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In the preceding paper [4], F-Y. Maeda proved that almost every Green
line converges to one point on the boundary obtained by a certain compactifi-
cation of a Green space, notably for the Kuramochi boundary. We shall use
the contents of [4 ] freely. In this note we shall prove that every curve on a
space & has a similar property, except for those belonging to a family with
infinite extremal length.

Consider a space ¢ in the sense of Brelot and Choquet [1]; ¢ may not
be a Green space. We begin with the definition of extremal length of a
family I of locally rectifiable non-degenerate curves on &. Any measurable

function p>0 on & with the property that S pds is defined and >1 for each

cel is called admaissible (in association with I") and the module M(I") of I is

defined by inf szdv, where p is admissible and dv is the volume element. The
P

extremal length of I' is defined by 1/M(I"). We shall say that almost every
curve on & has a certain property if the module of the exceptional family
vanishes. The definitions of an admissible p and the module need obvious
modifications in case the dimension of & is two. However, we shall use
higher dimensional phrases in the sequel.

Let & be a topological space containing & such that & is everywhere
dense in & and any two points of & are separated by a continuous function
on &; & may not be compact. We set 4=&—¢& and denote by C,(&) the
family of functions consisting of the restrictions to & of all the bounded
continuous functions on &.

A family 2 of real functions on & is said to separate points of & (4
resp.) if, for any different Py, P, € & (4 resp.), there is f€ 2 such that

lim Iim
f P> I P
PE?¢ PES

We shall say that a function has a limit (a finite limit resp.) along an open
curve on & if it has a limit (a finite limit resp.) as the point moves on the
curve in each direction.

Using the well-known inequality M(\uI,)<>\M({",), we can prove the
following theorem in a fashion similar to the proof of Theorem 1 of F-Y.
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Maeda [4]:

Tueorem 1. If one of the following conditions ts satisfied, then almost
every open curve on & has at most one limit point in & as the curve is traced
wm any direction:

i) There exists a countable family 2 of functions on & such that each
fE€ 2 has a limit along almost every open curve and 2 separates points of &.

ii) C,(&) s separable in the uniform convergence topology and every
function of C¢(&) has a limit along almost every open curve.

Let us be concerned with BLD functions. We shall obtain a generaliza-
tion of Theorem 2. 28 of [5].

Tueorem 2. Every BLD function f on & has a finite limit along almost
every open curve.

Proor. Fuglede [2] proved that any BLD function in a Euclidean
space is absolutely continuous along almost all curves. It follows easily that
f has this property on &. If f is absolutely continuous along an open curve
con ¢ and if fdoes not have a finite limit along it, then

Sclgradfldsggc }%ldszgcldfl .

Hence, in association with the family 7 of all such ¢, p=¢|grad f| on ¢ is
admissible for arbitrary ¢>0. Consequently

M(F’)ggpzdv:ezg |grad f|?dv—>0  as e—>0.

Our assertion is concluded.
Combining this result with Theorem 1 we obtain

TaEOREM 3. Suppose that 4 is not void and there exists a countable
family of BLD functions on & separating points of 4. Then almost every
curve on &, whose starting point lies in & and which tends to the ideal boundary,
has at most one limit point in 4.

Remark. If & is compact and metrizable and if {f€C,(#); fis a BLD
function on &} separates points of 4, then the above condition is satisfied.

CororLrLARY. Suppose that & is a Green space. Then almost every
curve, whose starting point lies in & and which tends to the ideal boundary,
converges to one point of the Kuramochi boundary of &.



On Limits of BLD Functions along Curves 69

Next we are interested in Green lines on a Green space & defined with
respect to the Green function G(P, P,) with pole at P,.

Tureorem 4. Let I’ be a family of Green lines issuing from the pole
and having a positive Green measure. Let I be the family consisting of the
parts of the members of I’ outside a small Green sphere 3,={P; G(P, P,)=to}
around the pole Pp.Y Then M(I"")>0.

