequalities (2) hold for any fe H*, s <0.

As for the first part of the inequalities (2) we start with the inequalities:

ZZHI(l),f”ls g = 25> S [[(bif)pe— i frpoll 32672 de —
(12)

B SJZSZOHQSJ'(]C*PS)”%Z &gl de = —J, + ],
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As before we can take & so small that J; < = §,|||¢>,fms ¢ Setting m = inf

S pi(x)|?, we see from (12) that
J

(13) S ligif I3, = 2 mllfIE.,,

which proves the first part of the inequalities (2) since the two norms || - ||,
and || - Il,., are equivalent.

The general case will be proved by using induction on s. We assume that
the inequalities (1) and (2) hold for s<s,. It then follows that for any fe H**',
s <s,, we have

le%fllm = Lll%fﬂ2 4 T 2.2_,]1 (N}%f)l]2

<Ds I + —fz Sl —f—u2

i=1

1 Al "‘1 8\!’] 2
+ g P30 B

= AR +

Al af 2
2L

= C”f”s+13

where C is a constant depending on {\;} and s.
Noting that Lll a¢>] sz C’llfllz<C”§_.llq5;fl[2 C”le¢;flls+1, where C',

C" are constants dependlng on {¢;} and s, we have

an

I e = NfIE +

S GGl + L

= Cl(]leqbffllf z 2 ZH (qbff)ll2

1 v a(b] 2
t g %%ll o fIID
éCZ%:»”(f)/’fHZsH

where Ci, C, are constants depending on {¢;} and s.
Thus we have shown that the inequalities (1) and (2) hold for any s.
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Now we turn to the proof of the last part of our lemma. Let f be any
element of .#° such that >3, f]|? < co.
J

Let a € 9 be a function such that « is 1 near the origin. If we put au(x) =

a(%), {a;} is bounded in # and forms a sequence of multiplicators. To com-
plete the proof, since H¢ is complete it suffices to show that {«,f} is a Cauchy

sequence in H°. We have by (2)
lerf — aw flI} < C, 0 %‘:”@(Oﬁk — ap)flI%

If k, k' are taken so large that ¢,(a;—au)=0 for j=1, 2,..., N, then, noting
that since {«;} is bounded in % there exists a constant M such that
llpi(etr — ar) fll2 < Mllp; f1|? for any j, k and &', we have

”akf - C‘k/f”'s2 <, {q’j}Mj%J:]”quf“f)

whence it is clear that {«,f} is a Cauchy sequence, which completes the proof.

3. In this section we shall concern ourselves with an application of
Lemma A to the estimate of differential inequalities.

1 )
g ax/'
if p=(p1, p2,---, pn) is any n-tuple of non-negative integers and ¢ is an n-dimen-
sional vector (¢i, &, -, £,), we shall write p! =p,! p2!...p.!, |pl=p1+p2+--- +
Py =81 &4 &ln and D? = Di Db: ... Din,

Let P(%, D) = %} ay(x) D? be a differential operator of order m with coeffi-

cients a, € #. When x is fixed, P(x, D), which we shall write P.(D), is a dif-
ferential operator with constant coefficients. Let M(D) be a hypoelliptic dif-
ferential operator of order m with constant coefficients, i.e. in any domain any
distribution solution 7 of M(D) T'= 0 is indefinitely differentiable. We denote

by M(&) the polynomial in & obtained by substituting & for D in M(D). M®(D)
\?

stands for a differential operator corresponding to the polynomial (—a%—) 1
1

To write our differential operators, let D; = for 1 <j<n. Then

2\ o\ () 2 i i ;
(852 ) ( e M(&). PP(x, D) and P{”(D) will have obvious meanings.

The symbol C with various subscripts is used to denote a constant, not
necessarily the same at each occurrence, which depends only on the variables
displayed. ,

In the sequel we shall assume that P(x, D) is uniformly of type (M), that
is, M(D) satisfies the condition:

1 _ 1+ [P 6

o =1k M =6

N
where C is a constant. Then P(x, D) is expressed as >} B;(x) M;(D), B; € &,
j=1
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where M;(D) are chosen among {P,(D)} .cr.
Our aim of the present section is to show the following proposition, a
special case of which is found in Peetre ([2], p. 69).

Prorosition.  Let P(x, D) be uniformly of type (M). If fe H and Pfe H,
then Mf € H® and we have

(+) 1Mflls =< ClIPflls + Ce ol £111-

Before proving the proposition, we shall state some lemmas for our later
use.

Lemma 2. Let fe H'. If any of M;f, Mf, P.f lies in H’, so do the others
and we have the estimates:

(15) 1M flls < v2C IMflls + Co £l

(16) [Mflls < 2CIPeflls+Co ol £l

an 1MD flls, IMPFls Z M5 + Co,r,ellfll, € >0, [pl >0.
18) IM;flle < ENMFll + Cor,eliflly £ <, €20

Proor. Sinece M is hypoelliptie, it follows that M (§) - oo as |&| — oo.
Hence from (14) we get
A+ 6151 M&)* <2001 + [&]2° | M(&)|* + €3 (1 + |€]%).
Consequently, if Mfe H°, then [[M,fl|; < oo and we have the inequality (15).

