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Introduction

In our previous paper [7] ( 1 ) we have treated a theory of differentials in
commutative rings. In this paper we shall discuss some applications of the
foregoing results to problems in algebraic geometry. Let X be a variety and
x a point on X and let Θx be the local ring of x on X. We shall call Dk(J9x)~Ωx

the module of local differentials^ at x, k being the universal domain of our
algebraic geometry. In a natural way we can introduce on the set-theoretic
union Ω=*\JΩX a suitable topology in such a way that Ω turns out to be an

X€X

algebraic coherent sheaf on X. If x is a simple point of X, Ωx is a free module
over Θx and hence has no torsion. Then we can identify Ωx with a submodule
composed of the differentials of the function field K of X over k. Hence if X
is a non-singular variety the sheaf introduced above is identical with the
sheaf of germs of regular differentials of degree 1. On the other hand if x is
a singular point of x, Ωx may have torsion in general and some new phenomena
take place when we treat the variety with singularities. Although we have
no intention to treat the torsion problem here we will present an example to
indicate the difference(3). In §2 we deal with the adjoint map associated with
a morphism / of a variety Y into X. There we shall introduce two local ad-
joint maps denoted by /* and /** respectively. It is one of the purposes of
this work to give foundations on the theory of differentials on algebraic
varieties based on the theory of local differentials. Hence some known re-
sults will be presented with an entirely new proof. The contents of §3 is
running along this line, and the existence of invariant differentials on group
varieties will be proved within the scope of our method. Though most of the
results in this paragraph are not new our formulation is helpful for further
discussion. In §4 we shall prove an exact sequence related with the module
of local differentials, and it is useful when we discuss the injection of a sub-
variety Y into the ambiant variety X. Thanks to the exact sequence given in
§4 we can prove that the non-existence of non-trivial section of H°(X, 0>Ω)
and H°(X, &/3P2) will be sufficient conditions for <,* to be a monomorphism,
where 0> is the sheaf of ideals defined by the subvariety Y and ι is the injee-

(1) The number in the bracket refers to the bibliography at the end of the paper.

(2) For the notion of the module of differentials in commutative rings the readers are expected tα

refer the article [T].

(3) See the Example in §1.
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tion F->X (§5). In §6 we shall discuss some cases where we have H°(X,
= {0} and H°(X, ^>/^2)—{0}, and in §7 we shall show under what conditions
the adjoint map ι* will be a monomorphism. It will be interesting to see that
£* will be a monomorphism for an irreducible hyperplane section Y of X if
every differential form of the first kind is closed. Since we can admit that
the latter property of the differential forms of the first kind holds in the
classical case, this result may be considered as an alternative proof for the
injectivity of z,* in this case. §8 is devoted to the discussion of the case where
Y is a curve of an abelian variety X and L is the injection of Y into X. Under
these circumstances we can give several formulations which are equivalent
to the fact that ** is a monomorphism. In particular if Y is a generic 1-sec-
tion of X, 6* is always a monomorphism and hence Y generates X separably(4).
If we denote by λ the linear extension of ι to the Jacobian variety / of Y, λ is
seen to be a separable homomorphism of / onto X. In the case where dim
X~2 we can prove the above result for any curve Y which generates X. It
is plausible that even when dim X>2 the similar result will hold, but it still
remains unsolved. In §9 we discuss the case where the morphism / is a cover-
ing map of a variety Y onto X. In this case we also get a new type of exact
sequence on the sheaves of local differentials. But the geometric interpreta-
tion of these cohomology groups are not adequate, so they are of no great use
except the case of dimension 1. Nevertheless the results in the case of di-
mension 1 encourage us to some extent, because Hurwitz's genus formula can
be derived naturally from the exact sequence of the associated cohomology
groups.

Notations and Terminologies: We shall denote by k the universal
domain of our algebraic geometry. Then any entities such as varieties, func-
tions, ..., etc. are supposed to be defined over some subfield of k. But since in
the most part of the paper we do not use the notion of a "generic point" at
all no mention will be made of their field of definitions unless it becomes
necessary. By a generic r-section of Xn we mean the intersection of X with
(n—r)-independent generic hyperplanes in the ambient projective space with
respect to the smallest field of definition for X. Let X be a variety and let x
be a point of X, then the local ring of x on X will be the subring of the func-
tion field k(X) of X composed of functions regular at x. All rings which will
appear in this paper are assumed to be commutative and contain 1. Let R
and S be rings and assume that 5 is an ^-algebra. Then the module of differ-
entials in S over R will be denoted by DR(S). The differential operator will be
denoted by d|, but the superscript or the subscript or both will often be omit-
ted if it is clear from the context.

(4) Gf. §8 for the notion "generate separably".
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§1. The sheaf of local differentials.

Let X be a variety and let % be a point of X. Let Θx be the local ring of
x on X and let mx be the maximal ideal of Θx. The union \Jθx, forms the sheaf

xex

of local rings on X which will be denoted by Θ. Let Ωx^Dk(βx) be the module
of ^-differentials of Θx over k. (We shall call it the module of local differen-
tials at x). The differential operator d\x will be denoted simply by dx. Let Ω
be the union of Ωx, i.e. Ω =>\JΩX9 where x ranges over all points % on X. We

xex

can define a topology in Ω in the following way. Let x be a point on X and
let /i, , /«, gw ,gn be a set of functions regular at x. Then there exists an
open set U containing x such that f/s and g /s are regular in £/. Then dyfi's
are the well-defined elements of Ωy for any point y in £/. Let s be a function
on U with the value in Ω defined by

Then we can define a unique topology in Ω in which the set

is(y\γeϋ}

forms a complete system of neighbourhoods of Ω. Thus Ω turns out to be an
algebraic sheaf on V.

PROPOSITION 1. Ω is an algebraic coherent sheaf.

PROOF. Since the problem is of local character we can assume that X is
an affine variety with the affine coordinate ring A. In this case Ωx^Θx§§AΏk(A)
for any x in X. On the other hand Dk(A) is a finite ^4-module, hence Ω is a
coherent sheaf on X by Prop. 3, p. 241 in [10]. q.e.d.

Let U be an open subset of X. An element ω of Γ(U, Ω) will be called a
differential (regular) in U.

REMARK. Let ® be the module of derivations of K over k with the value
in K. Then 3) is isomorphic to Romκ (Dk(K\ K) (Cf. [1] Expose 13). Since ®
is a finite dimensional vector space over K, Dk(K) is isomorphic to Hom^C®,
K). Thus Dk(K) is no other than the differentials introduced in [11]. On the
other hand Dk(K)=K<ξ§Ωx by [7]. Hence if Ωx is a torsion free ^-module we
can identify Ωx as a submodule of Dk(K). But in general Ωx has torsion at a
singular point x, hence we can not consider Ωx as a submodule of Dk(K). (See
example 1)

We shall denote by ax the homomorphism of Ωx into kx^ΘχΩx defined by
(ax(t)) = 1 (g)ί, where &x =* 0*/nv

PROPOSITION 2. Lei ω be a differential on X. Assume that ax(ω(x))=:0 for
any point x on X. Then ω(x) — 0 at any simple point of V.



10 Yoshikazu NAKAI

PROOF. Let x be a simple point of X and let U be an open neighborhood
of x not containing the singular points of X such that there exist r functions
tiy ^tr satisfying the condition(5): For any point y in U, t\ — £i(y), , tr — tr(y)
form a regular system of parameters of Oy. Then there exist functions g v •>
gr regular in some open subset U of U containing x such that

ye U.

Since y is a simple point of V> Ωy is a free module over Θy and dytfa form a
free base of Ωy (§4 of [7]). The assumption of the proposition implies that
gv's are contained in xny for any y in £/'. But this is impossible unless g , 's are
identically zero. In particular ω(x)=*0. q.e.d.