Proor. We shall denote by ¥ the Green measure. It is defined on the
family A4, of all Green lines issuing from the pole and @.,v(A) is equal to
‘20 AaG/andS, where @. is a constant, 4 is any v-measurable subfamily of A,,
oG /on is the normal derivative and dS is the surface element on the boundary
oB,. If p is admissible in association with 7, then SC pds>=1 for each cerl”

and

1§S p*| grad Gl'ldsg | grad Gldsz{ p? o

| p 5 sl aet.

It follows that

2 2 .
Vmgg il <H P dsdy = SS ] P—as 2% gs
c | | ' b

to r feldG| = oG : P Vrn | 0G| on |
I os | I os |
_ 1 2 _ 1 2
- “mp dsdS = Smp do,

where [ /"] means the set of points on 77 and dS is the surface element on a
level surface {P; G(P, P))=const.}. Consequently,

@) ~0.
to

MU=

In order to show that our Theorem 2 is an extension of Godefroid’s

theorem in [ 3] which asserts that every BLD function on any Green space
has a finite limit along almost every regular Green line, we prove

Tueorem 5. Let f be any BLD function on a Green space &. Then the
set of regular Green lines which issue from the fixed pole P, and along each of
which lim f exists is measurable with respect to the Green measure 7.

I) In case P, is a point at infinity, by a “small” Green sphere we mean actually a large Green
sphere.
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Proor. As a point set the family of all Green lines issuing from P,
forms a domain D. We denote by #’ the family of subsets of D such that, for
every B’ € #', there exists a Borel set BD B’ with the property that B—B’ is a
polar set. We observe that f is #'-measurable and hence

4,() = {P€D; G(P, Po) <, f(P)>a}

belongs to &’ for any :>0 and «. Given a small Green sphere 3, around P,
we call the intersection of 3, with a Green line issuing from P, the projec-
tion on X, of any point of the Green line. We can speak of the projection on
Y, of any subset E of D too, and denote it by p(E). Denote by d(Py, P,) the
Euclidean distance considered locally. Then d(p(P:), p(P2))/d(Py, P») is locally
bounded, so that any polar set in D is projected to a polar set on ;. Con-
sequently p(4:(«a)) differs from an analytic set at most by a polar set and
hence is measurable with respect to 7.

Let 3; be the Borel set on Y, where the regular Green lines intersect
J, and denote by cp the regular Green line passing through P€ 3. Since

—— / 1
y . _ ~
{pe Hl’c<€1?$PI’r~vl>—>of(Q) > \nj fk\pkA”kQX t >>’
EcP

lim f is a.v-measurable function of P on X;. Similarly lim f is 7-measurable
cp cp
and the conclusion in the theorem follows immediately.

Now, suppose that a BLD function does not have a finite limit along any
curve of a family I” of regular Green lines with positive Green measure. The
parts of the curves of I" outside a small Green sphere around the pole form
a family with finite extremal length by Theorem 4. This contradicts Theorem
2. Thus Godefroid’s theorem is derived. We observe further that our
Theorem 3 together with its remark generalizes Theorem 2 of F-Y. Maeda

[4]
References

[17] M. Brelot and G. Choquet: Espaces et lignes de Green, Ann. Inst. Fourier, 3 (1952), pp. 199-
263.

[2] B. Fuglede: Extremal length and functional completion, Acta Math., 98 (1957), pp. 171-219.

[31 M. Godefroid: Une properiété des fonctions BLD dans un espace de Green, Ann. Inst. Fourier,
9 (1959), pp. 301-304.

[4] F-Y.Maeda: Notes on Green lines and Kuramochi boundary of a Green space, J. Sci. Hiro-
shima Univ. Ser. A-I Math., 28 (1964), pp. 59-66.

[5] M. Ohtsuka: Dirichlet problem, extremal length and prime ends, Lecture Notes, Washington
University, St. Louis, 1962-63.

Department of Mathematics,
Faculty of Science,
Hiroshima University.





