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It is already known that a relatively atomic, upper continuous, modular
lattice L, (which we may call a modular matroid lattice) characterizes a gen-
eralized projective geometry which satisfies

(PG 1) Two distinct points are in one and only one line,
(PG 2) If a line intersects two sides of a triangle at different points, it
also intersects the third side.

And L, is a direct sum of L(0, e,) (« € I), where L(0, e,) satisfies not only (PG
1) and (PG 2), but also

(PG 3) Every line contains at least three points.

When p, ¢ are points such that p <e,, ¢ <e;(a=cp), then the line p\Uq consists
of only two points p and q.

The sublattice Z generated by e,(« € I) is the center of L,, which is iso-
morphic to the lattice of all subsets of the set {e,; @ € I}. Thus the center Z
is an atomie, complete Boolean algebra. Therefore it is distributive.

In this paper, applying the above consideration to the generalized affine
geometry, I shall show an example of a lattice decomposition which is induced
by a modular center.

In (1] p. 304, a generalized affine geometry (which we may call an affine
matroid lattice) is defined as a weakly modular matroid lattice L, of length
=>4, which satisfies the following weak Euclid’s parallel axiom:

Let [ be a line in a matroid lattice L. If p is a point such that p %/, then
there exists at most one line % such that /|| and p=<t.

A line [ is called incomplete, when for any point p X/ there exists a line
k such that [||k and p<k. And an element « is called incomplete, when any
line contained in o is incomplete. Denote by I(p) the greatest incomplete
element which contains p. In [1] p. 309, it is proved that I(p)=1(q) or I(p)||X(g)
for any points p, ¢ in L,, and L(0, I(p)) satisfies the following strong Euclid’s
parallel axiom:

If p is a point such that p X/, then there exists one and only one line &
such that 7]|k and p <k.

Therefore when p, g are points such that 1(p)#I(q), then the line p\uq has no
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parallel line.

In this paper, I shall show that the set 2, of all I(p), p being any point
in L, is an irreducible projective space and the sublattice M generated by £,
is an irreducible modular matroid lattice which is isomorphic to the lattice
of all linear sets of £,. Thus we may call M the modular center of L,.

1. Matroid lattices.
In this section we deal with a given lattice L with 0.

DerintTion (1.1). Let a, b € L.

(a, b)) M means (c\Ja) N\b=c\U(anbd) for every ¢=<b.

In a lattice L, if anb=0 implies (a, b) M then we call L a weakly modular
lattice. (Cf. (1] p. 68.) If (a, b)M implies (b, a) M then L is called a M-sym-
metric lattice. (Cf. (12] p. 453.)

L is called left complemented if a, b € L implies the existence of b; such
that

a\Ub=a\Ub, anb =0, (b, a)M, b <b.
(Cf. [12) p. 453.)

Lemma (1.2). A left complemented lattice is M-symmetric.
Proof. Cf. [12] p. 454.

DerinitioN (1.3). In a lattice L, we say that b covers a and write a<<b if
a<band a<<c<b implies c=a or c=b. A point is an element p € L such that
0<p.

If @ <b implies ¢ <a\Up=<b for some point p, then L is called relatively
atomic.

A lattice L is called atomistic if every element a of L is the join of points
contained in a.

The set of all points in an atomistic lattice L is called the point space of
L and we denote it by 2(L).

Let {as; 0 € D} be a directed set of a complete lattice L. When a; ? ¢ im-
plies a;N\b t aNb, we say that L is an upper continuous lattice.

Lemma (1.4). A lattice L is relatively atomic if and only if L is atomistic.
Proof. Cf. (6] p. 70.

Lemma (1.5). In a relatively atomic, complete lattice L, the following two
propositions () and () are equivalent:

(@) L s upper continuous.

(B) Let p be a point and S be a set of points itn L. Then p<,s\Jq tmplies
P=q:1\J---\Jg, for some g; € S (i=1, ..., n).

Proof. Cf. (6] p. 71.
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Lemma (1.6). Let p be a point and a, (« € I) be elements in a relatively
atomic, upper continuous lattice L, if p<aer\Jas, then there exists a finite sub-
set J of I such that p<<,c;\Jas

Proof. By (1.4) each a, is a join of points. Hence ,¢;\ Ja, is a join of a
set S of points. Therefore by (1.5) p <¢:\U...\Uq, for some ¢; € S i=1, ..., n).
When ¢; <a,, (i=1, ---, n), then p<a, V.. - Ua,,

Tureorem (1.7). In a relatively atomic, upper continuous lattice L, the fol-
lowing condition (7"), (7)) and (&) are equivalent:

(") If p, q are points such that q % a and ¢ <a\Up, then p <a\Jq.