It is worthwhile to note that we can not say more under the assumption
of Prop. 2. In the following example we shall show the existence of a non-
trivial regular differential ω on V such that ax(ω(x)) — 0 at any point x of V.

Example. Let X be a curve in an affine 2-spaces defined by the equation
T2~U3, and let us denote by t and u the coordinate functions on X. The func-
tion of X with the values in Ω defined by ω(x)~υdxt is clearly an element of
Γ(X9 Ω). Now assume that the characteristic of k is 3. Let x be a point of X
different from #0 — (0, 0). Then the function ί is a unit in Θx. Hence ω(x)
=*(u/2i)2tdxt = 0. We shall show in the next place that ud0tφ0. (to avoid the
confusion we shall write d0, J?o, instead of dXQ, i2*0, ) Let A=*k\_t, u]9 then
Dk(A)=*(ADT +ADU)/2TdT (Theorem 2 in [7]). Since Dk(ΘQ)=*ΩQ = ΘQ®Dk(A\
udot can be zero if and only if there exists a function / in A such that f(p) φ 0
and fiιdt=>0 in Dk(A). This is equivalent to saying that/w is contained in the
ideal (tA), or u is contained in ιθQ. But this is impossible because x0 is a singu-
lar point of X and k is algebraically closed.

We can find such a cynical example even in the case where the charac-
teristic of the universal domain is 0. In the above Example assume that the
characteristic is zero. Then the differential ω defined by ω(x) — 2udxt — 3tdxu
offers such an example. The verification will be left to the readers.

§2* Morphism and its adjoint map.

Let

/: Y^X

be a morphism (regular rational map) of an irreducible variety Y into an ir-
reducible variety X. Let y be a point of Y and let us put x^f(y). We shall
denote by Θγ and Θx the sheaves of local rings on Y and X respectively. Then
there exists a ring homomorphism h of Θξ into Θj

(5) Gf. Cor. l o f P r o p . 1 in £ 6 }
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(1) h: Θx->Gy

such that Λ(l) = l. (We shall frequently take off the superscript Y and X to
denote the ambiant varieties if it is clearly seen by the subscript denoting
the points). Thus Θy is an 0*-algebra. From this we have an exact sequence
(Cf. [1] or [7])

(2) Qy<8>Ωx-*+Ωy-±+Dx(fi)x)—>0

where Ωy and Ωx stand for Ωγ

y and Ω* respectively and Dx{Θy) — DΘχ(Θy). Let β
be a homomorphism of Ωx into Θy®Ωx defined by

The combined homomorphism (^-homomorphism)

gives a map Ωx—>Ωyy which we shall call the local adjoint map associated with

f
We shall define another kind of adjoint map in the following way. Since

h is a morphism we have

hrx (jay) = (A"1 (h(Θx) A mv)) = m,.

Hence the residue field Θx/mx~kx can be identified with Θy/my. From this we
can define a homomorphism /** of kx(g)Ωx into ky(g)Ωy such that

(3) *yflx=f**ax.

We shall call /** also a local adjoint map.
The following Proposition is seen immediately from the definitions.

PROPOSITION 3. Let g: Z-+Y and f: Y->X be two morphisms. Then the
map h =?fcg gives a morphism of Z into X. Moreover if x, γ and z are points
of X, Y and Z such that y~g(z) and χ—f(y), then we have

uz,x &z ,yj y , x

"'ZiX &z yj y> x'

Let U be an open subset of X and let ω be a differential on U. Then V
—f~λ{JJ') is an open subset of Y. Let y be a point in V and let x~f(y). Then

is an element of Ωy. We shall show that the map

(4) y^ftMx)

is a section on V with coefficients in ΩY. To see this it is sufficient to show
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that the above defined map (4) is continuous in γ. Since ω is a section in Uy

there exists an open set Uι containing x such that

j

for any x in Uu where gfa and ί, 's are regular functions in Όλ. Hence

ftM*)=>5Xgi°f)dy(fiOf)
i

is seen also to be a section in /"1(ϊ7i), i.e. the correspondence (4) is a continu-
ous function of y. Since y is an arbitrary point of V we see that the function
(4) is continuous everywhere in V. We shall denote this section by

In particular if ω is a regular differential on X, i.e. an element of H°(X9 Ωx\
/*ω is a well-defined element of H°(Y, ΩY). We shall call the above defined
map/* the adjoint map of f.

Remark. If the morphism is a constant map, i.e. / sends Y into a point
of X, then h is a natural homomorphism Θx-+Θx/mx. Hence the homomorphism
T in (2) is an isomorphism and φ is the zero map. Thus /* gives a zero map.

Let Y be an irreducible subvariety of X and let / be the injection of Y
into X. In this case the homomorphism h in (1) is the natural homomorphism

h: Θf->Θf/^y=^ΘY

where &>y is the ideal of Y in Θf. In this case the associated exact sequence
is given by

We shall use this fact in §3 and some detailed investigation will be seen in
§5.

§3. Invariant differentials on group varieties.

We shall apply our method to the existence proof of the invariant differ-
ential forms on group varieties.

Let G be a group variety and let x, y,... be points on G. The group mul-
tiplication will be denoted as usual by xy. Let g(a) be the left translation of G
onto itself defined by

Then g(a) send the point a into the neutral point e. Let we be an arbitrary
element of Ωe. Then using the local adjoint map g*a^ we can associate an ele-
ment of Ωa by the rule
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In the following we shall put gt^gΐ^a e f ° r the s a k e of simplicity. It should
be noted that g* is a local adjoint map. It will cause no confusion since g(a)

is a 1 — 1 map.

PROPOSITION 4. Let a be an arbitrary point of G and we be an element of
Ωe. Then there exists a differential s in an open set U containing a such that

(5) aa(s(a)) = l ® # ϊ ( t θ - aa(gϊ(!».)).

PROOF. Let G=^G x G be the product of G and let φ be the map of G onto
G defined by

φ(.χ> y) — y~lχ-

Let L be the injection of Gxa into G, and let ψ be the map of G into Gxa de-
fined by

Λ\P(X) — x x a.

Then we can divide g{a) into the three steps

Hence by Prop. 3 we have

We shall investigate the behaviour of each step in detail. For the sake of
simplicity we shall use the following notations. The differential operator in
Θ% will be denoted simply by dx. Let us denote by α* the point axa m G. We

have to consider two differential operators d^ and d^a in Θ% and ΘG

aϊ
a re-

spectively. The former will be denoted by da* and the latter by da*. Since
the adjoint maps are linear it will be sufficient to treat the case where we is
of the form we^fdeg where / and g are elements of Θe. Then we have

The functions fo<p, g°φ are regular in the neighborhood of ΔG, then Φ**,e(we)
is a section in the neighborhood of α* with value in Ω^. Let ίi? , tn (τz=^dim
G) be a set of regular system of parameters in 0%. Then ί, —ί, (6) (ΐ^l,---, n)
are a regular system of parameters at any point b in a neighborhood of a.
We shall denote by ίt (g)l and l(g)£, the functions on G regular in the neighbor-
hood of α* defined by

(x x x)=-ti(x)

•(l<g>ί, ) ( Λ x Λ/) - i f ( ^ ) ( ί - 1, 2 , . . . , 7z)

respectively. Then ίf (g)l and 10ί, (i = l, .., n) form a regular system of para-
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meters of Θ%. Using these functions we can express 9>ί ,β(ιO uniquely in a
neighborhood of α* in the following way.

with u/s and vis are all in e% andf^foφ. Let & be the ideal in Θ% defining
the subvariety Gxa. Then 0> is generated by (l®ίi, , l®ί») Hence

where /', zz.'s are the function on G such that

iZf (Λ) =* I*, (Λ?, α), / ' (*) — / ( Λ , a) =f{a~ιx).