The other cases may be proved similarly, so the proof is omitted.

Lemma 8. Let fe HHNH'. For any ¢ € B we have

l¢flls < (sup[d(x) | + Ellflls + Cor,elIfllr, €>0.

Proor. The estimate has been essentially established by Peetre ([2], p.

19) for the case s==0, to which the general case may be reduced by consider-

ing a function f; € H*** with(l— 4A2

T

such that 2k+s > 0. The proof is not supplied here since it is only a matter
of calculations often used in Peetre [2].

)kﬁ = f, where £ is a positive integer

Lemma 4. Let B; be a ball with center x, and radius r, then for any
fe€Hpgr NH' we have
0

19) 1(Bi(x) — Bla)flls <rC'll flls +Co.e. |l e

where C' = 2 sup sup|grad. 5;| + 1.
j %

Proor. Let 4 be a fixed function of 2 such that 0 <<+(x) <1, J(x)=1
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for |x| <1land(x) = 0for [x| = 2. Setting v, ,,(x) = «p(@), we have

(Bi(x) — Bi(xo) f(x) = (Bi(x) — Bi(®))Vrr,x(x) f(x). Now we can use Lemma 3 to
establish (19). The details are omitted.

Ture Proor or THE ProprosiTiON. (a) First we shall show that the proposi-
tion is valid if the inequality () holds for any funection of 2;2 and for any s, ¢.
Suppose that fe H' and Pfe H°. Mflies in an H”. Put o =min (s — 1, s"). Let
{p:} be a sequence of regularizations considered in Section 1. Since fxp. € 2.2,
we have by hypothesis

(20) [M(frpolloss = ConrlP(frpolloss + Cosrell frpells

Noting that M;f ¢ H” by Lemma 2, we get from (20)
@D M frpillors S Conl Bxpull s + Conl S8 fyrpe — 3B )*p0) o ir
+ CC""l,tHf*Pa”t-

On the other hand, || f+p.ll; = Il fll: and [|[Pf*p¢llo+1 — [|[Pfllo+1 as & — 0 since
fe€H and Pfe H**'. By Friedrichs’ lemma ([2], p. 22), the second term of
the right side of (21) tends to zero as &—0. Therefore from (21) we see that
{liMfxpello+1} is bounded, so that Mfxp. — Mfin H°*' as ¢ 0. Hence we have
from (20)

(22) IMfllgs1 =< CorrllPfllos1 + Cosr,o]l I

By repeating this process if necessary, we can see that Mfe H° and the
inequality (x) holds, as desired.

() To complete the proof, it remains to show the inequality (x) for any
f€ 22 Since || f]|; is an increasing function of z, we can assume ¢ <s without
loss of generality.

Let {¢;} be a uniform partition of the unity such that the diameter of
each supp. ¢; is less than r, where r is a fixed number chosen so small that
8CC'Nr<1. Let x; be any point of supp. ¢;,, We have

ql

(23) llp;Mfl|s << | Ml + %O%H(D"@)(M(”f)lls-
Using Lemma 2 we have

(24) 1 M(p;)1ls <N 2C 1Pe biflls + Ci,sllsf lle
=VN2C P = P )il + v 2C [P lls +C, ellif

On the other hand, we have by Lemma 2 and Lemma 4
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(25) 1P = Po)@slle = 33 18i0) — BeMibspll
<7 CSIMGP. + G IMsP

SN 2C CONr[|M(d;P)ls + Co M )ls + Cs,elldsf lle

and also

(26) PPN < 1Pl + 33 i,quqb» > BUDMEF |,
< IbsPfl+Ce 33 S )M

(24) together with (25) and (26) yields
(1 — 2CC'Nr — J2CC,,,8)|| M(d; )|l
<V2C [ dPflls + € Z le(D““d)])(M@f)lls + s, lldif s,

1

in which we take & so small that \/_25 C..&< T Then
(27) | M(p;)lls < 20 2C lip;Pfls + C ZH(D"qu)(M“”f)][s
+Cs, tld;f s

(23) and (27) give
sMf . < 2V2CUPf L + € >3 S )M, +

(28)

+ quI‘>OIl(Dq¢f)(M(")f)lls} + Cotlldif 1l
whence
(29) b Mf113 = 8CLp;PfII + A, “210%]“(0‘1(]51')(]”%”][)“3 +

+ |%‘>OH(D4¢J~)(M(”f)H§} + C, i 117,
where [ is the number of terms on the right side of (28). Summing up (29)
with respect to j and using Lemma A we have
(30) IMFIE S CIPFIE+
’ Al al @ r)12 QY (q) £]) 2 2
FCAL S SUMPFIE+ > IMOAS + Cullfl

Since | M7 f|ls < Mflls + Cs, v l|flls and | MPFf||, <M ||s + Cs, .|| £]]: by Lemma
2, we can choose & so small that we may obtain from (30)
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IMF11F S GIPAIE + G lIf e,
whence
HMf“s é Cs”Pst + Cs,t“f“t-

Thus the proof of the proposition is complete.
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