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1. Introduction

In the previous paper [2], the author has given a method to determine
the potential force g{x) so that the period of the periodic solution of the equa-
tion

(i.i) - #

may be an arbitrary given continuous function of the amplitude of the ve-
locity.

In the present paper, first, we shall give a method to determine g(x) so
that the period of the periodic solution of (1.1) may be an arbitrary given
continuously differentiable function ωi(α) of the positive maximum displace-
ment a of x whose derivative ω/(α) with respect to a satisfies the Lipschitz
condition. Our method is based on solution of a certain integral equation to
which the problem is reduced by the techniques used in the previous paper
[2].

Next there will be given a method to determine the desired potential
force g(x\ namely g(x) such that the period of the periodic solution of (1.1)
may be an arbitrary given continuously differentiable function ω(A) of the
amplitude A whose derivative ω'(Λ) with respect to A satisfies the Lipschitz
condition. By the same techniques as in the first problem, the present problem
is reduced to solution of an integral equation which is of a particular type
of the integral equation solved already in the first problem.

Lastly, in illustration of our method, there will be given a potential force
g(x) such that the period ω of the periodic solution of (1.1) is a linear func-
tion of the amplitude A.

Since the work of the present paper is based on the main theorem in the
previous paper [2], it is restated here for the convenience of the readers.

THEOREM 0. In case g(x) is continuous in the neighborhood of % = 0 and
differentiable at x=0, if any solution of the equation (1.1) near x = x = 0 (• =
d/di) oscillates around x=x—0 with a bounded period, then
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1° the period ω (2^0) is expressed as

(1.2) ω = Ω(R),

where R is the maximum velocity (namely the amplitude of the velocity)

(1.3) R =

and

(1.4) fi(ί)eCft

2° ΐΛ-e function g(x) satisfies the functional equation

(L5) ^{
where S(X) is a continuous odd function and T(X) is a continuous even func-
tion such that T(0)=0 and

Conversely, given any function Ω(R) for which (1.4) holds, if the even func-
tion T(X) defined by (1.6) is continuous, then the function g(x) which is deter-
mined by the functional equation (1.5) for an arbitrary continuous odd func-
tion S(X) and for the continuous even function T(X) defined by (1.6), is continu-
ous in the neighborhood of x = 0 and is differentiable at x = 0. Furthermore,
for this g(χ), any solution of the equation (1.1) near x=x = 0 oscillates around
x=x=0 with the period (1.2) for R given by (1.3).

In case Ω(R) e CR for R^>0, the relation (1.6) can be replaced by

(1.7) T(X) = —x\*l2Ω'(Xcoaφ)dφ for
ωo Jo

whose right member is continuous. Consequently, for any given Ω(R) e CR with
Ω(0)=ω0>0, there always exists a continuous potential force g(x) which is dif-
ferentiable at χ=0 and for which any solution of the equation (1.1) near x=x=
0 oscillates around x=x = 0 with the period (1.2) for R given by (1.3).

2. A Lemma for an integral equation

As is stated in the preceding paragraph, the problems in question are re-
duced to solution of a certain integral equation. In this paragraph, a lemma
for asserting the existence and uniqueness of the solution of such an integral
equation is proved.

LEMMA. Given an integral equation
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(ω0 > 0),

where F(a) is a given function defined on /[0, Z] (Z>0) satisfying the Lipschitz
condition:

(2.2) \F(af)-F(a")\<^L\af -a"\ for V , α" ε / (L > 0)

5(X) is α given continuous function defined cm/[0, a~\ (cOO) satisfying the
inequality

(2.3)

Let

(2.4)

\S(X)\ for VX

M — max
aβί

\F(a)\.

Then the integral equation (2.1) has, (m/0[0, α 0 ] (oc0<La), one and only one
continuous solution T(X) such that

(2.5)

for any I e / 0 ) where

(2.6) <Xo = max mm α,

2Lω0

k being a positive constant less than unity and Ko is any value of non-negative
tc<,l — Kfor which the minimum of the right member of (2.6) equals a0.

