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Introduction

In our previous paper [7]® we have treated a theory of differentials in
commutative rings. In this paper we shall discuss some applications of the
foregoing results to problems in algebraic geometry. Let X be a variety and
x a point on X and let 0, be the local ring of x on X. We shall call D,(0,)=2,
the module of local differentials® at x, k¥ being the universal domain of our
algebraic geometry. In a natural way we can introduce on the set-theoretic
union £ =g{!2x a suitable topology in such a way that £ turns out to be an

algebraic coherent sheaf on X. If x is a simple point of X, £, is a free module
over ¢, and hence has no torsion. Then we can identify £, with a submodule
composed of the differentials of the function field K of X over k. Hence if X
is a non-singular variety the sheaf introduced above is identical with the
sheaf of germs of regular differentials of degree 1. On the other hand if x is
a singular point of x, £, may have torsion in general and some new phenomena
take place when we treat the variety with singularities. Although we have
no intention to treat the torsion problem here we will present an example to
indicate the difference®. In §2 we deal with the adjoint map associated with
a morphism f of a variety Y into X. There we shall introduce two local ad-
joint maps denoted by f* and f** respectively. It is one of the purposes of
this work to give foundations on the theory of differentials on algebraic
varieties based on the theory of local differentials. Hence some known re-
sults will be presented with an entirely new proof. The contents of §3 is
running along this line, and the existence of invariant differentials on group
varieties will be proved within the scope of our method. Though most of the
results in this paragraph are not new our formulation is helpful for further
discussion. In §4 we shall prove an exact sequence related with the module
of local differentials, and it is useful when we discuss the injection of a sub-
variety Y into the ambiant variety X. Thanks to the exact sequence given in
§4 we can prove that the non-existence of non-trivial section of H°(X, 29)
and H°(X, /2% will be sufficient conditions for :* to be a monomorphism,
where £ is the sheaf of ideals defined by the subvariety Y and : is the injec-

(1) The number in the bracket refers to the bibliography at the end of the paper.

(2) For the notion of the module of differentials in commutative rings the readers are expected to
refer the article [7].

(3) See the Example in §1.
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tion Y—>X (§5). In §6 we shall discuss some cases where we have H°(X, 29)
={0} and H°(X, 2/2%)= {0}, and in §7 we shall show under what conditions
the adjoint map .* will be a monomorphism. It will be interesting to see that
* will be a monomorphism for an irreducible hyperplane section Y of X if
every differential form of the first kind is closed. Since we can admit that
the latter property of the differential forms of the first kind holds in the
classical case, this result may be considered as an alternative proof for the
injectivity of .* in this case. §8 is devoted to the discussion of the case where
Y is a curve of an abelian variety X and . is the injection of Y into X. Under
these circumstances we can give several formulations which are equivalent
to the fact that .* is a monomorphism. In particular if Y is a generic 1-sec-
tion of X, /* is always a monomorphism and hence Y generates X separably®.
If we denote by ) the linear extension of : to the Jacobian variety J of Y, ) is
seen to be a separable homomorphism of /7 onto X. In the case where dim
X=2 we can prove the above result for any curve Y which generates X. It
is plausible that even when dim X >2 the similar result will hold, but it still
remains unsolved. In §9 we discuss the case where the morphism f is a cover-
ing map of a variety Y onto X. In this case we also get a new type of exact
sequence on the sheaves of local differentials. But the geometric interpreta-
tion of these cohomology groups are not adequate, so they are of no great use
except the case of dimension 1. Nevertheless the results in the case of di-
mension 1 encourage us to some extent, because Hurwitz’s genus formula can
be derived naturally from the exact sequence of the associated cohomology
groups.

Notations and Terminologies: We shall denote by % the universal
domain of our algebraic geometry. Then any entities such as varieties, funec-
tions,..., ete. are supposed to be defined over some subfield of k. But since in
the most part of the paper we do not use the notion of a “generic point” at
all no mention will be made of their field of definitions unless it becomes
necessary. By a generic r-section of X” we mean the intersection of X with
(n—r)-independent generic hyperplanes in the ambient projective space with
respect to the smallest field of definition for X. Let X be a variety and let «
be a point of X, then the local ring of x on X will be the subring of the func-
tion field £(X) of X composed of functions regular at x. All rings which will
appear in this paper are assumed to be commutative and contain 1. Let R
and S be rings and assume that S is an R-algebra. Then the module of differ-
entials in S over R will be denoted by Dz(S). The differential operator will be
denoted by d3, but the superscript or the subscript or both will often be omit-
ted if it is clear from the context.

(4) Cf. §8 for the notion “generate separably”.
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§1. The sheaf of local differentials.

Let X be a variety and let x be a point of X. Let ¢, be the local ring of
x on X and let m, be the maximal ideal of ¢,. The union \ /0., forms the sheaf
x€X

of local rings on X which will be denoted by ¢. Let £.=D,(0,) be the module
of k-differentials of ¢, over k. (We shall call it the module of local differen-
tials at x). The differential operator d%* will be denoted simply by d,. Let £

be the union of 2., i.e. £ =\ 2,, where x ranges over all points x on X. We
x€X

can define a topology in £ in the following way. Let x be a point on X and
let fi,---, fu, g1, g» be a set of functions regular at x. Then there exists an
open set U containing x such that f’s and g;’s are regular in U. Then d,f;’s
are the well-defined elements of £, for any point y in U. Let s be a function
on U with the value in £ defined by

S(}’) = }__l‘gidyfi-
Then we can define a unique topology in £ in which the set

{s(y), y €U}

forms a complete system of neighbourhoods of £. Thus £ turns out to be an
algebraic sheaf on V.

Prorosrrion 1. £ is an algebraic coherent sheaf.

Proor. Since the problem is of local character we can assume that X is
an affine variety with the affine coordinate ring 4. In this case 2,=0,Q 1D,(4)
for any x in X. On the other hand D,(4) is a finite 4-module, hence 2 is a
coherent sheaf on X by Prop. 3, p. 241 in [10]. g.e.d.

Let U be an open subset of X. An element o of " (U, £) will be called a
differential (regular) in U.

Remark. Let © be the module of derivations of K over k with the value
in K. Then 9 is isomorphic to Homg (D, (K), K) (Cf. [1] Exposé 13). Since D
is a finite dimensional vector space over K, D,(K) is isomorphic to Homg (D,
K). Thus D,(K) is no other than the differentials introduced in [11]. On the
other hand D(K)=KX4%2, by [7]. Hence if £, is a torsion free ¢.-module we
can identify £, as a submodule of D,(K). But in general 2, has torsion at a
singular point x, hence we can not consider £, as a submodule of D,(K). (See
example 1)

We shall denote by «. the homomorphism of £, into £.&, 2. defined by
(@) =1® 1, where k, = 0,/m,.

ProrosiTioN 2. Let o be a differential on X. Assume that a.(o(x))=0 for
any point x on X. Then o(x)=0 at any simple point of V.
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Proor. Let x be a simple point of X and let U be an open neighborhood
of x not containing the singular points of X such that there exist r functions
t1,---, ¢, satisfying the condition®: For any point y in U, ty—t.(y), -, t,—1,(y)
form a regular system of parameters of O,. Then there exist functions g1, -,
g- regular in some open subset U’ of U containing x such that

o(y)=2gidyti, y € U.

Since y is a simple point of 7, £, is a free module over ¢, and d,;’s form a
free base of 2, (§4 of [7]). The assumption of the proposition implies that
g:’s are contained in m, for any y in U". But this is impossible unless g;’s are
identically zero. In particular w(x)=0. q.ed.

It is worthwhile to note that we can not say more under the assumption
of Prop. 2. In the following example we shall show the existence of a non-
trivial regular differential » on ¥ such that «.(o(x))=0 at any point x of V.

