On a Design for Two-way Elimination of Heterogeneity and its Analysis

Kumaichi Kusumoto
(Received September 21, 1964)

1. Introduction and summary

In this paper we shall propose a new type of design for two-way elimination of heterogeneity and deal with its analysis. Many types of designs for two-way elimination of heterogeneity, such as, Latin square designs, Youden square designs and some other extended designs, have been proposed and investigated. The type of row-column incidence matrices, however, of those traditional designs is a restrictive one in that it is complete. In other words, every row block consists of all plots, each of which belongs to any one of the column blocks and vice versa.

The row-column incidence matrix of a design for two-way elimination of heterogeneity may not necessarily be complete, but any one of the plots belongs to one and only one of the row blocks and one and only one of the column blocks simultaneously. In this connection, we shall propose in section 2 a new type of row-column incidence matrix for two-way elimination of heterogeneity. The matrix is not complete but a direct arrangement of some complete type matrices. In section 3 we shall introduce a treatmentplot incidence matrix subject to some conditions, and shall define a relationship algebra of the design. Complete analysis of the relationship algebra of the design will be presented in section 4 along the line due to S. Yamamoto and Y. Fujii [3]. Analysis of variance of the design will be presented in section 5. Two examples of the design proposed in this paper will be presented in section 6.

It will be seen that, in any one of the complete portions of row-column incidence, the design is insufficient for the purpose of the analysis, but the suitable combination of these portions gives us a design for two-way elimination which is sufficient for the purpose of the analysis.

2. A new type of row-column incidence matrix

Let Ψ_{1} be the row-plot incidence matrix defined as,

$$
\begin{equation*}
\Psi_{1}=\left\|\psi_{1 f a}\right\| \tag{1}
\end{equation*}
$$

where

$$
\psi_{1 f a}= \begin{cases}1 & \text { if } f \text {-th plot belongs to } a \text {-th row } \\ 0 & \text { otherwise }\end{cases}
$$

and let Ψ_{2} be the column-plot incidence matrix defined as,

$$
\begin{equation*}
\Psi_{2}=\left\|\psi_{2 f p}\right\| \tag{2}
\end{equation*}
$$

where

$$
\psi_{2 f p}= \begin{cases}1 & \text { if } f \text {-th plot belongs to } p \text {-th column } \\ 0 & \text { otherwise }\end{cases}
$$

The elements of the row-column incidence matrix,

$$
\begin{equation*}
M=\Psi_{1}^{\prime} \Psi_{2}=\left\|m_{a p}\right\| \tag{3}
\end{equation*}
$$

are assumed to be 1 or 0 according as the a-th row and p-th column have a common plot or not.

If we introduce the notion of connectedness between two treatments familiar in a block design into the relation between two rows (columns) of such an incomplete row-column incidence matrix M, we can divide it into, say, h connected portions. Without loss of generality, after labeling suitably the number of plots, rows and columns, we can express the matrices M, Ψ_{1} and Ψ_{2} as follows:

$$
M=\Psi_{1}^{\prime} \Psi_{2}=\| \|^{M_{1}} \begin{array}{llll}
& & \tag{4}\\
& M_{2} & & \\
& & \ddots & \\
& & M_{h}
\end{array} \|_{\|}
$$

where M_{i} is an $x_{i} \times y_{i}$ matrix,

$$
\Psi_{1}=\left\|\Psi^{\Psi_{11}} \begin{array}{llll}
& & \tag{5}\\
& & \Psi_{12} & \\
& & & \\
& & \\
\Psi_{1 h}
\end{array}\right\|
$$

where $\Psi_{1 i}$ is an $x_{i} y_{i} \times x_{i}$ matrix, and

$$
\begin{equation*}
\Psi_{2}=\| \Psi^{21} \Psi_{22} \tag{6}
\end{equation*}
$$

where $\Psi_{2 i}$ is an $x_{i} y_{i} \times y_{i}$ matrix, for any $i=1,2, \ldots, h$. Let the number of
rows, columns and plots be b_{1}, b_{2} and n respectively, then we have $\sum_{i=1}^{h} x_{i}=b_{1}$, $\sum_{i=1}^{h} y_{i}=b_{2}$ and $\sum_{i=1}^{h} x_{i} y_{i}=n$.

If we denote

$$
\begin{equation*}
\Psi_{1}^{\prime} \Psi_{1}=D_{1}, \quad \Psi_{2}^{\prime} \Psi_{2}=D_{2} \tag{7}
\end{equation*}
$$

the definitions of Ψ_{1} and Ψ_{2} show that these are diagonal matrices, all diagonal elements of which are positive integers.

Define U_{1} and U_{2} as

$$
U_{1}=\Psi_{1} D_{1}^{-1} \Psi_{1}^{\prime}, \quad U_{2}=\Psi_{2} D_{2}^{-1} \Psi_{2}^{\prime}
$$

then we can express these as

$$
\left.\begin{aligned}
& U_{1}=\| \Psi_{11} D_{11}^{-11 \Psi_{11}^{\prime}} \\
& \\
& \\
& \\
& \\
& \\
& U_{2}= \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \Psi_{21} D_{21}^{-1} \Psi_{2 h}^{\prime} D_{1 h}^{-1} \Psi_{1 h}^{\prime}
\end{aligned} \right\rvert\,
$$

where $D_{1 i}=\Psi_{1 i}^{\prime} \Psi_{1 i}$ and $D_{2 i}=\Psi_{2 i}^{\prime} \Psi_{2 i}$ for $i=1,2, \ldots, h$.
We shall prove the following theorem.

Theorem I. The matrices U_{1} and U_{2} are commutative, if and only if the row-column incidence matrix M is expressed as

$$
\left.M=\| \begin{array}{|llll}
G\left(x_{1} \times y_{1}\right) & & \tag{8}\\
& G\left(x_{2} \times y_{2}\right) & & \\
& \ddots & \\
& & \ddots & \\
& & & G\left(x_{h} \times y_{h}\right)
\end{array} \right\rvert\,
$$

where $G\left(x_{i} \times y_{i}\right)$ denotes an $x_{i} \times y_{i}$ matrix whose elements are all unity for any $i=1,2, \ldots, h$.

Proof. Assume that $U_{1} U_{2}=U_{2} U_{1}$. The assumption holds if and only if

$$
\begin{equation*}
\Psi_{1 i} D_{1 i}^{-1} \Psi_{1 i}^{\prime} \Psi_{2 i} D_{2 i}^{-1} \Psi_{2 i}^{\prime}=\Psi_{2 i} D_{2 i}^{-1} \Psi_{2 i}^{\prime} \Psi_{1 i} D_{1 i}^{-1} \Psi_{1 i}^{\prime} \tag{9}
\end{equation*}
$$

holds for any one of the connected portions of M, i.e., for any $M_{i}=\Psi_{1 i}^{\prime} \Psi_{2 i}$. An (f, g) element $(f \neq g)$ of the matrix $\Psi_{1 i} D_{1 i}^{-1} \Psi_{1 i}^{\prime} \Psi_{2 i} D_{2 i}^{-1} \Psi_{2 i}^{\prime}$ is non-zero if and only if there exist a row a containing f-th plot, and a column p containing g-th plot, and the row a and the column p have a common f^{\prime}-th plot. Similarly the (f, g) element of the matrix $\Psi_{2 i} D_{2 i}^{-1} \Psi_{2 i}^{\prime} \Psi_{1 i} D_{1 i}^{-1} \Psi_{1 i}^{\prime}$ is non-zero, if and only if there exist a column q containing f-th plot, and a row b containing g-th plot, and the column q and the row b have a common g^{\prime}-th plot.

Thus, if $m_{a q}=1$ and $m_{b p}=1$, then either of $m_{a p}=1$ and $m_{b q}=1$, or $m_{a p}=0$ and $m_{b q}=0$ holds in each of the connected portions $M_{i}(i=1,2, \ldots, h)$. Moreover, since each of the M_{i} is connected in the row-column incidence, it can be seen that if $m_{a q}=1$ and $m_{b p}=1$ then $m_{a p}=1$ and $m_{b q}=1$ hold for any two rows a and b, and for any two columns p and q in the same portion. Thus all elements of M_{i} are unity, i.e., $M_{i}=G\left(x_{i} \times y_{i}\right)$ for all $i=1, \ldots, h$.

