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1. Introduction.

In this paper, we are concerned with a real system of n nonlinear differ-
ential equations of the form as follows:

where

1° 8 is a parameter such that |£ | < δ (δ > 0);

2° the functions fi(x, t, S) (ί = 1, 2,.. , n) are periodic in t with

period T (>0) and are continuous in the domain

ί = 1

j_ π ..i o'/ίV.Λ, L, 8) σuyx, ί, £) , . Λ _ N

together with — ̂ —^ , -^—^- (ι, j = 1, 2, , w).

Let us consider the functions

(1.2) Fi(x) = 4

Then, as is well known, there exists a periodic solution of (1.1) provided
there exists a real solution x{ — Ci (i==l, 2,••-, n) of the system of equations

(1.3) ί (*) = 0 (ί = l,2,...,τι)

and the Jacobian/ of F, (Λ;) with respect to xj does not vanish for Λ;/=C, (ί = 1,
2, , 7i). In this case, as is well known, the stability of the assured periodic
solution of (1.1) is decided according to the signs of the eigenvalues of/.

But, if the Jacobian/ vanishes for Xi=Ci (ί = 1, 2, , n), the periodic solu-
tion of (1.1) does not necessarily exist even if there exists a real solution of
(1.3).

In the present paper, we investigate some cases where the Jacobian /
vanishes for Xi=Ci (&' = 1, 2, , n) but nevertheless the equation (1.1) has a peri-
odic solution.
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For our discussions, the assumption 2° is not strong enough, because our
investigation needs more minute computation than in the ordinary case, i.e.
the case where the Jacobian / does not vanish for Λ, =C, (&' = 1, 2, . , n). Thus,
in the present paper, the condition 2° is replaced by the stronger one as
follows:

2O/ the functions fi(x, t9 8) (ΐ = l, 2, ••-, n) are periodic in t with period T
(>0) and are continuous in the domain

\x\ = oo5 | £ | < δ
ί = 1

together with their derivatives with respect to (x9 8) up to the 3rd order.

2. Preliminary calculations.

Let

(2.1) Xi = φi(u9t,6) (i = l9 2, ..,7z)

be the solution of (1.1) such that

(2.2) <Pi(u,096) = Ui (ί = l,2,...,n),

where | M | = Σ | M , | <L. From the form of (1.1) and the assumptions on
ί = 1

fi(x, ί, 8) (ί = l , 2, , 7z), i t is readi ly seen t h a t , if | £ | is sufficiently small, t h e

functions <pt(w, t9 6) (ί = l9 2,•••, τι) a r e expanded as

(2.3) ψ i (u9 l9 8) = φT (μ9 t) + 8φψ (u, t) + 6 2 ^ 2 ) (", 0

+ 8V3)
 (M, 0 + g, (M, ί, 6) (ί = 1, 2, .., 7z)

for any finite value of t9 where qι(u, t9 8) = O(84) as £->0.
Now, by the initial condition (2.2), it is evident that

( 2 ' 4 ) l ^ d * , 0) = ̂ f (u9 0) = .pf (M, 0) = qi(u9 0,8) = 0 (i == 1, 2,. ,7z).

If we substitute (2.3) into the initial equation (1.1) and compare the coef-
ficients of powers of ε9 we have the system of the linear differential equations
with respect to φf\ φγ\ φγ\ φψ (i = 1, 2, , n). These equations are solved
successively under the initial conditions (2.4) as follows:

φγ\u,t)=\tfi(u,t1,0)dt1,
Jo

K/y, , (//a, ί2,
O ; = 1 J O
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O1 j ' \

x

o U - l

['/*(«, is, 0)ώ 3 + /;•(», t2, 0)1 dt2

/y(ll, fc,

y(«, ΐ2> 0)dί2 + -!"/?(«, ί ls 0)1

where

fUk(x, t, ε) =

ί, ε), /; (Λ, ί, 6) = - M - (Λ, ί, f),
oS

(x, t, ε), fab, t, ε) = 3 ^ ' («,«, e),

As is readily seen, the necessary and sufficient condition that the solu-
tion Xi = ψi(u9 ί, 8) (i = 1, 2, , 7i) is periodic in i with period T9 is that

(2.6) <p, (u9 0, 6) - <̂  (M, r, 6) (ί = 1, 2, , n).

This condition can be written by (2.3) and (2.5) as follows:

(2.7) φγ>(μ9 T) + Sφf\u, T) + 62r/̂  3 ) ( ^ T) + O(63) - 0 (ί = 1, 2, , «).

