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It is already known that a relatively atomic, upper continuous, modular
lattice Lp (which we may call a modular matroid lattice) characterizes a gen-
eralized projective geometry which satisfies

(PG 1) Two distinct points are in one and only one line,
(PG 2) If a line intersects two sides of a triangle at different points, it

also intersects the third side.

And Lp is a direct sum of L(0, ea) (a e /), where 1(0, eΛ) satisfies not only (PG
1) and (PG 2), but also

(PG 3) Every line contains at least three points.

When p, q are points such that p<leα, q<Leβ(a^ψβ\ then the line p\Jq consists
of only two points p and q.

The sublattice Z generated by ea(a e /) is the center of Lp, which is iso-
morphic to the lattice of all subsets of the set {ea; a e /}. Thus the center Z
is an atomic, complete Boolean algebra. Therefore it is distributive.

In this paper, applying the above consideration to the generalized affine
geometry, I shall show an example of a lattice decomposition which is induced
by a modular center.

In [1] p. 304, a generalized affine geometry (which we may call an affine
matroid lattice) is defined as a weakly modular matroid lattice La of length
;>4, which satisfies the following weak Euclid's parallel axiom:

Let I be a line in a matroid lattice L. If p is a point such that p ^ Z, then
there exists at most one line k such that l\\k and p<Lk.

A line I is called incomplete, when for any point p ^ I there exists a line
k such that l\\k and p<Lk. And an element a is called incomplete, when any
line contained in a is incomplete. Denote by /(p) the greatest incomplete
element which contains p. In [1] p. 309, it is proved that I(p) = I(q) or I(p)\\I(q)
for any points p, q in La, and L(0, /(p)) satisfies the following strong Euclid's
parallel axiom:

If p is a point such that p ̂  /, then there exists one and only one line k
such that l\\k and p<LL

Therefore when p, q are points such that I(p)φl(q), then the line p\Jq has no
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parallel line.
In this paper, I shall show that the set Ωo of all /(p), p being any point

in La9 is an irreducible protective space and the sublattice M generated by Ωo

is an irreducible modular matroid lattice which is isomorphic to the lattice
of all linear sets of Ωo. Thus we may call M the modular center of La.

1. Matroid lattices.

In this section we deal with a given lattice L with 0.

DEFINITION (1.1). Let a, b e L.
(α, b)M means (c\Ja)Γ\b = c\J(aί\b) for every c<b.
In a lattice L, if aί\bφθ implies (α, b)M then we call L a weakly modular

lattice. (Cf. [1] p. 68.) If (a, b)M implies (6, a)M then L is called a M-sym-
metrίc lattice. (Cf. [12] p. 453.)

L is called left complemented if a, b e L implies the existence of bλ such
that

= 0, (bu a)M,

(Cf. [12] p. 453.)

LEMMA (1.2). A left complemented lattice is M-symmetrίc.

Proof. Cf. [12] p. 454.

DEFINITION (1.3). In a lattice L, we say that b covers a and write a<ib if
a<b and a<Lc<Lb implies c—a or c—b. A pomί is an element p e L such that

If a<b implies a<a\Jp<Lb for some point p, then L is called relatively
atomic.

A lattice L is called atomistic if every element α of L is the join of points
contained in a.

The set of all points in an atomistic lattice L is called the point space of
L and we denote it by Ω(L).

Let {a8 δ 6 D} be a directed set of a complete lattice L. When αδ f α im-
plies a8ί\b t αΛδ, we say that L is an upper continuous lattice.

LEMMA (1.4). A lattice L is relatively atomic if and only if L is atomistic.

Proof. Cf. [6] p. 70.

LEMMA (1.5). In a relatively atomic, complete lattice L, the following two
propositions (a) and (/?) are equivalent:

(a) L is upper continuous.
(β) Let p be a point and S be a set of points in L. Then p<Lqfs\Jg implies

..}Uqnfor some q{ e S ( ί = l , ••, n).