Conversely, assume that (8) holds. Since $D_{1 i}=y_{i} I_{x_{i}}, D_{2 i}=x_{i} I_{y_{i}}$, and

$$
\begin{aligned}
& \left.=\| \begin{array}{llll}
\frac{1}{x_{1} y_{1}} G\left(x_{1} y_{1} \times x_{1} y_{1}\right) & & \\
& \ddots & \\
& & \ddots & \\
& & \frac{1}{x_{h} y_{h}} G\left(x_{h} y_{h} \times x_{h} y_{h}\right)
\end{array} \right\rvert\,
\end{aligned}
$$

the matrix $U_{1} U_{2}$ is symmetric. As U_{1} and U_{2} are symmetric, U_{1} and U_{2} are commutative.

3. A design and its relationship algebra

In this section we shall define a design for two-way elimination, the rowcolumn incidence matrix of which is given by (8). Assume that each plot receives any one of the v treatments, and that among those v treatments an association of m-associate classes is defined:
(a) Any two treatments are either 1st, or $2 \mathrm{nd}, \ldots$, or m-th associates, the relation of association being symmetrical.
(b) Each treatment α has $n_{i} i$-th associates, the number n_{i} being independent of α.
(c) If any two treatments α and β are i-th associates, then the number of treatments being j-th associates of α and k-th associates of β, is $p_{j k}^{i}$ and is independent of the pair of i-th associates α and β.

Association matrices which are matrix representation of the scheme are,

$$
A_{i}=\left\|a_{\alpha i}^{\beta}\right\|, \quad i=0,1,2, \ldots, m
$$

where $\quad a_{\alpha i}^{\beta}= \begin{cases}1 & \text { if the treatment } \alpha \text { is } i \text {-th associate of } \beta, \\ 0 & \text { otherwise. }\end{cases}$

A commutative algebra \mathfrak{A} generated by those association matrices $A_{0}=$ $I_{v}, A_{1}, \ldots, A_{m}$ is called an association algebra. It is known that the algebra is completely reducible and its minimum two-sided ideals are linear. Let $A_{0}^{\#}=\frac{1}{v} G_{v}, A_{1}^{\#}, \ldots, A_{m}^{\#}$ be their principal idempotents, then the linear closure of these idempotents also gives the association algebra, i.e.,

$$
\mathfrak{A}=\left[A_{0}^{\#}, A_{1}^{*}, \ldots, A_{m}^{\#}\right]
$$

Let Φ be the treatment-plot incidence matrix defined as,

$$
\begin{equation*}
\Phi=\left\|\varphi_{f \alpha}\right\| \tag{10}
\end{equation*}
$$

where $\quad \varphi_{f \alpha}= \begin{cases}1 & \text { if } f \text {-th plot receives } \alpha \text {-th treatment }, \\ 0 & \text { otherwise. }\end{cases}$
Φ may be expressed in the following form

$$
\Phi=\left\|\begin{array}{c}
\Phi_{1} \tag{11}\\
\Phi_{2} \\
\vdots \\
\Phi_{h}
\end{array}\right\|
$$

where Φ_{i} 's are $\left(x_{i} y_{i} \times v\right)$ matrices respectively for $i=1,2, \ldots, h$.
The treatment-row incidence matrix of the design is

$$
\begin{equation*}
\Phi^{\prime} \Psi_{1}=N_{1}=\left\|\Phi_{1}^{\prime} \Psi_{11} \ldots \ldots \cdot \Phi_{h}^{\prime} \Psi_{1 h}\right\| \tag{12}
\end{equation*}
$$

The treatment-column incidence matrix of the design is

$$
\begin{equation*}
\Phi^{\prime} \Psi_{2}=N_{2}=\left\|\Phi_{1}^{\prime} \Psi_{21} \ldots \ldots \Phi_{h}^{\prime} \Psi_{2 h}\right\| \tag{13}
\end{equation*}
$$

Now we assume that the design satisfies the following four assumptions:
$1^{\circ} \quad U_{1} U_{2}=U_{2} U_{1}$
2°

$$
\Phi_{i}^{\prime} \Phi_{i}=r_{i} I_{v} \quad(i=1,2, \ldots, h), \quad \sum_{i=1}^{h} r_{i}=r
$$

3°

$$
N_{1} D_{1}^{-1} N_{1}^{\prime}=\rho_{10} A_{0}^{\#}+\rho_{11} A_{1}^{\#}+\ldots+\rho_{1 m} A_{m}^{\#}
$$

4°

$$
N_{2} D_{2}^{-1} N_{2}^{\prime}=\rho_{20} A_{0}^{\#}+\rho_{21} A_{1}^{\#}+\cdots+\rho_{2 m} A_{m}^{\#}
$$

where $\rho_{10}, \rho_{11}, \ldots$, and $\rho_{1 m}$ are latent roots of $N_{1} D_{1}^{-1} N_{1}^{\prime}$ and $\rho_{20}, \rho_{21}, \cdots$, and $\rho_{2 m}$ are latent roots of $N_{2} D_{2}^{-1} N_{2}^{\prime}$.

Denote as,

$$
\begin{align*}
& T_{i}^{*}=\Phi A_{i}^{*} \Phi^{\prime} \quad(i=1,2, \cdots, m) \\
& V_{1}=U_{1}-U_{1} U_{2}, \quad V_{2}=U_{2}-U_{1} U_{2}, \quad W=U_{1} U_{2} \tag{14}\\
& \left(\text { For } A_{0}^{*}, \Phi A_{0}^{*} \Phi^{\prime}=\frac{r}{n} G_{n} \text { holds }\right)
\end{align*}
$$

From the assumptions $1^{\circ}, 2^{\circ}, 3^{\circ}$ and 4°, the following relations may easily be verified,

$$
\begin{align*}
& V_{1} V_{2}=0, \quad V_{1} W=0, \quad V_{2} W=0 \\
& W T_{i}^{\#}=0 \\
& T_{i}^{\ddagger} T_{j}^{\#}=r \delta_{i j} T_{i}^{\#} \tag{15}\\
& T_{i}^{\#} V_{1} T_{j}^{\sharp}=\rho_{1 i} \delta_{i j} T_{i}^{\#} \\
& T_{i}^{\sharp} V_{2} T_{j}^{\psi}=\rho_{2 i} \delta_{i j} T_{i}^{\sharp}, \quad(i, j=1,2, \cdots, m)
\end{align*}
$$

An algebra \mathfrak{R} generated by $I, G, T_{1}^{\#}, T_{2}^{\ddagger}, \ldots, T_{m}^{\ddagger}, V_{1}, V_{2}$ and W is called the relationship algebra of the design.

4. Analysis of the relationship algebra of the design

In order to find the ideals of the algebra \mathfrak{R}, the following Lemmas are useful.

Lemma 1.

$$
0 \leq \rho_{1 i} \leq r, \quad 0 \leq \rho_{2 i} \leq r, \quad 0 \leq \rho_{1 i}+\rho_{2 i} \leq r, \quad \text { for } \quad i=1,2, \ldots, m .
$$

Proof. Since $N_{1} D_{1}^{-1} N_{1}^{\prime}$ and $N_{2} D_{2}^{-1} N_{2}^{\prime}$ are positive semi-definite matrices, it follows $\rho_{1 i} \geq 0, \rho_{2 i} \geq 0$. Since $\left\{T_{i}^{\#}\left(I-V_{1}-V_{2}\right)\right\}\left\{T_{i}^{\#}\left(I-V_{1}-V_{2}\right)\right\}^{\prime} T_{i}^{\#}=r(r-$ $\left.\rho_{1 i}-\rho_{2 i}\right) T_{i}^{\#}$, it follows $r \geq \rho_{1 i}+\rho_{2 i}$.

