On Limits of BLD Functions along Curves

Makoto Онtsuka
(Received March 18, 1964)

In the preceding paper [4], F-Y. Maeda proved that almost every Green line converges to one point on the boundary obtained by a certain compactification of a Green space, notably for the Kuramochi boundary. We shall use the contents of [4] freely. In this note we shall prove that every curve on a space \mathscr{E} has a similar property, except for those belonging to a family with infinite extremal length.

Consider a space \mathscr{E} in the sense of Brelot and Choquet [1]; \mathscr{E} may not be a Green space. We begin with the definition of extremal length of a family Γ of locally rectifiable non-degenerate curves on \mathscr{E}. Any measurable function $\rho \geqq 0$ on \mathscr{E} with the property that $\int_{c} \rho d s$ is defined and $\geqq 1$ for each $c \in \Gamma$ is called admissible (in association with Γ) and the module $M(\Gamma)$ of Γ is defined by $\inf _{\rho} \int \rho^{2} d v$, where ρ is admissible and $d v$ is the volume element. The extremal length of Γ is defined by $1 / M(\Gamma)$. We shall say that almost every curve on \mathscr{E} has a certain property if the module of the exceptional family vanishes. The definitions of an admissible ρ and the module need obvious modifications in case the dimension of \mathscr{E} is two. However, we shall use higher dimensional phrases in the sequel.

Let $\overline{\mathscr{E}}$ be a topological space containing \mathscr{E} such that \mathscr{E} is everywhere dense in $\overline{\mathscr{E}}$ and any two points of $\overline{\mathscr{E}}$ are separated by a continuous function on $\overline{\mathscr{E}}$; $\overline{\mathscr{E}}$ may not be compact. We set $\Delta=\overline{\mathscr{E}}-\mathscr{E}$ and denote by $C_{\mathscr{E}}(\overline{\mathscr{E}})$ the family of functions consisting of the restrictions to \mathscr{E} of all the bounded continuous functions on $\overline{\mathscr{E}}$.

A family 2 of real functions on \mathscr{E} is said to separate points of $\overline{\mathscr{E}}$ (Δ resp.) if, for any different $P_{1}, P_{2} \in \bar{E}$ (Δ resp.), there is $f \in \mathscr{2}$ such that

$$
\lim _{\substack{P \rightarrow P_{1}^{\prime} \\ P \in G^{\prime}}} f(P)>\varlimsup_{\substack{P \rightarrow P_{2} \\ P \in G^{2}}} f(P) .
$$

We shall say that a function has a limit (a finite limit resp.) along an open curve on \mathscr{E} if it has a limit (a finite limit resp.) as the point moves on the curve in each direction.

Using the well-known inequality $M\left(\underset{n}{\cup} \Gamma_{n}\right) \leqq \sum_{n} M\left(\Gamma_{n}\right)$, we can prove the following theorem in a fashion similar to the proof of Theorem 1 of $\mathrm{F}-\mathrm{Y}$.

Maeda [4]:
Theorem 1. If one of the following conditions is satisfied, then almost every open curve on \mathscr{E} has at most one limit point in $\overline{\mathscr{E}}$ as the curve is traced in any direction:
i) There exists a countable family 2 of functions on \mathscr{E} such that each $f \in \mathscr{2}$ has a limit along almost every open curve and 2 separates points of $\overline{\mathscr{E}}$.
ii) $C_{\mathscr{E}}(\overline{\mathscr{E}})$ is separable in the uniform convergence topology and every function of $C_{\mathscr{E}}(\bar{E})$ has a limit along almost every open curve.

Let us be concerned with BLD functions. We shall obtain a generalization of Theorem 2. 28 of [5].

Theorem 2. Every BLD function f on \mathscr{E} has a finite limit along almost every open curve.