Proof. Cf. [6] p. 71.
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LEMMA (1.6). Let p be a point and aΛ (a € I) be elements in a relatively
atomic, upper continuous lattice L, if p<Laei\Ja*, then there exists a finite sub-
set J of I such that p<,Λej\Ja<*

Proof. By (1.4) each aΛ is a join of points. Hence Λei\jaΛ is a join of a
set S of points. Therefore by (1.5) p<Lqi\J \Jqn for some q{ e S (i=l, •••, 71).
When qi<aai (i = l, ••-, n), then p^aΛl\J \JaΛjt.

THEOREM (1.7). In a relatively atomic, upper continuous lattice L, the fol-
lowing condition (yf\ (yff) and (£') are equivalent:

(j]r) If p, q are points such that q%a and q<La\Jp, then p<La\Jq.
(Ύ]") If p is a point, then either p<La or a<ia\Jp.

(f ) If c<α, c<ib and aφb, then a<ia\Jb and b<ia\Jb.

Proof. Cf. [5] p. 180.

DEFINITION (1.8). Let L be a relatively atomic, upper continuous lattice.
If L satisfies (y'\ L is called an exchange lattice in [4] p. 456, if L satisfies
(y"), L is called a geometric lattice in [1] p. 264, and if L satisfies (?')> L is
called a matroid lattice in [5] p. 181.

By (1.7) these three lattices are identical.
The matroid lattice characterizes the lattice of all subspaces of a geo-

metry which has the exchange property. (Cf. [3] p. 191)
In a matroid lattice, the terms "line" and "plane" are used in the ordinal

geometical sense, defining by the dimension.

LEMMA (1.9). A matroid lattice L is left complemented.

Proof. Cf. [7] p. 331.

LEMMA (1.10). A matroid lattice L is irreducible, if and only if any two
points in L are perspective.

Proof. Cf. [11] p. 188.

LEMMA (1.11). A matroid lattice L is weakly modular, if and only if L
satisfies the following condition :

(SP) // p<Lq\Ja, r<La, where p, q, r are points, then there exists a point s

such that p<Lq\Jr\Js and s<Ca.

Proof. Cf. [8] p. 232 and [9] p. 414.

The weakly modular matroid lattice characterizes the lattice of all sub-
spaces of a strongly planer geometry. (Cf. [10] p. 422 and [3] p. 193.)

Remark (1.12). A protective space Ω is a system of points and lines
satisfying the following two conditions:

(PG 1) Two distinct points are in one and only one line.
(PG 2) If a line intersects two sides of a triangle at different points, it

also intersects the third side.
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If a projective space Ω satisfies the following condition:

(PG 3) Every line contains at least three points,

then Ω is called irreducible.
A linear set is a set of points which contains the line through p and q if

it contains p and q.
The set L(-fl) of all linear sets of a projective space Ω forms a relatively

atomic, upper continuous, modular lattice, which we may call a modular
matroid lattice. L(Ω) is irreducible if and only if Ω is irreducible. (Cf. [6] p.
83.) We call L(Ω) a generalized projective geometry on Ω; when Ω is irreduci-
ble, we call L(Ω) a projective geometry on Ω.

Conversely, when L is a modular matroid lattice, the point space Ω(L) of
L is a projective space, and the generalized projective geometry L{Ω(Vj) is
isomorphic to L. (Cf. [6] p. 84.)

Especially when L is a distributive matroid lattice, it is an atomistic,
complete Boolean algebra, and Ω(L) is merely a set and L is isomorphic to the
lattice of all subsets of Ω(L).

2. Parallelism in lattices.

In this section we deal with a given lattice L with 0.

DEFINITION (2.1). Let α, b be non-zero elements in a lattice L. If

(1°)
(2°)

then we write α< b.
If α< \b and Z>< |α, then we say that a and b are parallel and write α||fc.

Reference. This is the definition of parallelism used in [1] p. 272, it is
written b [| a instead of a< | b.