Lemma 2.
(ii)

$$
\begin{array}{lll}
T_{i}^{\sharp} V_{1}=V_{1} T_{i}^{\sharp}=0, & \text { if and only if } & \rho_{1 i}=0 . \tag{i}\\
T_{i}^{\sharp} V_{1}=V_{1} T_{i}^{\sharp}=T_{i}^{\#}, & \text { if and only if } & \rho_{1 i}=r . \\
T_{i}^{\sharp} V_{1} \neq V_{1} T_{i}^{\sharp}, & \text { if and only if } 0<\rho_{1 i}<r . \\
T_{i}^{\sharp} V_{2}=V_{2} T_{i}^{\sharp}=0, & \text { if and only if } & \rho_{2 i}=0 . \\
T_{i}^{\sharp} V_{2}=V_{2} T_{i}^{\sharp}=T_{i}^{\sharp}, & \text { if and only if } & \rho_{2 i}=r . \\
T_{i}^{\sharp} V_{2} \neq V_{2} T_{i}^{\sharp}, & \text { if and only if } 0<\rho_{2 i}<r .
\end{array}
$$

$$
\begin{align*}
& T_{i}^{\sharp}\left(V_{1}+V_{2}\right)=\left(V_{1}+V_{2}\right) T_{i}^{*}=0, \tag{iii}\\
& \\
& \text { if and only if } \rho_{1 i}=\rho_{2 i}=0 . \\
& T_{i}^{\ddagger}\left(V_{1}+V_{2}\right)=\left(V_{1}+V_{2}\right) T_{i}^{\ddagger}=T_{i}^{\#}, \\
& \\
& \text { if and only if } \rho_{1 i}+\rho_{2 i}=r .
\end{align*}
$$

Lemma 2 is essentially the same with that given in [3].
Lemma 3. Nine matrices $T_{i}^{\#}, V_{1} T_{i}^{\sharp}, T_{i}^{\sharp} V_{1}, V_{2} T_{i}^{\#}, T_{i}^{\sharp} V_{2}, V_{1} T_{i}^{\sharp} V_{1}, V_{1} T_{i}^{\sharp} V_{2}$, $V_{2} T_{i}^{\sharp} V_{1}$ and $V_{2} T_{i}^{\sharp} V_{2}$ are linearly independent, if and only if

$$
0<\rho_{1 i}<r, \quad 0<\rho_{2 i}<r \quad \text { and } \quad 0<\rho_{1 i}+\rho_{2 i}<r,
$$

or if and only if

$$
V_{1} T_{i}^{\#} \neq T_{i}^{\sharp} V_{1}, \quad V_{2} T_{i}^{\sharp} \neq T_{i}^{\sharp} V_{2} \quad \text { and } \quad\left(V_{1}+V_{2}\right) T_{i}^{\#} \neq T_{i}^{\#}\left(V_{1}+V_{2}\right) .
$$

Proof. Assume that $0<\rho_{1 i}<r, 0<\rho_{2 i}<r$ and $0<\rho_{1 i}+\rho_{2 i}<r$, and for some constants a, b, c, d, e, f, g, h and k, we have

$$
\begin{gather*}
a T_{i}^{\ddagger}+b V_{1} T_{i}^{\ddagger}+c T_{i}^{\ddagger} V_{1}+d V_{2} T_{i}^{\ddagger}+e T_{i}^{\sharp} V_{2}+f V_{1} T_{i}^{\sharp} V_{1} \tag{16}\\
+g V_{1} T_{i}^{\ddagger} V_{2}+h V_{2} T_{i}^{\sharp} V_{1}+k V_{2} T_{i}^{\ddagger} V_{2}=0
\end{gather*}
$$

Multiplying (16) by $V_{1} T_{i}^{*}$ or $V_{2} T_{i}^{\ddagger}$ from the right and by $T_{i}^{\ddagger} V_{1}$ or $T_{i}^{\ddagger} V_{2}$ from the left, we have

$$
\begin{align*}
& a+b+c+f=0 \tag{17}\\
& a+b+e+g=0 \tag{18}\\
& a+c+d+h=0 \tag{19}\\
& a+d+e+k=0 \tag{20}
\end{align*}
$$

Multiplying (16) by $T_{i}^{\#}$ from the right and V_{1} or V_{2} from the left, we have

$$
\begin{align*}
& (a+b) r+(c+f) \rho_{1 i}+(e+g) \rho_{2 i}=0 \tag{21}\\
& (a+d) r+(c+h) \rho_{1 i}+(e+k) \rho_{2 i}=0
\end{align*}
$$

Multiplying (16) by V_{1} or V_{2} from the right and $T_{i}^{\#}$ from the left, we have

$$
\begin{align*}
& (a+c) r+(b+f) \rho_{1 i}+(d+h) \rho_{2 i}=0 \tag{22}\\
& (a+e) r+(b+g) \rho_{1 i}+(d+k) \rho_{2 i}=0
\end{align*}
$$

Using from (17) to (22), we have

$$
\begin{equation*}
a=f=g=h=k=-b=-c=-d=-e \tag{23}
\end{equation*}
$$

As $\left(I-V_{1}-V_{2}\right) T_{i}^{\ddagger}\left(I-V_{1}-V_{2}\right) \neq 0$, we have $a=0$, and the proof is complete.
Lemma 4. Among nine matrices $T_{i}^{\ddagger}, V_{1} T_{i}^{\ddagger}, T_{i}^{\ddagger} V_{1}, V_{2} T_{i}^{\#}, T_{i}^{\sharp} V_{2}, V_{1} T_{i}^{\#} V_{1}$, $V_{1} T_{i}^{\sharp} V_{2}, V_{2} T_{i}^{\sharp} V_{1}$ and $V_{2} T_{i}^{\#} V_{2}$:
(i) Four matrices $T_{i}^{\ddagger}, V_{1} T_{i}^{\ddagger}, T_{i}^{*} V_{1}$ and $V_{1} T_{i}^{\ddagger} V_{1}$ are linearly independent and the rest are zero matrices if and only if

$$
0<\rho_{1 i}<r \quad \text { and } \quad \rho_{2 i}=0
$$

(ii) Four matrices $T_{i}^{*}, V_{2} T_{i}^{*}, T_{i}^{\sharp} V_{2}$ and $V_{2} T_{i}^{*} V_{2}$ are linearly independent and the rest are zero matrices if and only if

$$
0<\rho_{2 i}<r \quad \text { and } \quad \rho_{1 i}=0
$$

(iii) Four matrices $V_{1} T_{i}^{\sharp} V_{1}, V_{1} T_{i}^{\ddagger} V_{2}, V_{2} T_{i}^{\sharp} V_{1}$ and $V_{2} T_{i}^{\sharp} V_{2}$ are linearly independent and the rest are linearly dependent on these if and only if

$$
\rho_{1 i}+\rho_{2 i}=r \quad \text { and } \quad 0<\rho_{1 i} \quad \text { or } \quad \rho_{2 i}<r .
$$

The proof of this lemmas is analogous to that given by S. Yamamoto
and Y. Fujii [3], and the proof is omitted.
Now we have the following theorem.
Theorem II. In a design satisfying the assumptions $1^{\circ}, 2^{\circ}, 3^{\circ}$ and 4°, each component of the treatment sum of squares, corresponding respectively to each of the mutually orthogonal families of treatment contrasts determined by the association scheme, can be classified into one of the following seven cases according to the magnitude of the corresponding densities $\rho_{1 i}$ and $\rho_{2 i}$ in the spectral resolution of $N_{1} D_{1}^{-1} N_{1}^{\prime}$ and $N_{2} D_{2}^{-1} N_{2}^{\prime}$.
(1) The case being orthogonal to rows and columns: $\rho_{1 i}=\rho_{2 i}=0$. In this case, $\left[T_{i}^{*}\right]$ is the one dimensional two-sided ideal of \mathfrak{R}, and the principal idempotent of the ideal is $E_{i}^{(1)}=\frac{1}{r} T_{i}^{\#}$. The component S.S. (sum of squares) of $\alpha_{i}\left(=\operatorname{tr}\left(A_{i}^{\#}\right)\right)$ degrees of freedom corresponding to $A_{i}^{\#}$ and being defined by ${ }_{r} T_{i}^{*}$, is orthogonal to the row-block space and the column-block space.
(2) The case being confounded with columns: $\rho_{1 i}=0$ and $\rho_{2 i}=r$. In this case, [$\left.T_{i}^{\ddagger}\right]$ is the one dimensional two-sided ideal of \mathfrak{R}, and the principal idempotent of the ideal is $E_{i}^{(1)}=\frac{1}{r} T_{i}^{\ddagger}$. The component S.S. of α_{i} degrees of freedom corresponding to A_{i}^{\ddagger} and defined by $\frac{1}{r} T_{i}^{\ddagger}$, is orthogonal to the row-block space but confounded with the column-block space.
(3) The case being confounded with rows: $\rho_{2 i}=0$ and $\rho_{1 i}=r$. This is similar to the case (2).
(4) The case being orthogonal to rows with partial confounding to columns: $\rho_{1 i}=0$ and $0<\rho_{2 i}<r$. In this case, $\left[T_{i}^{\ddagger}, V_{2} T_{i}^{\ddagger}, T_{i}^{\ddagger} V_{2}, V_{2} T_{i}^{\ddagger} V_{2}\right]$ is the four dimensional two-sided ideal of \mathfrak{R}, and the principal idempotent of the ideal is

$$
E_{i}^{(2)}=\frac{1}{r-\rho_{2 i}}\left(T_{i}^{\sharp}-V_{2} T_{i}^{\sharp}-T_{i}^{\sharp} V_{2}+\frac{r}{\rho_{2 i}} V_{2} T_{i}^{\sharp} V_{2}\right)
$$