Proof. Fuglede [2] proved that any BLD function in a Euclidean space is absolutely continuous along almost all curves. It follows easily that f has this property on \mathscr{E}. If f is absolutely continuous along an open curve c on \mathscr{E} and if f does not have a finite limit along it, then

$$
\int_{c}|\operatorname{grad} f| d s \geqq \int_{c}\left|\frac{\partial f}{\partial s}\right| d s=\int_{c}|d f|=\infty .
$$

Hence, in association with the family Γ^{\prime} of all such $c, \rho=\varepsilon|\operatorname{grad} f|$ on \mathscr{E} is admissible for arbitrary $\varepsilon>0$. Consequently

$$
M\left(\Gamma^{\prime}\right) \leqq \int \rho^{2} d v=\varepsilon^{2} \int|\operatorname{grad} f|^{2} d v \rightarrow 0 \quad \text { as } \quad \varepsilon \rightarrow 0
$$

Our assertion is concluded.
Combining this result with Theorem 1 we obtain
Theorem 3. Suppose that Δ is not void and there exists a countable family of $B L D$ functions on \mathscr{E} separating points of Δ. Then almost every curve on \mathscr{E}, whose starting point lies in \mathscr{E} and which tends to the ideal boundary, has at most one limit point in Δ.

Remark. If $\overline{\mathscr{E}}$ is compact and metrizable and if $\left\{f \in C_{\mathscr{E}}(\overline{\mathscr{E}}) ; f\right.$ is a BLD function on $\mathscr{E}\}$ separates points of Δ, then the above condition is satisfied.

Corollary. Suppose that \mathscr{E} is a Green space. Then almost every curve, whose starting point lies in \mathscr{E} and which tends to the ideal boundary, converges to one point of the Kuramochi boundary of \mathscr{E}.

Next we are interested in Green lines on a Green space \mathscr{E} defined with respect to the Green function $G\left(P, P_{0}\right)$ with pole at P_{0}.

Theorem 4. Let Γ be a family of Green lines issuing from the pole and having a positive Green measure. Let Γ^{\prime} be the family consisting of the parts of the members of Γ outside a small Green sphere $\Sigma_{0}=\left\{P ; G\left(P, P_{0}\right)=t_{0}\right\}$ around the pole $P_{0} .{ }^{1)}$ Then $M\left(\Gamma^{\prime}\right)>0$.

Proof. We shall denote by γ the Green measure. It is defined on the family Λ_{0} of all Green lines issuing from the pole and $\rho_{\tau} \gamma(\Lambda)$ is equal to $\int_{\Sigma_{0} \cap A} \partial G / \partial n d S$, where \mathscr{P}_{τ} is a constant, Λ is any γ-measurable subfamily of Λ_{0}, $\partial G / \partial n$ is the normal derivative and $d S$ is the surface element on the boundary $\partial \boldsymbol{B}_{0}$. If ρ is admissible in association with Γ^{\prime}, then $\int_{c} \rho d s \geqq 1$ for each $c \in \Gamma^{\prime}$ and

$$
1 \leq \int_{c} \rho^{2}|\operatorname{grad} G|^{-1} d s \int_{c}|\operatorname{grad} G| d s=\int_{c} \rho^{2}\left|\frac{\partial G}{\partial s}\right|^{-1} d s \int_{c}|d G| .
$$

It follows that

$$
\begin{aligned}
\frac{\gamma(\Gamma)}{t_{0}} \leqq \int_{\Gamma} \frac{d \gamma}{\int_{c}|d G|} & \leqq \int_{\Gamma} \int_{c} \frac{\rho^{2}}{\left|\frac{\partial G}{\partial s}\right|} d s d \gamma=\frac{1}{\mathcal{P}_{\tau}} \iint_{\left[\Gamma^{\prime}\right]} \frac{\rho^{2}}{\left|-\frac{\partial G}{\partial s}\right|} d s\left|\frac{\partial G}{\partial n}\right| d S \\
& =\frac{1}{\mathcal{P}_{\tau}} \iint_{\left[\Gamma^{\prime}\right]} \rho^{2} d s d S=\frac{1}{\mathcal{Q}_{\tau}} \int_{\left[\Gamma^{\prime}\right]} \rho^{2} d v
\end{aligned}
$$

where $\left[\Gamma^{\prime}\right]$ means the set of points on Γ^{\prime} and $d S$ is the surface element on a level surface $\left\{P ; G\left(P, P_{0}\right)=\right.$ const. $\}$. Consequently,

$$
M\left(\Gamma^{\prime}\right) \geqq \frac{\mathcal{P}_{\tau} \gamma(\Gamma)}{t_{0}}>0
$$