Example. Let X be a curve in an affine 2-spaces defined by the equation
T?=U3, and let us denote by : and u the coordinate functions on X. The func-
tion of X with the values in £ defined by o (x)=ud,t is clearly an element of
I'(X, £). Now assume that the characteristic of k is 3. Let x be a point of X
different from x,= (0, 0). Then the function : is a unit in ¢,. Hence o(x)
=(u/2t)2td,t = 0. We shall show in the next place that ud,==0. (to avoid the
confusion we shall write do, £o,--- instead of d. , 2., --) Let 4=Fk[¢, u], then
Dy(A)=(ADT + ADU)/2TdT (Theorem 2 in [7]). Since D.(0y)=20=0,®@D,(4),
udot can be zero if and only if there exists a function f in 4 such that f(o)+0
and fud:=0 in D,(4). This is equivalent to saying that fu is contained in the
ideal (z4), or u is contained in :0,. But this is impossible because x, is a singu-
lar point of X and % is algebraically closed.

We can find such a cynical example even in the case where the charac-
teristic of the universal domain is 0. In the above Example assume that the
characteristic is zero. Then the differential » defined by o(x) = 2ud.t — 3id.u
offers such an example. The verification will be left to the readers.

§2. Morphism and its adjoint map.

Let
f: Y- X
be a morphism (regular rational map) of an irreducible variety Y into an ir-
reducible variety X. Let y be a point of Y and let us put x=f(y). We shall

denote by ¢* and 0* the sheaves of local rings on Y and X respectively. Then
there exists a ring homomorphism 4 of ¢ into ¢}

(5) Cf. Cor. 1'of Prop. 1 in [6].
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@ h: 0,—0,

such that 2(1)=1. (We shall frequently take off the superscript ¥ and X to
denote the ambiant varieties if it is clearly seen by the subscript denoting
the points). Thus 0, is an ¢,-algebra. From this we have an exact sequence

(Cf.[1Jor [7D
) 0, 2,—259,-7>D,(0;)—0

where £, and £, stand for £¥ and £F respectively and D.(0,)=D, (0,). Let
be a homomorphism of £, into 0,Q L, defined by

B(dt) =1 d.t.
The combined homomorphism (¢,-homomorphism)
t’x =Pof3

gives a map £2,—£2,, which we shall call the local adjoint map associated with

We shall define another kind of adjoint map in the following way. Since
h is a morphism we have

R (my) = (A7 (h(0,) N\my)) =m,.

Hence the residue field 0./m.=k, can be identified with 0,/m,. From this we
can define a homomorphism f5% of £,&Q%L, into £,&L, such that

3 ofr L =fixa,.

We shall call f5% also a local adjoint map.
The following Proposition is seen immediately from the definitions.

Prorosition 3. Let g: Z—Y and f: Y— X be two morphisms. Then the
map h=fog gives @ morphism of Z into X. Moreover if x, y and z are points
of X, Y and Z such that y=g(z) and x= f(y), then we have

*  __ ¥ Xk
hz,x—gz,yfy,x
Kk __ Kk Rk
hz,~x —gz~y ¥ x°

Let U be an open subset of X and let o be a differential on U. Then V
=f"'(U) is an open subset of Y. Let y be a point in ¥ and let x=/(y). Then

[5 z0@)
is an element of 2,. We shall show that the map
@ y=>f75, 20 (®)

is a section on ¥ with coefficients in £¥. To see this it is sufficient to show
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that the above defined map (4) is continuous in y. Since o is a section in U,
there exists an open set U, containing x such that

o(x)=2Digidut;
7
for any «’ in U, where g;’s and ¢/’s are regular functions in U,. Hence
I3 aw(@)=2>3(giof)dy(tiof)

is seen also to be a section in f~(U), i.e. the correspondence (4) is a continu-
ous function of y. Since y is an arbitrary point of ¥ we see that the function
(4) is continuous everywhere in V. We shall denote this section by

f *o.
In particular if o is a regular differential on X, i.e. an element of H°(X, £%),

f*o is a well-defined element of H°(Y, 2¥). We shall call the above defined
map f* the adjoint map of f.

Remark. If the morphism is a constant map, i.e. f sends Y into a point
of X, then 4 is a natural homomorphism ¢,—0,/m,. Hence the homomorphism
7 in (2) is an isomorphism and ® is the zero map. Thus f* gives a zero map.

Let Y be an irreducible subvariety of X and let f be the injection of Y
into X. In this case the homomorphism % in (1) is the natural homomorphism

h: 0 — 0% /P, =0

where 2, is the ideal of ¥ in ¢0X. In this case the associated exact sequence
is given by

(2,/2%)— 0F QL% — ¥ — 0.

We shall use this fact in §3 and some detailed investigation will be seen in
§5.

§3. Imvariant differentials on group varieties.

We shall apply our method to the existence proof of the invariant differ-
ential forms on group varieties.

Let G be a group variety and let «, y,... be points on G. The group mul-
tiplication will be denoted as usual by xy. Let g, be the left translation of G
onto itself defined by

g ()= a lx.
Then g, send the point a into the neutral point e. Let w, be an arbitrary
element of £,. Then using the local adjoint map g%, we can associate an ele-
ment of 2, by the rule
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gz‘:ﬂa,e (we).

In the following we shall put g} =g¢,,., for the sake of simplicity. It should
be noted that g is a local adjoint map. It will cause no confusion since g,
is a 1—1 map.

Prorosition 4.  Let a be an arbitrary point of G and w, be an element of
Q.. Then there exists a differential s in an open set U containing a such that

(5) (e 2% (S ((I))) =1 ®gff (we) =04 (g;k (we))-

Proor. Let G=G xG be the product of G and let # be the map of G onto
G defined by

P (x, y) =y x.
Let . be the injection of G xa into G, and let + be the map of G into G xa de-
fined by

Jr(x) = x X a.

Then we can divide g, into the three steps

g(ay = Powo.
Hence by Prop. 3 we have

g?{n — ‘]!/,*OL*‘,@*‘

We shall investigate the behaviour of each step in detail. For the sake of
simplicity we shall use the following notations. The differential operator in
0¢ will be denoted simply by d,. Let us denote by «* the point axa in G. We

have to consider two differential operators d¢, and d¢x¢ in 0S¢, and 0S¢ re-
spectively. The former will be denoted by d,. and the latter by d,.. Since
the adjoint maps are linear it will be sufficient to treat the case where w, is
of the form w,=fd.g where f and g are elements of ¢,. Then we have

P, (W) = (foP)da (goP).

The functions fo®, go® are regular in the neighborhood of As, then ®} , (w.)
is a section in the neighborhood of «* with value in 2¢. Let ¢, .., ¢, (n=dim
G) be a set of regular system of parameters in ¢$. Then t;—t;(b) G=1,.--, n)
are a regular system of parameters at any point b in a neighborhood of a.
We shall denote by ;1 and 1&)¢; the functions on G regular in the neighbor-
hood of «* defined by

6B (v x &) =t:(x)
ARt (xx ) =uG) (=12, n)

respectively. Then #®1 and 1&Q¢; (i=1,..., n) form a regular system of para-
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meters of ¢0S.. Using these functions we can express ®% ,(w,) uniquely in a
neighborhood of «* in the following way.

Pk, . (we) :f/Eijuigla* @) +f’%_‘,vﬂa* AR

with u,’s and v/’s are all in 0%, and f'=fo®. Let 2 be the ideal in ¢Z. defining
the subvariety G xa. Then 2 is generated by (1&Qz¢,---, 1&z,). Hence

L:(*,a*°¢):,k*,e ('M)g) = f’ Zaida*ti
1

! =9

where f’, 4;’s are the function on G such that

(%) = ui (%, a), f' (%) =f'(x, @) = f(a"'x).
(Cf. §3) Hence

g: (we) = "#:a* L:zk*,a* ¢;k*: e (wé)
=f’2ﬂidati

and

1Q g (we) = f(e) z{ (e, (AR dat)  in 0,/m,® L.