") If p is a point, then either p<a or a<<a\Up.

(&) If c<a,c<band as=b, then a<<a\Jb and b<a\Ub.

Proof. Cf. (5] p. 180.

DeriniTioN (1.8). Let L be a relatively atomic, upper continuous lattice.
If L satisfies ('), L is called an exchange lattice in (4] p. 456, if L satisfies
("), L is called a geometric lattice in (1] p. 264, and if L satisfies (&), L is
called a matroid lattice in (5] p. 181.

By (1.7) these three lattices are identical.

The matroid lattice characterizes the lattice of all subspaces of a geo-
metry which has the exchange property. (Cf. (3] p. 191)

In a matroid lattice, the terms “line” and “plane” are used in the ordinal
geometical sense, defining by the dimension.

Lemma (1.9). A matroid lattice L is left complemented.
Proof. Cf. (7] p. 331.

Lemma (1.10). A matroid lattice L is irreducible, if and only if any two
points in L are perspective.

Proof. Cf. [11] p. 188.

Lemma (1.11). A matroid lattice L is weakly modular, if and only if L
satisfies the following condition :
SP) If p<q\Ja, r<a, where p, q, r are points, then there exists a point s
such that p <q\Ur\Us and s <a.
Proof. Cf. (8] p. 232 and (9] p. 414.

The weakly modular matroid lattice characterizes the lattice of all sub-
spaces of a strongly planer geometry. (Cf. (10] p. 422 and (3] p. 193.)

Remark (1.12). A projective space 2 is a system of points and lines
satisfying the following two conditions:
(PG 1) Two distinet points are in one and only one line.
(PG 2) If a line intersects two sides of a triangle at different points, it
also intersects the third side.
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If a projective space 2 satisfies the following condition:
(PG 3) Every line contains at least three points,

then £ is called irreducible.

A linear set is a set of points which contains the line through p and ¢ if
it contains p and g.

The set L(2) of all linear sets of a projective space £ forms a relatively
atomic, upper continuous, modular lattice, which we may call a modular
matroid lattice. L(2) is irreducible if and only if £ is irreducible. (Cf. (6] p.
83.) We call L(®2) a generalized projective geometry on £; when £ is irreduci-
ble, we call L(2) a projective geometry on 2.

Conversely, when L is a modular matroid lattice, the point space 2(L) of
L is a projective space, and the generalized projective geometry L(2(L)) is
isomorphic to L. (Cf. (6] p. 84.)

Especially when L is a distributive matroid lattice, it is an atomistic,
complete Boolean algebra, and 2(L) is merely a set and L is isomorphic to the
lattice of all subsets of 2(L).

2. Parallelism in lattices.
In this section we deal with a given lattice L with 0.

Derinition (2.1). Let a, b be non-zero elements in a lattice L. If
as anb=0,
(2°) b<<a\Jb,
then we write a<|b.
If a<|b and b< |a, then we say that ¢ and b are parallel and write al|b.

Reference. This is the definition of parallelism used in (1) p. 272, it is
written b ||« instead of a<|b.

Remark (2.2). Let [, k be two lines in a matroid lattice L. Then 1]k if
and only if / and k are contained in a plane and do not intersect. And pljq for
any different points p, ¢ in L.

TueoreM (2.3). Let a, b be non-zero elements of a lattice L. Then a<<|b if
and only if
(@) anb=0,
B) a1\ Ib=a\Ub for every a; such that 0<a;<la, and
(r) there exists no by such that a\Jb,=a\Jb, b<b,, aNby=0.

Proof. (i) Necessity. For any a; such that 0<a; <<a, we have b<a; U
b<<a\Ub. If b=a;\Ub then a;=a0;N\b<anb=0, which contradicts ¢; >0. There-
fore b<<a;\Ub. Since b<<a\Ub, it must be that a;\ub=a\Ub, and (B) holds.