The component S.S. of $2 \alpha_{i}$ degrees of freedom corresponding to A_{i}^{*} and being defined by $E_{i}^{(2)}$, is orthogonal to row-block space and partially confounded with column-block space. The non-principal idempotent of the ideal being orthogonal to both row and column-block spaces, is

$$
F_{i}^{(1)}=E_{i}^{(2)}\left(I-V_{2}\right)=\frac{1}{r-\rho_{2 i}}\left(I-V_{2}\right) T_{i}^{\#}\left(I-V_{2}\right)
$$

The residual idempotent of the ideal being orthogonal to $F_{i}^{(1)}$ and confounded
with the column-block space, is

$$
E_{V_{2} i}^{(1)}=E_{i}^{(2)} V_{2}=\frac{1}{\rho_{2 i}} V_{2} T_{i}^{\sharp} V_{2}
$$

The degrees of freedom of these compoents defined by $F_{i}^{(1)}$ and $E_{V_{2 i}}^{(1)}$ are α_{i}.
(5) The case being orthogonal to columns with partial confounding to rows: $0<\rho_{1 i}<r$ and $\rho_{2 i}=0$. This is similar to the case (4).
(6) The case being confounded with both rows and columns: $0<\rho_{1 i}<r$, $0<\rho_{2 i}<r$ and $\rho_{1 i}+\rho_{2 i}=r$. In this case, $\left[V_{1} T_{i}^{\sharp} V_{1}, V_{1} T_{i}^{\ddagger} V_{2}, V_{2} T_{i}^{\ddagger} V_{1}, V_{2} T_{i}^{\sharp} V_{2}\right]$ is the four dimensional two-sided ideal of \mathfrak{R}, and the principal idempotent of the ideal is

$$
E_{i}^{(2)}=\frac{1}{\rho_{1 i}} V_{1} T_{i}^{\sharp} V_{1}+\frac{1}{\rho_{2 i}} V_{2} T_{i}^{\ddagger} V_{2}
$$

The component S.S. of $2 \alpha_{i}$ degrees of freedom corresponding to A_{i}^{*} and defined by $E_{i}^{(2)}$ is totally confounded with row and column-block spaces. The nonprincipal idempotent of the ideal being orthogonal to the column-block space and confounded with the row-block space is $E_{V_{1 i}}^{(1)}=\frac{1}{\rho_{1 i}} V_{1} T_{i}^{*} V_{1}$. The non-principal idempotent of the ideal being orthogonal to the row-block space and confounded with the column-block space is $E_{V_{2} i}^{(1)}=\frac{1}{\rho_{2 i}} V_{2} T_{i}^{\sharp} V_{2}$. The degrees of freedom of these components are α_{i}.
(7) The case being partially confounded with both rows and columns: $0<\rho_{1 i}<r$ and $0<\rho_{2 i}<r$ and $0<\rho_{1 i}+\rho_{2 i}<r$. In this case, [$T_{i}^{\ddagger}, V_{1} T_{i}^{\ddagger}, V_{2} T_{i}^{\ddagger}, T_{i}^{\ddagger} V_{1}$, $\left.V_{1} T_{i}^{\ddagger} V_{1}, V_{2} T_{i}^{\ddagger} V_{1}, T_{i}^{\sharp} V_{2}, V_{1} T_{i}^{\ddagger} V_{2}, V_{2} T_{i}^{\ddagger} V_{2}\right]$ is the nine dimensional two-sided ideal of \mathfrak{R}, and the principal idempotent of the ideal is

$$
\begin{gathered}
E_{i}^{(3)}=\frac{1}{r-\rho_{1 i}-\rho_{2 i}} \\
\left(T_{i}^{\ddagger}-V_{1} T_{i}^{\sharp}-V_{2} T_{i}^{\ddagger}-T_{i}^{\sharp} V_{1}-T_{i}^{\ddagger} V_{2}+V_{2} T_{i}^{\ddagger} V_{1}+V_{1} T_{i}^{\ddagger} V_{2}\right. \\
\\
\left.+\frac{r-\rho_{2 i}}{\rho_{1 i}} V_{1} T_{i}^{\ddagger} V_{1}+\frac{r-\rho_{1 i}}{\rho_{2 i}} V_{2} T_{i}^{\ddagger} V_{2}\right)
\end{gathered}
$$

The component S.S. of $3 \alpha_{i}$ degrees of freedom corresponding to A_{i}^{\neq}and defined by $E_{i}^{(3)}$ is partially confounded with the row-block space and column-block space. The non-principal idempotent of the ideal being orthogonal to both of the rowblock space and column-block space is

$$
\begin{aligned}
F_{i}{ }^{1)} & =E_{i}^{(3)}\left(I-V_{1}-V_{2}\right) \\
& =\frac{1}{r-\rho_{1 i}-\rho_{2 i}}\left(I-V_{1}-V_{2}\right) T_{i}^{\ddagger}\left(I-V_{1}-V_{2}\right)
\end{aligned}
$$

The non-principal idempotent of the ideal being confounded with column-block space is

$$
E_{V_{2} i}^{(1)}=E_{i}^{(3)} V_{2}=\frac{1}{\rho_{2 i}} V_{2} T_{i}^{\psi} V_{2}
$$

The residual idempotent of the ideal being confounded with row-block space is

$$
E_{V_{1} i}^{(1)}=E_{i}^{(3)} V_{1}=\frac{1}{\rho_{1 i}} V_{1} T_{i}^{\sharp} V_{1}
$$

The degrees of freedom of these components defined by $F_{i}^{(1)}, E_{V_{2} i}^{(1)}$ and $E_{V_{1} i}^{(1)}$ are α_{i}.

The proofs of the case (1) to (5) are (formally) the same as S. Yamamoto and Y. Fujii [3].

Proof of case (6): From Lemma 3 (iii), it follows that

$$
\begin{gathered}
I(\mathfrak{J})=(\mathfrak{J})\left\|\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right\| \\
G(\mathfrak{J})=(\mathfrak{J})\left\|\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right\| \\
V_{1}(\mathfrak{J})=(\mathfrak{J})\left\|\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right\| \\
V_{2}(\mathfrak{J})=(\mathfrak{J})\left\|\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right\| \\
T_{j}^{\ddagger}(\mathfrak{J})=(\mathfrak{J}) \delta_{i j}\left\|\begin{array}{llll}
\rho_{1 i} & \rho_{2 i} & 0 \\
\rho_{1 i} & \rho_{2 i} & \rho_{1 i} & \rho_{2 i} \\
0 & \rho_{1 i} & \rho_{2 i}
\end{array}\right\|
\end{gathered}
$$

$$
W(\mathfrak{F})=(\boldsymbol{\Im}) \| \begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}
$$

where $(\mathfrak{J})=\left(V_{1} T_{i}^{\sharp} V_{1}, V_{2} T_{i}^{\sharp} V_{1}, V_{1} T_{i}^{\sharp} V_{2}, V_{2} T_{i}^{\sharp} V_{2}\right)$. Thus the sub-algebra $\left[V_{1} T_{i}^{\sharp} V_{1}\right.$, $V_{2} T_{i}^{\sharp} V_{1}, V_{1} T_{i}^{\sharp} V_{2}, V_{2} T_{i}^{\#} V_{2}$] is a four-dimensional two-sided ideal of \mathfrak{F}. The ideal is irreducible because we can find the following irreducible representation:

$$
\begin{array}{rl}
I \rightarrow \| & \begin{array}{ll}
1 & 0 \\
0 & 1
\end{array} \|, \\
V_{2} \rightarrow \| & G \rightarrow\left\|\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right\|, \\
0 & 0 \\
0 & 1
\end{array}\|, \quad W \rightarrow\| \begin{array}{ll}
1 & \begin{array}{ll}
1 & 0 \\
0 & 0
\end{array} \| \\
0 & 0
\end{array}\left\|, \quad T_{j}^{\#} \rightarrow \delta_{i j}\right\| \begin{array}{ll}
\rho_{1 i} & \rho_{2 i} \\
\rho_{1 i} & \rho_{2 i}
\end{array}\|.\| \begin{array}{ll}
& W
\end{array}
$$