Now we shall define a differential s in some open set U containing the point a
by

s(b) = f(e) 2lui(w, x)dst;, b € U.

Since u;(x, y) is regular in the neighborhood of the point ¢ xa the function
u;(%, %) is regular in the neighborhood of the point a(u;(, ») is the class of
u; (%, y) modulo the ideal I(A¢) defining the diagonal A; in G xG). Hence s(b)
gives actually a differential regular in a neighborhood of a. Moreover

ay(s®) =f ()23 (b, YA dyt:) = 1R g7 (we)

for any b in a neighborhood U of a. Thus the proposition is proved complete-
ly. ' q.e.d.

Let a be a point of G and let s, be a differential on U satisfying the con-
dition of Prop. 4 with the fixed element w, in £,. s, is defined in some open
set U of G containing a. If UG, take a point b outside of U and construect s,
in a similar way. Let U’ be the open set in which s, is defined. Then for a
common point ¢ of U and U we have a.(s.(c)) =1Q g¥(w.) = (s:(c)). Since the
intersection of U and U’ is again an open set of X, the above fact implies that
sa=s, in UNU’ by Prop. 2. In this way we can get an element o of H°(G, 2)
such that
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(0 (@) =1 g% (wo).

The differential thus constructed will be said to be the differential associated
WIth w,.

We shall show in the next place that the differential associated with w,
is left invariant on G. Let o be an arbitrary point on G. To prove the in-
variance of the differential » it is necessary and sufficient to prove that

Q) (g8 (@) (9) = 0 (2)

for any point x and ¢ on G. By Prop. 2, the proof of the relation (6) is reduced
to the proof of

) (g8 (@) (%) = oo ().
Since g, transform x into ¢™'x we have

(8% (@) (0) = g7 (0(a™'x)).
Hence the left hand side of (7) is equal to

gl (0(@'x) =g d-1:(0(@™'x))  [by (3)]
=gi dam1xga-1,(we)  [by (5)]

:g:zk*gt)flzae(w» :“g;(*ae(we)

Since
8 8E =gl
Using again the formula (3) and (5) we get
gr* e (we) = gy (we) = ot (o ().
Thus the relation (7) is established and thereby we get the following:

TureoreMm 1. Let G be a group variety and let e be the neutral element of
G. Let w, be an element of 2,. Then there exists a unique left invariant differ-
ential o such that

A (o (@) = a, (w,).

The existence is proved above. The uniqueness is contained in the follow-
ing Proposition which states much more than the uniqueness.

ProrosiTion 5.  Let o be a left invariant differential form on the group
variety G. Assume that a,w(a)=0 for a point a on G. Then »=0 identically.

Proor. Let b be an arbitrary point of G, and let :=ba"'. Using the
formula (38) we get
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o) =a, ((g *(1)“’) (b)) =0 g H (‘0 (a))
= g3 (A0 (a)) = 0.

Since this holds for any point b, ® must be identically zero by Prop. 2.

TueOREM 2. Let n be the dimension of the group variety G. Then there
exist n left invariant differentials o1, -, w, o0 G. Moreover for any point x on
G, 01(x), ---, o(x) form a free base of £, over 0,.

Proor. Letdt, -, di, be a free base of £,, and let o, ---, ®, be invariant
differentials associated with di;, .., dt, respectively. Then the Prop. 5 implies
that o, ---, o, are linearly independent over k since «,(w;) = a.(dt;) A<i<n)
are linearly independent over k. In the similar way we see that any left
invariant differentials are linearly dependent on ;s over k. The last asser-
tion can be seen easily if we remember the following fact: £2, is a free module
over 0, with the base oy, -, @, if (€.01(%), -, @:0.(x)) is a base of the vector
space (0,/m,) R 2. g.e.d.

Let K be the function field of G over k. Then D,(K)=K& £,. From this
we can deduce, using the Theorem 2, the following

CoroLLARY 1. The left invariant differential forms on G form a base of
Di(K) over K, where K is the function field of G over k.

CoroLLARY 2. Let G be a group variety. Then H°(G, £) is a free module
of rank n over I' (G, 0).

Proor. Let o be an element of H°(G, £). Then by Cor. 1 we can write o
in the form

co=2f,~co,-
1

where f;’s are elements of the function field K. Since (x), ---, w,(x) form a
free base of £, for any point x on G, w(x) can be an element of £, if, and only
if, the function f’s are all contained in 0,, i.e. f; are elements of I"(G, 0).

A variety V is called quasi-complete if there exists no non-constant func-
tion which is regular everywhere on V. Then we have

CoroLLARY 3. Let G be a quasi-complete group variety. Then the differ-
ential forms of the first kind on G form a vector space of dimension n(=dim G)
over k.

On this occasion we will propose here a problem:
Does there exist a quasi-complete group variety which is not an abelian

variety?

Prorosition 6. Let G be a group variety and let g,y be the left translation
of G defined by gwy=a"'x. Let Y be an irreducible subvariety of Y and let Y, be
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the tramsform of Y by g). We shall denote by « and ., the injection of Y and Y,
wnto G respectively. Then if *(0)=0 for a left invariant differential form o,
we also have ) (w)=0.

Proor. Let ¢, be the restriction of g on Y, then ¢, is a biregular bira-
tional transformation of Y onto Y,. Since guyo: = t,0t,, We have Fg* ) =)0
Since o is a left invariant differential on G the assumption implies that ;¥ (»)
=0. On the other hand ¢* is an isomorphism, hence *(») = 0.

§4. An exact sequence on the differentials in local rings.

In Exposé 17 of [1], it is proved that if (R, M) is a local ring containing
a field & such that the residue field R/M is separable over k, then the follow-
ing sequence is exact:

®) 0—>(M/M*)—(R/M)&QrDi(R)—> D (R/M)—0

We shall give a generalization of this result which is necessary for further
investigation.

Tueorem 3. Let O be a local ring containing a field k and let B be a prime
ideal of O such that the quotient field of O/°B is a separable extension of k. As-
sume that B? is P-primary. Then the following sequence is exact:

9) 0—P/PB* - (0/F) QoD (0)—> Dr(0/P)—0
Proor. In the first place we shall remind that the sequence

(10 P/P 2> (0/PB) QoD (0) > D (0/B)— 0

is known to be exact ([ 7], Prop. 9). Hence to prove the assertion it is suffici-
ent to show that map P is a monomorphism.
Let R=0y and let M=L0-. Then by (8) we have an exact sequence

11) 0—(M/M?)—(R/M)QrDi(R)—> Dp(R/M)—0

since R/M is, as the quotient field of O/%, separable over k. On the other
hand D,(R) = R&®oD;(0) (cf. [7]). Hence

(12) (R/M)QzrDy(R) = (R/M) Qr(R&oD;(0) = (R/M) 0D (0)
= (R/M)®0((0/P) RoDs(0)).

We have also

(13) Dy(R/M) = (R/M)X0,2Ds(0/P) = (R/M)R0oD:(0/%F)

since D,(0/9P) is annihilated by B. In the last place we can see that

(14) (M/M?) = R/ M) Ro(P/P?).
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In fact it is easy to see that M/M?>=R®Qo(B/PB?). Applying Qo (B/P?) to
the sequence

0>M—->R—>R/M—0

we see immediately the relation R®o(P/B?) =R/ M)Ro(R/PB?). Using the
formulas (9)-(14) we get a commutative diagram of the exact sequences

0 (R/M) @o(PB/P)— (R/M) R0l (0/B) R0D:(0) ]~ (R/M) QoD (0/8) 0
T 1 1
B/Pr—2 (0/B) Q0D (0) D (0/F5)—0.