(Cf. §3) Hence

and

«O ^/(e) Σ M/(α, α)(1 ® ̂ /) in

Now we shall define a differential 5 in some open set U containing the point a
by

Since ui(x>y) is regular in the neighborhood of the point axa the function
Ui(x9 x) is regular in the neighborhood of the point a(ui(x9 x) is the class of
Ui(x, γ) modulo the ideal /(ΔG) defining the diagonal ΔG in GxG). Hence s(b)
gives actually a differential regular in a neighborhood of a. Moreover

ab(s(b)) - / ( e ) Σ " , (δ, b)(l®dbti) - K8)^rK)

for any 6 in a neighborhood U of α. Thus the proposition is proved complete-
ly, q.e.d.

Let a be a point of G and let sa be a differential on U satisfying the con-
dition of Prop. 4 with the fixed element we in Ωe. sa is defined in some open
set U of G containing a. If UφG, take a point 6 outside of U and construct s6

in a similar way. Let £/' be the open set in which sb is defined. Then for a
common point c of U and £/' we have (Xc(sa(cj) — l^g*^)—α c(sδ(c)). Since the
intersection of U and £/' is again an open set of X, the above fact implies that
sa^sb in Ur\U by Prop. 2. In this way we can get an element ω of H°(G9 Ω)
such that
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The differential thus constructed will be said to be the differential associated
with we.

We shall show in the next place that the differential associated with we

is left invariant on G. Let a be an arbitrary point on G. To prove the in-
variance of the differential ω it is necessary and sufficient to prove that

(6) fec*β)(ω))(*) = ω(*)

for any point x and a on G. By Prop. 2, the proof of the relation (6) is reduced
to the proof of

(7) ax (gfa) (α>)) (x) - axω (x).

Since g{a) transform x into a"ιx we have

Hence the left hand side of (7) is equal to

0Cxg^(ω(a'1x))=-g^aa-ix(ω(a-1x)) [by (3)]

= gV"a-iχgΐ-iM [by (5)]

Since

#(α) g'Cδ) ==ί giab>

Using again the formula (3) and (5) we get

gf* ae (we) = Oίxg* (we) = CCX (ω (x)).

Thus the relation (7) is established and thereby we get the following :

THEOREM 1. Let G be a group variety and let e be the neutral element of
G. Let we be an element of Ωe. Then there exists a unique left invariant differ-
ential ω such that

The existence is proved above. The uniqueness is contained in the follow-
ing Proposition which states much more than the uniqueness.

PROPOSITION 5. Let ω be a left invariant differential form on the group
variety G. Assume that aaω(a)=*0 for a point a on G. Then ω=0 identically.

PROOF. Let b be an arbitrary point of G5 and let t^ba"1. Using the
formula (3) we get
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ab ω (b) = ab ((g* ( Oω) (δ)) = <**#? (ω (α))

Since this holds for any point b, ω must be identically zero by Prop. 2.

THEOREM 2. Let n be the dimension of the group variety G. Then there

exist n left invariant differentials ωu ,ωn on G. Moreover for any point x on

G, ω\(x\ • ••, ωn(x) form a free base of Ωx over Θx.

PROOF. Let dtu , dtn be a free base of Ωe, and let ωi, , ωn be invariant
differentials associated with dtu --^dtn respectively. Then the Prop. 5 implies
that ωi, • ••, ωn are linearly independent over k since aβ(ωi) => ae(dti) (l<Li<^>n)
are linearly independent over k. In the similar way we see that any left
invariant differentials are linearly dependent on α>, 's over k. The last asser-
tion can be seen easily if we remember the following fact: Ωx is a free module
over Θx with the base ωu ..., ωn if (axωι(x), ..., axωn(xj) is a base of the vector
space (0χ/mx)®Ωx. q.e.d.

Let K be the function field of G over k. Then Dk(K)=K<g>Ωx. From this
we can deduce, using the Theorem 2, the following

COROLLARY 1. The left invariant differential forms on G form a base of
Dk(K) over K, where K is the function field of G over k.

COROLLARY 2. Let G be a group variety. Then H°(G, Ω) is a free module
of rank n over Γ(G9 Θ).

PROOF. Let ω be an element of i/°(G, Ω). Then by Cor. 1 we can write ω
in the form

ω

where /i's are elements of the function field K. Since ωι(x\ •• 9ωn(x) form a
free base of Ωx for any point x on G, ω(x) can be an element of Ωx if, and only
if, the function/'s are all contained in Θx, i.e. // are elements of Γ(G, Θ).

A variety V is called quasi-complete if there exists no non-constant func-
tion which is regular everywhere on V. Then we have

COROLLARY 3. Let G be a quasi-complete group variety. Then the differ-
ential forms of the first kind on G form a vector space of dimension ^(^dim G)
over k.

On this occasion we will propose here a problem:

Does there exist a quasi-complete group variety which is not an abelian
variety?

PROPOSITION 6. Let G be a group variety and let g^a) be the left translation
of G defined by g^a)—a"ιx. Let Y be an irreducible subvariety of Y and let Ya be
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the transform of Y by g(a). We shall denote by ι and ιa the injection of Y and Ya

into G respectively. Then if £*(ω) —0 for a left invariant differential form ω,
we also have i* (ω) — 0.

PROOF. Let ta be the restriction of g(a) on Γ, then ta is a biregular bira-
tional transformation of Y onto Ya. Since g(a)oL=^ ίa

ota, we have *̂g*(α) = ί^ ί
Since ω is a left invariant differential on G the assumption implies that φ*(ω)
=0. On the other hand ί* is an isomorphism, hence **(ω) = 0.

§4. An exact sequence on the differentials in local rings.

In Expose 17 of [1], it is proved that if (R, M) is a local ring containing
a field k such that the residue field R/M is separable over k, then the follow-
ing sequence is exact:

(8) 0 -> (M/M2) -> (R/M) ®RDk (R) -• Dk (R/M) -* 0

We shall give a generalization of this result which is necessary for further
investigation.

THEOREM 3. Let 0 be a local ring containing a field k and let ?fibe a prime
ideal of 0 such that the quotient field of 0/Sβ is a separable extension of k. As-
sume that ^32 is ^-primary. Then the following sequence is exact:

(9) 0 -* WΦ -> (O/5β) ®oDk (O) -• Dk (O/5β) -> 0

PROOF. In the first place we shall remind that the sequence

(10) W -*-> (O/φ) ®oDk (0) ̂  Dh (O/φ) -• 0

is known to be exact ([7], Prop. 9). Hence to prove the assertion it is suffici-
ent to show that map p is a monomorphism.

Let R=*Θ$ and let M = ^ C K Then by (8) we have an exact sequence

(11) 0 -• (M/M2) -+ (R/M) ®RDk (R) -> Dk (R/M) -• 0

since R/M is, as the quotient field of O/̂ β, separable over k. On the other
hand Dk(R)^R®oDk(O) (cf. [7]). Hence

(12) (R/M) &RDk (R) - (R/M) ®R (R <g)0Dk (0) - (R/M) ®0Dk (0)

- (Λ/M) (g)o ((0/$β) (8)oD* (0)).

We have also

(13) DΛ (Λ/Af) - (R/M) ®0/Φk (O/5β) - (Λ/M) <g>oD* (O/̂ β)

since Όk{0/ψ) is annihilated by ^3. In the last place we can see that

(14) (M/M2) - (R/M) (8)0
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In fact it is easy to see that M/M2=i?(g)0(^/^2). Applying <g>0 (5β/5β2) to
the sequence

we see immediately the relation R(g)o($/Ψ) = (#/M)(g)0(W^2) Using the
formulas (9)-(14) we get a commutative diagram of the exact sequences

0 -+ (R/M) (g)0(WΦ) ~* (Λ/M) ® o[(O/5β) ® oD* (0)] -* (Λ/M) <g)oD* (0/5β) -> 0

t
0.