Thus the principal idempotent of the ideal is $E_{i}^{(2)}$, and its trace is $2 \alpha_{i}$.
Proof of case (7); From Lemma 4, it follows that

$$
\begin{aligned}
& I\left(\mathfrak{J}^{*}\right)=\left(\mathfrak{F}^{*}\right)\left\|\begin{array}{lllllllll}
1 & 0 & 0 & & & & & \\
0 & 1 & 0 & & 0 & & & 0 & \\
0 & 0 & 1 & & & & & & \\
& & 1 & 0 & 0 & & & \\
& 0 & 0 & 1 & 0 & & 0 & \\
& & 0 & 0 & 1 & & & & \\
& 0 & & & 0 & & 1 & 0 & 1 \\
0 & 0 \\
& & & & & 0 & 0 & 1
\end{array}\right\| \\
& \left.G\left(\mathfrak{J}^{*}\right)=\left(\mathfrak{J}^{*}\right) \| \begin{array}{ccccccccc}
0 & 0 & 0 & & & & & & \\
0 & 0 & 0 & & 0 & & & 0 & \\
0 & 0 & 0 & & & & & & \\
& & 0 & 0 & 0 & & & \\
& 0 & 0 & 0 & 0 & & 0 & \\
& & & 0 & 0 & 0 & & & \\
& 0 & & & & 0 & 0 & 0 & 0 \\
0
\end{array}\right) \\
& W\left(\mathfrak{F}^{*}\right)=\left(\mathfrak{F}^{*}\right)\left\|\begin{array}{lllllllll}
0 & 0 & 0 & & & & & \\
0 & 0 & 0 & & 0 & & & 0 \\
0 & 0 & 0 & & & & & \\
& & 0 & 0 & 0 & & & \\
& 0 & 0 & 0 & 0 & & 0 & \\
& & 0 & 0 & 0 & & & & \\
0 & & & & 0 & 0 & 0 & 0 & 0 \\
0 & & & & & 0 & 0 & 0
\end{array}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \left.V_{1}\left(\mathfrak{S}^{*}\right)=\left(\mathfrak{S}^{*}\right) \| \begin{array}{cccccccc}
0 & 0 & 0 & & & & \\
1 & 1 & 0 & 0 & & 0 \\
0 & 0 & 0 & & & & \\
& & 0 & 0 & 0 & & \\
& & 1 & 1 & 0 & & 0 \\
& & 0 & 0 & 0 & & & \\
0 & & 0 & 1 & 1 & 1 & 0 \\
0
\end{array}\right) \\
& V_{2}\left(\mathfrak{S}^{*}\right)=\left(\mathfrak{S}^{*}\right)\left\|\begin{array}{ccccccccc}
0 & 0 & 0 & & & & \\
0 & 0 & 0 & 0 & & 0 \\
1 & 0 & 1 & & & & & \\
& & 0 & 0 & 0 & & \\
& 0 & 0 & 0 & 0 & & 0 \\
& & 1 & 0 & 1 & & & \\
& 0 & & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
& & & & 1 & 0 & 1
\end{array}\right\| \\
& \left.T_{j}^{*}\left(\mathfrak{S}^{*}\right)=\left(\mathfrak{F}^{*}\right) \delta_{i j} \| \begin{array}{ccccccc}
r & \rho_{1 i} & \rho_{2 i} & & & & \\
0 & 0 & 0 & 0 & & 0 \\
0 & 0 & 0 & & & \\
& 0 & & \rho_{1 i} & \rho_{2 i} & \\
& 0 & 0 & 0 & 0 & \\
& 0 & 0 & 0 & & \\
& 0 & & 0 & & 0 & 0 \\
\rho_{1 i} & 0 & 0 & \rho_{2 i} \\
& & & & & 0 & 0
\end{array}\right)
\end{aligned}
$$

where $\left(\mathfrak{S}^{*}\right)=\left(T_{i}^{\ddagger}, V_{1} T_{i}^{\ddagger}, V_{2} T_{i}^{\ddagger}, T_{i}^{\ddagger} V_{1}, V_{1} T_{i}^{\ddagger} V_{1}, V_{2} T_{i}^{\ddagger} V_{1}, T_{i}^{\ddagger} V_{2}, V_{1} T_{i}^{\ddagger} V_{2}, V_{2} T_{i}^{\ddagger} V_{2}\right)$. Thus the sub-algebra [$\left.T_{i}^{*}, V_{1} T_{i}^{\ddagger}, V_{2} T_{i}^{\ddagger}, T_{i}^{\ddagger} V_{1}, V_{1} T_{i}^{*} V_{1}, V_{2} T_{i}^{*} V_{1}, T_{i}^{\#} V_{2}, V_{1} T_{i}^{\ddagger} V_{2}, V_{2} T_{i}^{\sharp} V_{2}\right]$ is a nine-dimensional two-sided ideal of \mathfrak{R}. The ideal is irreducible because we can find the following irreducible representation

$$
\begin{array}{cc}
I \rightarrow\left\|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right\|, & G \rightarrow\left\|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right\| \\
W \rightarrow\left\|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right\|, & V_{1} \rightarrow\left\|\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right\| \\
V_{2} \rightarrow \| & \begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array} \|,
\end{array}
$$

The principal idempotent of the ideal is $E_{i}^{(3)}$, and its trace is $3 \alpha_{i}$. The rest of the proof of Theorem II is easy, and is omitted.

In order to give the direct decomposition of the relationship algebra \mathfrak{N}, we shall rearrange $\rho_{1 i}$ and $\rho_{2 i}(i=1,2, \ldots, m)$ according to the magnitude of $\rho_{1 i}$ and $\rho_{2 i}(i=1,2, \ldots m)$ as follows

$$
\left.\begin{array}{ll}
\rho_{1 u}=\rho_{2 u}=0 & \text { for } u=1,2, \ldots, s \\
\rho_{1 v}=0, \quad \rho_{2 v}=r & \text { for } v=s+1, s+2, \ldots, b \\
\rho_{1 w}=r, \quad \rho_{2 w}=0 & \text { for } w=b+1, b+2, \ldots, c \\
\rho_{1 x}=0, \quad 0<\rho_{2 x}<r & \text { for } x=c+1, c+2, \ldots, d \\
0<\rho_{1 y}<r, \quad \rho_{2 y}=0 & \text { for } y=d+1, d+2, \ldots, e \\
0<\rho_{1 z}<r, \quad 0<\rho_{2 z}<r, \quad r=\rho_{1 z}+\rho_{2 z} \\
\text { for } z=e+1, e+2, \ldots, f
\end{array}\right] \begin{array}{r}
\text { for } t=f+1, f+2, \ldots, m . \\
0<\rho_{1 t}<r, \quad 0<\rho_{2 t}<r, \quad 0<\rho_{1 t}+\rho_{2 t}<r \\
\quad 0 \leq s \leq b \leq c \leq d \leq e \leq f \leq m)
\end{array}
$$