Remark (2.2). Let Z, k be two lines in a matroid lattice L. Then Z || k if
and only if Z and A; are contained in a plane and do not intersect. And p\\q for
any different points p, q in L.

THEOREM (2.3). Let α, b be non-zero elements of a lattice L. Then a<\b if
and only if

(a) a A b = 0,
(/?) aχ\Jb = a\Jb for every a\ such that 0<αi<lα, αwd
(r) ίfcβrβ exists no b2 such that a\Jb2 = a\Jb, b<b2, aΓ\b2 = 0.

Proof, (i) Necessity. For any aλ such that 0<αi<lα, we have b<La\\J
b<La\Jb. If b = aιVJb then ai=aιΓ\b<LaΓ\b = 0, which contradicts αi>0. There-
fore b<a>ι\Jb. Since ό<αW6, it must be that a1\Jb=a\Jb, and (/?) holds.

When a\Jb2=a\Jb and δ<&2, we have b<b2<La\Jb. Since b<ίa\Jb we have
b2 = a\Jb. Hence aΓ\b2 = aί\(aKJb) = a>0. Thus (r) holds.
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(ii) Sufficiency. In order to prove b<la\Jb, let b<±x<^a\Jb. When aί\
0, since 0<aΓΛχ<La, from (/?) we have a\Jb = (aί\x)\Jb<Lχ, and x~a\Jb.

When αA#=0, since aVJχ = a\Jb, from (r) it must be that b = x. Therefore
b, and a< \b.

THEOREM (2.4). Let α, b be non-zero elements in a left complemented lattice
L. Then a<\b if and only if (a) and (/?) in (2.3) hold.

Proof. From (2.3) necessity is evident. We shall prove sufficiency. Since
L is left complemented, there exists aλ such that

(1) a\Jb = aι\Jb, aλ A b = 0, (aί9b)M, a>ι<La.

Let 0<c<^zi, then from (/?) c\Jb = a\Jb. Since by (1.2) (6, αi)M, we have ai =
(a\Jb)r\aι = (cυδ)Aαi=c. Therefore aλ is a point, say p. Then from (1), we
have a\Jb=p\Jb.

Let b<Lχ<Lb\Jp. When p<Lχ, then b\Jp<Lx and we have x=b\Jp. When
p ^ # , then p n # = 0 . Since (#, p)M, we have (p, Λ;)M. Hence χ=Q>\Jp)r\χ=b.
Therefore b<ib\Jp = a\Jb, and we have a< \b.

Reference. Hsu [2] defined (*)-parallelism using (a) and (/?), and (**)-
parallelism using (α), (/?) and (r). From (2.4), in a left complemented lattice
these two parallelisms coincide, and from the above proof, when a]\b, a con-
tains at least one point.

LEMMA (2.5). In a lattice L, if a<\b and a is not a point, then (b, a)Mdoes

not hold.

Proof. Since a is not a point, there exists a\ such that 0<αi<α. By (2.3)
we have aι\Jb = a\Jb. Hence

(βι \J b) A a = (α \J b) A a = a > a\ = a>\ \J (b A a).

Therefore (6, a)M does not hold.

LEMMA (2.6). Let Lbe a weakly modular matroid lattice. If every line in
L has no parallel line, then L is modular.

Proof, (i) I shall first prove that the point space Ω(L) is a protective
space when a line / is defined by the set {reΩ(L); r<Lp\Jq} for different
points p and q.

When r<Lp\Jq and rφp, then by 0?') in (1.7), we have p\Jq=p\Jr. Hence
(PG 1) in (1.12) holds.

Let p, q and r be three points which form a triangle. Take two different
points s and t, such that s<Lp\Jq and t<Lq\Jr. We may assume that 5 and t
are different from p, q and r. Then s\Jt and p\Jr are two lines contained in
the plane p\Jq\Jr, but they are not parallel. Hence by (2.2) they intersect.
Therefore (PG 2) holds.

