Extensions of Riemannian Metrics

Akira Tominaga

(Received March 10, 1965)

1 Introduction

In the present paper, we consider certain problems of extension of a Riemannian metric on a closed submanifold to the whole. Similar problems in metrizable spaces were discussed in [2], [5].

Let N be an n-dimensional submanifold of an m-dimensional, differentiable manifold M. N is said to be a *closed submanifold* if (a) it is set-theoretically closed, and (b) the topology of N as a manifold coincides with the relative topology of N in M. Let h be a Riemannian metric on N. By a C^s-extension of h to M is meant a Riemannian metric g of M, of class C^s, if the restriction of g to N is h.

We shall first concern with a general case for extension of a Riemannian metric on a closed submanifold (Section 2) and then prove that if M is separable and connected and N is a connected closed submanifold of M, then there exists a C^s -extension g of h so that N is totally geodesic in a strong sense under g (Section 3).

It is known that each separable, connected differentiable manifold has a bounded (or complete) Riemannian metric [4]. We shall show that if M is connected and a Riemannian metric h of a (not necessarily connected) closed submanifold is bounded (or complete), there exists a bounded (or complete) extension of h (Section 4, 5).

2 General Case

PROPOSITION Let M be an m-dimensional, separable, differentiable manifold of class $C^r(r \ge 1)$, and let N be a closed submanifold of class $C^{s+1}(0 \le s \le r-1)$ with a Riemannian metric h of class C^s . Then there exists a C^s -extension of h to M.

PROOF. The condition (b) of a closed submanifold implies that each point p of N belongs to a coordinate neighborhood U in M with a coordinate system $\{u^1, u^2, ..., u^m\}$ such that the set $N \cap U$ is defined by the equations $u^{n+1} = 0, ..., u^m = 0$. (In the following we shall call such a coordinate system a canonical coordinate system of M with respect to N.) The restriction of h to $N \cap U$ is expressed by a positive definite symmetric tensor h_{ij} (i, j=1, 2, ..., n) of class C^s . Then we define a metric on U by

$$egin{array}{c|c} h_{ij} & \mathbf{0} \ \hline & \mathbf{0} & \delta_{\lambda\mu} \end{array}
ight)$$

On the other hand, we define a Riemannian metric of class C^s in the open submanifold M-N. Smoothly unifying these metrics defined on U's and M-N by a partition of unity (e.g. [1], pp. 104-105), we get a desired C^s -extension. Q. E. D.

We shall slightly generalize Proposition. A subset of a differentiable manifold M is said to be a *piecewise* C^s -differentiable linear graph in M if it is the image of a linear graph L under a homeomorphism which is C^s -diffeomorphic on each edge of L.

Let N be a closed submanifold of M and L_{ξ} 's piecewise C^s-differentiable linear graphs in M. We shall call the set $N \cup (\bigcup L_{\xi})$ a closed submanifold with branches if it satisfies the following conditions:

(a) $L_{\xi} \cap (\overline{\bigcup_{\zeta \neq \xi} L_{\zeta}}) = \emptyset$ for every ξ ,

(b) $L_{\xi} \cap N$ is the set of endpoints of L_{ξ} ,

(c) the tangent vector of L_{ξ} at each of its endpoints does not touch N,

(d) the degree of each vertex p of L_{ξ} is at most three. If p is a branch point, then the tangent vector of an edge at p coincides with one of the tangent vectors of the other edges at p but is linearly independent of the third. If p is an ordinary point, the tangent vectors of the edges at p are linearly independent.

We note here that the condition (a) implies that $\bigcup (L_{\xi} \cap N)$ is a discrete set on N.

THEOREM 1 Let M, N and h be the same as in Proposition and let $N' = N \cup (\cup L_{\xi})$ be a closed submanifold with branches L_{ξ} . If each L_{ξ} has a metric of class C^{s} , then there exists a C^{s} -extension g of the metric h' of N', obtained from h and those metrics of L_{ξ} 's.

PROOF. We shall first extend h' to a neighborhood of each point $p \in N'$.

(i) The case $p \in N - \bigcup L_{\xi}$. Let $\{u^1, u^2, \dots, u^m\}$ be a canonical coordinate system of M with respect to N on a neighborhood U(p) of p in M such that $N \supset N' \cap U(p)$. We extend $h' | N' \cap U(p)$ to a metric g_p on U(p) by

$$\left(\begin{array}{ccc} h_{ij} & \mathbf{0} \\ 0 & \delta_{\lambda\mu} \end{array}\right)$$

where $\{h_{ij}\}$ is the metric tensor expressing the Riemannian metric h on N.