Hence to prove the assertion it is sufficient to show that the homomorphism
given by

is a monomorphism, where α is the class of an element a in $β modulo ^β2. Now
assume that ψ(ά)=*O. Then a e M2 and there exists an element b in 0 not con-
tained in Sβ such that α& 6 φ 2 . Since φ 2 is ^-primary and b is not contained in
Sβ, we must have α 6 φ 2 , i.e. α=0.

We shall give some important case in which ^β2 becomes a ^3-primary
ideal.

PROPOSITION 7. Let Abe a noetherian ring and let ^ be a principal prime
ideal generated by a non-zero divisor a. Then ^n is ^3-primary.

This proposition is not new. But the following simple proof will be of
some interest(6).

PROOF. Let ψ be a prime divisor of (an). Then for some r we have (an):
(r)=Sβ'. Since an is in ψ, a is also in ψ, hence ar=^ans for some 5. Then r
=-an-ιs and φ=(an): (r)=^(an): (a^s) = (a): (s). From this we set easily φ=φ,
i.e. (an) has only one prime divisor Sβ. Hence (αw) must be a ^5-primary ideal.

PROPOSITION 8. Let Abe a regular local ring and let ^ be a prime ideal
of A such that A/^> is also a regular local ring. Then ^β2 is a ^-primary ideal.

This is proved in Theorem 3 of [9]. But we shall present here a simple
proof for the sake of convenience.

PROOF. Let 7z=dim A, d=* rank Sβ. Then the assumption implies that 3̂
is generated by ^-elements (uu••-, ud) such that M, 'S form a subset of a regular
system of parameters of A. We shall use the induction on d. The case d — 1
is treated in Prop. 6. Assume that Prop, is valid for a prime ideal of rank
<d. Now assume that φ 2 is not ^β-primary. Then there exist elements a, b
such that

(6) This device is due to H. SATO.
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Passing to the quotient ring A/(uι) we see that

Let c be an element of A such that b = cux Oβ2). Then c^O (Sβ). Hence if we
put ac^d, dui = 0($2), GMΞO(^). If we denote the residue class modulo (u2) by ",
we get dΰι = §m2). Since d^0(ψ) and ίZi^0(ξβ2) the above relation contradicts
the induction hypothesis that ξp2 is ^β-primary. Thus the proof is complete.

q.e.d.

In a similar way it is easily seen that ^>n is ^3-primary, but we do not go
further.

§5. Morphism associated with injection.

Let X be an irreducible variety and let Y be subvariety of X. Let ι be
the injection of Y into X. The homomorphism h of Θξ onto Θγ

x (x is a point
on Y) associated with ι is given by the natural homomorphism of Θξ onto Θγ

=^Θξ/^x, where &x is the ideal of Θ* defining the subvariety Y. Now assume
that either one of the following conditions hold:

(A) Y is a non-singular subvariety and Y does not meet any singular point

ofX.
(B) Y is a subvariety of codimension 1 and everywhere locally principal.

In the case (A), Θ* and Θγ are regular local rings, and in the case (B), 0>x

is a principal prime ideal for any point x on X. Hence we can apply Th. 3
and we get an exact sequence

(*) 0 -• &X/&1 -+ Θγ

x ®ΘχΩi< -> Ωγ -> 0.

If we extend the sheaf Θγ, Ωγ\ outside of Y by assigning 0 for the stalk over
point x not belonging to Y (the extended sheaf will be denoted by the same
letter), we get an exact sequence of sheaves:

0 -• ( ^ / ^ 2 ) ( 7 ) - > Θγ <g)ΘχΩ
x -+Ωγ-^0.

Hence we obtain the associated exact sequence of cohomology groups

0->#°(X, ^/^ 2)->#°(X, Θγ<g>Ωx)->H°(Y, Ωγ).

Thus we get the following:

PROPOSITION 9. Under the assumption (A) or (B) the homomorphism <P:
H\X, ΘY®ΩX)-+H%Y, Ωγ) is injective if, and only if, H\X,

In some cases the condition (A) can be weakened to the following:

(7) It is well known that the sheaf ^ / ^ 2 is interpreted as the sheaf of germs of regular sections of
the vector bundle E, which is the dual of the normal bundle of Y.
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(A') Y contains only a finite number of singular points and the intersec-
tion of Y with the singular locus of X is composed of a finite number of points.

We shall denote by J5* the kernel of Θγ§§ΩX->ΩY, then we have two exact
sequences

Under the assumption (A') the support of JΓ is a finite set of points on F,
hence H\X, JΓ)=-0. Then we have # 0(X, J F ) = 0 if #°(X,

PROPOSITION 10. Under the assumption (A'), the homomorphism ψ is a
monomorphism provided H°(

In particular if Y is a simple curve of a surface X, Y satisfies clearly the
condition (A') and hence Prop. 10 is applicable.

In the next place we shall investigate the homomorphism

ψ: H°(X

From the exact sequence

we get immediately the exact sequences :

0

and

From this we get the following:

PROPOSITION 11. The homomorphism ψ is injective if, and only if, H°(X,
&ΩX) = 0.

The combined homomorphism ψoψ is no other than the adjoint map Λ
Hence we get the following

THEOREM 4. Let ι be the injection of a subvariety Y into X, and let 0> be
the sheaf of ideals determined by Y. Then *•* is a monomorphism if we have
H\X9 0>/&2) = O and H%X,

It is obvious that the condition H°(X, 0>ΩX) = 0 is necessary for /,* to be
monomorphic. On the contrary, the first condition H° (X, ^/^2) = 0 does not
necessarily follow from monomorphisms of £*(8).

EXAMPLE. Let X be a product of a protective straight line D and a non-

(8) The important case where H°(X, ^ / ^ 2 ) = 0 becomes a sufficient condition will be seen in Theo-
rem 7 in §8.
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singular curve Γ of genus #(;> 1). Let 7 be a subvariety Po x Γ.
monomorphism. But H°(X, 0>/0>2) is isomorphic to k.

We shall show in the following paragraph some cases in which one of
the above mentioned cohomology groups vanishes.

§6. Vanishing of H° (X, 0>/0>2) and H° (X, 0>Ω).

PROPOSITION 12. Let Xn be a non-singular projective variety and let Y be
an irreducible subvariety of X. Assume that the class (72) contains a cycle of
positive degree, i.e., for any divisor Yr linearly equivalent to Y such that Y and
Yr intersect properly an X, the cycle YΎr is of positive degree. Then we have
H°(X, ^ / ^ 2 ) = 0 , where 0> is the sheaf of ideals defined by Y.

PROOF. For a divisor Z on X we shall denote by JδP(Z) the sheaf of germs
of rational functions g on X such that (g) + Z>0. Let 0> be the sheaf of ideals
defined by 7, then & is isomorphic to &( — Y) and 0>2 is isomorphic to jδf( — 27).
Let / be a function on X such that (f)=>Y — Y and Y does not contain any
singular subvariety of Y. Multiplying by /, we have an isomorphism of
sheaves

Jδf(- 7)/if(-27) = Jδf(r)/if(- Y -7).

The latter is isomorphic to the sheaf &(-Y Y) on 7. Hence H°(X, 0>/0>2)
=ff°(F, <e{- Y' Y)). Since 7 Y is a 7-divisor of positive degree H\Y, <£
(-YΎ)) cannot have non-trivial section, proving the assertion. q.e.d.

The Proposition 12 can be generalized to an arbitrary projective variety
X and an irreducible subvariety 7 which is everywhere locally principal on
X. To prove this generalized result it becomes necessary to develop some
clumsy preparations to make it clear what is meant by the intersection 7 Y
and H°(Y, J£?( —7 7)) and so on. Since we don't make any use of generaliza-
tion of this type we shall not go further into this direction.

COROLLARY 1. Let Xbea non-singular surface and let 7 be its subvariety,
then iJ°(X, ^ )/^ ) 2) :=0 if we have (7 2 )>0, where 0> is the sheaf of ideals defined
byY.