Hence to prove the assertion it is sufficient to show that the homomorphism
given by

Y@ =1Qa

is a monomorphism, where a is the class of an element ¢ in ¥ modulo $*. Now
assume that y(@)=0. Then a € M* and there exists an element b in O not con-
tained in P such that ab € P2 Since P2 is P-primary and b is not contained in
B, we must have a € P?, i.e. a=0.

We shall give some important case in which * becomes a P-primary
ideal.

Prorosition 7. Let A be a noetherian ring and let P be a principal prime
ideal generated by a non-zero divisor a. Then " is L-primary.

This proposition is not new. But the following simple proof will be of
some interest®.

Proor. Let P be a prime divisor of (¢”). Then for some r we have (a"):
(=Y. Since " isin L', ¢ is also in ', hence ar=a"s for some s. Then r
=a""'s and P'=(a"): r)=(a"): (" 's) = (a): (s). From this we set easily L'=9,
i.e. (¢") has only one prime divisor . Hence (¢*) must be a P-primary ideal.

Prorposition 8.  Let A be a regular local ring and let 5 be a prime ideal
of A such that A/ is also a regular local ring. Then B* is a L-primary ideal.

This is proved in Theorem 3 of [9]. But we shall present here a simple
proof for the sake of convenience.

Proor. Let n=dim A4, d =rank 8. Then the assumption implies that {3
is generated by d-elements (u;,.-., uy) such that u;’s form a subset of a regular
system of parameters of 4. We shall use the induction on d. The case d=1
is treated in Prop. 6. Assume that Prop. is valid for a prime ideal of rank
<d. Now assume that P is not B-primary. Then there exist elements a, b
such that

(6) This device is due to H. SaTo.
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ab=0(mod $?), az=0(P), b==0(P.
Passing to the quotient ring A4/(u,) we see that
b=0(mod P* + (u1)).

Let ¢ be an element of 4 such that b =cu, (B%). Then ¢=20 (P). Hence if we
put ac=d, du;=0(P?), d==0(P). If we denote the residue class modulo (z;) by -,
we get da; =0(?). Since d£0(P) and 7,20 (P*) the above relation contradicts
the induction hypothesis that ? is P-primary. Thus the proof is complete.
q.ed.

In a similar way it is easily seen that " is P-primary, but we do not go
further.

§5. Morphism associated with injection.

Let X be an irreducible variety and let Y be subvariety of X. Let . be
the injection of Y into X. The homomorphism % of ¢F onto 0¥ («x is a point
on Y) associated with ¢ is given by the natural homomorphism of ¢X onto ¢¥
=0X/2,, where 2, is the ideal of 0¥ defining the subvariety Y. Now assume
that either one of the following conditions hold:

(A) Y is a non-singular subvariety and Y does not meet any singular point
of X.
(B) Y s a subvariety of codimension 1 and everywhere locally principal.

In the case (A), 0F and ¢7 are regular local rings, and in the case (B), 2,
is a principal prime ideal for any point x on X. Hence we can apply Th. 8
and we get an exact sequence

() 0> 2,/P2— 0F R, 25 — 7 —0.

If we extend the sheaf ¢¥, £¥, outside of Y by assigning 0 for the stalk over
point x not belonging to Y (the extended sheaf will be denoted by the same
letter), we get an exact sequence of sheaves:

0> (2/2H) V- 0" R, 2% > 2 —0.
Hence we obtain the associated exact sequence of cohomology groups
0> H(X, 2/2*)—>H(X, 0* Q2¥)—>H" (Y, £%).
Thus we get the following:

Prorosrrion 9. Under the assumption (A) or (B) the homomorphism @:
H(X, 0" Q92%)—>H(Y, %) is injective if, and only if, H(X, 2/2*)=0.

In some cases the condition (A) can be weakened to the following:

(7) It is well known that the sheaf 2/2? is interpreted as the sheaf of germs of regular sections of
the vector bundle £, which is the dual of the normal bundle of Y.
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(A”) Y contains only a finite number of singular points and the intersec-
tion of Y with the singular locus of X is composed of a finite number of points.

We shall denote by # the kernel of 0¥ Q2%¥—£7, then we have two exact
sequences
0->F—>0" QRX—>0" -0
0> A —>2/P*—>F—0.

Under the assumption (A’) the support of ¢ is a finite set of points on Y,
hence H'(X, o#)=0. Then we have H(X, #)=0 if H'(X, 2/2%)=0.

Prorosrrion 10.  Under the assumption (A’), the homomorphism ¥ is a
monomorphism provided H(X, #/2*)=0.

In particular if Y is a simple curve of a surface X, Y satisfies clearly the
condition (A’) and hence Prop. 10 is applicable.
In the next place we shall investigate the homomorphism

¥ H(X, 25)>H (X, 0" Q@ 2%).
From the exact sequence
0>2>05—> 0" >0
we get immediately the exact sequences:

05225 52X 50" R -0
and
0> H(X, 22%)—>H(X, 25)—> H'(X, 0¥ Q £%).

From this we get the following:

Prorposition 11, The homomorphism  is injective if, and only if, H(X,
20%)=0.
The combined homomorphism ®e+r is no other than the adjoint map *.

Hence we get the following

Tureorem 4. Let . be the injection of a subvariety Y into X, and let 2 be
the sheaf of ideals determined by Y. Then * is a monomorphism if we have
H(X, 2/2%)=0 and H'(X, 292%)=0.

It is obvious that the condition H°(X, 22%)=0 is necessary for .* to be
monomorphic. On the contrary, the first condition H°(X, 22/2%) =0 does not
necessarily follow from monomorphisms of *®.

ExampLe. Let X be a product of a projective straight line D and a non-

(8) The important case where H°(X, #/22?)=0 becomes a sufficient condition will be seen in Theo-
rem 7 in §8.
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singular curve /" of genus g(=1). Let Y be a subvariety P,xI". Then .* is a
monomorphism. But H°(X, #/2%) is isomorphic to k.

We shall show in the following paragraph some cases in which one of
the above mentioned cohomology groups vanishes.

§6. Vanishing of H°(X, #/2*) and H'(X, 29).

Prorosition 12.  Let X” be a non-singular projective variety and let Y be
an irreducible subvariety of X. Assume that the class (Y?) contains a cycle of
positive degree, i.e., for any divisor Y’ linearly equivalent to Y such that Y and
Y’ intersect properly an X, the cycle Y-Y' is of positive degree. Then we have
H(X, 2/2%)=0, where 2 is the sheaf of ideals defined by Y.

Proor. For a divisor Z on X we shall denote by #(7) the sheaf of germs
of rational functions g on X such that (g)+27>0. Let 2 be the sheaf of ideals
defined by Y, then £ is isomorphic to #(—Y) and #? is isomorphic to #(—2Y).
Let f be a function on X such that (f)=Y —Y and Y’ does not contain any
singular subvariety of Y. Multiplying by f, we have an isomorphism of
sheaves

L(-Y)/#(=2Y)=2X)/L(—Y 7).

The latter is isomorphic to the sheaf ¥(—Y-Y) on Y. Hence H°(X, 2/%%)
=H°(Y, (- Y'-Y)). Since Y-V is a Y-divisor of positive degree H°(Y, &
(—Y’-Y)) cannot have non-trivial section, proving the assertion. q.e.d.

The Proposition 12 can be generalized to an arbitrary projective variety
X and an irreducible subvariety Y which is everywhere locally principal on
X. To prove this generalized result it becomes necessary to develop some
clumsy preparations to make it clear what is meant by the intersection Y-Y’
and H°(Y, £(—Y-Y)) and so on. Since we don’t make any use of generaliza-
tion of this type we shall not go further into this direction.