When a\Ub,=a\Ub and b<b,, we have b<<b,<<a\Ub. Since b<ia\/b we have
b,=a\Ub. Hence anb,=an(a\Ub)=a>0. Thus (7) holds.
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(i) Sufficiency. In order to prove b <<a\Ub, let b<x<a\Ub. When an
x=+0, since 0<anx=<a, from (B) we have a\Ub= (aNx)Ub=<x, and x=a\Ub.
When anx=0, since a\Ux =a\Ub, from (7) it must be that b =x. Therefore
b<<a\Ub, and a<|b.

TraeoreM (2.4). Let a, b be non-zero elements in a left complemented lattice
L. Then a<|b if and only if («) and (B) in (2.3) hold.

Proof. From (2.3) necessity is evident. We shall prove sufficiency. Since
L is left complemented, there exists ¢, such that

€H) a\Jb=a1Ub, axNb=0, (a1, )M, a;<a.

Let 0<c<a;, then from (B) c\Ub=a\Ub. Since by (1.2) (b, a;) M, we have q¢;=
(@Jb)Nar = (cUb)Nay=c. Therefore a; is a point, say p. Then from (1), we
have a\Ub=p\b.

Let 6<<x<b\Up. When p<lx, then b\Up<_x and we have x=b\Up. When
pxx, then pnx=0. Since (x, p)M, we have (p, x)M. Hence x=((b\Up)Nx=b.
Therefore b<:b\Up=a\Ub, and we have a< |b.

Reference. Hsu (2] defined (x)-parallelism using («) and (B), and (xx)-
parallelism using («), (8) and (7). From (2.4), in a left complemented lattice
these two parallelisms coincide, and from the above proof, when ]/, a con-
tains at least one point.

Lemma (2.5). In a lattice L, tf a<<|b and a 1s not a point, then (b, a)M does
not hold.

Proof. Since a is not a point, there exists a; such that 0<a;<a. By (2.3)
we have a¢;\Ub=a\Ub. Hence

(e b)Na=(@UbNa=a>a=a \J(bNa).
Therefore (b, ) M does not hold.

Lemma (2.6). Let L be a weakly modular matroid lattice. If every line in
L has no parallel line, then Lis modular.

Proof. (i) I shall first prove that the point space 2(L) is a projective
space when a line [ is defined by the set {re 2(L); r<p\Ugq} for different
points p and q.

When r<p\Ugq and r+p, then by (7’) in (1.7), we have p\Ug=p\Ur. Hence
(PG 1) in (1.12) holds.

Let p, g and r be three points which form a triangle. Take two different
points s and ¢, such that s<p\Ugq and :<{¢\Ur. We may assume that s and :
are different from p, g and r. Then s\U: and p\Ur are two lines contained in
the plane p\UqUr, but they are not parallel. Hence by (2.2) they intersect.
Therefore (PG-2) holds.

Consequently by (1.12) (L) is a projective space and L(2(L)) is a modular
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matroid lattice.

(ii) Let S be a linear set in 2(L). I shall prove by induction that r <<
P\ - Up,(p;€S) implies r € S. When n =2, this is evident. Next assume
that the assertion holds when n=i—1. It is evident when r=p; or p;<p;\U
...Up;_1. Hence let r#p; and p;Xxp\J...Up;_1. Since r<p;U (p1\V..-Up;_1),
by (1.11) there exists a point s such that

¢)) r<piUpiUs and s<p;\U...Up;_1.

When s<p;\Up;, then since r <p;\Up;, we have r€S. When s p;,Up;, then
rUp; and p;\Us are lines contained in the plane p;\Up;\Us. Hence by (2.2) there
exists a point ¢ such that

2 =T\ Ip)N(p1VVs).

By 1) and (2), ¢<p1Us<p1V...Up;_1. Hence g€ S and ¢g+p;,. But by (2)
g=<r\Up;, hence by (7") in (1.7) we have r <¢\Up;. Therefore r€S. Thus the
assertion holds for n=i.

(iii) For a € L and S € L(2(L)), define

S@)={pe2L); p<a} and a(S)=\J(p;peS).
Since L is atomistic, we have a=\/(p; p<<a). Hence

aS@)=\J(p;peS@)=\J(p; p<a)=a.

Let ¢ be a point such that ¢<<a(S). Then by (1.5), there exists a finite
subset {pi, ---, p»} of S such that ¢<p;\U...\Up,. Hence by (ii) g€ S. There-
fore S(2(S))<S. On the other hand, when p €S then p<{a(S), and we have
p € S(a(S)). Therefore S(a(S))=S.