COROLLARY 2. Let X be a projective variety having no singularity of codi-
mension 1 and let 7 be a generic hyper plane section of X. Then H°(X> 0>/0>2)
- 0 .

COROLLARY 3. Let X be an abelian variety and let 7 be a subvariety of
codimension 1 on X such that 7 generates X. Then we have iίo(X, «^/^2)—0.

PROOF. Let Si,••-, St be singular subvarieties of codimension 1 on 7. Let
a be a point on X such that YaφSj (; = 1, ••-, t). Since 7 is a generating sub-
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variety of X, we have Yr\Yaφφ(9) and YΎa is a well-defined positive diyisor
on Y. Let Y' be a divisor linearly equivalent to Y and such that Y^pSi (i = l9

• ., ί). Since deg (Γ F ) = deg (F Fα) > 0, we can apply the proposition to our
case and we get the corollary. q.e.d.

When codimension of Y is greater than 1 we have the following

PROPOSITION 13. Let Xn(n^>2) be a protective variety and let Wn~ι be an
irreducible subvariety of X. Let Y be a non-singular subvariety of W such that
Y does not meet any singular point of X and of W. We shall denote by Ψ* and
0> the sheaves of ideals in Θ defined by W and Y respectively and let &>' = &/iΓ
be the quotient sheaf Assume that

(i) # o ( r 5 ^ y ^ / 2 ) = o
(ii) The line bundle B defined by the divisor class —W Y on Y has no non-

trivial section.

Then we have H\X9

PROOF. Since the sequence

o -> &2 \J ψ~/0>2 -> ̂ /^>2 -• ^>y^ / 2 -> o

is exact and we have H°(X, 0>r/0>f2) = H\W, 0>//0>/2) = O, it suffices to prove
that H°(X9&

2\Jir'/&2)=*0. From the homomorphism theorem we have an
isomorphism

0>2\jir/0>2 => ir/0>2 A w

as ^-modules. We shall prove that we have H°(X, iT/0>2r\1fr)=O. Let {Uh

i € 1} be an affine open covering of X and φ{ be defining equations for W in Z7,-,
i € L If we put aij—Ψi/ψj we have α>7 e H°(UiΓ\Uj, Θ*) where Θ* is the sheaf
of multiplicative group of units in Θ. Let 5 be a section of H°(X, iV/^2r\iV).
Without loss of generalities we can assume that s is given by the local sec-
tion Si of Γ(Ui9 #"). Hence s, can be written as

i9 Θ).

Since we have

It is seen that the functions (α,α ί7~αy)^y are contained in ^IΛΨ* in Uii\Uj.
Since any pointy of YίΛUiΓ\Uj is simple on IV, <Dy/(Φj) is a regular local ring
of rank n — 1, hence ψj is not contained in m2, and a fortiori, φj ί 0>2

r From

(9) Cf. Prop. 6 of [12].
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Prop. 8, 0>2

y is ^-primary, hence cuaij — aj e 0>y. It implies that αt α/y —αy is an
element of H0(Uiί\Ujy &). Taking the trace of the functions and denoting by
" the trace on Y, we have

It implies that the set of functions ά{ regular in UiΓ\Y defines a section of a
line bundle defined by the class of divisor — W- Y on Y. By assumption, there
is no non-trivial section in this line bundle. Hence α; = 0, i.e. α, e Γ(U^ &>\ and
Si^diΨi 6 0>2r\iV, i.e., s=0. q.e.d.

REMARK. If rc<ll, the condition (i) implies nothing.

COROLLARY 1. Using the notations as in Theorem 5 if dim 7 = 1 , the con-
dition (ii) can be replaced by the condition

(ii)* I(WΎ)>0.

COROLLARY 2. Lei Xw 6e α non-singular variety and let

be a sequence of non-singular subvarieties Wj of dimension j (i<Lj<Ln), and as-

sume that the line bundle Bj defined by the divisor class — Wj on Wj+1 induces

on Y a line bundle B\ such that B'{ has no non-trivial section for j=*i, i + 1, •••,

n — 1. Then we have H°(X, ^>/^>2) = 0 where 0> is the sheaf of ideals defined by

Y.

This is the immediate consequence of Propositions 12 and 13.

COROLLARY 3. Let X be a non-singular projective variety and let Y be a
generic 1-sectίon of X, and let 0> be the sheaf of ideals defined by Y. Then we
have H°(X,

We shall turn our attention to the cohomology group H°(X,

PROPOSITION 14. Let X be an abelian variety. Then H°(X, 0>Ω) = O for any
subvariety Y of X.

This is an immediate consequence of Prop. 5.

PROPOSITION 15. Let X be a non-singular projective variety belonging to
the projective space of dimension N and let Y be an irreducible hyperplane sec-
tion of X. Let q be the dimension of H0(X, Ω) over k. Then if q<LN, we must
have H\X,

PROOF. Assume that H°(X, 0>Ω)^O, and let ω be a non-zero section.
Then the divisor (ω) contains Y. Let φ be an element of L(Y)=H°(X, &(Y)).
Then (<pω) = (φ) + Y-h [ ( » - Γ] >0, and φω is also a section of H°(X, Ω). Since
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X is non-singular φω is also of the first kind ([3]). Thus we get at least N+1
linearly independent elements belonging to 27° (X, Ω) contradicting our hy-
potheses q<N.

COROLLARY 1. Let Xn be a non-singular projective variety and let Y be an
irreducible hypersurface section of sufficiently high order m, then we have

COROLLARY 2. Let X be as in Cor. 1 and assume that q = dimkH
0(X, Ω)

<jι-f 2. Then Corollary 1 holds for HI = 1.

PROOF. Let TV be the dimension of the ambiant projective space S of X.
Assume that N<Ln + 1, then q =* 0 by [8]. In this case we have nothing to
prove. In the case N^>n + 2 it is the immediate consequence of the preceding
Proposition.

It will be of some interest to point out that the vanishing of cohomology
group H°(X, 0>Ω) is a natural consequence of the closedness of the differential
form of the first kind. This is proved already in §4 of [5], but for the sake
of completeness we shall write down here.

PROPOSITION 16. Let X be a non-singular variety and let Y be its generic
hyperplane section, and let & be the sheaf of ideals defined by Y. Then if every
differential form of the first kind is closed we have H°(X,

PROOF. Let ω be a non-zero element of H°(X, 0>Ω) and let φ be a func-
tion on X such that (<p) + Γ^>0. Then (φω)~(<p)+ (ω)^>(<p) + Y^>0 and φω is
also a differential form of the first kind ([3]). By our assumption we have
therefore d(φω) = ^ Λ ω = 0, hence there exists a function / on X such that ω
=fdφ. This is impossible since we can choose a function φ such that the
divisor of dφ is strictly negative (Lemma 3 of [5]).

We shall denote by ^ the canonical divisor of X. We shall say a divisor
Y is non-special if dim 15Ϊ— Y| = — 1.

PROPOSITION 17. Let Xn, Yn~ι and 0> be as before and assume that dimκ(H°
(X, Ω)(g)K)~n and Y is non-special. Then we have H°(X, 0>Ω)=O, where Kis
the function field k(X) of X.

PROOF. Assume that there exists a non-trivial section ω of H°(X,
Let ωi (i = l, ..., 7i—1) be elements of H°(X, Ω) such that ω, ωu , ωw_i are
linearly independent over K. Then ωΛωiΛ Λω»-i is non-trivial differential
of the first kind on X. Moreover we have &~~(ωΛωiΛ •••Λ%-i))>(ύ)))>7, by
Prop. 4 of [4]. Hence dim 15Ϊ— Y\ ̂ 0 , and we arrive at a contradiction, q.e.d.

§7. The injectivity of the adjoint map Λ

Let X be a projective variety and let Y be its subvariety. We shall denote
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by i the injection Y->X. As a result of the preceding paragraphs we can
state the several cases in which the adjoint map ι* associated with ι is a
monomorphism.