Consequently by (1.12) Ω(L) is a projective space and L(Ω(Lj) is a modular



78 Fumitomo MAEDA

matroid lattice.
(ii) Let S be a linear set in Ω(L). I shall prove by induction that r<Z

pi\J .. \Jpn(pi^S) implies r e S. When n = 2, this is evident. Next assume
that the assertion holds when n—ί — 1. It is evident when τ — pi or pi<Lp\\J
">\Jpi-\. Hence let rφpi and pi^-pi\J- \Jpi-i. Since r<Lpi\J(pι\J •••VJpi-i),

by (1.11) there exists a point 5 such that

(1) r^piXJpxXJs and

When s<Lpi\Jpu then since r<Lpi\Jpu we have r e S . When s^p{\Jpu then
rUp/ and p%\Js are lines contained in the plane pi\Jpι\Js. Hence by (2.2) there
exists a point q such that

(2) ^ ( r U p f ) A ( p i W s ) .

By (1) and (2), q<p1 \J s<LPl \J. U p M . Hence 9 6 S and ?=/=/>,-. But by (2)
q<Lr\Jpi, hence by (??') in (1.7) we have r<Lq\Jpi. Therefore r e S. Thus the
assertion holds for n—i.

(iii) For a e L and S e L(Ω(L% define

p^a} and α(S)

Since L is atomistic, we have a=\J(p; p<La). Hence

a(s(aj) = V7(p; p e s ( β ) ) = U ( p ; p ^

Let g b e a point such that q<La(S). Then by (1.5), there exists a finite
subset {pu •••> pn} of S such that q<Lpι\J Wpw. Hence by (ii) ^ 6 S. There-
fore S(a(S))<LS. On the other hand, when p e S then p<La(S\ and we have
peS(α(S)). Therefore 5(α(S)) = S.

(iv) By (iii), a-+S(a) and S->a(S) define a one-to-one correspondence be-
tween L and L(Ω{Vj) preserving the order. Consequently L is isomorphic to
L(Ω(L)), and L is modular.

Reference. In [1] p. 307, (2.6) is proved using the hyperplane.

THEOREM (2.7). A weakly modular matroid lattice L is modular, if and
only if every line in L has no parallel line.

Proof. By (2.5) and (2.6).

THEOREM (2.8). A non-modular matroid lattice L is weakly modular, if
and only if L satisfies the following condition:

(PE) For a point p, if a<\b and p<Lb, then there exists an element bι
such that a\\bι and p<Lh<Lb.

Proof, (i) When L is weakly modular and α < \b9 p<Lb, let 6i = br\(a\Jp).

Since a\Jbλ^a\Jp and p<Lbu we have a\Jbι = a\Jp. Being aΓ\p<LaΓ\b = 0,
we have a<a\Jp=a\Jbι. But aΓ\bι<Lar\b=0, hence δ i< |α .
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Next we shall prove that a<\bu that is, br\(a\Jp) = bι<ia\Jbi = a\Jp. Let
br\(a\Jp)<Lx<La\Jp. When χ<Lb, being x<La\Jp, we have br\(a\Jp)=x. When
x^b, since b<x\Jb<a\Jp\Jb=a\Jb and b<ίa\Jb, we have x\Jb = a\Jb. Being
δn(αVp)^p>0, we have (6, a\Jp)M. Therefore (x\Jb)r\(a\Jp)=x\J{br\(a\Jp)}
—x. Thus a\Jp—x. Consequently bί\(a\Jp)<la\Jp and α<|Z>i.

Then α||δi and p<J>!<J). Thus (PE) is proved.
(ii) Conversely assume that L satisfies (PE). In order to prove that L is

weakly modular, by (1.11), it is sufficient to prove that the following condi-
tion (SP) holds.

(SP) If p<LqVJa, r<La, where p, q, r are points, then there exists a point s
such that p<Lq\Jr\Js and .s<a.