CoroLLARY 1.  Let X be a non-singular surface and let Y be its subvariety,
then H°(X, 2/2%)=0 if we have (Y*)>0, where 2 is the sheaf of ideals defined
by Y.

CoroLLARY 2. Let X be a projective variety having no singularity of codi-
mension 1 and let Y be a generic hyperplane section of X. Then H°(X, 2/2%)
=0.

CoroLLARY 3. Let X be an abelian variety and let Y be a subvariety of
codimension 1 on X such that Y generates X. Then we have H°(X, 2/2*)=0.

Proor. Let S,,.-., S, be singular subvarieties of codimension 1 on Y. Let
a be a point on X such that ¥, pS; (j=1, ...,#). Since Y is a generating sub-
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variety of X, we have YNY,#¢® and Y-Y, is a well-defined positive divisor
on Y. Let Y be a divisor linearly equivalent to Y and such that YpS; i=1,
..., t). Since deg (Y-Y")=deg (Y-Y,) >0, we can apply the proposition to our
case and we get the corollary. q.e.d.

When codimension of Y is greater than 1 we have the following

ProposiTion 18. Let X" (n=>2) be a projective variety and let W"™' be an
irredicible subvariety of X. Let Y be a non-singular subvariety of W such that
Y does not meet any singular point of X and of W. We shall denote by #" and
2P the sheaves of ideals in O defined by W and Y respectively and let ' =P/W
be the quotient sheaf. Assume that

() H'W,2' /2% =0

(ii) The line bundle B defined by the divisor class —W-Y on Y has no non-
trivial section.

Then we have H(X, 2/2%*)=0.
Proor. Since the sequence
0> P2 UW /P> P/ PP P /P20

is exact and we have H'(X, #'/2'*)=H"(W, 2'/2'*) =0, it suffices to prove
that H°(X, 2*U% /2*)=0. From the homomorphism theorem we have an
isomorphism

PEIW | PE=HW P N\W

as ¢0-modules. We shall prove that we have H'(X, # /2°N#)=0. Let {U,,
i € I} be an affine open covering of X and ®; be defining equations for W in U,,
i€l If we put a;;=9;/P; we have a;; € H*(U;N\U,, 0*) where 0* is the sheaf
of multiplicative group of units in 0. Let s be a section of H(X, w/2*Nn\¥").
Without loss of generalities we can assume that s is given by the local sec-
tion s; of I'(U;, #°). Hence s; can be written as

si = a;Pi, a; € F(U,', @).
Since we have
si —s; = aiPi — a;iP;

= a,ia,-]@j _ (Ij¢j
= (@iai; — a;)P;.
It is seen that the functions (aia;;—a;)®; are contained in 2° %" in U;NU,.

Since any point y of YNU;N\U; is simple on W, 0,/(®,) is a regular local ring
of rank n—1, hence ; is not contained in mZ, and a fortiori, #; € #2. From

9) Cf. Prop. 6 of [12].
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Prop. 8, 22 is 2,-primary, hence a;a;;—a; € 2,. It implies that g;a;;—a; is an
element of H(U;N\U;, ). Taking the trace of the functions and denoting by
~ the trace on Y, we have

did,'j = dj.

It implies that the set of functions a; regular in U;N\Y defines a section of a
line bundle defined by the class of divisor —#-Y on Y. By assumption, there
is no non-trivial section in this line bundle. Hence G;=0, i.e. a; € I'(U;, #), and
si=a;P; € PPN\W, 1.e., s=0. g.e.d.

Remark. If n<l1, the condition (i) implies nothing.

CoroLLArY 1. Using the notations as in Theorem 5 if dim Y=1, the con-
dition (ii) can be replaced by the condition

{* 1(w-v)>0.
CoroLLARY 2. Let X" be a non-singular variety and let
X*"=W,DWuy1D - DWi=Y

be a sequence of mon-singular subvarieties W; of dimension j (<j<n), and as-
sume that the line bundle B; defined by the divisor class —W; on W;., induces
on Y a line bundle B; such that B; has no non-trivial section for j=i, i+1, ...,

n—1. Then we have H*(X, 2/2%)=0 where P is the sheaf of ideals defined by
Y.

This is the immediate consequence of Propositions 12 and 13.

CororLLARrY 3. Let X be a non-singular projective variety and let Y be a
generic 1-section of X, and let 2 be the sheaf of ideals defined by Y. Then we
have H'(X, 2/2%)=0.

We shall turn our attention to the cohomology group H°(X, 22).

ProrosiTion 14. Let X be an abelian variety. Then H(X, 22)=0 for any
subvariety Y of X.

This is an immediate consequence of Prop. 5.

Prorosition 15.  Let X be a non-singular projective variety belonging to
the projective space of dimension N and let Y be an irreducible hyperplane sec-
tion of X. Let q be the dimension of H(X, £) over k. Then if ¢=<N, we must
have H'(X, 2£2)=0.

Proor. Assume that H°(X, #22)£0, and let » be a non-zero section.
Then the divisor (o) contains Y. Let ® be an element of L(Y)=H(X, £ (Y)).
Then (Pw)=(P)+Y+[(w)—Y]>0, and pw is also a section of H(X, £). Since
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X is non-singular g is also of the first kind ([3]). Thus we get at least N+1
linearly independent elements belonging to H°(X, £) contradicting our hy-
potheses ¢ <.

CoroLrary 1. Let X” be a non-singular projective variety and let Y be an
1wrreducible hypersurface section of sufficiently high order m, then we have
H°(X, 22)={0}.

CoroLLARY 2. Let X be as in Cor. 1 and assume that q=dim,H°(X, £)
<n+2. Then Corollary 1 holds for m=1.

Proor. Let N be the dimension of the ambiant projective space S of X.
Assume that N<n+ 1, then ¢=0 by [8]. In this case we have nothing to
prove. In the case N>>n+2 it is the immediate consequence of the preceding
Proposition.

It will be of some interest to point out that the vanishing of cohomology
group H°(X, 2£) is a natural consequence of the closedness of the differential
form of the first kind. This is proved already in §4 of [57], but for the sake
of completeness we shall write down here.

Prorosirion 16.  Let X be a non-singular variety and let Y be its generic
hyperplane section, and let 2 be the sheaf of ideals defined by Y. Then if every
differential form of the first kind is closed we have H°(X, 22)=0.

Proor. Let o be a non-zero element of H°(X, 29) and let ¢ be a func-
tion on X such that (p)+Y >>0. Then (po)=(¢)+ (0)>(p) + Y >0 and po is
also a differential form of the first kind ([3]). By our assumption we have
therefore d(pw) =dp /\w =0, hence there exists a function f on X such that o
= fdp. This is impossible since we can choose a function ¢ such that the
divisor of dp is strictly negative (Lemma 3 of [5]).

We shall denote by & the canonical divisor of X. We shall say a divisor
Y is non-special if dim|[®—Y|=—1.

Proposition 17.  Let X, Y"™' and 2 be as before and assume that dimx (H°
X, 2YQK)=n and Y is non-special. Then we have H'(X, 20)=0, where K is
the function field k(X) of X.

Proor. Assume that there exists a non-trivial section o of H°(X, 29).
Let o; (=1, ...,n—1) be elements of H°(X, £) such that o, ©1, ---, ®,-1 are
linearly independent over K. Then wAw; A ---Aw,_1 is non-trivial differential
of the first kind on X. Moreover we have 8~(0Nw1 /A - No,-1)>(0)>Y, by
Prop. 4 of [4]. Hence dim|®—Y|==0, and we arrive at a contradiction. g.e.d.

§7. The injectivity of the adjoint map /*.

