On Limits of BLD Functions along Curves

Makoto Ohtsuka

(Received March 18, 1964)

In the preceding paper [4], F-Y. Maeda proved that almost every Green line converges to one point on the boundary obtained by a certain compactification of a Green space, notably for the Kuramochi boundary. We shall use the contents of [4] freely. In this note we shall prove that every curve on a space \mathscr{E} has a similar property, except for those belonging to a family with infinite extremal length.

Consider a space \mathscr{E} in the sense of Brelot and Choquet [1]; \mathscr{E} may not be a Green space. We begin with the definition of extremal length of a family Γ of locally rectifiable non-degenerate curves on \mathscr{E} . Any measurable function $\rho \ge 0$ on \mathscr{E} with the property that $\int_{c} \rho \, ds$ is defined and ≥ 1 for each $c \in \Gamma$ is called *admissible* (in association with Γ) and the *module* $M(\Gamma)$ of Γ is defined by $\inf_{\rho} \int \rho^2 dv$, where ρ is admissible and dv is the volume element. The *extremal length* of Γ is defined by $1/M(\Gamma)$. We shall say that *almost every* curve on \mathscr{E} has a certain property if the module of the exceptional family vanishes. The definitions of an admissible ρ and the module need obvious modifications in case the dimension of \mathscr{E} is two. However, we shall use higher dimensional phrases in the sequel.

Let $\bar{\mathscr{E}}$ be a topological space containing \mathscr{E} such that \mathscr{E} is everywhere dense in $\bar{\mathscr{E}}$ and any two points of $\bar{\mathscr{E}}$ are separated by a continuous function on $\bar{\mathscr{E}}$; $\bar{\mathscr{E}}$ may not be compact. We set $\varDelta = \bar{\mathscr{E}} - \mathscr{E}$ and denote by $C_{\mathscr{E}}(\bar{\mathscr{E}})$ the family of functions consisting of the restrictions to \mathscr{E} of all the bounded continuous functions on $\bar{\mathscr{E}}$.

A family \mathscr{Q} of real functions on \mathscr{E} is said to separate points of $\overline{\mathscr{E}}$ (\varDelta resp.) if, for any different $P_1, P_2 \in \overline{\mathscr{E}}$ (\varDelta resp.), there is $f \in \mathscr{Q}$ such that

$$\lim_{\substack{\overline{P \to P_1} \\ P \in \mathscr{S}}} f(P) > \overline{\lim_{\substack{P \to P_2 \\ P \in \mathscr{S}}}} f(P).$$

We shall say that a function has a limit (a finite limit resp.) along an open curve on \mathscr{E} if it has a limit (a finite limit resp.) as the point moves on the curve in each direction.

Using the well-known inequality $M(\bigcup_n) \leq \sum_n M(\Gamma_n)$, we can prove the following theorem in a fashion similar to the proof of Theorem 1 of F-Y.

Makoto Ohtsuka

Maeda [4]:

THEOREM 1. If one of the following conditions is satisfied, then almost every open curve on \mathscr{E} has at most one limit point in $\overline{\mathscr{E}}$ as the curve is traced in any direction:

i) There exists a countable family 2 of functions on \mathscr{E} such that each $f \in \mathcal{2}$ has a limit along almost every open curve and 2 separates points of $\overline{\mathscr{E}}$.

ii) $C_{\mathfrak{s}}(\bar{\mathfrak{S}})$ is separable in the uniform convergence topology and every function of $C_{\mathfrak{s}}(\bar{\mathfrak{S}})$ has a limit along almost every open curve.

Let us be concerned with BLD functions. We shall obtain a generalization of Theorem 2. 28 of [5].

THEOREM 2. Every BLD function f on \mathscr{E} has a finite limit along almost every open curve.

PROOF. Fuglede [2] proved that any BLD function in a Euclidean space is absolutely continuous along almost all curves. It follows easily that f has this property on \mathscr{E} . If f is absolutely continuous along an open curve c on \mathscr{E} and if f does not have a finite limit along it, then

$$\int_{c} |\operatorname{grad} f| \, ds \geq \int_{c} \left| \frac{\partial f}{\partial s} \right| \, ds = \int_{c} |\, df\,| = \infty.$$

Hence, in association with the family Γ' of all such c, $\rho = \varepsilon | \operatorname{grad} f |$ on \mathscr{E} is admissible for arbitrary $\varepsilon > 0$. Consequently

$$M(\Gamma') \leq \int \rho^2 dv = \varepsilon^2 \int |\operatorname{grad} f|^2 dv \to 0$$
 as $\varepsilon \to 0$.

Our assertion is concluded.

Combining this result with Theorem 1 we obtain

THEOREM 3. Suppose that Δ is not void and there exists a countable family of BLD functions on \mathscr{E} separating points of Δ . Then almost every curve on \mathscr{E} , whose starting point lies in \mathscr{E} and which tends to the ideal boundary, has at most one limit point in Δ .

REMARK. If $\overline{\mathscr{E}}$ is compact and metrizable and if $\{f \in C_{\mathscr{E}}(\overline{\mathscr{E}}); f \text{ is a BLD} function on <math>\mathscr{E}\}$ separates points of \mathcal{A} , then the above condition is satisfied.

COROLLARY. Suppose that & is a Green space. Then almost every curve, whose starting point lies in & and which tends to the ideal boundary, converges to one point of the Kuramochi boundary of &.

68

Next we are interested in Green lines on a Green space \mathscr{E} defined with respect to the Green function $G(P, P_0)$ with pole at P_0 .