(iv) By (iii), a—>S(a) and S—a(S) define a one-to-one correspondence be-
tween L and L(2(L)) preserving the order. Consequently L is isomorphic to
L(2(L)), and L is modular.

Reference. In (1] p. 307, (2.6) is proved using the hyperplane.

Tueorem (2.7). A weakly modular matroid lattice L is modular, if and
only if every line in L has no parallel line.

Proof. By (2.5) and (2.6).

Tueorem (2.8). A non-modular matroid lattice L is weakly modular, if
and only if L satisfies the following condition:
(PE) For a point p, if a<|b and p=<b, then there exists an element b,
such that al b, and p<<b, <b.

Proof. (i) When L is weakly modular and a< |b, p<<b, let b = bN\(a\Up).
Since a\Ub; <a\Up and p<b;, we have a\Ub, =aUp. Being anp<anb=0,
we have a<<a\Up=aVUb:. But anb;<anb=0, hence ;< |a.
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Next we shall prove that a<|by, that is, bN\(a\Up)=b1<<a\Ubi=a\Up. Let
bN(aUp)<x<a\Up. When x<p, being x<<a\Up, we have b (aUp)=». When
x3%b, since b<x\Ub<a\Up\Ub=a\Ub and b<<a\Ub, we have x\Ub=a\Ub. Being
bN(aUp)=p>0, we have (b, a\Up)M. Therefore (x\Ub)N\(a\Up)=x\J {bN(a\Up)}
=x. Thus a\Up=x. Consequently bN\(e\Up)<a\Up and a<|bi.

Then a|/b; and p<<b;<<b. Thus (PE) is proved.

(ii) Conversely assume that L satisfies (PE). In order to prove that L is
weakly modular, by (1.11), it is sufficient to prove that the following condi-
tion (SP) holds.

(SP) If p<qUa, r<<a, where p, q, r are points, then there exists a point s
such that p<<¢\UrUs and s<a.

To prove (SP) we may assume that p+#¢ and ¢ a, for otherwise (SP) is
evident. Let I=p\Ug. When /Na+0, there exists a point s such that s<Ina.
Since s <p\Ug and sNg=<<ang=0, we have p<{q\Us, and (SP) holds. When
INa=0, since a<a\Ug=a\Up\Ug=a\Ul, we have [<|a. Hence by (PE), there
exists an element %k such that I||k and r <k <{a. Since k is « line, there exists
a point s such that k=r\Us and s<<a. From puUq|[rUs, we have p<{g\Ur\Us and
(SP) holds.

Remark (2.9). Instead of (PE) in Theorem (2.8), we may put the fol-
lowing condition (PL):
(PL) For a point p and a line [, if /< |e and p<{a, then there exists a
line % such that /|| and p<k<a.

This is evident from the proof (ii) in (2.8).

Reference. The part (i) in the proof of (2.8) is already given in (1] p.
305, where the hyperplane is used.

3. Affine matroid lattices.

Strone Eucrip’s PaLarier Axrom (3.1). Let I be a line in a matroid
lattice L. If p is a point such that p %1, then there exists one and only one
line % such that ljjk and p<lk.

Weak EucLip’s Pararier Axiom (8.2). Let ! be a line in a matroid lattice
L. If p is a point such that pX/, then there exists at most one line %k such that
Ik and p<k.

DeriniTiON (8.3). Let L be a weakly modular matroid lattice L of length
=>4. When L satisfies the weak Euclid’s parallel axiom, we call L an affine
matroid lattice.

Reference. In [1) p. 304, the above-defined affine matroid lattice is called
a generalized affine lattice or a generalized affine geometry.
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DeriniTioN (8.4). In an affine matroid lattice L, a line [ is called tncom-
plete, when for any point p X1, there exists a line k such that 1||k and p<k.
And a line [ is called complete, when there exists no line parallel to /. An
element « of length =2 is called incomplete, when any line contained in o is
incomplete.

When a line [ is not complete, then [ is incomplete. (Cf. [1] p. 306.)

Remark (3.5). An affine matroid lattice L satisfies the strong Euclid’s
parallel axiom if and only if all lines in L are incomplete, and L is modular if
and only if all lines in L are complete. (Cf. (2.7).)