Let X be a projective variety and let Y be its subvariety. We shall denote
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by . the injection Y—> X. As a result of the preceding paragraphs we can
state the several cases in which the adjoint map .* associated with . is a
monomorphism.

Turorem 5.  The adjoint map * is a monomorphism in the following cases:

(I) X is an abelian variety and Y is a generating subvariety of X of codsi-
mension 1.

(II) X" is an abelian variety and Y” is a generic r-section of A1 <r
<n—1).

(III) X" is a non-singular projective variety and Y"* is a generic hyper-
surface section of a sufficiently high order.

(IV) X" is a non-singular projective variety such that dimx(H’(X, 2)RK)
>nand Y™ ' is a subvariety of X which is non-special such that (Y?) contains a
cycle of positive degree, where K =Fk(X) is the function field of X oven k.

(V) X" is a mon-singular projective variety such that ¢ =dim,H(X, 2)
<n+ 2 and Y is a generic hyperplane section.

Proor. Owing to Theorem 4 we can see the results in the following way:
The case (I) follows from Cor. 3 of Prop. 12 and Prop. 14. The case (II) comes
from Cor. 2 of Prop. 13 and Prop. 14. The case (III) is a direct consequence
of Prop. 12 and Cor. 1 of Prop. 15. The case (IV) follows from Prop. 12 and
Prop. 17. The case (V) is an immediate consequence of Prop. 12 and Cor. 2 of
Prop. 15.

Tueorem 6. Let X be a non-singular projective variety and let Y be an
irreducible hyperplane section of X. Assume that every differential form of
the first kind on X is closed, then the adjoint map * is a monomorphism.

This is an immediate consequence of Prop. 12 and Prop. 16.
In the case where dim X=2 we can assert a little more.

TuroreMm 6’. Let X be a normal surface in a projective space and let Y be
an trreducible hyperplane section of X which does mot contain any singular
point of X. Let « be the injection of Y into X. Then * will be a monomorphism
if every differential form of the first kind on X is closed.

Proor. In the proof of Pror. 16 we conclude that pw is a differential of
the first kind since (pw)>0. It is this part of the proof which cannot be ap-
plied directly to the present case since X may contain a singular point®®. But
when X is of dimension 2 we can proceed as follows. By a result of Zariski
[147, we see that there exists a non-singular surface X’ such that X’ is bira-
tionally equivalent to X and the birational transformation f: X— X’ is anti-
regular. Let x” be an arbitrary point of X’. Then since o is of the first kind
o(x') is an element of 2., where £..=D,(0%") in our previous notations. Now

(10) When X contains a singular point a differential form such that (w) > 0 is not necessarily of the
Ist kind, Cf. [2].
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assume that x" is not contained in the total transform f{Y} of Y. Then # is
also a regular function in the neighborhood of . Hence pw(x") is still an ele-
ment of £,.. Now assume that «’ is contained in f{Y}. Then the point y
=f"'(«') is a uniquely determined point of Y. By our assumption y is a simple
point of X, hence g is an element of £,. Otherwise pw will have a polar
divisor passing through y. Since the local ring ¢, of y is dominated by the
local ring 0, of &', po is also contained in £,.. Thus gw is a differential every-
where regular on X, i.e. a differential form of the first kind of X.

According to the recent work of Hironaka we know the following:

Let X be a projective variety of any dimension. Then if the universal
domain s the complex number field, there exists a mon-singular projective va-
riety X' birationally equivalent to X and an anti-regular transformation f: X
— X' which is regular at any simple point of X.

If we use this results we can generalize Theorem 6’ in the following

Tueorem 6”. When the universal domain 1s the complex number field
Theorem 6 holds for a normal variety X of any dimension.

§8. Theory on abelian varieties.

Let 4 be an abelian variety and let Y be a subvariety of 4. We shall
denote as before the sheaf of ideal determined by Y by the letter #. Let »
and * be, as before, injection of Y into 4 and its adjoint map respectively.
In the first place we shall prove:

Tureorem 7. Under the same notations and assumptions as above, assume
that Y is a subvariety satisfying the condition (4), (A) or (B) in §5. Then the
adjoint map * is a monomorphism if and only if H°(A, 2/2*)=0.

Proor. “If” part of the Theorem is an immediate consequence of Prop.
14 and Theorem 4. As we can see from the commutative diagram below

0
!
H(X, 9%) ~_.
@ \\\»

0— HO(X, 2/2%)— H'(X, 0¥ ® 2%)-2>H(Y, 97)

“only if” part of the Theorem is obtained if we show that 4 in the diagram
is an epimorphism (hence an isomorphism). Let s be an element of H°(X,
0* R 2%). Let w1, ---, w, be invariant differential forms on 4. Then oy, ---, @,
form a base of D,(K) over K where K is the function field of 4 over k(Cor. 1
of Th. 2). From this we see that there is a suitable open covering {U,} of
X and the functions f;, on Y regular in YNU, such that
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= $1fu0,

for any point x in YNU,. For any point » in YNU,NU,, we have
éﬁw@wi = %‘{fm@wz

On the other hand 1RQw; (=1, ..., n) form a free base of 0¥ R L, for any point
% in X (Th. 2), hence we must have fi,=f;s in YNU,N\Us. This means that f,

727 . . .
= fis is a constant function ¢; on Y and s =+(>lciw;). Since s is an arbitrary
i=1

element of H(X, 0¥ ®L) the above result shows that + is an epimorphism.
q.e.d.

CoroLrLARY. Let A be an abelian variety and let Y, Z be irreducible sub-
varieties of A such that Y is a subvariety of Z and they satisfy the condition
(A) or (B) in §5. Let & and 2, be respectively the sheaves of ideals correspond-
ing to Y and Z respectively. Then if H'(X, 2/2*)=0, we must also have H°(A,
2:/29)=0.

DeriniTION 1. Let V” be a variety and let P be a simple point of V. Let
I'y, Iy, .., I, be n-curves such that P is a simple point of each ['; (=1, ..., n).
Let O be the local ring of P in V, m its maximal ideal of O and let *B; be the
ideal of I'; in O. We shall say that n curves I'y, ..., I, are transversal to each

n
other at P if N(2;+m?) is contarned 1n m?.
i=1

In the case where =2, our definition coincides with the ordinary defini-
tion of transversality.

DerINITION 2.  Let A" be an abelian variety and let 1" be a curve on A. As-
sume that there exist n stimple points a1, ---, a, of [ such that if we put a=a, +
- +an, bi=a—a;, the n curves I'y, (=1, ..., n) are transversal to each other at
the point a. In this case we shall say that I is a favourable curve.

ProposiTiON 18. Let A be an abelian variety and let I be a curve on A.
Let ¢ be the injection of I into A. Then the adjoint map * is @ monomorphism
provided I 1s a favourable curve.

Proor. Assume that /7 is a favourable curve. Then by the definition
there are n simple points ay, ---, @, on /" such that /7y, ..., I', are transversal
to each other at a=a,+ ... +a, where I',=1"; , b,=a—a,(v=1, ..., n). Now as-
sume that .* is not a monomorphism, then there exists an invariant differen-
tial » on A4 such that .*(o0)=0. Then if we denote by ., the injection of /” into
A we have also (0)=0 for v=1, 2, ..., n. Let O be the local ring of the point
a in A4 and let B, be the ideal in O defined by I", (v=1, ..., n). We shall denote
by £ the module of k-differentials in O and by m the maximal ideal of 0. Let
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V(2,) be the subspace of (0/m)& 2 spanned by elements of the form 1&dx,
x € 2,. Now assume that J(»)=0, then we can easily see that a,(») € V(2,).

Since this relation holds for any v=1, 2, ..., n, we see that «,(w) € fn\lV (2,).