THEOREM 4. Let Γ be a family of Green lines issuing from the pole and having a positive Green measure. Let Γ' be the family consisting of the parts of the members of Γ outside a small Green sphere $\Sigma_0 = \{P; G(P, P_0) = t_0\}$ around the pole P_0 .¹⁾ Then $M(\Gamma') > 0$.

PROOF. We shall denote by γ the Green measure. It is defined on the family Λ_0 of all Green lines issuing from the pole and $\varphi_\tau \gamma(\Lambda)$ is equal to $\int_{\mathcal{I}_0 \cap \Lambda} \partial G / \partial n \, dS$, where φ_τ is a constant, Λ is any γ -measurable subfamily of Λ_0 , $\partial G / \partial n$ is the normal derivative and dS is the surface element on the boundary ∂B_0 . If ρ is admissible in association with Γ' , then $\int_c \rho ds \geq 1$ for each $c \in \Gamma'$ and

$$1 \leq \int_{c} \rho^{2} |\operatorname{grad} G|^{-1} ds \int_{c} |\operatorname{grad} G| ds = \int_{c} \rho^{2} \left| \frac{\partial G}{\partial s} \right|^{-1} ds \int_{c} |dG|.$$

It follows that

$$\begin{split} \frac{\gamma(\Gamma)}{t_0} \leq & \int_{\Gamma} \frac{d\gamma}{\int_{c} |dG|} \leq \int_{\Gamma} \int_{c} \frac{\rho^2}{\left|\frac{\partial G}{\partial s}\right|} \, ds \, d\gamma = \frac{1}{\varphi_{\tau}} \iint_{\Gamma'^{\square}} \frac{\rho^2}{\left|\frac{\partial G}{\partial s}\right|} \, ds \left|\frac{\partial G}{\partial n}\right| \, dS \\ &= \frac{1}{\varphi_{\tau}} \iint_{\Gamma'^{\square}} \rho^2 ds \, dS = \frac{1}{\varphi_{\tau}} \int_{\Gamma'^{\square}} \rho^2 dv, \end{split}$$

where $[\Gamma']$ means the set of points on Γ' and dS is the surface element on a level surface $\{P; G(P, P_0) = \text{const.}\}$. Consequently,

$$M(\Gamma') \geq \frac{\varphi_{\tau} \gamma(\Gamma)}{t_0} > 0.$$

In order to show that our Theorem 2 is an extension of Godefroid's theorem in [3] which asserts that every BLD function on any Green space has a finite limit along almost every regular Green line, we prove

THEOREM 5. Let f be any BLD function on a Green space \mathscr{E} . Then the set of regular Green lines which issue from the fixed pole P_0 and along each of which lim f exists is measurable with respect to the Green measure γ .

¹⁾ In case P_0 is a point at infinity, by a "small" Green sphere we mean actually a large Green sphere.

PROOF. As a point set the family of all Green lines issuing from P_0 forms a domain D. We denote by \mathscr{B}' the family of subsets of D such that, for every $B' \in \mathscr{B}'$, there exists a Borel set $B \supset B'$ with the property that B-B' is a polar set. We observe that f is \mathscr{B}' -measurable and hence

$$A_t(\alpha) = \{P \in D; G(P, P_0) < t, f(P) > \alpha\}$$

belongs to \mathscr{B}' for any t>0 and α . Given a small Green sphere Σ_0 around P_0 , we call the intersection of Σ_0 with a Green line issuing from P_0 the projection on Σ_0 of any point of the Green line. We can speak of the projection on Σ_0 of any subset E of D too, and denote it by p(E). Denote by $d(P_1, P_2)$ the Euclidean distance considered locally. Then $d(p(P_1), p(P_2))/d(P_1, P_2)$ is locally bounded, so that any polar set in D is projected to a polar set on Σ_0 . Consequently $p(A_t(\alpha))$ differs from an analytic set at most by a polar set and hence is measurable with respect to γ .

Let Σ_1 be the Borel set on Σ_0 where the regular Green lines intersect Σ_0 , and denote by c_P the regular Green line passing through $P \in \Sigma_1$. Since

$$\{P \in \Sigma_1; \overline{\lim_{\substack{G(Q, P_0) \to 0 \\ Q \in c_p}}} f(Q) > \alpha\} = \bigcup_n \bigcap_k p\Big(A_{1/k}\Big(\alpha + \frac{1}{n}\Big)\Big),$$

 $\overline{\lim_{c_P}} f$ is a γ -measurable function of P on Σ_1 . Similarly $\underline{\lim_{c_P}} f$ is γ -measurable and the conclusion in the theorem follows immediately.

Now, suppose that a BLD function does not have a finite limit along any curve of a family Γ of regular Green lines with positive Green measure. The parts of the curves of Γ outside a small Green sphere around the pole form a family with finite extremal length by Theorem 4. This contradicts Theorem 2. Thus Godefroid's theorem is derived. We observe further that our Theorem 3 together with its remark generalizes Theorem 2 of F-Y. Maeda $\lceil 4 \rceil$.

References

- [1] M. Brelot and G. Choquet: Espaces et lignes de Green, Ann. Inst. Fourier, 3 (1952), pp. 199-263.
- [2] B. Fuglede: Extremal length and functional completion, Acta Math., 98 (1957), pp. 171-219.
- [3] M. Godefroid: Une properiété des fonctions BLD dans un espace de Green, Ann. Inst. Fourier, 9 (1959), pp. 301-304.
- [4] F-Y. Maeda: Notes on Green lines and Kuramochi boundary of a Green space, J. Sci. Hiroshima Univ. Ser. A-I Math., 28 (1964), pp. 59-66.
- [5] M. Ohtsuka: Dirichlet problem, extremal length and prime ends, Lecture Notes, Washington University, St. Louis, 1962-63.

Department of Mathematics, Faculty of Science, Hiroshima University.