(ii) The case $p \in N \cap L_{\xi}$. There exists a local coordinate system $\{u^1, u^2, \dots, u^m\}$ of M, on a neighborhood U(p) of p in M, such that $U(p) \cap L_{\xi} = \emptyset$ for $\zeta \neq \xi$, and

$$N \cap U(p) = \{q \in U(p); u^{n+1}(q) = \dots = u^m(q) = 0\}$$
$$L_{\xi} \cap U(p) = \{q \in U(p); u^{n+1}(q) \ge 0, u^1(q) = \dots = u^n(q) = u^{n+2}(q) = \dots = u^m(q) = 0\}.$$

We extend $h' | N' \cap U(p)$ to a metric g_p on U(p) by

$egin{pmatrix} 0 \ h_{ij} \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ n_{n+1n+1} \end{pmatrix}$	0
0	$\delta_{\lambda\mu}$

where h_{n+1n+1} is the metric of L_{ξ} .

(iii) The case $p \in L_{\xi}$ is an ordinary point but not a vertex. There exists a local coordinate system $\{u^1, u^2, \dots, u^m\}$ of M, on a neighborhood U(p) of p in M, such that $L_{\xi} \supset N' \cap U(p) = \{q \in U(p); u^2(q) = \dots = u^m(q) = 0\}$. We extend $h' | N' \cap U(p)$ to a metric g_p on U(p) by

$$egin{pmatrix} h_{11} & 0 \ \cdots & \ddots \ 0 & \delta_{\lambda\mu} \end{pmatrix}$$

where h_{11} is the metric of L_{ξ} .

(iv) The case where $p \in L_{\xi}$ is a vertex and an ordinary point.

Let H_1 , H_2 be the segments of L_{ξ} with p as the common endpoint. By the condition (d) in the definition of a closed submanifold with branches, the tangent vectors of H_1 and H_2 at p are linearly independent. Hence there exists a local coordinate system $\{u^1, u^2, \dots, u^m\}$, on a neighborhood U(p) of p in M such that

$$\begin{split} &L_{\xi} \supset N' \cap U(p) \\ &H_{1} \cap U(p) = \{q \in U(p); u^{1}(q) \ge 0, u^{2}(q) = \dots = u^{m}(q) = 0\}, \\ &H_{2} \cap U(p) = \{q \in U(p); u^{2}(q) \ge 0, u^{1}(q) = u^{3}(q) = \dots = u^{m}(q) = 0\}. \end{split}$$

We extend $h' | N' \cap U(p)$ to a metric g_p on U(p) by

$$\left(\begin{array}{ccc} h_{11} & 0 & \\ 0 & h_{22} & \\ 0 & \delta_{\lambda\mu} \end{array}\right),$$

where h_{11} (or h_{22}) is the metric of H_1 (or H_2).

(v) The case where p is a branch point of L_{ξ} .

Let H_0 , H_1 , H_2 be the segments of L_{ε} with p as the common endpoint. Assume that the tangent vectors of H_0 and H_1 at p coincide with each other. Then there exists a local coordinate system $\{u^1, u^2, \dots, u^m\}$ on a neighborhood U(p) of p in M such that

$$L_{\xi} \supset N' \cap U(p),$$

 $(H_0 \cup H_1) \cap U(p) = \{q \in U(p); u^2(q) = \dots = u^m(q) = 0\},$

 $H_2 \cap U(p) = \{q \in U(q); u^2(q) \ge 0, u^1(q) = u^3(q) = \dots = u^m(q) = 0\}.$

and

We extend $h' | N' \cap U(p)$ to a metric g_p on U(p) by

$egin{pmatrix} h_{11} & 0 \ 0 & h_{22} \ \end{pmatrix}$	0
0	$\delta_{\lambda\mu}$

where h_{11} (or h_{22}) is the metric of H_0 and H_1 (or H_2).

Define a Riemannian metric g_0 on the open submanifold M-N' and then smoothly unify the metric g_0 on M-N' and g_p on U(p) given in (i) \sim (v) by a partition of unity. Then we get a desired extension. Q. E. D.