Since o is an invariant form a,(w)s=0 (Prop. 5), and we can write a,(») in the
form 1®d#, where £ is an element of m different from 0. On the other hand
1&dE is in V(2,), hence there exists an element 7, in £, such that 1Qd¢
=18dn,, i.e. 1Qd(E—7,)=0. As we know (O/m)&Q £ is isomorphic to m/m?,
hence 1®d(§—7,)=0 is equivalent to saying that (¢—7,) €e m®>. Thus we see that
&is contained in /\(9 +m?). Moreover 1Rd££0, £ & m?, thus the above relation

1mphes that f\(gl’,, +m?) is not contained in m? i.. I" is not a favourable

curve. q.e.d.

Let A" be an abelian variety and let I be a curve on 4, and « be the in-
Jjection of /" into 4. Let ® be a function on I" x ... x I with values in A4 defin-

ed by (P x ... ><P,,)=§L(Pv). Then as is easily seen ® is a morphism of /7 x
v=1

..x["into A. If ® is a morphism onto 4, we usually say that I" generates 4.
If, moreover, we have an additional condition that ® is a separable map, we
shall say that I generates A separably.

Let f be a morphism of U” onto ¥” and let v be a simple point of 7 such
that £7'(v) consist of a finite number of points of U. Let u be one of the points
in f7'(U) and let S and R be the local rings of » and » on U and ¥V respective-
ly. If the local ring S is unramified over R, i.e. the maximal ideal M of R
generates the maximal ideal NV of S, we shall say that f is unramified at the
point u. If f is unramified at any point in f~'(z), we shall say that f is un-
ramsified over v.

Lemma 1. Let f be a morphism of a variety U" onto V" and let v be a sim-
ple point of V such that f is unramified over v. Let I'y, ---, ', be curves on U
passing through a point u in f~'(v) such that they are transversal to each other
at u. Then if v is a simple point of every one of the curves f(I';), then they are
also transversal at the point v.

Proor. Let (S, N) and (R, M) be local rings of » and » on U and V re-
spectively and let 3; be the ideal of /”; in S. We shall put p;=3;\R. Then p;

is the ideal of f(P ;) in R. Now assume that f\(p, +M?*)EM?, then there exists
an element x in f\(p, -+ M?) not contained 1n M?. This element x can be a

member of regular system of parameters of M. Since S is unramified over R,

x cannot be contained in N?. Thus we see that A (B; + N3G N?, contradicting
i-1

the hypothesis. q.e.d.

Prorosition 19. If a curve I on A generates A separably, then I' is a
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Javourable curve.

Proor. Let ® be a map from /" x ... x " onto 4 defined by #(P,x ... x P,)

=£}L(Pi). Since ¢ is a separable map there exist n simple points Py, P,, ..., P,
i=1 n

of /" such that ® is unramified at the points x=>)(P;). Let I'; be the curve
i=1

Prx ... XP X ["X Py X ... xPyon I'x ... x I". Then ¢(I";)=1"x.p, contains the
JFi

point a =@ (P, x...xP,) as a simple point. Moreover 'y, ..., I", are trans-
versal at the point P, x ... x P,. Hence the proposition follows from the
Lemma. q.e.d.

Prorosition 20. Let I' be an irreducible curve of an abelian variety A"
and let « be the injection of I' into A. Assume that the adjoint map * is a
- monomorphism, then the following holds: let r be any positive integer <<n and
let , be a rational map from I',=1I"x...xI" into A defined by P,(a; %X -.- X a,)

r

=a;+ .- +a,. Then ® is always a separably algebraic map. In particular I’
generates A separably.

Proor. In the first place we shall remark that I" generates 4. In fact if
1" does not generate A there exists an abelian subvariety B such that B> I"_,,
where a is an arbitrary point of /7 [12]. Since .} is not clearly a monomor-
phism : , cannot be a monomorphism, hence neither .} is a monomorphism
by Prop. 6.

After we know [ generates A, it is easily seen that the degree of the
map P, is finite for any r<n. Let a1, ---, a,_, be arbitrary (-—1) points of I’
and let « be the injection of /" into /", defined by a(u)=uxa;x .- Xa,_;. Let
j be the injection of W, =®,(I",) into 4. If weput I’ =1, ......q,_,, We have
tpot=joP,oat Where ¢ is a biregular transformation '—I". Taking the adjoint
of each map we have t*of=a*o®¥oj*. Since /* is an isomorphism and .f is a
monomorphism ®}e;* must be a monomorphism. Let K be the function field
of W=®,(I",), then we shall show that Im(;*) contains a basis of D,(K). In
fact let x be a simple point of W and let O be the local ring of the point x on
A. Leti, .., 1, be a regular system of parameters of O such that the ideal p
of W in O is generated by ¢,,1, ---, t,. By Theorem 1 there exist invariant dif-
ferential forms o; (i=1, ---, ) such that 1®e;=1Rdt; (in (0/m)RD,(0), where
m is the maximal ideal of 0). This means that if we represent o; in the form

o; = andt + - + ai,dty + aiyi1diysr + -+ aidty,

we must have a;;=1 (mod. m) and q;; € m if i=%j. Denoting by ~ the trace of the
functions on W we see that

¥ (@) = andt, + - + a;,di, @=1,..,r)

and det|a;;| is a unit in O0=0/p because except the terms on principal dia-
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gonal, every term is contained in m/p. Moreover #, ---, I, are a set of separat-
ing transcendence basis of K over k(Cor. 2 of Prop. 17 [7]), hence dii, ---, di,
as well as j*(e1), ---, j*(o,) form a basis of D,(K) over K. On the other hand
®} is monomorphic on Im(j*) and D,(0) has no torsion. Hence the monomor-
phism ¥ of D,(0) into D,(L), where L is the function field of I’,, can be ex-
tended uniquely to the monomorphism of L&xD,(K) =L®x (K& ;D:(0)) into
Dy(L). As we remarked above D,(K) and D,(L) have the same dimension r and
both of them are regular extension of dimension r. Hence the extended
monomorphism ®} must be surjective, and we-have DK(L")'=0. It then follows
that L is separably algebraic over K since L is finitely generated over K.

The preceding results will be unified in the

THeOREM 8. Let I' be a curve on an abelian variety A and let « be the in-
jection of I' into A. Then the following conditions are equivalent:

(a) * 18 a monomorphism.

(b) I is a favourable curve.

(e) I generates A separably™.

CororLLARY 1. Let A be an abelian variety of dimension 2, and let I" be a
curve of genus =2. Then I' generates A separably.

Proor. Let ¢ be the injection of /" into 4. Then I" generates A since
genus of " is not less than 2. This implies that H°(4, 22/2?) =0 by Cor. of
Prop. 12, where £ is the sheaf of ideals defined by /. This is equivalent to
saying that .* is injective by Th. 7. Then the assertion follows from Th. 8.

CoroLLARY 2. Let I’ be a non-singular curve and let J be its Jacobran
variety. Let ¥ be a canonical map of I" into J, then P* is a monomorphism.

As is known I" generates J separably [12], hence the corollary follows
immediately from Th. 8.

In the rest of this paragraph we shall discuss the separability property
of the linear extension \ of the injection «: /"— X, for a generating curve [’
of X. For this purpose we need several Lemmas.

Lemma 2. Let A" be an abelian variety and let W be a subvariety of A.
Then the rational map P of Ax W onto A defined by P(x X w)=x-+w is a regular
map.

Proor. Let x, w be independent generic points of 4 and W over a com-
mon field of definition F for 4 and W. Since F(x, w) = F(x+w, w) and dimp,
(x+w) =n, we see that F(x+w) and F(w) are linearly disjoint over k&. Hence
the join F(x+w, w)=F(x, w) is a regular extension of F(x+w).