LevmMa (8.6). When an affine matroid lattice L is not modular, every com-
plete line | wn L contains at least there points.

Proof. Cf. (1] p. 314.

TureoreMm (8.7). When an affine matroid lattice L is not modular, then L
18 1rreducible.

Proof. Let p, ¢ be any two different points in L. When the line pUygq is
complete, by (3.6) p\Uq contains a third point . Then p\r=q\uUr, pNr=0,
gNr=0. Hence p~q. When p\Ug is incomplete, there exists a line I such that
pVYq|ll. Then by (2.3) pul=(p\Uq)Ul=qg\Ul. And pNI<(p\Uqg)Nl=0, similarly
gN1=0. Therefore p~q. Hence in any case p~q. Consequently by (1.10) L is
irreducible.

Reference. In [1] p. 315, (8.7) is proved using the hyperplanes in L.

4. Decomposition spaces of affine matroid lattices.

TureoreMm (4.1). Let L be an affine, non-modular, matroid lattice, then for
any point p in L, there exists a maximal incomplete element I(p) which contains
p- If I(p)=1, then L satisfies the strong Euclid’s parallel axiom. If I(p)+1,
then I(p)=1I(q) or I(p)||I(q) for any points p, q in L.

Proof. Cf. [1] p. 309.

Remark (4.2). When an affine matroid lattice L is modular, there exists
no incomplete element containing a point p. Hence we put I(p)=p.

Derinition (4.3). Let L be an affine matroid lattice. From (4.1) and (4.2)
there exists a set 2,= {I(z,); a € I} such that for any point p in L, there exists
a €l with p<I(.), and I(z,)||I(zs) when a#p. We call 2, a decomposition
space of L.

When L is modular, then 2,= 2 and £, is a projective space. Hence we
may expect that this fact holds in the non-modular case. This is Theorem
(4.8) below.

In what follows, the assertion is evident when the affine matroid lattice
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is modular. Hence we omit the explanations for the modular case.
In the following (4.4) — (4.7), L is an affine matroid lattice.

Remark (4.4). Let p, ¢ be any two points in L, then p\Uq is a complete
line if and only if p and ¢ are contained in different 1(z,) and I(z5) in 2,.

Proof. Let p<I(z,) and ¢<I(¢;). Then p\uq<I(t,)\JI(z). Since I(z,) and
I(z3) are incomplete elements and I(¢,)=1(¢3) or I(t,)N\I(g)=0, p\Uq is a com-
plete line if and only if 7(z,)N\I(#3)=0, that is I(z,) ¥ I(t).

Lemma (4.5). Let r be a point in L iof r<I(p)\J1(q) and r X I(p), then there
exists a point ¢ such that r <p\Jq' and ¢ <I(g).

Proof. Since rxI(p), we have I(p)+I(g). Hence I(p)||I(q). Therefore by
(2.3) we have

r<I(p)\J1(q)=p\I(g).
Since L is weakly modular, from (1.11), there exists a point ; such that
r<p\Vqu: and :<I(g).

When :=gq, then ¢ is the required ¢’. When i5=¢, since pNG\Uq) <pNI(q)
=0, pUt\Uq is a plane. Then r\Up and ¢\Uz are lines in the plane pUqVi. But
since r X I(p), by (44) rUp is a complete line. Therefore, from (2.2), there
exists a point ¢’ such that ¢ <(rUp)n\(¢\t). Then ¢'<<q\ut<I(g), and there-
fore ¢’ % I(p), that is, ¢ "\p=0. Since ¢’ <r\Up, by (7) in (1.7), we have r <
rVvq.

Lemma (4.6). Let r be a point in L, r <I(p)\JI(q) implies I1()=I(p)\JI(q).

Proof. When r<<I(p), this is evident. Hence we assume that rx7(p) and
hence I(p)=I(¢). From (4.5) there exists a point ¢’ such that

r<pVq and ¢ =<I(g).

Take any point r such that <I(r) and r'+r. If ¥<puUgq/, then rur'=puUq’
which is absurd, since r\Ur’ is incomplete and p\Uq’ is complete. Hence r' X%
pVYq and puUgq'\Ur' is a plane. Since r\Ur’ is an incomplete line and r X I(p),
there exists a point p’ such that r\Ur'||p\Up’. Hence p'<purur'<puq'ur.