To prove (SP) we may assume that pφq and q ̂ g α, for otherwise (SP) is
evident. Let l=p\jq. When lίλaφO, there exists a point 5 such that s<Llr.a.
Since s<Lp\Jq and sr\q<LaΓ\q=0, we have p<Lq\Js, and (SP) holds. When
Znα=0, since a<la\Jq=a\Jp\Jq=a\Jl, we have Z<|α. Hence by (PE), there
exists an element k such that Z||fc and r<Lk<La. Since & is a line, there exists
a point 5 such that k=r\Js and s<La. From pW</||r\_ys, we have p<Lq\Jr\Js and
(SP) holds.

Remark (2.9). Instead of (PE) in Theorem (2.8), we may put the fol-
lowing condition (PL):

(PL) For a point p and a line Z, if l< \a and p<ία, then there exists a
line & such that l\\k and p<k<La.

This is evident from the proof (ii) in (2.8).

Reference. The part (i) in the proof of (2.8) is already given in [1] p.
305, where the hyperplane is used.

3. Affine matroid lattices.

STRONG EUCLID'S PALALLEL AXIOM (3.1). Let I be a line in a matroid
lattice L. If p is a point such that p ̂  Z, then there exists one and only one
line k such that l\\k and p<Ck.

WEAK EUCLID'S PALALLEL AXIOM (3.2). Let I be a line in a matroid lattice
L. If p is a point such that p^l, then there exists at most one line k such that
l\\k and p<.k.

DEFINITION (3.3). Let L be a weakly modular matroid lattice L of length
i> 4. When L satisfies the weak Euclid's parallel axiom, we call L an affine
matroid lattice.

Reference. In [1] p. 304, the above-defined affine matroid lattice is called
a generalized affine lattice or a generalized affine geometry.
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DEFINITION (3.4). In an affine matroid lattice L, a line I is called incom-
plete, when for any point p^l, there exists a line k such that l\\h and p<Lk.
And a line I is called complete, when there exists no line parallel to I. An
element a of length ^ 2 is called incomplete, when any line contained in a is
incomplete.

When a line Z is not complete, then Z is incomplete. (Cf. [1] p. 306.)

REMARK (3.5). An affine matroid lattice L satisfies the strong Euclid's
parallel axiom if and only if all lines in L are incomplete, and L is modular if
and only if all lines in L are complete. (Cf. (2.7).)

LEMMA (3.6). When an affine matroid l&ttice L is not modular, every com-
plete line I in L contains at least there points.

Proof. Cf. [1] p. 314.

THEOREM (3.7). When an affine matroid lattice L is not modular, then L
is irreducible.

Proof. Let p, q be any two different points in L. When the line p\Jq is
complete, by (3.6) p\Jq contains a third point r. Then p\Jr = q\Jr, pί\r = 0,
qr\r=0. Hence p^q. When p\Jq is incomplete, there exists a line I such that
p\Jq\\l. Then by (2.3) p\JI = (p\jq)\jI=q\jI. And pΓ\l<L(pVJq)ίΛl = O, similarly
qr\l = 0. Therefore p~~q. Hence in any case p^g. Consequently by (1.10) L is
irreducible.

Reference. In [1] p. 315, (3.7) is proved using the hyperplanes in L.

4. Decomposition spaces of affine matroid lattices.

THEOREM (4.1). Let L be an affine, non-modular, matroid lattice, then for
any point p in L, there exists a maximal incomplete element I(p) which contains
p. If I(p) = l, then L satisfies the strong Euclid's parallel axiom. If I(p)φl,
then I(p) = I(q) or I(p)\\I(q) for any points p, q in L.

Proof. Cf. [1] p. 309.

Remark (4.2). When an affine matroid lattice L is modular, there exists
no incomplete element containing a point p. Hence we put I(p)=p.

DEFINITION (4.3). Let L be an affine matroid lattice. From (4.1) and (4.2)
there exists a set Ωo= {I(ta); a e 1} such that for any point p in L, there exists
ael with p<>I(tΛ), and I(tΛ)\\I(tβ) when aφβ. We call Ωo a decomposition
space of L.