The principal idempotent $E_{G}^{(1)}$ of the one-dimensional two-sided ideal $[G]$ of \mathfrak{R} is

$$
E_{G}^{(1)}=\frac{1}{n} G
$$

In order to obtain the remaining irreducible two-sided ideals of \mathfrak{R} and their principal idempotents, we shall consider the difference algebra of \mathfrak{R} modulo $\left\lfloor\left[G, T_{i}^{\sharp} ; i=1,2, \ldots, m\right]\right.$, i.e.,

$$
\mathfrak{R}-\left[\left[G, T_{1}^{\ddagger}, T_{2}^{*}, \ldots, T_{m}^{\sharp}\right]\right]
$$

where $\left[\left[G, T_{1}^{\ddagger}, T_{2}^{\ddagger}, \ldots, T_{m}^{\#}\right]\right]$ is the ideal of $\mathfrak{\Re}$ generated by G and $T_{i}^{\sharp}(i=1, \ldots, m)$ and the principal idempotent of the ideal is $E_{G}^{(1)}+\sum_{u=1}^{s} E_{u}^{(1)}+\sum_{v=s+1}^{b} E_{v}^{(1)}+\sum_{w=b+1}^{c} E_{w}{ }^{1)}$ $+\sum_{x=c+1}^{d} E_{x}^{(2)}+\sum_{y=d+1}^{e} E_{y}^{(2)}+\sum_{z=e+1}^{f} E_{z}^{(2)}+\sum_{t=f+1}^{m} E_{t}^{(3)}$. Generally, this difference algebra is isomorphic to the algebra $\left[I, V_{1}, V_{2}, W\right]$ generated by I, V_{1}, V_{2} and W. The latter can be decomposed into the direct sum of four mutually orthogonal one-dimensional two-sided ideals $\left[I-V_{1}-V_{2}-W\right],\left[V_{1}\right],\left[V_{2}\right]$ and $[W]$, and their principal idempotents are respectively the generators themselves. In some cases, however, it may happen that the ideals corresponding to $\left[V_{1}\right],\left[V_{2}\right]$ and $[W]$ degenerate to zero as is the case indicated in [3].

The principal idempotents $E_{e}, B_{V_{1}}, B_{V_{2}}$ and B_{W} of the ideals of \mathfrak{R} corresponding respectively to $I-V_{1}-V_{2}-W, V_{1}, V_{2}$, and W may be obtained by dropping the modulo G and $T_{i}^{\#}(i=1,2, \ldots, m)$ of the following:

$$
\begin{aligned}
& V_{1}=B_{V_{1}}, \quad V_{2}=B_{V_{2}} \\
& I-V_{1}-V_{2}-W=E_{e}, \quad W=B_{W}
\end{aligned}
$$

The results may be expressed as

$$
\begin{aligned}
& V_{1}=B_{V_{1}}+F_{V_{1}}, \quad V_{2}=B_{V_{2}}+F_{V_{2}} \\
& I-V_{1}-V_{2}-W=E_{e}+F_{e}, \quad W=B_{W}+F_{W}
\end{aligned}
$$

where

$$
\begin{aligned}
F_{V_{1}}= & \frac{1}{r} \sum_{w=b+1}^{c} V_{1} T_{w}^{\sharp} V_{1}+\sum_{y=d+1}^{e} \frac{1}{\rho_{1 y}} V_{1} T_{y}^{\sharp} V_{1}+\sum_{z=e+1}^{f} \frac{1}{\rho_{1 z}} V_{1} T_{z}^{\sharp} V_{1} \\
& +\sum_{t=f+1}^{m} \frac{1}{\rho_{1 t}} V_{1} T_{t}^{\ddagger} V_{1} \\
F_{V_{2}}= & \frac{1}{r} \sum_{v=s+1}^{b} V_{2} T_{v}^{\ddagger} V_{2}+\sum_{x=c+1}^{d} \frac{1}{\rho_{2 x}} V_{2} T_{x}^{\ddagger} V_{2}+\sum_{z=e+1}^{f} \frac{1}{\rho_{2 z}} V_{2} T_{z}^{\ddagger} V_{2} \\
& +\sum_{t=f+1}^{m} \frac{1}{\rho_{2 t}} V_{2} T_{t}^{\sharp} V_{2} \\
F_{e}= & \frac{1}{r} \sum_{u=1}^{s} T_{u}^{\sharp}+\sum_{x=e+1}^{d} F_{x}^{11}+\sum_{y=d+1}^{e} F_{y}^{1 〕}+\sum_{t=f+1}^{m} F_{t}{ }^{11} \\
F_{W}= & E_{G}^{(1)}
\end{aligned}
$$

since $B_{V_{1}}, B_{V_{2}}, E_{e}, B_{W}, F_{V_{1}}, F_{V_{2}}, F_{e}$ and F_{W} must satisfy the following equations:

$$
\left\|\begin{array}{l}
B_{V_{1}} \\
B_{V_{2}} \\
E_{e} \\
B_{W} \\
F_{V_{1}} \\
F_{V_{2}} \\
F_{e} \\
F_{W}
\end{array}\right\| \begin{gathered}
E_{G}^{(1)}+\sum E_{u}^{(1)}+\sum E_{v}^{(1)}+\sum E_{w}^{(1)} \\
+\sum E_{x}^{(2)}+\sum E_{y}^{(2)}+\sum E_{z}^{(2)}+\sum E_{t}^{(3)}
\end{gathered}\|=\| \begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& F_{V_{1}} \\
& F_{V_{2}} \\
& F_{e} \\
& F_{W}
\end{aligned} \|
$$

We may summarize the results obtained so far by the following theorem.

Theorem III. The unique decomposition of the unit element of the relationship algebra \mathfrak{R} corresponding to its direct decomposition is

$$
\begin{aligned}
I=E_{G}^{(1)}+ & B_{V_{1}}+B_{V_{2}}+E_{e}+B_{W}+\sum E_{u}^{(1)}+\sum E_{v}^{(1)}+\sum E_{w}^{(1)} \\
& +\sum E_{x}^{(2)}+\sum E_{y}^{(2)}+\sum E_{z}^{(2)}+\sum E_{t}^{(3)}
\end{aligned}
$$

Further decomposition in relation to the row-block space and the columnblock space is

$$
\begin{aligned}
& I=E_{G}^{1)}+B_{V_{1}}+B_{V_{2}}+E_{e}+B_{W}+\sum_{u} \frac{1}{r} T_{u}^{\#}+\sum_{x} F_{x}^{(1)}+\sum_{y} F_{y}^{(1)}+\sum_{t} F_{t}{ }^{1)} \\
& +\sum_{v} \frac{1}{r} T_{v}^{\ddagger}+\sum_{x} E_{V_{2} x}^{(1)}+\sum_{z} E_{V_{2} z}^{(1)}+\sum_{t} E_{V_{2} t}^{(1)}+\sum_{w} \frac{1}{r} T_{\tilde{W}}^{z} \\
& +\sum_{y} E_{V_{2 y}}^{(1)}+\sum_{z} E_{V_{1} z}^{(1)}+\sum_{t} E_{V_{1} t}^{(1)}
\end{aligned}
$$

5. Analysis of variance for two-way design

We are considering a design which consists of $n=\sum_{j=1}^{h} x_{j} y_{j}$ experimental units in which the observation vector $\eta^{\prime}=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)$ satisfies the linear model

$$
\eta=\gamma \boldsymbol{j}_{n}+\Phi \boldsymbol{\sigma}+\left\|\Psi_{1} \Psi_{2}\right\|\left\|\begin{array}{c}
\boldsymbol{\beta}_{1} \tag{24}\\
\boldsymbol{\beta}_{2}
\end{array}\right\|+\boldsymbol{e}
$$

where γ is the general mean, $\boldsymbol{\tau}^{\prime}=\left(\tau_{1}, \ldots, \tau_{v}\right)$ is the treatment parameter vector, $\boldsymbol{\beta}_{1}^{\prime}=\left(\beta_{11}, \beta_{12}, \cdots, \beta_{1 b_{1}}\right)$ is the row-block parameter vector and $\boldsymbol{\beta}_{2}^{\prime}=$ ($\beta_{21}, \beta_{22}, \ldots, \beta_{2 b_{2}}$) is the column-block parameter vector being subjected to the restrictions

$$
\begin{equation*}
\sum_{\alpha=1}^{v} \tau_{\alpha}=0, \quad \sum_{a=1}^{b_{1}} \beta_{1 a}=0, \quad \sum_{p=1}^{b_{2}} \beta_{2 p}=0 \tag{25}
\end{equation*}
$$

respectively, and $\boldsymbol{e}^{\prime}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is the error vector being normally distributed with mean vector zero and covariance matrix $\sigma^{2} I_{n}$. The matrices Φ, Ψ_{1} and Ψ_{2} are the incidence matrices defined in (1), (2) and (10) and $\boldsymbol{j}_{n}^{\prime}=(1,1, \ldots$, 1).