3 Totally Geodesic Case

We shall denote a Riemannian manifold M with the Riemannian metric g by (M, g). A geodesic of (M, g) is called an *M*-geodesic. Let N be a connected submanifold of M with the Riemann structure derived from (M, g). N is called *totally geodesic in a strong sense* if the following two conditions are satisfied:

(a) each N-geodesic is an M-geodesic,

(b) there exists an open set U of M containing N such that each M-geodesic in U joining two points of N is an N-geodesic and such that, for every piecewise differentiable curve α in U joining two points of N and not contained in N, there exists a piecewise differentiable curve in N, which joins the same points and whose length is less than that of α .

THEOREM 2 Let M be an m-dimensional, separable, differentiable manifold of class $C^r(r \ge 4)$, and let N be a connected closed submanifold of class $C^{s+1}(1 \le s \le r-3)$ with a Riemannian metric h of class C^s . Then there exists a C^s -extension g of h such that (N, h) is totally geodesic in a strong sense under g.

Moreover if N is compact, the extension g above stated can have the more property that, for every pair (p, q) of points of N, there exists at least one

138

M-geodesic from p to q, whose length is the distance between these points and all such M-geodesics lie completely within N.

PROOF. (i) Let W be a tubular neighborhood (of class C^{r-2}) of N in M (e.g. [3], Theorem 9, p. 73) and let π be the projection of W on N. Then there exists an open covering $\{V_{\xi}\}$ of N consisting of coordinate neighborhoods of N, open subsets U_{ξ} of $\pi^{-1}(V_{\xi})$ containing V_{ξ} , and C^{r-2} -diffeomorphisms $f_{\xi}: U_{\xi} \to V_{\xi} \times R^{m-n}$ such that the diagram

is commutative, where π' is the natural projection. The local coordinate system $\{u^1, u^2, \dots, u^n\}$ on V_{ξ} and the coordinates u^{n+1}, \dots, u^m of R^{m-n} give a coordinate system to $V_{\xi} \times R^{m-n}$ and consequently to U_{ξ} by f_{ξ}^{-1} .

We extend $h | V_{\xi}$ to a Riemannian metric to U_{ξ} by

h_{ij}	0
0	$\delta_{\lambda\mu}$

Since M is a normal topological space, there exists an open neighborhood U of N such that $N \in U \in \overline{U} \subset \cup U_{\xi}$. Define a Riemannian metric g_0 on the open manifold $M - \overline{U}$. Then, by a partition of unity, smoothly unify g_0 on $M - \overline{U}$ and those metrics on U_{ξ} 's defined above. It is easily seen that the metric g which results is an extension of h.

(ii) We prove that N is totally geodesic in a strong sense in (M, g). Let $\gamma: I \to N$ be an N-geodesic, where I is a closed real interval. Let $\{u^1, u^2, \dots, u^m\}$ be the local coordinate system on U_{ξ} , defined in (i). The system is compatible with the fibre structure of W. In terms of a local coordinate system $\{u^1, u^2, \dots, u^m\}, t \to \gamma(t) \in N$ satisfies the second order differential equations

$$\frac{d^2u^l}{dt^2} + \left\{ \begin{matrix} i \\ i j \end{matrix} \right\} \frac{du^i}{dt} \quad \frac{du^j}{dt} = 0 \qquad (1 \leq i, j, l \leq n),$$

where $\left\{ \begin{matrix} \hat{l} \\ ij \end{matrix} \right\}$ is the Christoffel symbol for h_{ij} . Since

$$\begin{cases} \lambda \\ \mu\nu \end{cases} = \begin{cases} \begin{cases} \lambda \\ \mu\nu \end{cases} & \text{ if } 1 \leq \lambda, \, \mu, \, \nu \leq n, \\ 0 & \text{ if at least one of } \lambda, \, \mu, \, \nu \text{ is larger than } n, \end{cases}$$

 γ is also a geodesic in (M, g).

Each *M*-geodesic in *U* joining two points of *N* lies completely within *N*. For let $\gamma: I \rightarrow \gamma(I) \subset U$ be an *M*-geodesic joining two points of *N*, where I = [a, b]. The geodesic satisfies the equations

$$\frac{d^2u^l}{dt^2} + \left\{ \begin{array}{c} l\\ ij \end{array} \right\} \frac{du^i}{dt} \quad \frac{du^j}{dt} = 0 \qquad (1 \leq i, j, l \leq m).$$

Since $\left\{ egin{array}{c} l \\ ij \end{array}
ight\} = 0$ for $l \ge n+1,$

$$\frac{d^2u^l}{dt^2} = 0 \qquad (l \ge n+1).$$

Therefore, for each $l \ge n+1$, $\frac{du^l}{dt} = \text{const.}$ On the other hand, since $u^l(r(a)) = u^l(r(b)) = 0$, there exists c such that a < c < b and $\frac{du^l}{dt}\Big|_c = 0$. Hence $\frac{du^l}{dt} = 0$ on I and consequently $u^l(r(t)) = 0$ ($t \in I$). Therefore we conclude that $r(I) \subset N$.