When L is modular, then ΩQ = Ω and Ωo is a projective space. Hence we
may expect that this fact holds in the non-modular case. This is Theorem
(4.8) below.

In what follows, the assertion is evident when the affine matroid lattice
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is modular. Hence we omit the explanations for the modular case.
In the following (4.4) — (4.7), L is an affine matroid lattice.

Remark (4.4). Let p, q be any two points in L, then p\Jq is a complete
line if and only if p and q are contained in different I(ta) and I(tβ) in Ωo.

Proof. Let p<LI(ta) and q<^I(t?). Then p\Jq<LI(ta)\Jl(^). Since I(ta) and
I(tβ) are incomplete elements and I(t*) = I(t?) or /(ίΛ)A/(ίβ) = 05 p\Jq is a com-
plete line if and only if I(ta)r\I(tβ) = O9 that is I(tΛ)φI(tβ).

LEMMA (4.5). Let r be a point in L if r<LI(p)\Jl(q) and r % /(p), then there
exists a point q such that r<Lp\Jqr and g'<.I(q).

Proof. Since r%I{p\ we have I(p)φl(q). Hence I(p)\\I(q). Therefore by
(2.3) we have

Since L is weakly modular, from (1.11), there exists a point t such that

and t<Ll(q).

When t=q, then q is the required q. When tφq, since pί\(ί\Jq)<Lpr\I(q)
= 0, p\Jt\Jq is a plane. Then rWp and ^Uί are lines in the plane p\Jq\Jt. But
since r^I(p\ by (4.4) rWp is a complete line. Therefore, from (2.2), there
exists a point q such that q<L(r\Jp)r\(q\Jt). Then q<Lq\Jt<LI(q), and there-
fore q'^I(p), that is, q'r\p = 0. Since q'<Lr\jp, by 0?') in (1.7), we have r<:

LEMMA (4.6). Lei rfeeα pomί m L, r<LI(p)\Jl(q) implies I(r)<LI(p)\JI(q).

Proof. When r<J(p), this is evident. Hence we assume that r^I(p) and
hence I(p)^I(q). From (4.5) there exists a point q such that

r<,p\Jqf and

Take any point r' such that r'<,I(r) and / φ r . If r^p\Jq, then
which is absurd, since r\Jr is incomplete and p\Jq is complete. Hence r'
p\Jqf and p\Jq\Jr is a plane. Since rW/ is an incomplete line and
there exists a point p' such that r\Jr'\\p\Jp'. Hence p'<^p\Jr\Jr'<^p\Jq'\Jr'.

If p<Lp\Jq\ then p\jp'=p\Jq', which is absurd, since p\Jq is a complete
line. Hence p^p\jqf. Therefore by (f) in (1.7) we have r <Lp\Jq \Jpf. Since
pWp' is an incomplete line, we have p\Jp <LI(p). Therefore r <^I(p)\Jq <L
I(p)\Jl(q). Consequently I(r)<LI(p)\Jl(q).

LEMMA (4.7). Let r be a point in L, r^J(ti)\J---\Jl(tn) implies I(r)<LI(tι)\J

Proof. We shall prove this lemma by induction. When n = 2, the asser-
tion follows from (4.6). Next assume that the assertion holds when n = ί — 1.
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It is evident when r^/(ί, ) or I(ti)^I(tι)\J...U/(i/-i). Hence let r^I(ti) and
I(tϊ)^I(ti)\J ..\Jl(ti-ι). Since /fa) ||/(*,-), we have I(t1)\Jl(ti) = I(t1)\Jti. Con-
sequently r<LI(tχ)\J -..\JI(ti) implies r < ^ V {/fa)w ... W/fa_i)}. Since L is
weakly modular, by (1.11), there exists a point 5 such that

(1) r<Lu\Jh\Js and s<I/fa) V ••• u/fa-i).