Now, we assume that
1° the equation

/O ON ^ 1 ^ T'Λ ' 0 (' • 1 /̂  7 ^

n

has a real solution u/^c,- (i = l, 2, , τι) such t h a t \c\ = ^ ] |c, | < L;

2° the Jacobian Jo = detί —^p—(c, Γ)J (/, ; = 1, 2, , /?) vanishes.

In the present paper, we shall investigate the case where the rank k of

the Jacobian matr ix ( —^-t—(c, Ty\ (i, / = 1, 2, , zz) is not zero.

Let Z be the rank of the matrix (_^2i—(c, T), ^(,2)(c, Γ)), then, evidently
\ OUj J

The case where k<l and the case where k = l shall be studied separately
in the sequel.

3. Existence of a periodic solution: Case I where k < I.

By our assumptions, we may assume, without loss of generality, that
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(3.1)

Then there exist numbers ξva (a=l, 2, , k; υ=k + l,---,iι) such t h a t

(3.2)

Making use of these ξVΛ (a = 1, 2,- , k; v = k + 1, • , ra), let us rewrite the
equations (2.7) as follows:

(μ, T) + Sφ™ (u, T) + 0(6) = 0,

(3.3)
+ 6 \φ?>(u, T) + Σ ξv(φf\u, T)\ + 0(8) = 0,

( α = l , 2 , . ., fe; y = fc + 1 , ..-, zz

Since the Jacobian Λ does not vanish, for sufficiently small 16 |, the first
k equations of (3.3) can be solved with respect to uΛ (a = l,2, , k) in the
neighborhood of ιii=Ci (£=1, 2, , n) as follows:

Uoύ — ua(iik+ii j um £) (oc = 1 j 2, j &),

w Λ feί-L 5 ? c», 0) = ca ( α = l , 2 , . 5 fe).

(3.4)

where

(3.5)

For brevity, let us write the functions (3.4) as uΛ = wΛ(wv5 ^) Such a notation
is used in the sequel without any comment.

For (wv, £) = (cV5 0), the derivatives of the functions MΛ = MΛ(WV, £) (oc==l,
2, .., fc) are obtained readily as follows:

(3.6)

= l , 2 , . , fe; y

where Z)βΛ are the cofactors of the elements
^

In order to solve the equations (3.3), let us substitute uΛ = wΛ(wv, S) (a = 1,
2,. , fe) into the last zz — Λ: equations of (3.3). The resulting equations are writ-
ten as follows:

(3.7) v, 6) + o(£) - 0
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where

(3.8) ψίo(u», £) = φί"(μ»(μ» €), "v, T) + i ]
β

(i = 1, 2,. ; μ = fc + 1,.. , rί).

Now, by (3.5) and (3.2), it holds that

(3.9)

(μ>, λ = fc -f- 1, ••, n).

Hence the equations (3.7) are of the forms as follows:

I n n

^ λ

^ '^v, e) + v, 0) + f£2)(wv, £)] + o(ε) = 0

{μ> = k + 1 , , 72J5

J " ^ — ^ VCVj V) {UK CK) (ll\ C^J,

where

(3.10)

(Wv, ^) = ψ μ (wv, 8) — Λ^Pμ ( c v , 0 )

(μ = k + 1, , 7Zj.

Here, by the assumption that k <Z, at least one of ψί2\cv, 0)'s (^ = fe,+ 1, • •, 71)
does not vanish.

Let us investigate the case where £>0. The case where £<0 can be re-
duced to the former case by the substitution £ = — £'.

Put

(3.11) u, - cv = £ll2vv (v = k + 1, , τι),

then the functions Ψμ{uv, 8) = 5Γμ(cv + £1 / 2^V ) £) (/A-=fc + l, , n) are of the forms

(3.12) Ψμ(cv + £1/2z;v, £) = 6Ωμ.(vV9 £)

as £^0.
Now, let us consider the quadratic equations
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(3.13) J2> v , 0) = 0 0* = 4 + l,...,7*),

and suppose these equations have a real solution vy = dv (v = k + 1,. , n).
Then, if

(3.14) / 2

the equations Ωμ(vv, £) = 0 (μ=fc + l, • ••, zz) have certainly a unique real solution
!7V (y=ft + l, , 7i) which tends to dv as £->0. Evidently such a solution is con-
tinuously differentiate with respect to £1/2, consequently it is of the form

(3.15) v^dv+O(S112) (* = & + l,...,n).

By (3.11), the solution vv of the above form yields the solution wv of the
equations (3.7) which is of the form

(3.16) u, = cv + £ll2d, + o(8112) (v = k + 1, , ή).