THEOREM 5. The adjoint map ι* is a monomorphism in the following cases:
(I) X is an abelian variety and Y is a generating subvariety of X of codi-

mension 1.
(II) Xn is an abelian variety and Yr is a generic r-section of A(l < r

(III) Xn is a non-singular protective variety and Yn~ι is a generic hyper-
surface section of a sufficiently high order.

(IV) Xn is a non-singular protective variety such that άiτnκ{H°(X:) Ω)(g)K)
;>7z and Yn~ι is a subvariety of X which is non-special such that (F2) contains a
cycle of positive degree, where K = k(X) is the function field of X oven k.

(V) Xn is a non-singular protective variety such that ^==dimfejFίo(X5 Ω)
<n + 2 and Y is a generic hyperplane section.

PROOF. Owing to Theorem 4 we can see the results in the following way:
The case (I) follows from Cor. 3 of Prop. 12 and Prop. 14. The case (II) comes
from Cor. 2 of Prop. 13 and Prop. 14. The case (III) is a direct consequence
of Prop. 12 and Cor. 1 of Prop. 15. The case (IV) follows from Prop. 12 and
Prop. 17. The case (V) is an immediate consequence of Prop. 12 and Cor. 2 of
Prop. 15.

THEOREM 6. Let X be a non-singular protective variety and let Y be an
irreducible hyperplane section of X. Assume that every differential form of
the first kind on X is closed, then the adjoint map ι* is a monomorphism.

This is an immediate consequence of Prop. 12 and Prop. 16.
In the case where dim X=2 we can assert a little more.

THEOREM 6'. Let X be a normal surface in a projective space and let Y be
an irreducible hyperplane section of X which does not contain any singular
point of X. Let ι be the injection of Y into X. Then Λ* will be a monomorphism
if every differential form of the first kind on X is closed.

PROOF. In the proof of PROP. 16 we conclude that φω is a differential of
the first kind since (<£>ω)̂ >0. It is this part of the proof which cannot be ap-
plied directly to the present case since X may contain a singular point(10). But
when X is of dimension 2 we can proceed as follows. By a result of Zariski
[14], we see that there exists a non-singular surface X! such that X! is bira-
tionally equivalent to X and the birational transformation /: X->X' is anti-
regular. Let x be an arbitrary point of X''. Then since ω is of the first kind
ω(x) is an element of Ωx,, where Ω^=Dk{Θ^) in our previous notations. Now

(10) When X contains a singular point a differential form such that (ω) > 0 is not necessarily of the
1st kind, Cf. C2].
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assume that x is not contained in the total transform f{Y} of Y. Then φ is
also a regular function in the neighborhood of xr. Hence φω(x) is still an ele-
ment of Ωx,. Now assume that x is contained in f{Y}. Then the point y
=f~ι(x) is a uniquely determined point of Y. By our assumption y is a simple
point of X, hence φω is an element of Ωy. Otherwise φω will have a polar
divisor passing through y. Since the local ring Θy of γ is dominated by the
local ring Θx, of Λ', φω is also contained in Ωx,. Thus >̂ω is a differential every-
where regular on X\ i.e. a differential form of the first kind of X.

According to the recent work of Hironaka we know the following:

Let X be a projective variety of any dimension. Then if the universal
domain is the complex number field, there exists a non-singular projective va-
riety X! birationally equivalent to X and an anti-regular transformation f: X
~>Xf which is regular at any simple point of X.

If we use this results we can generalize Theorem 6' in the following

THEOREM 6". When the universal domain is the complex number field
Theorem 6' holds for a normal variety X of any dimension.

§8. Theory on abelian varieties.

Let A be an abelian variety and let Y be a subvariety of A. We shall
denote as before the sheaf of ideal determined by Y by the letter &>. Let ι
and A* be, as before, injection of Y into A and its adjoint map respectively.
In the first place we shall prove:

THEOREM 7. Under the same notations and assumptions as above, assume
that Y is a subvariety satisfying the condition (A), (Ά) or (B) in §5. Then the
adjoint map t* is a monomorphism if and only if H°(A,

PROOF. "If'r part of the Theorem is an immediate consequence of Prop.
14 and Theorem 4. As we can see from the commutative diagram below

0
i

^->H\Y, ΩY)

"only if" part of the Theorem is obtained if we show that ψ in the diagram
is an epimorphism (hence an isomorphism). Let s be an element of H°(X,
ΘY(g)Ωx). Let ωi, •••, ωn be invariant differential forms on A. Then ωu •••, ωn

form a base of Dk(K) over K where K is the function field of A over /c(Cor. 1
of Th. 2). From this we see that there is a suitable open covering {UΛ} of
X and the functions fiΛ on Y regular in ΓAC/Λ such that
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for any point x in YrλU*. For any point x in Yr\Ucύr\Uβ, we have

On the other hand l&ω,- (ί — 1, • ••, rc) form a free base of ^^(g)/^ for any point
Λ i n l (Th. 2), hence we must have//Λ=/ ί β in Yr\Uar\Uβ. This means that //Λ

n

=fiβ is a constant function a on Y and s — ψC£ciωi). Since s is an arbitrary
ί = 1

element of H°(X, ΘY(£)Ω) the above result shows that ψ is an epimorphism.
q.e.d.

COROLLARY. Let A be an abelian variety and let Y, Z be irreducible sub-
varieties of A such that Y is a subvariety of Z and they satisfy the condition
(A) or (B) in §5. Let 0> and 0>ι be respectively the sheaves of ideals correspond-
ing to Y and Z respectively. Then if H°(X, «^/^2)=^0, we must also have H°(A,

DEFINITION 1. Let Vn be a variety and let P be a simple point of V. Let

Γu Γ2, •••, Γnbe n-curves such that P is a simple point of each F{ (ί = l , •••, ή).

Let 0 be the local ring of P in V, m its maximal ideal of 0 and let $β, be the

ideal of Γi in O. We shall say that n curves Γu ••-, Γn are transversal to each

other at P if n ( ^ z + m2) is contained in m2.
i

In the case where zz=2, our definition coincides with the ordinary defini-
tion of transversality.

DEFINITION 2. Let An be an abelian variety and let Γ be a curve on A. As-
sume that there exist n simple points au , an of Γ such that if we put α=αi +
• •• +αw, bi=a—a>i, the n curves Γb{ (& = 1, •••, n) are transversal to each other at
the point a. In this case we shall say that Γ is a favourable curve.

PROPOSITION 18. Let A be an abelian variety and let Γ be a curve on A.
Let i be the injection of Γ into A. Then the adjoint map t* is a monomorphism
provided Γ is a favourable curve.

PROOF. Assume that Γ is a favourable curve. Then by the definition
there are n simple points au •• , an on Γ such that Γu •••, Γn are transversal
to each other at a—aιΛ- •••+«« where Γv = Γh^ ό v =α —<zv(y = l, •••, n). Now as-
sume that 6* is not a monomorphism, then there exists an invariant differen-
tial ω on A such that £*(ω) = 0. Then if we denote by LV the injection of Γ into
A we have also ^*(ω) = 0 for v = l, 2, ...,«. Let O be the local ring of the point
a in A and let ^βv be the ideal in 0 defined by Γv (y — 1, , n). We shall denote
by Ω the module of ^-differentials in 0 and by m the maximal ideal of 0. Let
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be the subspace of (O/m)(&Ω spanned by elements of the form
x e 0>y. Now assume that ^ί(ω) —0, then we can easily see that aa(ω) e

n

Since this relation holds for any v = l9 2, • •-, n, we see t h a t aa(ω) e A
v = l

Since ω is an invariant form aa(ω)^0 (Prop. 5), and we can write aa(ω) in the
form 1 0 df, where ξ is an element of m different from 0. On the other hand
10<Z|τ is in V(&v)9 hence there exists an element vy in «̂ v such that l®d?
=»10d*7v, i.e. 10d(f—*7v)=O. As we know (β/xtϊ)®Ω is isomorphic to m/m2,
hence 10d(|: —%)—() is equivalent to saying that (ξ—V^) e tπ2. Thus we see that
f is contained in A(^\-MΉ 2 ). Moreover 10d|^O, f ίm 2 , thus the above relation

implies that A (^v + m2) is not contained in tn2, i.e. Γ is not a favourable
V

curve. q.e.d.