When s ^ W ί i , then from (1) we have r<Lu\Jtι<,I(ti)\Jl(tι). Then from (4.6)
we have /(r)<Ufa)V/fa), and the assertion holds. When s^u\Jh, then u\Jtι\Js
is a plane, and since r\Jti<Lu\Jtι\Js from (1), rUί, and ίiVs are two lines on
the plane u\Jh\Js. Since r^/fa), rWί. is a complete line. Hence, from (2.2),
there exists a point p such that

(2)

Since from (1)

(3) p<h \J s^KfO \J .

we have p^/fa), because if p<LI(td then /fe)=/(p)<I/fa)v...v/ffa_i) which
contradicts the assumption. Therefore pA£, = 0. Since from (2) p<Lr\Jti, by
0?') in (1.7) we have r<Lp\Jti<:i(p)\Jl(ti). Therefore by (4.6) we have

(4) J(r)^/(p)VJ(ί f.).

Since from (3) I(p)<LI(h)\J••.\Jl(ti_ιX we have I(r)<^I(tι)\J•••\Jl(ti) and
the assertion holds for τz=£. The lemma is completely proved.

THEOREM (4.8). ΓΛe decomposition space Ωo = {I(tΛ); a e 1} of an affine,
non-modular, matroid lattice L is an irreducible protective space, where the
line determined by different points I(ta) and I(tβ) is a set of elements of Ωo con-
tained in I(tΛ)\Jl(tβ).

Proof, (i) Let I(ta), I(tβ) and I(ty) be three different elements in Ωo such
that I(tγ)<LI(tΛ)\Jl(tβ). Then from (4.5) there exists a point p such that tΊ<
tΛ\Jp and p<LI(tβ). Since ί γAp=0, from (yf) in'(1.7), we have ta<Lty\Jp<LI(ty)
\Jl(tβ). Therefore, since I(tΛ)\Jl(td^I(fy)\JI(tβ)^I(tΛ)\Jl(tβ\ we have I(tΛ)\J
I(tβ) = I(ty)\Jl(tβ). Consequently the line is determined by the two different
elements contained in it, and (PG 1) in (1.12) holds.

(ii) Let I(tΛ\ I(tβ) and I(ty) are elements in Ωo which form a triangle.
Take /(p) and I(q) such that I(p)<I(ta)\Jl(tβ\ I(q)<I(ta)\Jl(ty) where /(p) and
I(q) are different from any I(tΛ\ I(tβ) and /(ίy). By (i), we have I(tβ)<J(tΛ)\J/(p),
hence from (4.5) we may take p such that tβ<LtΛ\Jp. Therefore p<JΛ\Jtβ. Simi-
larly we may take q such that q<LtΛ\Jty. Then p\Jq is a line on the plane t#\J
tβ\Jty. By (4.4) p\Jq is a complete line. Hence by (2.2) there exists a point r
such that r<Lp\Jq and r<Ltβ\Jty. Therefore by (4.6), we have I(r)<LI(p)\Jl(q)
and I(r)<LI^)\Jl(ty). Consequently (PG 2) holds in ΰ0.
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(iii) Let I(ta)\Jl(t?) be any line in Ωo. Since tΛ\Jtβ is a complete line, by
(3.6), tΛ\Jtβ contains a third point p. Hence by (4.6) I(p)^I(tΛ)\Jl(tβ). Since
tΛ^

ftβ=tΰύ\Jp is a complete line, it must be that I(p)Φl(tΛ). Similarly I(p)φ
I(tβ). Consequently I(tΛ)\Jl(tβ) contains a third point /(p), that is, (PG 3) holds
in Ωo.

Thus Ωo is an irreducible protective space.

LEMMA (4.9). Let Shea linear set of Ωo= {I(tΛ); a e 1} of an affine matroid

lattice L, and I(tι\ • ••, I(tn) e S. Then r<LI(tλ)\J•••\Jl(tn) implies I{τ) e S.