If we substitute (3.16) into (3.4) and make use of the first of (3.6), we see

that

(3.17)

The results obtained above are stated as

Theorem 1. In the case where k<l, if the quadratic equations (3.13) have
a real solution vv = dy (y = k -f 1, , n) and the Jacobian J2 defined by (3.14) does
not vanish, then there exists a periodic solution of (1.1) corresponding to uι (i =
1, 2,. , n) given by (3.17) and (3.16).

4. Existence of a periodic solution: Case II where k = I.

As in the case I, we may assume (3.1) without loss of generality. In the
present case, due to the assumption that k^l, the equalities

(4.1) φϊ» (c, T) + 1] ξVΛφ™ (c, T) = 0 (, = k + 1, , lϊ)-
α-i

hold at the same time as (3.2).
As in the case I, we rewrite the equations (2.7) as follows:

(4-2)

•φP(μ, T) + 8φί2\u, T) + ε2φ<i\u, T) + o(62) = 0,

ΐ\u, T) + Σ f v ^ B , T)\ +6 \φi2\u, T) + ̂ lξ^f\u, T)
β=i ) ( β=i
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ε2\φ?\u, T) + h&wfXu, 71)} + o(ε2) = 0

( α = l , 2 , . . . , k; v = k ± 1, , ?z)

and we substitute the solution

(4.3) uΛ = ua(u»,S) (α = l, 2,.. ,fc)

of the first fc equations into the last (n — k) equations. Then the resulting equa-
tions are of the same form as (3.7), but, in the present case, due to (4.1),

(4.4) ψ£2)(cv,0) = 0 (y = fc + l,...,τz)

in addition to (3.9).
Thus the equations (3.7) are written in the present case as follows:

\ n n 32^(1)
SPV("v, e) = - o - 1 ] 1 ] - , - | - ( c v , 0) (Mκ - o (*λ - C λ )

+ θ ̂  i ] + 1 - | 3 r (cv, 0) (Mκ - cκ) + Ύ ε2 - g - (Cv, 0) + ψtf> (Mv, 6)

K ^ + 1 2 r ( c - 0 ) (««-'«) + £ 3^-(cv, 0) + ti?)(wv,

+ 62[^3)(cv, 0) + t ^ ( ^ v , 6)] + o(ε2)
= k + 1, , ?0,

where ψίn(uy, ε) (ΐ=l, 2, 3; μ=fc+l, -, n) are respectively the remainders in
ψμ°(uv, ε) from which the terms written explicitly are subtracted.

Let us put

(4.5) uv — cv = εvv (y = k -f 1, , 7i).

Then the functions ?Fμ(uv, ε) — Ψμ{cv + εv ̂  ε) (μ=k-hly , JI) can be written as
follows:

(A fiλ ψ (c 4. Pi) f) = p2Q (v p)

= £ 2 [ 4 - κ J + l λ Σ + l

-(cv. 0) + — ^ - f e , 0) + t«>(cv, 0)

Therefore, if the quadratic equations

(4.7) £μ(t;v,0) = 0
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have a real solution ϋ v =d v (y=fc4-l, , 71), the equations Ωμ(υV9 £) = 0 (μ=k + l,
. , n) have a unique real solution such that υv=dv + O(jB) (y=&4 l, , ra) as £—•(),
provided the Jacobian

(4.8) /2 = d e t ( J + i ^ ( c v , 0)dλ + | g ( C . 0) + - ^ - ( C M O))ΦO

( μ , λ = fc -h 1 , •-, n).

The solution vy = dv 4- O(θ) (y = & + 1,. ., 71) of i ^ K , £) = 0 (μ = fc + 1, , 71)

yields the solution of (4.2) of the forms as follows:

The results obtained above are stated as

Theorem 2. In the case II where k = l, if the quadratic equations (̂ 4.7)
have a real solution vv — dv (y = k 4-1, , TZ) αtid ίfcβ Jacobian J2 defined by (4.8)
does woί vanish, then there exists a periodic solution of (1.1) corresponding to
m (i — l9 2? , zz) ^iveti by (4.9).

5. Stability of the periodic solution.

Let us consider the real transformation

(5.1) r ; = ^ (S4-r, Γ,6)-S f (ί = l,2,...,/ι),

where Hi is a real solution of (2.7). Then, as is well known, the stability of
the periodic solution x{ = ^, (S51, 8) is decided according to the convergency of
iteration of the transformation (5.1).

In order to simplify the calculation, let us transform r to s by the linear
transformation

(5.2) s = Pr.