Let An be an abelian variety and let Γ be a curve on A9 and ^ be the in-
jection of Γ into A. Let ^ be a function o n Γ x - x Γ with values in A defin-

n

ed by 9̂ (Pi x x P^^Σ^Pv). Then as is easily seen φ is a morphism of Γ x
v=i

•••xΓ into A If ^ is a morphism onto A, we usually say that Γ generates A.
If, moreover, we have an additional condition that ψ is a separable map, we
shall say that Γ generates A separably.

Let / be a morphism of Un onto Vn and let ybea simple point of V such
that/" 1 ^) consist of a finite number of points of U. Let u be one of the points
in f~ι(U) and let S and # be the local rings of u and v on U and Γ respective-
ly. If the local ring S is unramified over R, i.e. the maximal ideal M of R
generates the maximal ideal N of S, we shall say that / is unramified at the
point u. If / is unramified at any point in f~ι(u\ we shall say that / is un-
ramified over v.

LEMMA 1. Let f be a morphism of a variety Un onto Vn and let v be a sim-
ple point of V such that f is unramified over v. Let Γu •••, Γn be curves on U
passing through a point u in f~ι(v) such that they are transversal to each other
at u. Then if v is a simple point of every one of the curves /(Γ, ), then they are
also transversal at the point v.

PROOF. Let (5, N) and (72, M) be local rings of u and v on U and V re-
spectively and let Sβf be the ideal of Γ{ in 5. We shall put ρ, =tβt AΛ. Then pi

is the ideal of/(Γz) in R. Now assume that A(& + M2)^pM2, then there exists

an element x in A (pi + M2) not contained in M2. This element x can be a

member of regular system of parameters of M. Since S is unramified over 72,

x cannot be contained in N2. Thus we see that Aθβz+iV2)c£Λf2, contradicting
ί = 1

the hypothesis. q.e.d.

PROPOSITION 19. // a curve Γ on A generates A separably, then Γ is a
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favourable curve.

PROOF. Let φ be a map from Γ x - x / 1 onto A defined by ψ(Pι x x Pn)

i). Since φ is a separable map there exist n simple points Pu P2, , Pn
/ = 1 n

of Γ such that φ is unramified at the points x — Σ(P*) Let /\ be the curve
ί - l

Pi x ... x P , _i x Γ x P i + 1 x • xP n on Γ x x Γ. Then <p(Γx ) = /%tCP/) contains the

point a =<P(Pλ x ••• xP w ) as a simple point. Moreover Γ i ? ..., Γ w are t rans-
versal a t the point Pλ x x Pn. Hence the proposition follows from the
Lemma. q.e.d.

PROPOSITION 20. Let Γ be an irreducible curve of an abelian variety An

and let ι be the injection of Γ into A. Assume that the adjoint map ι* is a
monomorphism, then the following holds: let r be any positive integer <Ln and
let Ψr be a rational map from Γr=Γ x x Γ into A defined by Ψr{β\ x x ar)

r

=aι + + ar. Then φ is always a separably algebraic map. In particular Γ
generates A separably.

PROOF. In the first place we shall remark that Γ generates A. In fact if
Γ does not generate A there exists an abelian subvariety B such that ZO Γ_a,
where a is an arbitrary point of Γ [12]. Since L% is not clearly a monomor-
phism ι*_a cannot be a monomorphism, hence neither L* is a monomorphism
by Prop. 6.

After we know Γ generates A, it is easily seen that the degree of the
map φr is finite for any r<lra. Let a^ , ar-\ be arbitrary (r —1) points of Γ
and let a be the injection of Γ into Γr defined by a(u) — u x aλ x x ar-\. Let
j be the injection of Wr^Ψr{Γr) into A. If we put Γ = Γaχ+ +αr_l5 we have
tf,ot^joφroa where t is a biregular transformation Γ-+Γ. Taking the adjoint
of each map we have 2*°^—a*oφfcj*. Since ί* is an isomorphism and ι% is a
monomorphism <P*°/* must be a monomorphism. Let K be the function field
of W=?φr(Γr), then we shall show that Im(/*) contains a basis of Dk(K). In
fact let x be a simple point of W and let 0 be the local ring of the point x on
A. Let tι, •••, tn be a regular system of parameters of 0 such that the ideal p
of W in 0 is generated by tr+u •.., tn. By Theorem 1 there exist invariant dif-
ferential forms ω{ (i = l, •••, r) such that l(g)ω/ —l(g)ώ, (in (0/m)®Dk(0\ where
m is the maximal ideal of 0). This means that if we represent ωt in the form

(£>i — diidti +••••+- a>irdtr + air+\dtr+ι + + θindtn

we must have au = l (mod. m) and ai5 e m if i^/. Denoting by " the trace of the
functions on W we see that

/* (ωt ) = άndti + + dirdty (i = 1, , r)

and det |α, ; | is a unit in O=O/$ because except the terms on principal dia-
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gonal, every term is contained in m/p. Moreover tι, • • ,tr are a set of separat-
ing transcendence basis of K over A; (Cor. 2 of Prop. 17 [7])5 hence dϊu • ,dlr

as well as ;*(ωi), , /*(ωr) form a basis of Z)*(JK") over K. On the other hand
φf is monomorphic on Im(/*) and Dk{0) has no torsion. Hence the monomor-
phism <P* of Dk(O) into /)*(£), where L is the function field of Γr9 can be ex-
tended uniquely to the monomorphism of L<g)κDk(K) = L(g>κ(K(g)όDk(O)) into
Dk(L). As we remarked above Dk(K) and Dk(L) have the same dimension r and
both of them are regular extension of dimension r. Hence the extended
monomorphism <P? must be surjective, and we-have D κ(L)=0. It then follows
that L is separably algebraic over K since L is finitely generated over K.

The preceding results will be unified in the

THEOREM 8. Let Γ be a curve on an abelian variety A and let ι be the in-
jection of Γ into A. Then the following conditions are equivalent:

(a) L* is a monomorphism.
(b) Γ is a favourable curve.
(c) Γ generates A separably(U\

COROLLARY 1. Let A be an abelian variety of dimension 2, and let Γ be a
curve of genus ^>2. Then Γ generates A separably.

PROOF. Let L be the injection of Γ into A. Then Γ generates A since
genus of Γ is not less than 2. This implies that H\A, 0>/0>2) = 0 by Cor. of
Prop. 12, where 0> is the sheaf of ideals defined by Γ. This is equivalent to
saying that ι* is injective by Th. 7. Then the assertion follows from Th. 8.

COROLLARY 2. Let Γ be a non-singular curve and let J be its Jacobian
variety. Let φ be a canonical map of Γ into /, then φ* is a monomorphism.

As is known Γ generates / Separably [12], hence the corollary follows
immediately from Th. 8.

In the rest of this paragraph we shall discuss the separability property
of the linear extension λ of the injection ι\ Γ-+X, for a generating curve Γ
of X. For this purpose we need several Lemmas.

LEMMA 2. Let An be an abelian variety and let W be a subvariety of A.
Then the rational map ψ of Ax W onto A defined by ψ(x xw)~x-hw is a regular
map.

PROOF. Let x, w be independent generic points of A and W over a com-
mon field of definition F for A and W. Since F(x, w)=?F(x + w, w) and dimF ( w )

(x + w) = 7i, we see that F(x-hw) and F(w) are linearly disjoint over k. Hence
the join F(x + w, w)=*F(x, w) is a regular extension of F(x-\-w).