Denote,
grand total: $\boldsymbol{G}=\boldsymbol{j}_{n}^{\prime} \eta$, treatment totals: $\boldsymbol{T}=\Psi^{\prime} \eta$, row-block totals: $\boldsymbol{U}_{1}=\Psi_{1}^{\prime} \eta$, column-block totals: $\boldsymbol{U}_{2}=\Psi_{2}^{\prime} \eta$.

The normal equations for the least-square estimation are

$$
\begin{align*}
& n g+\boldsymbol{r}^{\prime} \hat{\tau}+\boldsymbol{k}_{1}^{\prime} \hat{\boldsymbol{\beta}}_{1}+\boldsymbol{k}_{2}^{\prime} \hat{\boldsymbol{\beta}}_{2}=\boldsymbol{G} \tag{27}\\
& \boldsymbol{r g}+D_{r} \hat{\boldsymbol{\imath}}+N_{1} \hat{\boldsymbol{\beta}}_{1}+N_{2} \hat{\boldsymbol{\beta}}_{2}=\boldsymbol{T} \tag{28}
\end{align*}
$$

$$
\left\|\begin{array}{c}
\boldsymbol{k}_{1} \tag{29}\\
\boldsymbol{k}_{2}
\end{array}\right\| g+\left\lvert\, \begin{gathered}
N_{1}^{\prime} \\
N_{2}^{\prime}
\end{gathered}\|\hat{\boldsymbol{\imath}}+\| \begin{array}{lll}
\Psi_{1}^{\prime} & \Psi_{1} & \Psi_{1}^{\prime} \Psi_{2} \\
\Psi_{2}^{\prime} & \Psi_{1} & \Psi_{2}^{\prime} \Psi_{2}
\end{array}\| \| \begin{gathered}
\hat{\boldsymbol{\beta}}_{1} \\
\hat{\boldsymbol{\beta}}_{2}
\end{gathered}\|=\| \boldsymbol{U}_{1}\left\|\boldsymbol{U}_{2}\right\|\right.
$$

where, $\hat{\boldsymbol{\tau}}, \hat{\boldsymbol{\beta}}_{1}$ and $\hat{\boldsymbol{\beta}}_{2}$ are the estimates of $\boldsymbol{\tau}, \boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{2}$, and $\boldsymbol{r}=\Phi^{\prime} \boldsymbol{j}, \boldsymbol{k}_{1}=\Psi_{1}^{\prime} \boldsymbol{j}$ and $\boldsymbol{k}_{2}=\Psi_{2}^{\prime} \boldsymbol{j}$.

Multiplying (29) by

$$
\left\|\Psi_{1} \Psi_{2}\right\|\left\|\begin{array}{cr}
D_{1}^{-1}-D_{1}^{-1} M D_{2}^{-1} M^{\prime} D_{1}^{-1} & 0 \\
0 & D_{2}^{-1}
\end{array}\right\|
$$

from the left, we have the following equation

$$
\begin{gather*}
\boldsymbol{j} g+\left(\Psi_{1} D_{1}^{-1} N_{1}^{\prime}-\Psi_{1} D_{1}^{-1} M D_{2}^{-1} M^{\prime} D_{1}^{-1} N_{1}^{\prime}+\Psi_{2} D_{2}^{-1} N_{2}^{\prime}\right) \hat{\boldsymbol{\tau}}+\Psi_{1} \hat{\boldsymbol{\beta}}_{1}+\Psi_{2} \hat{\boldsymbol{\beta}}_{2} \tag{30}\\
=\Psi_{1} D_{1}^{-1} \boldsymbol{U}_{1}-\Psi_{1} D_{1}^{-1} M D_{2}^{-1} M^{\prime} D_{1}^{-1} \boldsymbol{U}_{1}+\Psi_{2} D_{2}^{-1} \boldsymbol{U}_{2}
\end{gather*}
$$

and multiplying (30) by Φ^{\prime} from the left and substracting it from (28), we have the adjusted normal equation for treatment;

$$
\begin{align*}
& \left(D_{r}-N_{1} D_{1}^{-1} N_{1}^{\prime}-N_{2} D_{2}^{-1} N_{2}^{\prime}+N_{2} D_{2}^{-1} M^{\prime} D_{1}^{-1} N_{1}^{\prime}\right) \hat{\tau} \tag{31}\\
& =\boldsymbol{T}-N_{1} D_{1}^{-1} \boldsymbol{U}_{1}-N_{2} D_{2}^{-1} \boldsymbol{U}_{2}+N_{2} D_{2}^{-1} M^{\prime} D_{1}^{-1} \boldsymbol{U}_{1}
\end{align*}
$$

The complete table of the analysis of variance for the design will be given in Table I.

6. Illustration of allocation plan to the design for two-way elimination of heterogeneity

Example 1. An allocation plan for 12 treatments having two-way factorial association scheme.

Table 2 shows the association scheme for the treatments. Each treatment

Table 1. Analysis of variance for two-way design.

continued

			Idempotents	d.f.	S.S.	Expectation of mean squares
Columns, ignoring treatments	Treatmentcomponents	$\begin{aligned} & \text { Case (2) } \\ & v=s+1, \ldots, b \end{aligned}$	$\frac{1}{r} T_{v}^{*}$	${ }^{\alpha}{ }_{v}$	${ }_{r}^{1} \boldsymbol{\eta}^{\prime} T_{v}^{\#} \boldsymbol{\eta}$	$\left.\frac{1}{\alpha_{v}} r \tau^{\prime} A_{v}^{\#} \tau+2 \beta_{2}^{\prime} N_{2} A_{v}^{\#} \tau+\frac{1}{r} \boldsymbol{\beta}_{2}^{\prime} N_{2}^{\prime} A_{v}^{\#} N_{2} \beta_{2}\right\}+\sigma^{2}$
		$\begin{aligned} & \text { Case (4) } \\ & x=c+1, \ldots, d \end{aligned}$	$E_{V_{2 x}}^{(1)}$	α_{x}	$\eta^{\prime} E_{V_{2} x} \boldsymbol{\eta}$	$\frac{1}{\alpha_{x} \rho_{2 x}}\left\{\rho_{2 x}^{2} \tau^{\prime} A_{x}^{\#} \tau+2 \rho_{2 x} \beta_{2}^{\prime} N_{2}^{\prime} A_{x}^{\#} \tau+\beta_{2}^{\prime} N_{2}^{\prime} A_{x}^{\#} N_{2} \beta_{2}\right\}+\sigma^{2}$
		$\begin{aligned} & \text { Case (6) } \\ & z=e+1, \ldots, f \end{aligned}$	$E_{V_{2} z}^{(1)}$	${ }^{\alpha}{ }_{z}$	$\eta^{\prime} E_{V_{2} z^{\prime}}$	$\frac{1}{\alpha_{z} \rho_{2 z}}\left\{\rho_{2 z}^{2} \tau^{\prime} A_{z}^{\#} \tau+2 \rho_{2 z} \beta_{2}^{\prime} N_{2}^{\prime} A_{z}^{\#} \tau+\boldsymbol{\beta}_{2}^{\prime} N_{2}^{\prime} A_{z}^{\#} N_{2} \beta_{2}\right\}+\sigma^{2}$
		$\begin{gathered} \text { Case (7) } \\ t=f+1, \ldots, m \end{gathered}$	$E_{V_{2} t}^{(1)}$	${ }^{*}{ }_{t}$	$\eta^{\prime} E_{V_{2} t}{ }^{\eta}$	$\frac{1}{\alpha_{t} \rho_{2 t}}\left\{\rho_{2 t}^{2} \tau^{\prime} A_{i}^{\#} \tau+2 \rho_{2 t} \beta_{2}^{\prime} N_{2}^{\prime} A_{t}^{*} \tau+\beta_{2}^{\prime} N_{2}^{\prime} A_{t}^{\#} N_{2} \beta_{2}\right\}+\sigma^{2}$
	Columns, eliminating treatments and rows		$B_{V_{2}}$	${ }^{\alpha}{ }_{C}$	by substract	$\begin{aligned} & \frac{1}{\alpha_{C}}\left\{\boldsymbol{\beta}_{2}^{\prime}\left(D_{2}-M^{\prime} D_{1}^{-1} M\right) \boldsymbol{\beta}_{2}-\boldsymbol{\beta}_{2}^{\prime} N_{2}^{\prime}\left(\Sigma \frac{1}{r} A_{v}^{\#}+\sum \frac{1}{\rho_{2 x}} A_{x}^{\#}\right.\right. \\ &\left.\left.+\sum \frac{1}{\rho_{2 z}} A_{z}^{\#}+\sum \frac{1}{\rho_{2 t}} A_{t}^{\#}\right) N_{2} \beta_{2}\right\}+\sigma^{2} \end{aligned}$
			V_{2}	$b_{2}-h$	$\eta^{\prime} V_{2} \boldsymbol{\eta}$	$\begin{aligned} & \frac{1}{b_{2}-h}\left\{\tau^{\prime}\left(\sum \rho_{2 v} A_{v}^{\#}+\sum \rho_{2 x} A_{x}^{\#}+\sum \rho_{2 z} A_{z}^{\#}+\sum \rho_{t} A_{t}^{\#}\right) \tau\right. \\ & \left.\quad+2 \tau^{\prime}\left(N_{2}-N_{1} D_{1}^{-1} M\right) \boldsymbol{\beta}_{2}+\boldsymbol{\beta}_{2}^{\prime}\left(D_{2}-M^{\prime} D_{1}^{-1} M\right) \boldsymbol{\beta}_{2}\right\}+\sigma^{2} \end{aligned}$
Part effect			B_{W}	$h-1$	$\eta^{\prime} B_{W}{ }^{\boldsymbol{n}}$	$\begin{array}{r} \frac{1}{h-1}\left\{2 \tau^{\prime}\left(N_{2} D_{2}^{-1} M^{\prime} \boldsymbol{\beta}_{1}+N_{1} D_{1}^{-1} M \beta_{2}\right)+\boldsymbol{\beta}_{1}^{\prime} M D_{2}^{-1} M^{\prime} \boldsymbol{\beta}_{1}\right. \\ \left.+2 \boldsymbol{\beta}_{1}^{\prime} M \beta_{2}+\boldsymbol{\beta}_{2}^{\prime} M^{\prime} D_{1}^{-1} M \beta_{2}\right\}+\sigma^{2} \end{array}$
Error			E_{e}	${ }^{\alpha} E$	by substract	σ^{2}
Total			$I-E_{G}^{(1)}$	$n-1$	$\boldsymbol{\eta}^{\prime}\left(\boldsymbol{I}-E_{G}^{(1)}\right) \boldsymbol{\eta}$	$\begin{aligned} \frac{1}{n-1}\left\{r \tau^{\prime} \tau+2 \tau^{\prime} N_{1} \beta_{1}+2 \tau^{\prime}\right. & N_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\beta}_{1}^{\prime} D_{1} \beta_{1} \\ & \left.+2 \boldsymbol{\beta}_{1}^{\prime} M \boldsymbol{\beta}_{2}+\boldsymbol{\beta}_{2}^{\prime} D_{2} \beta_{2}\right\}+\sigma^{2} \end{aligned}$