For every piecewise differentiable curve $\alpha: I \to U$ joining two points of N but not contained in N, there exists a piecewise differentiable curve on N joining the same points whose length is less than that of α . For since α is not contained in N, for some $i(n+1 \leq i \leq m)$, there exists c such that a < c < b and $\frac{du^i}{dt}\Big|_c \neq 0$. The length l of α with respect to g is

$$l = \int_{I} \left(h_{ij} \frac{du^{i}}{dt} \frac{du^{j}}{dt} + \sum_{k=n+1}^{m} \left(\frac{du^{k}}{dt} \right)^{2} \right)^{1/2} dt$$
$$> \int_{I} \left(h_{ij} \frac{du^{i}}{dt} \frac{du^{j}}{dt} \right)^{1/2} dt.$$

The last integral is the length of the curve $\pi(\alpha) \subset N$ obtained by projecting α to N by π .

(iii) Compact case. Let g be the extension of h obtained in (i) and K the diameter of N with respect to g. Let $\pi: U \to N$ be the projection of the tubular neighborhood U of N in (i). Since N is compact, there exists an $\varepsilon > 0$ such that, for each point p of N, the spherical neighborhood $S_{\varepsilon}(p)$ of p with radius ε is contained in U. Then $U' = \bigcup_{p \in N} S_{\varepsilon}(p)$ is a tubular neighborhood of N contained in U. We define an extension of h to U' by

$$egin{array}{ccc} h_{ij} & 0 & \ & (3K/arepsilon)^2 & 0 & \ & 0 & \ddots & \ & 0 & (3K/arepsilon)^2 \end{pmatrix}.$$

140

On the other hand, we define a Riemannian metric on $M - \bar{U}''$, where $U'' = \bigcup_{p \in N} S_{\varepsilon/2}(p)$. The metric g_1 , obtained by smoothly unifying the metrics on U' and $M - \bar{U}''$ by a partition of unity, is a desired one.

For, in the same way as in (ii), it can be verified that g_1 is an extension of *h* such that (N, h) is totally geodesic in a strong sense. Since *N* is compact and each *M*-geodesic is an *N*-geodesic, for every pair (p, q) of points of *N* there exists at least one *M*-geodesic on *N* joining *p* and *q* whose length is the distance between *p* and *q* with respect to g_1 .

Next we shall show that all such *M*-geodesics lie completely within *N*. Since (N, h) is totally geodesic in a strong sense, all *M*-geodesics in U'' from p to q are contained in *N*. On the other hand, let $\alpha: I = [a, b] \rightarrow M$ be a parametrized piecewise differentiable curve of *M* from $p = \alpha(a)$ to $q = \alpha(b)$, not contained in U''. Let $q_1 = \alpha(c)$ be the first point at which $\alpha(I)$ meets M - U'' as the parameter t runs on I from a to b. Then the length l_1 of the subarc $\alpha(I_1), I_1 = [a, c]$, with respect to g_1 is larger than K. For

$$l_{1} = \int_{a}^{c} \left(h_{ij} \frac{du^{i}}{dt} \frac{du^{j}}{dt} + \sum_{k=n+1}^{m} \left(\frac{3K}{\varepsilon} \frac{du^{k}}{dt}\right)^{2}\right)^{1/2} dt$$
$$\geq \frac{3K}{\varepsilon} \int_{a}^{c} \left(\sum_{k=n+1}^{m} \left(\frac{du^{k}}{dt}\right)^{2}\right)^{1/2} dt > K.$$

Hence the length of $\alpha(I)$ is larger than the diameter of N. Q. E. D.

4 Boundedness

LEMMA 1 Let M be a separable connected differentiable manifold, and N a closed submanifold of M. Then there exists a denumerable collection of piecewise differentiable linear graphs L_{ξ} in M such that $N \cup (\cup L_{\xi})$ is a connected closed submanifold with branches.