(11) Equivalence of (a) and (c) is stated in Q Ώ without proof.
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LEMMA 3. Let Uu U2 be varieties defined over F such that there exist sepa-
rable rational maps ψ{ of Ui into A 0*—1, 2) defined over a field F. Assume that
at least one of <p{ is surjective on A, then the map Φ of C/χ x U2 on A defined by
Φ(ui, u2)~Ψι{uι)JrΨ2{u2) is a separable map.

PROOF. Let uu u2 be independent generic points of Ui, U2 over F. Then
by assumptions F(m) is a separable extension of F(y>i(ui)), hence F(uu u2) is a
separable extension of F{ψι{uι), Ψ2(u2)). On the other hand by Lemma 2, F{ψλ

(wi), Ψ2(u2)) is a separable extension of F(φι(uι) + φ2(u2j)=F(Φ(uu u2)). Hence
F(uu u2) is also a separable extension of F(Φ(uι-hu2)). q.e.d.

COROLLARY. Let An=Ax x A be n product of an abelian variety A, and
let W be a subvariety of A. Let Ψ be a map of AnxW onto A defined by ψ{x\ x
x2x ... xχnxw)—xιJrχ2Λ- •'• +XΠ + W, where x{ e A and w e W. Then ψ is a sepa-
rable map.

PROOF. Induction on n. The case 7z = l is proved in Lemma 1. Since Anx
JF—An^ixAx W and the map ψι of An~\ onto A defined by ψι(χχX •• xχn-ι)

n-l

= Σ ^ is regular as well as the map ψ2 of A x W onto A defined by ψ2(χn

 χ w)
ί = l

— Xn + w. Hence by Lemma 3 the map ψ is also a separable map.

THEOREM 9. Let An be an abelian variety and let C be a curve on A and let
i be the injection C^A. Assume that the adjoint map 6* is a monomorphism,
then the linear extension λ of ι is a separable homomorphism of the Jacobian
variety J onto A.

PROOF. Let g be the genus of C and let g=cεnΛ b where a is an integer
;>1 and b is an integer such that 0<Lb<n. Let Γn=^Cx ... xC and let ψ be a

n

canonical function of C into /. The map ψ of Γn onto A defined by ψ(xλ x •••

x xn)~χ\ + Λ-χn is a separable map since ι* is a monomorphism. The map Φ

of Γnx •• xΓnxΓh onto A defined by Φ(γx x • • • xyaxz)=*yι + -hγa + z, where
a

y's are points of Γn and z is a point of iΛ, is decomposed as Γnx x Γnx Γh

~>Ax ••• x Ax W->A. Each map is separable by Prop. 20 and Cor. of Lemma
35 hence Φ itself must be a separable map.

§9. Morphism associated with a covering map.

Let X* and X be normal varieties and let π be a morphism of X* onto X
Assume that X* and X have the same dimension and n has no fundamental
curve, i.e., for any curve C on X* the image of C by it is also of one dimen-
sional. Moreover we shall assume that X is a non-singular variety and π is
a separable map, i.e., if L*(L) is the function field of X*(X) over k, then L* is
a separably algebraic extension of L. Let x* be a point on X* and let x =
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TΓ(Λ;*). AS before we shall denote by Θ**(ΘX) the local ring of x*(x) on X*(X).
Since X is assumed to be non-singular, Θx is a regular local ring and its re-
sidue field coincides with L Let Dk(&**)=Ω**(Dk((Px)=Ωx) be the module of k-
differentials in Θ**(ΘX). Then Dk(βx) is a free module by Theorem 3 in [7].
Using Prop. 3 in [7] we see that the sequence

(15) 0 -> Θ** ®ΘχDk (φx) -> Dk (0£) -• DOχ (0?O -> 0

is exact. We shall denote as before by 0*(0) the sheaf of local rings on X*(X),
and by Ω*(Ω) the sheaves of local differentials on X*(X) whose stalk is given
by Ω**(ΩX). Then from (15) we can deduce an exact sequence of algebraic
coherent sheaves on X*:

(16) O^0*<g>fi^fi*^ZM0*)-*O.

It will be noted that the support of DΘ(Θ*) is contained in the different divisor
(Cf. §5 of [7]).

THEOREM 7. Assume that X* is an unramified covering of a non-singular
variety X. Then we have an isomorphism of the sheaves

Let %(X, &) be the Euler characteristic of X with coefficients in the sheaf

J% i.e., %(X, &) = Σ ( ~ 1)* dimΛ£P(X", J5*). From the exact sequence (16) we
<Z = 0

get

(17) X(X*, i^*)==%(X*, ^ W ) + %(X*, 0*<g)Ω).

We shall show that the relation (17) is nothing other than Hurwitz's genus
formula when X and X* are non-singular curves. Let Ϊ(Ϊ*) be the canonical
divisor on X(X*), and let ω be an element of Dk(L) such that (ω) = f. By our
assumption Ωx is a free module, hence it has no torsion element. Then Ωx can
be identified with the submodule of L(S)Dk(Θx)^Dk(L). We shall denote by
seij) the sheaf of germs of rational functions / on X such that (/) + Ϊ > 0 .
Then we have a canonical isomorphism φ of Jδf(ϊ) onto Dk(β) defined by

φ(f)=fω.

In the similar way we can see easily that the sheaf Θ* C§) Ω is canonically iso-
morphic to the sheaf <£(jt~ι(ΐj) on X*, where τt~ι(ί) is defined by

in which Γ^ is the graph of the morphism it.
From these considerations we can derive the following evaluation:

<18) % (X*, fi*) - (X*, X (ϊ*))
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0 ^ * , ^ ( Ϊ * ) ) - ^ 1 ^ * , Jδf(ϊ*))

(19)

where g and g * are genera of X and X* respectively.
In the next place we shall determine the value of %(X*, Z^(0*)). Since

the support of DΦ(Θ^) is a finite set of points, %(F*, 2^(0*)) is equal to the
dimension of #°(X*, D*(0*)) over ft, i.e.,

(20)

where the sum Σ is extended over all the branch points x for the covering
X*/X. We shall calculate the dimension of DΘχ(Θ**) in the following.

Let S be a domain containing a ring R and assume that 5 is a discrete
valuation ring of a field E. Assume that R contains a field k such that the
residue field of S is a finite separable extension of k. Let us denote by ί a
prime element of S and let & be the ^-different of S/R, i.e., the annihilator of
the module DR(S) of ^-differentials in S. Let λ be an integer such that Qι
= (ίλ). Then we have the

PROPOSITION 19. Assume that Dk(S) is a finite module. Then the dimen-
sion of DR(S) over k is equal to λ[(5/ίS): Af).

PROOF. By the lemma of Godement (Cf. Expose 17 of [1]), we have an
exact sequence

0 -> m/m2 -• (S/m) <g> Dk (S) -> 0

where m is the maximal ideal of S. Since m is a principal ideal (t) and Dk(S)
is a finite module over the local ring S we see that Dk(S) is generated by a
single element dξt. Hence DR(S) is also generated by a single element dt (d
stands for <if). By assigning dt to 1 we have an isomorphism of S/tλS onto
DR(S). Let αi, •••, αs be elements of S such that their residue class modulo m
form a base of S/(t) over k. Then it is a straightforward verification to see
that a>itμ (£==1, ••-, 5; μ=0, 1, •••, λ —1) form a base of S/ίλS as a ^-vector space,
and thereby the theorem is proved.

Let 2)* be the ^-different of Θ** over Θx and λ* be an integer defined by
^)x=^(t^λχ), where t* is a prime element of Θ**. Then λ* is equal to the differ-
ential index defined in [6]. Since the different divisor is given by

we see that

(21) dim.tf°
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is equal to the degree d of different divisors.
Combining (17) —(21) we get the final result
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