PROOF. Let us consider the iteration process on Io as follows:

First, we prove that this iteration process is actually possible indefinite-
ly on /o and that

(2.8) Tn(X) e C[/ o ], I TH(X)\ <K0 (n = 0, 1, 2, •)•

The condition (2.8) is evidently valid for rc = 0.
Let us assume that the iteration process is actually possible up to the ra-

th step and that (2.8) is valid for n=m.
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Then, by (2.3), (2.8) and (2.6), it holds for R e/0 that

^ Ϊ Γ ( 1 + K +

Therefore, by (2.4),

for any i? 6/0. Then, by (2.7) and (2.6), we see that, for any X e/0,

\Tm+ι(X)\ o)\ /^y_7D2

This proves the latter of (2.8) for τz=7τz + l.
Since Tm(X) € C[/o] by our assumption, it is readily seen by the substitu-

tion R=^X cos φ that

This proves the former of (2.8) for n=m-hl.
Thus, by the induction, it follows readily that the iteration process is

actually possible indefinitely on /0 and (2.8) holds for any non-negative in-
teger n.

Secondly, let us prove the uniform convergence of the sequence {Tn(X)\
(τι=0, 1, 2,...)on/0.

The difference Tn+ι(X)-Tn(X) can be rewritten as follows:

Tn+ι(X) - Tn(X)

x r
2τr

+ug) i
2-R2 J

^ {1 + S(M) + ΓM(M)} duj dR

2τr

Therefore, by (2.4), (2.2), (2.3) and (2.8), it holds for any I e / 0 that

(2.9) \Tn+1(X)-Tn(X)\

^ [ - 4 - α 0 + ^ - ^ 2 αg I max | Tn(X) - Tn^

But, by (2.6),
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Therefore, from (2.9), it readily follows that

(2.10) max ] Tn+1(X) - Tn(X)\ ^/b max | Tn(X) - Tn_

(Λ = l,2,3,...).

Since \k\ < 1 , (2.10) implies the uniform convergence of {Tn(X)} (n=?0, 1, 2, )
on/ 0.

Lastly, let us prove the existence and uniqueness of the continuous solu-
tion of the given integral equation (2.1).

By the uniform convergence of {Tn(X)} (n=?0, 1, 2, ),

(2.11)

exists and, from (2.8),

(2.12)

Then

X
2τr

exists and its difference with T(X) can be written by means of (2.7) as fol-
lows:

X
2τr jo

ω»

X

But the first difference in the right member can be estimated quite similarly
as Tn+1(X)-Tn(X). Thus we have

./A. I J- "~t~~ lJ \-L*-) ~l J- \J-*-J I ^ 0 I \ ~ / \ I

2τr Jo 4X2—R2 L 2τr J o J

h \Ttt+1(X)-T(X)\.

This implies T(X) is a solution of (2.1), because the right member tends to
zero as ?z->oo since the sequence {Tn(X)} (n==0,1, 2, ) converges to T(X) uni-
formly on/o. Then, from (2.12), readily follows the existence of a continuous
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solution of (2.1) on/0 which satisfies the inequality (2.5).
Let us prove the uniqueness of the solution satisfying (2.5). Let f(X) be

another continuous solution of (2.1) satisfying (2.5). Then, quite similarly as
), wehave

from which readily follows

(1 - ft) max \T(X) - f(X)| <;0.
xejo

Since 1— £>0, the above inequality implies

which proves the uniqueness of the solution satisfying (2.5).

REMARK 1. Let Kλ and K2 be respectively the least and the greatest value
of non-negative /c<Π.— K for which the minimum of the right member of (2.6)
equals <x0. Then the Lemma implies

(i) the existence of a solution T(X) such that

(ii) the uniqueness of a solution T(X) such that

REMARK 2. As is seen from the proof of the Lemma, the solution of the
integral equation (2.1), if wanted, can be obtained approximately by the itera-
tion method starting from T(X) = 0.