(11) Equivalence of (a) and (c) is stated in [13] without proof.
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Lemma 3. Let Ui, U, be varieties defined over F such that there exist sepa-
rable rational maps P; of U; into A (i=1, 2) defined over a field F. Assume that
at least one of P; is surjective on A, then the map @ of U, x U, on A defined by
D(ur, u2)=P1(u) +P2(us) 18 a separable map.

Proor. Let u;, u; be independent generic points of U, U, over F. Then
by assumptions F(u;) is a separable extension of F(®;(u,)), hence F(u, up) is a
separable extension of F(?1(w1), ?2(z2)). On the other hand by Lemma 2, F(®,
(w1), P2(u2)) is a separable extension of F(®;(u)+ P2 (u2))=F(®(u1, uz)). Hence
F(uy, u) is also a separable extension of F(&(u;+u,)). g.e.d.

CoroLrAry. Let A,=Ax ... x A be n product of an abelian variety A, and
let W be a subvariety of A. Let ® be a map of A,x W onto A defined by ® (%, X
g X oo X Xy X w)=12,+ 22+ - +x,+w, where x;, ¢ 4 and w € W. Then ® is a sepa-
rable map.

Proor. Induction on n. The case n=1 is proved in Lemma 1. Since 4, x
W=A4,.1xAx I and the map +r; of 4,., onto 4 defined by i (a1 X .. X x,_1)

n-1
= >x; is regular as well as the map «, of 4x I onto 4 defined by Jr;(x, X w)
i-1

=ux,+w. Hence by Lemma 3 the map ® is also a separable map.

Tueorem 9. Let A, be an abelian variety and let C be a curve on A and let
¢ be the injection C—A. Assume that the adjoint map * is a monomorphism,
then the linear extension ) of . is a separable homomorphism of the Jacobian
variety J onto A.

Proor. Let g be the genus of C and let g=an+b where « is an integer
>1 and b is an integer such that 0<b<n. Let [",=Cx ...xC and let ¥ be a
N——y ——

canonical function of Cinto J. The map + of /", onto 4 defined by r(x; X ---
X %)=+ ... +x, 18 a separable map since .* is a monomorphism. The map @
of I',x...x[",x 1", onto 4 defined by @(y;x .- Xy, X z)=y,+ .- +y,+2z, wWhere

a

y’s are points of /7, and z is a point of [, is decomposed as /7, x ... X ", x [
—Ax...x Ax W—A. Each map is separable by Prop. 20 and Cor. of Lemma
3, hence @ itself must be a separable map.

§9. Morphism associated with a covering map.

Let X* and X be normal varieties and let = be a morphism of X* onto X.
Assume that X* and X have the same dimension and = has no fundamental
curve, i.e., for any curve C on X* the image of C by = is also of one dimen-
sional. Moreover we shall assume that X is a non-singular variety and = is
a separable map, i.e., if L*(L) is the function field of X*(X) over k, then L* is
a separably algebraic extension of L. Let x* be a point on X* and let x=
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7(x*). As before we shall denote by ¢}.(0,) the local ring of x*(x) on X*(X).
Since X is assumed to be non-singular, ¢, is a regular local ring and its re-
sidue field coincides with . Let Dy(0}) =2} (D:(0,)=2£,) be the module of k-
differentials in ¢}.(0,). Then D,(0,) is a free module by Theorem 3 in [7].
Using Prop. 3 in [7] we see that the sequence

(15) 0‘—)(9:(* ®ngk(@x>'—)Dk(0j*)—)Dgx(wr*)_)0

is exact. We shall denote as before by ¢0*(0) the sheaf of local rings on X*(X),
and by 2*(2) the sheaves of local differentials on X*(X) whose stalk is given
by £%(2,). Then from (15) we can deduce an exact sequence of algebraic
coherent sheaves on X*:

(16) 0->0*RL—>L*—>D,(0*)— 0.

It will be noted that the support of D,(¢0*) is contained in the different divisor
(Cf. §5 of [T]).

Tueorem 7. Assume that X* is an unramified covering of a non-singular
variety X. Then we have an isomorphism of the sheaves

2= 0* Q0.
Let X(X, #) he the Euler characteristic of X with coefficients in the sheaf
F,ie, XX, F)= i(— 1) dim, H*(X, #). From the exact sequence (16) we
g=0
get

an X(X*, 2%) =X(X*, D,(0)) + X(X*, 0*R D).

We shall show that the relation (17) is nothing other than Hurwitz’s genus
formula when X and X* are mon-singular curves. Let t(r*) be the canonical
divisor on X(X*), and let » be an element of D,(L) such that (»)=t. By our
assumption £, is a free module, hence it has no torsion element. Then £, can
be identified with the submodule of L& D,(0,)=D,(L). We shall denote by
£ (1) the sheaf of germs of rational functions f on X such that (f)+t>0.
Then we have a canonical isomorphism ¢ of £ () onto D,(¢) defined by

b(f) = fo.

In the similar way we can see easily that the sheaf ¢0*® £ is canonically iso-
morphic to the sheaf #(=~'(¥)) on X*, where »~'(r) is defined by

77 () = prx« [(X* x £)-I",]

in which ", is the graph of the morphism =.
From these considerations we can derive the following evaluation:

(18) X(X*, 9%) = (X*, 2(1)
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= dim H°(X*, 2 (") — H'(X*, 2 (1)

(19) X(X*, 0* QD (0)) =X (X*, 2z~ (V)
=n(2g —2)—g*+1

where g and g* are genera of X and X* respectively.

In the next place we shall determine the value of X(X*, D,(¢*)). Since
the support of D,(0*) is a finite set of points, X (V'*, D,(¢*)) is equal to the
dimension of H’(X*, D,(0*)) over k, i.e.,

(20) X (X*, Do(0%)) = S3dim, D, (0F)

where the sum >} is extended over all the branch points x for the covering
X*/X. We shall calculate the dimension of D, (¢}.) in the following.

Let S be a domain containing a ring R and assume that S is a discrete
valuation ring of a field E. Assume that R contains a field & such that the
residue field of S is a finite separable extension of k. Let us denote by ¢ a
prime element of S and let 2 be the d-different of S/R, i.e., the annihilator of
the module Dx(S) of R-differentials in S. Let A be an integer such that 2
= (). Then we have the

Prorosition 19.  Assume that D,(S) 1s a finite module. Then the dimen-
ston of Dg(S) over k is equal to N[ (S/tS): k.

Proor. By the lemma of Godement (Cf. Exposé 17 of [1]), we have an
exact sequence

0—>m/m?*—(S/m)RQ Dx(S)—0

where m is the maximal ideal of S. Since m is a principal ideal (t) and D,(S)
is a finite module over the local ring S we see that D,(S) is generated by a
single element djz. Hence Dr(S) is also generated by a single element dz (d
stands for d3). By assigning d: to 1 we have an isomorphism of S/:*S onto
Dx(S). Let a1, ---, a, be elements of S such that their residue class modulo m
form a base of S/(t) over k. Then it is a straightforward verification to see
that az* (=1, ..., s; »=0, 1, ..., A—1) form a base of S/#'S as a k-vector space,
and thereby the theorem is proved.

Let 9, be the d-different of ¢} over ¢, and \, be an integer defined by
D, =), where ¢ is a prime element of ¢}.. Then )\, is equal to the differ-
ential index defined in [6]. Since the different divisor is given by >I\,.x™,

we see that

1) dim, H' (V'*, D,(0%)) = 33dim, Dy . (0%) = ST\, -
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is equal to the degree d of different divisors.

[13
2]
3]
4]
5]
6]
7]
8]
€

[103
[1g

f12]3

[isy

£14]

Combining (17)—(21) we get the final result
2g* —2=n(2g —2)+d.
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