Here P — /Ek 0 \, where Ek and En_k are the unit matrices of order k and

71 —k respectively and £"=(&*)• By (5.2), the transformation (5.1) is rewritten
in terms of s as follows:

(s« = φΛ(u + P-1*, T,8)~uΛ (a = 1, 2, , k\
(5.3) ,

U - >̂v(w 4- P-1*, Γ, 6) + Σ ξ,βφβ(u + P- 1^ Γ, €) - ίϊv - Σ
β l β l
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Here it is evident that P~~1 = I Ek 0 \. Since M, (i = 1, 2, • •, zz) is a solution

of (2.7), the transformation (5.3) can be rewritten as follows:.

(5.4) (S, Γ,

β = i

(y = fe + 1, , n\

where | s | = S] I s,
ί = 1

In the sequel, the case I where h<l and the case II where k = I are investi-
gated separately.

Case I. In this case, by (3.16) and (3.17), the partial derivatives

^ 2 ^ (2, T, S) (£, /, = 1, 2, ••, τι) can be written as follows:
OUj

(5.5)

c3/2
• C

J^— -J^-DΆ

GJ 7 — I? 2 , , zz).

Let 4̂ be the matrix of the coefficients of the linear parts in the right
members of (5.4). Then, by (5.5), A is of the form as follows:

(2) J(2)A

where ^4^ and A$ (i = l, 2) are respectively kxk — and ( z—fe) x(n — k)~ matri-
ces. As is seen from (5.4) and (5.5), the elements of Aft, A$,---are as follows:
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(1)"] Λ

•21 Jvβ V,

22 Jv/x = ^ j

(2)Ί — _ _JL_ X^ X^ '

7 = 1
J — %
( ./I Λ = i

Λ k k n r)2rnCΏ

- 2J ίμβ Γ" r 2 J 2 J 2J ^7,^7,

n k ( Λ k k n 7)2cDiΌ ^<7) C

S

1 )n k (
^ ^ t t \

~~ 2-j 2-J ζμβζvy 1

ff f Ώ d v

Since 4̂ is of the form (5.6), A can be written in the exponential form

where B is of the form as follows:

(5.7) B = A1 + Sll2A2 +

-o(S112) Slί2A^ + o{Slί2)

If det Aft =f= 0, the characteristic roots of B are given by Urabe's lemma
[1] as follws:

μa + o(l) (α = l, 2,..., fc) and f1/2[λv + o(l)] (y = fc + 1, , TZ),

where ^ and λv are respectively the characteristic roots of the matrices

(5.8) Aft and A%-AflAft^Aft.
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But, as is well known, if Rμa < 0, R\v < 0 (a = 1, 2, , k; v = k + 1, , n\ the
periodic solution assured in Theorem 1 is stable since 6 > 0 (§3).

Thus we have

Theorem 3. The periodic solution whose existence is guaranteed by Theo-
rem 1 is stable if the real parts of the characteristic roots of the matrices (5.8)
are all negative.

Case II. In this case, by (4.9), the partial derivatives -^- (2, T, £) (£, j

= 1, 2,..., n) can be written as follows:

(5.9)

Then, substituting these into the right members of (5.4), we see that the
matrix A of the coefficients of their linear parts can be written as follows:

(5.10) A = E + SA1 + 62A2 + o(€2)

= E + 6 I Aft A® χ + ε2 jAfl A™ χ + o(£2),

in Al2>

where

\ JCΌ ACΏ I \ J(2) J(2) /

^ = 0;

. Jvβ — 2_ι
A, 3 2 <Pv 1 } 1 ^,,

lOUΛ J\ γ = 1 \fL.= k+ι

"T" x i o__ ^Λ_. ^

r 2_J
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d ,£ d

k r)2mCΏ I k / n 7)mCΏ

^(2)

ό σuμ

4(2)Ί _ _ ^

Γ̂  Cy^ OU(γ. J1 β^ i

Since A is of the form (5.10), A can be written in the exponential form

where B is of the form as follows:

(5.11) B = Al + e(A2-^A\) + o(S)

If det ^4^ =̂= 0, the characteristic roots of the matrix B are given by Urabe's
lemma [1] as follows:

μΛ + o(ΐ) (α = l, 2,...,&) and θ[λv + o(l)] (y = A; + 1, , τι),

where ^ and λv are respectively the characteristic roots of the matrices

(5.12) A™ and A% - AftAft^A™.

But, as is well known, if Rμa<0, # λ v < 0 ( α = l , 2, , fc; y=fe + l,.. , Λ), the peri-
odic solution assured in Theorem 2, is stable since £>0 (§3).
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Thus we have
Theorem 4. The periodic solution whose existence is guaranteed by Theo-

rem 2 is stable, if the real parts of the characteristic roots of the matrices (5.12)
are all negative.

In conclusion, the author whishes to express his hearty gratitude to Prof.
Urabe for his kind guidance and constant advice.
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