If p’<<p\uq/, then pUp’'=p\Uq’, which is absurd, since p\Uq' is a complete
line. Hence p'xp\Uq’. Therefore by (7') in (1.7) we have r'<<p\Uq'\Up’. Since
p\Up' is an incomplete line, we have p\Up’ <I(p). Therefore r' <I(p)qg <
I(p)UI(g). Consequently I(r)<I(p)VI(g).

Lemma (4.7). Let r be a point in L, rIG)\J ... \JI(t,) tmplies I(¢)1(t)\J
I ().

Proof. We shall prove this lemma by induction. When n=2, the asser-
tion follows from (4.6). Next assume that the assertion holds when n=i—1.
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It is evident when r<I(z;) or I(t;)<I(t;)\..-\JI(;_1). Hence let r X I(z;}) and
IE) X 1)\ JI(t;_,). Since I(1) | I(t:), we have I(t)\VI(t) = I(t)\Jt;. Con-
sequently r <I(s)\U ... VI() implies r<t;\J {I(t:)\V --- U I(t;_1)}. Since L is
weakly modular, by (1.11), there exists a point s such that

(D r<t;VnVUs and s<I{t)\ .- \JI{Ei1).

When s<Cz;\Ut;, then from (1) we have r <t;\Ut; <I(#;)\JI(t1). Then from (4.6)
we have I(r)<I(z;/)\vI1(t,), and the assertion holds. When sX¢;\Ut;, then ¢,z \Us
is a plane, and since ruy; <t;\Ut;\Us from (1), r\Ut; and ¢ \Us are two lines on
the plane #\Usn\Us. Since rxI(t;), rUt; is a complete line. Hence, from (2.2),
there exists a point p such that

2 p=CVVu)NGVs).

Since from (1)

3 p=uUs<It)VV ... JI{Ei-1),

we have pXI(t;), because if p<I(z;) then I1(¢)=1(p)<I(t)\V..-\JI(t;-,) which
contradicts the assumption. Therefore pn;=0. Since from (2) p <r\zi;, by
(") in (1.7) we have r <p\Us# <I(p)\UI({;). Therefore by (4.6) we have

@ IN=<I(p)\v 1)

Since from (3) I(p) <I(@t)\V---\JII(;-1), we have I(r) <I(t;)\U---\JI(;) and
the assertion holds for n=i. The lemma is completely proved.

Tueorem (4.8). The decomposition space 2= {I(t,); x € I} of an affine,
non-modular, matroid lattice L is an trreducible projective space, where the
line determined by different points 1(t,) and I(i5) is a set of elements of 24 con-
tained in 1(t,)\JI1(s).

Proof. (i) Let I(z,), I(zs) and I(z,) be three different elements in 2, such
that 1(z,) <I(z.)\VI(s). Then from (4.5) there exists a point p such that £, <<
ts\Jp and p<I(t3). Since t,Np=0, from (7') in (1.7), we have #, <z, Up=<I(t,)
UI(t;). Therefore, since 1(t,)\JI1(s) <I(s,)\JI1(ts) <I(2,)\JI(t5), we have I(z,)\J
I(t3) = I(¢,)\V1(t;). Consequently the line is determined by the two different
elements contained in it, and (PG 1) in (1.12) holds.

(ii) Let I(,), I(zs) and I(z,) are elements in £, which form a triangle.
Take I(p) and I(g) such that I(p)<I(t,)\J1(ts), I(q)<1(t,)\JI(z,) where I(p) and
I(g) are different from any I(z,), I(ts) and I(z,). By (i), we have I(z;)<I(z,)\/I(p),
hence from (4.5) we may take p such that ;3<t,\up. Therefore p<_t,\Uz;. Simi-
larly we may take ¢ such that ¢<(z,\Jz,. Then p\Ugq is a line on the plane ¢,
1s\Jt,. By (4.4) pUq is a complete line. Hence by (2.2) there exists a point r
such that r<p\q and r<¢;\Uz,. Therefore by (4.6), we have I1(r) <I(p)UI(g)
and I(r)<I(t3)\JI(t,). Consequently (PG 2) holds in £,.
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(iii) Let I(z)\J1(z3) be any line in £,. Since ¢,\Uz; is a complete line, by
(8.6), t,\Jt; contains a third point p. Hence by (4.6) I(p) <I(z,)\JI(z). Since
t\Jtg=1,\Jp is a complete line, it must be that I(p)#1(z,). Similarly I(p)+
I(ts). Consequently I(z,)\JI(zs) contains a third point I(p), that is, (PG 8) holds
in 2,.