In order to show that our Theorem 2 is an extension of Godefroid's theorem in [3] which asserts that every BLD function on any Green space has a finite limit along almost every regular Green line, we prove

Theorem 5. Let f be any BLD function on a Green space E. . Then the set of regular Green lines which issue from the fixed pole P_{0} and along each of which $\lim f$ exists is measurable with respect to the Green measure γ.

[^0]Proof. As a point set the family of all Green lines issuing from P_{0} forms a domain D. We denote by \mathscr{B}^{\prime} the family of subsets of D such that, for every $B^{\prime} \in \mathscr{B}^{\prime}$, there exists a Borel set $B \supset B^{\prime}$ with the property that $B-B^{\prime}$ is a polar set. We observe that f is \mathscr{B}^{\prime}-measurable and hence

$$
A_{t}(\alpha)=\left\{P \in D ; G\left(P, P_{0}\right)<t, f(P)>\alpha\right\}
$$

belongs to \mathscr{B}^{\prime} for any $t>0$ and α. Given a small Green sphere Σ_{0} around P_{0}, we call the intersection of Σ_{0} with a Green line issuing from P_{0} the projection on Σ_{0} of any point of the Green line. We can speak of the projection on Σ_{0} of any subset E of D too, and denote it by $p(E)$. Denote by $d\left(P_{1}, P_{2}\right)$ the Euclidean distance considered locally. Then $d\left(p\left(P_{1}\right), p\left(P_{2}\right)\right) / d\left(P_{1}, P_{2}\right)$ is locally bounded, so that any polar set in D is projected to a polar set on Σ_{0}. Consequently $p\left(A_{t}(\alpha)\right)$ differs from an analytic set at most by a polar set and hence is measurable with respect to γ.

Let Σ_{1} be the Borel set on Σ_{0} where the regular Green lines intersect Σ_{0}, and denote by c_{P} the regular Green line passing through $P \in \Sigma_{1}$. Since

$$
\left\{P \in \Sigma_{1} ; \varlimsup_{\substack{G\left(Q P_{0,0)}^{Q \in c_{P}}\right.}} f(Q)>\alpha\right\}=\cup_{n} \bigcap_{k} p\left(A_{1 \mid k}\left(\alpha+\frac{1}{n}\right)\right),
$$

$\varlimsup_{c_{P}} f$ is a. γ-measurable function of P on Σ_{1}. Similarly $\lim _{c_{P}} f$ is γ-measurable and the conclusion in the theorem follows immediately.

Now, suppose that a BLD function does not have a finite limit along any curve of a family Γ of regular Green lines with positive Green measure. The parts of the curves of Γ outside a small Green sphere around the pole form a family with finite extremal length by Theorem 4. This contradicts Theorem 2. Thus Godefroid's theorem is derived. We observe further that our Theorem 3 together with its remark generalizes Theorem 2 of F-Y. Maeda [4].

References

[1] M. Brelot and G. Choquet: Espaces et lignes de Green, Ann. Inst. Fourier, 3 (1952), pp. 199263.
[2] B. Fuglede: Extremal length and functional completion, Acta Math., 98 (1957), pp. 171-219.
[3] M. Godefroid: Une properiété des fonctions BLD dans un espace de Green, Ann. Inst. Fourier, 9 (1959), pp. 301-304.
[4] F-Y. Maeda: Notes on Green lines and Kuramochi boundary of a Green space, J. Sci. Hiroshima Univ. Ser. A-I Math., 28 (1964), pp. 59-66.
[5] M. Ohtsuka: Dirichlet problem, extremal length and prime ends, Lecture Notes, Washington University, St. Louis, 1962-63.

Department of Mathematics, Faculty of Science, Hiroshima University.

[^0]: 1) In case P_{0} is a point at infinity, by a "small" Green sphere we mean actually a large Green sphere.