is the first associate of the other in the same row, the second associate of the other in the same column and third associate of the rest. Table 3 shows an allocation of those treatments as a design for two-way elimination.

Table 2

a	b	c	d
e	f	g	h
i	j	k	l

Table 3

columns	1	2	3	4	5	6	7	8	9	10	11
rows											
1	a	b	c	d	e	f	g	h			
2	e	f	g	h	i	j	k	l			
3	i	j	k	l	a	b	c	d			
4									a	e	i
5									b	f	j
6									c	g	k
7									d	h	l

As the mutually orthogonal idempotents of the two-way factorial association scheme are

$$
\begin{aligned}
& A_{0}^{*}=\frac{1}{12} G_{12}, \quad A_{1}^{*}=\frac{1}{3} G_{3} \otimes I_{4}-\frac{1}{12} G_{3} \otimes G_{4} \\
& A_{2}^{*}=\frac{1}{4} I_{3} \otimes G_{4}-\frac{1}{12} G_{3} \otimes G_{4} \\
& A_{3}^{*}=I_{3} \otimes I_{4}-\frac{1}{4} I_{3} \otimes G_{4}-\frac{1}{3} G_{3} \otimes I_{4}+\frac{1}{12} G_{3} \otimes G_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
& U_{1}=\left\|\begin{array}{ll}
\frac{1}{8} I_{3} \otimes G_{8} & \\
& \frac{1}{3} I_{4} \otimes G_{3}
\end{array}\right\|, \quad U_{2}=\left\|\begin{array}{ll}
\frac{1}{3} G_{3} \otimes I_{8} & \\
& \\
& \frac{1}{4} G_{4} \otimes I_{3}
\end{array}\right\| \\
& U_{1} U_{2}=\left\|\begin{array}{ll}
\frac{1}{24} G_{24} & \\
& \frac{1}{12} G_{12}
\end{array}\right\| \\
& N_{1} D_{1}^{-1} N_{1}^{\prime}=3 A_{0}^{*}+A_{1}^{*}+\frac{1}{2} A_{2}^{*} \\
& N_{2} D_{2}^{-1} N_{2}^{\prime}=3 A_{0}^{\#}+2 A_{1}^{\#}+A_{2}^{\#}
\end{aligned}
$$

the above design satisfies the assumptions $1^{\circ}, 2^{\circ}, 3^{\circ}$ and 4°.

Example 2. An allocation plan for 16 treatments having L_{2} association scheme.

Table 4 shows the association scheme for the treatments. Each treatment is the first associate of the other in the same row or in the same column and the second associate of the rest. Table 5 shows an allocation plan of those treatments as a design for two-way elimination

Table 4

a	b	c	d
e	f	g	h
p	q	r	s
u	v	x	y

Table 5

As the mutually orthogonal idempotents of the L_{2} association scheme are

$$
\begin{aligned}
& A_{0}^{\#}=\frac{1}{16} G_{16} \\
& A_{1}^{\#}=\frac{1}{4}\left(I_{4} \otimes G_{4}+G_{4} \otimes I_{4}\right)-\frac{1}{8} G_{16} \\
& A_{2}^{\#}=I_{16}-\frac{1}{4}\left(I_{4} \otimes G_{4}+G_{4} \otimes I_{4}\right)+\frac{1}{16} G_{16}
\end{aligned}
$$

it can be seen that only for the first portion of row-column incidence as well as for the second portion, the design does not satisfy the assumptions 3° and 4°. The whole design, however, satisfies those assumptions $1^{\circ}, 2^{\circ}, 3^{\circ}$ and 4°, as

$$
\begin{gathered}
U_{1}=\left\|\begin{array}{cc}
\frac{1}{12} I_{4} \otimes G_{12} & 0 \\
0 & \frac{1}{12} I_{4} \otimes G_{12}
\end{array}\right\| U_{2}=\left\|\begin{array}{cc}
\frac{1}{4} G_{4} \otimes I_{12} & 0 \\
0 & \frac{1}{4} G_{4} \otimes I_{12}
\end{array}\right\| \\
U_{1} U_{2}=\left\|\left.\begin{array}{c}
\frac{1}{48} G_{4} \otimes G_{12} \\
0 \\
0
\end{array} \right\rvert\, \begin{array}{c}
\frac{1}{48} G_{4} \otimes G_{12}
\end{array}\right\| \\
N_{1} D_{1}^{-1} N_{1}^{\prime}=6 A_{0}^{\#}+\frac{1}{3} A_{1}^{\#} \\
N_{2} D_{2}^{-1} N_{2}^{\prime}=6 A_{0}^{\#}+3 A_{1}^{\#}
\end{gathered}
$$

Acknowledgement. My thanks go to Professor S. Yamamoto, Hiroshima University, for his valuable suggestion of the problem and for his generous help and guidance throughout the preparation of this paper.

References

[1] Shrikhande, S. S. (1951). Designs for two-way elimination of heterogeneity. Ann. Math. Statist. 22 235-247.
[2] Graybill, F. A. and Marsaglia, G. (1957). Idempotent matrices and quadratic forms in the general linear hypothesis. Ann. Math. Statist. 28 678-686.
[3] Yamamoto, S. and Fujii, Y. (1963). Analysis of partially balanced incomplete block designs. J. Sci. Hiroshima. Univ. Ser. A-I. 27 119-135.