Thus £, is an irreducible projective space.

Lemma (4.9). Let S be a linear set of 20={I(t,); a € I} of an affine matroid
lattice L, and I(t,), ---, I(t,) € S. Then r=I(t,)\J...\JI(t,) 1mplies I(r) € S.

Proof. We shall prove the lemma by induction. When n=2, the asser-
tion follows from (4.6). Next assume that the assertion holds when n=:i—1.
As (1) in the proof of (4.7)

r<u;UnVUs and s<I@)\U..-\JI(tio1).

When s<¢; Ui, then r<lt;\vi, <I(@)\UI(t). Hence I(r) € S. When sXx;,\Us, as
(3) and (4) in the proof of (4.7)

INZ=I(p)VI@) and p=I@)\J .- \JI(ti-1).

Since I(p) € S, we have I(r) € S. Consequently the assertion holds when n=i.
And the lemma is completely proved.

DerinttioN (4.10). Let o be an element of an affine matroid lattice L. If
r<a implies I(r)<{a, then q is called a ||-closed element of L. We shall say that
0 is a ||-closed element.

TaroreMm (4.11).  The set M of all ||-closed elements of an affine, non-modu-
lar, matroid lattice L is an irreducible modular matroid sublattice of L, and is
1somorphic to the projective geometry L(£2,) on the decomposition space £2,=
{I(ty); €I} of L.

Proof. (i) Forme M and S € L(£,), define
¢Y) Sm)={I(); r<m}y and a(S)=\J(I®); 1) €S).

When r<{a(S), from (1.6) we have r<\I(z))\J...\UI(t,) where I(i;) € S i=1, ..., n).
Hence from (4.7) I1(r) <I@)\V.-- VI, <a(S). Therefore a(S) € M.

Next we shall show that S(m) € L(2,). When I(r)<I(p)\JI(g) for some p,
q<m and I(r)==I1(p), then from (4.5), there exists a point ¢’ such that r <p\g¢’
and ¢’ <I(qg). Since m is ||-closed, r <I(r) <I(p)VI(qg)=I1(p)\JI(q)<m. Hence
I(r) € S(m). Consequently S(m) € L(£2,).

(ii) From (1), we have

a(S(m) =\J(1(); 1(2) € S(m)) =\J(I(@); = m).

Since I(t)<<m for any t=(m, we have a(S(m)) <m. On the other hand, :<m
implies I(z) € S(m), and therefore +<I()<<a(S(m)). Hence m<a(S(m)). Con-
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sequently a(S(m)) = m.

(iii) When r<{a(S), by (1.6), r<I(t,)\..-UI(,) for some I(t;) €S (=1, ...,
n). Then by (4.9) I(r) € S. Hence S(a(S))<.S. On the other hand, when I(r) € S,
we have r<I(r)<a(S). Hence I(r) € S(a(S)). Therefore S(a(S))=S.

(iv) Let a=ge;\ Jms where m, € M (a €]). By (ii) me=a(S(m.)=\J(IQ®);
t<<m,). Hence by (1.6) r<{a implies r <I(t)\U...UI({,) for ;<m,, (i=1, .-, n).
Then by (4.7) 1) <I({t)\V..-\JI{,) <a. Therefore a € M.

Next let b= ;/\m, where m, € M (« € J). Then r<b implies r<lm,, that is,
I(r)<m, for all « €J. Hence I(r)<b, and b € M.

Consequently, M is a complete sublattice of L.

(v) By (ii) and (iii), m—>S(m) and S—a(S) define a one-to-one correspond-
ence between M and L(2,), preserving the order. Hence M is isomorphic to
L(2,). Consequently M is an irreducible modular matroid sublattice of L.

DeriniTION (4.12). We call the set M of all [-closed elements of an affine
matroid lattice L the modular center of L. And when M is composed of only
two elements 0 and 1, we say that L is medularly irreducible.

CoroLLARY (4.13). Amn affine, non-modular, matroid lattice L is modularly
wrreducible if and only if L satisfies the strong Euclid’s parallel axiom.

Proof. This follows from (4.1) and (4.4).
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