Proof. We shall prove the lemma by induction. When n = 2, the asser-
tion follows from (4.6). Next assume that the assertion holds when n=i — l.
As (1) in the proof of (4.7)

r^ti\Jti\Js and s^I(ti)\J WJ(£, _i).

When s<Ji\Jtu then r<Lti\Jtι<I(ti)\Jl(tι). Hence I(r) e S. When s^ti\Jtu as
(3) and (4) in the proof of (4.7)

I(r)<I(p)\Jl(td and p^/(ίi)U... w/fe_x).

Since I(p) e S, we have I(r) e S. Consequently the assertion holds when n — ί.
And the lemma is completely proved.

DEFINITION (4.10). Let a be an element of an affine matroid lattice L. If
r<La implies I(r)<^a, then a is called a ]|-closed element of L. We shall say that
0 is a ||-closed element.

THEOREM (4.11). The set M of all \\-closed elements of an affine, non-modu-
lar, matroid lattice L is an irreducible modular matroid sublattice of L, and is
isomorphic to the protective geometry L(Ω0) on the decomposition space Ωo —
{KQ ael} of L

Proof, (i) For me M and S e L(Ω0\ define

(1) S(m) = {/(r); r^m} and a(S) = \J(J(ί); I(t) € S).

When r<La(S\ from (1.6) we have r^LKt^VJ . \Jl(tn) where /fe ) 6 S (£ = 1, , τι).
Hence from (4.7) /(r)^/(ί 1 )u...u/(O^α(S). Therefore α(S) 6 M.

Next we shall show that S(m) e L(Ω0). When I(r)<J(p)\Jl(q) for some p,
^7?ϊ and /(r)φ/(p), then from (4.5), there exists a point ̂  such that r<Lp\Jqf

and q<±I(q). Since 77z is ||-closed, r<LI(r)<LI(p)\Jl(q/) = I(p)\Jl(q)<Lm. Hence
/(r) e S(m). Consequently S(m) e L(Ω0).

(ii) From (1), we have

a(S(mj) = \J(l(t); I(t) 6 S(m)) =\J(I(t); t<>m).

Since I(t)<,m for any £<JW, we have a(S(m))<Lm. On the other hand, t<Lm
implies I(t)eS(m\ and therefore t^I(t)<La(S(m)). Hence m<La(S(;m)). Con-
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sequently a(S(τnj) — m.
(iii) When r^a(S\ by (1.6), r^I(h)\J . \Jl(tn) for some I(td e S (ί=1, .. ,

n). Then by (4.9) I(r) e S. Hence S(a(S))<£. On the other hand, when I(r) e 5,
we have r<I(r)^a(S). Hence /(r) eS(a(S)). Therefore S(a(S))=S.

(iv) Let a=aeJ\JmΛ where maeM(aeJ). By (ii) mΛ=a(S(mΛ)) = \J(l(t);
t<Lma). Hence by (1.6) r<La implies r<LI(ti)\J•••\Jl(tn) for ti<Lmai ( ΐ = l , , rc).
Then by (4.7) /(r) <:/fe)W \Jl(tn)<,a. Therefore α e l .

Next let b = a€jf\ma where mΛe M(a ej). Then r<Lb implies r<jna, that is,
I(r)<LmΛ for all α 6/. Hence I(r)^b9 and δeilί.

Consequently, M is a complete sublattice of L.
(v) By (ii) and (iii), m->S(m) and S~>a(S) define a one-to-one correspond-

ence between M and L(ώ0), preserving the order. Hence M is isomorphic to
L(Ω0). Consequently M is an irreducible modular matroid sublattice of L.

DEFINITION (4.12). We call the set M of all [| -closed elements of an affine
matroid lattice L the modular center of L. And when M is composed of only
two elements 0 and 1, we say that L is modularly irreducible.

COROLLARY (4.13). An affine, non-modular, matroid lattice L is modularly
irreducible if and only if L satisfies the strong Euclid's parallel axiom.

Proof. This follows from (4.1) and (4.4).
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