3. The first problem

The answer to the first problem is given by

THEOREM 1. In case g(x) is continuous in the neighborhood of % = 0 and
differentiate at x~0, if any solution of the equation (1.1) near x=x=0 oscil-
lates around x—x=0 with a bounded period, then

1° the period ω(I>0) is expressed as

(3.1) ω— ωiζα),

where a is the positive maximum displacement of x and

(3.2) ωi(α)eCβ, ω ^ - ω o X ) ;

2° the function g(x) satisfies the functional equation
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2τr X
(3.3) g^g^ j * [ l + S(u) Hh T(u)2du] =

ω0

where S(X) is a continuous odd function and T(X) is a continuous even func-
tion such that T(0) = 0 and

( S . 4 ) ^ ^

/or X>0;

3C if a>ι(a) e C\, the equation (3.4) can be written as follows:

X

(3.5)

Conversely, given any function ω\(a) 6 C\ whose derivative satisfies the
Lipschitz condition, there exists a continuous potential force g(x) which is dif-
ferentiable at x=0 and for which any solution of the equation (1.1) near x—x
= 0 oscillates around x=x=0 with the period (3.1). The function g(x) is deter-
mined by the functional equation (3.3) for an arbitrary continuous odd func-
tion S(X) and for the continuous even function T(X) determined by the unique
solution of the integral equation (3.5).

PROOF. If we write the equation (1.1) in a simultaneous form as

/ dx

(3.6)
dy

then the periodic solutions of (1.1) are represented by the closed orbits

(3.7) -γy2 + G (x) = const,

in the phase plane, where
Γx

G W = \ g(u)du.
Jo

Hence the positive maximum displacement a of x is connected with the maxi-
mum velocity R (the amplitude of the velocity) as follows:

(3.

(3.

8)

Let

9)

us transform a to

a-

ξ by

ω0

2τr JO

)2 , fλ (
L — Lryi

+ S(u)
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where S(X) and T(X) are the functions determined from g(x) in the way stat-
ed in Theorem 0. Then, from (3.8), readily follows

* - « « • & •

This can be written by (1.5) and (3.9) as follows:

J2τr ξ da^ dξ_
K~ ω0 1+S(ξ) + T(ξ) ' dξ'dR

~* dR'

which implies

jR 2 -f 2 =* const.

But, from (3.8) and (3.9), ξ=0 implies R=>0. Therefore

(3.10) ξ2==R\

But ξ and R are of the same sign provided ξ is sufficiently small, because S(0)
=3Γ(0)=0. Then, by (3.10), we have

from which, by (3.9), follows

(3.11) α - U r i ^ ^ 1 + S ( w ) + T(u)-]du.

Then, comparing (1.2) with (3.1), we have

ω - Ω(R) =

by which, from (1.4) and (1.6), follows (3.2) and (3.4) respectively.
The functional equation (3.3) is nothing but (1.5) itself.
The equation (3.5) is easily derived by integration by parts from (3.4).
The converse part of the theorem is evident from Theorem 0 and the

Lemma in §2.

4. The second problem

The answer to the second problem is given by

THEOREM 2. In case g(x) is continuous in the neighborhood of x—0 and
differentible at %=0, if any solution of the equation (1.1) near x—%—0 oscillates
around x=x=^0 with a bounded period, then
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Γ the period ω (I>0) is expressed as

(4.1) ω = ω(A\

where A is the amplitude and

(4.2) ω(A)eCA, ω(0) = ω 0 > 0 ;

2° the function g(x) satisfies the functional equation

where S(X) is a continuous odd function and T(X) is a continuous even func-
tion such that 7X0) = 0 and

1 \l+T(u)[du\ - ω 0

3° i/ ω(A) e C 5̂ ίfee equation (4.4) can 6e written as follows:

Conversely, given any function ω(A) e Q whose derivative satisfies the
Lipschitz condition, there exists a continuous potential force g(x) which is dif-
ferentiable at x—0 and for which any solution of the equation (1.1) near %=?%
— 0 oscillates around x—x=?0 with the period (4.1). The function g(x) is deter-
mined by the functional equation (4.3) for an arbitrary continuous odd func-
tion S(X) and for the continuous even function T(X) determined by the unique
solution of the integral equation (4.5).

PROOF. Let b be the negative minimum displacement of x. Then, by
(3.7), b is connected with the maximum velocity R as follows:

(4.6) \-R2

Then, quite similarly as (3.11), we have

(4.7) b ^ ^

ω 0

~2τr"

Since the amplitude A is one half of the maximum displacement minus
the minimum one, from (3.11) and (4.7), we have

(4.8) A = - ^
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Then, comparing (1.2) with (4.1), we have

ω = Ω{R) = ω [^g- J* {1 + Γ(n)} du] ,

from which, quite similarly as the proof of Theorem 1, follows (4.4) and (4.5).
The rest of the theorem is literally same as Theorem 1.

REMARK. The integral equations (4.4) and (4.5) are respectively the par-
ticular ones of (3.4) and (3.5) where S(X) = 0.

5. The example where ω(A) ~ωo + cA

In the present example, ω'(A)=c, consequently the integral equation (4.5)
becomes

This can be rewritten as follows:

From the proof of the Lemma in §2, it is readily seen that the solution
T(X) of (5.1) can be expanded into power series of X as follows:

(5.2) ^ ±

Put

(5.3) IH = j i r ^ χ f L f l 2 dR (^>0;^ = 0, 1, 2,...),

then it is readily seen that

— -Q--J h — 1?

from which follows

-2.4.6.-. L
(5.4) /„=•:

I
:
I 2 4 6 .-2m 1__ . _
l l 3 5 ... (2m-l) ' 2m + l ί 0 r n -= 0,1,2,-...).
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Now, if we substitute (5.2) into (5.1), then, by means of (5.3), we have

(oco = 1,

1 c

[an^-g^ΓlnOLn-l 0* = 1, 2, 3,- ),

from which, by means of (5.4), we have

-.- i - Ί — ) —^— for n — 2m,
m\ \ 4 ' -

(5.5) ακ =
_c_ \2*+i/ 2

l 3 5 ... (2jn + l) V 4KΊT) [IT)
 for n-

(m = 0,1,2,...).

Substituting (5.5) into (5.2), we see that

(5.6)

V2 \2W + 1Ί

where

(5.7) φ(Z) = eiz2[Ze~iu2du
J o

Since the solution of the equation (5.1) is unique by the Lemma of §2, the
function T(X) given by (5.6) is the unique solution of (5.1).

The even function T(X) such that !Γ(0)= 0 and

for X > 0 ,

is evidently given by

(5.8) TOO = \ \X\ exp(ΊtXή + -^XΨ( -^x).
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Let us put

(5.9) U(X)=[XT(u)du,
Jo

then, after elementary calculations, we find

(5.10)

where we suppose UmU(X) is taken for [ί7(X)]c.0 = 0.

Thus, by Theorem 2, the desired potential force g(x) yielding periodic
motions with the period ω=ωo+cA is given in the neighborhood of #=0 by

ω0 1 + S(X)+T(X)
(5.11)

where Γ(X) and f/(X) are the functions given by (5.8) and (5.10) respectively
and S(X) is an arbitrary continuous odd function.

The graphs of g(x) for which ωo=2τr and S(X)=aX are shown in Figs. 1-
5 f o r c = ± l , ±5 and α=0, ±0.5, ±1.0. The computation has been carried
out by HIPAC 103 installed at Hiroshima University.
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