PROOF. Let $\{U_i\}$ be a denumerable increasing sequence of connected open set such that \overline{U}_i are compact, $\overline{U}_i \subset U_{i+1}$ and $\bigcup U_i = M$. Then each U_i meets at most a finite number of components of N, because \overline{U}_i is compact and N is a closed submanifold.

Let K_{j-1} be the union of the components of N meeting U_{j-1} and assume that we have a connected closed submanifold $K_{j-1} \cup (\cup L_{\xi}) = K'_{j-1}$ with branches such that L_{ξ} 's are finite in number and $L_{\xi} \subset U_{j-1}$. Let N_1 be a component of N meeting U_j and not contained in K_{j-1} . Then there exists a piecewise differentiable simple curve L such that $L \cap N_1$ and $L \cap K'_{j-1}$ are the endpoints of $L, K'_{j-1} \cup N_1 \cup L$ is a connected closed submanifold with branches and L is contained in $U_j - U_k$, where k is the largest integer so that we can find such a curve. Therefore it must be noticed that the component of $M - \overline{U}_{k+1}$ meeting L contains no point of K'_{j-1} . Inductively we can construct a connected closed submanifold K'_j with branches such that $K'_j \supseteq K'_{j-1}$, K'_j contains all components of N meeting U_j and the branches are contained in U_j . The set $\bigcup K'_j$ is a desired one.

For it is obvious that $\bigcup K'_j$ satisfies the last three of the conditions (a), (b), (c) and (d) of a closed submanifold with branches. In order to prove that $\bigcup K'_j$ satisfies (a), it is sufficient to show that each U_j meets at most a finite number of piecewise differentiable linear graphs L_{ξ} 's. Now assume that some U_j meets infinitely many L_{ξ} 's. On the other hand, since $U_{j+1} - \bar{U}_j$ is locally connected and $\bar{U}_{j+1} - U_j$ is compact, the components of $\bar{U}_{j+1} - U_j$ interjecting both $M - U_{j+1}$ and \bar{U}_j are finite in number. Hence one of them, C, and also the component of $M - U_j$ containing C meets at least two, L', L'', of L_{ξ} 's such that, for some integer $l, L' \subset K'_l$ and L'' contains a simple curve joining K'_l and a component N_1 of N meeting U_{l+1} , This contradicts our construction of $\{L_{\xi}\}$.

THEOREM 3 Let M, N and h be the same as in Theorem 2 (except that N is connected). If the sum a of diameters of components of N with respect to h is finite, then for arbitrarily given $\delta > 0$ there exists a C^s-extension g' of h to M such that the diameter of M under g' is less than $a+\delta$.

PROOF. The proof is similar to [4]. Let $N' = N \cup (\bigcup L_{\xi})$ be the connected closed submanifold with branches, obtained in Lemma 1. In each $L_{\xi}(\xi = 1, 2, ...)$, we define a metric of class C^{s} so that its diameter is equal to $2^{-\xi-1}\delta$. Thus we get a metric h' of class C^{s} defined on N' such that $h'|_{N=h}$ and the diameter of N' under h' is less than $a + (\delta/2)$.

Using a tubular neighborhood W of N' (of class C^{r-2}) and U as in the proof of Theorem 2, we have a C^s -extension g of h' to M by Theorem 1. We may choice W so that the distance $\varphi_1(p) = d(p, N')$ ($p \in W$) is compatible with the fibre structure of W, where d is the distance with respect to g (cf. Section 3). Then d(p, N') ($p \in M - \overline{U}$) is a continuous function on $M - \overline{U}$. Therefore there exists a differentiable function φ_2 of class C^s defined on $M - \overline{U}$ such that

$$arphi_2(p) > d(p, N') \qquad (p \in M - \overline{U}).$$

We smoothly unify φ_1 on W and φ_2 on $M-\overline{U}$ by a partition of unity and denote the C^s -function which results on M by φ . Here note that, for every point $p \in M$,

(1)
$$\varphi(p) \ge d(p, N')$$

and $\varphi = \varphi_1$ on U.

We can define a C^s -extension g' of h' to M such that, for every point p of $M, d'(p, N') \leq \delta/4$ where d' is the distance with respect to g'. For let K be a positive number such that $K > 4\pi/\delta^2$ and put $g' = e^{-2K\varphi^2}g$. Then it is a

Riemannian metric on M (conformal to g) and is a C^{s} -extension of h' to M, since $\varphi(p) = \varphi_{1}(p) = d(p, N') = 0$ for $p \in N'$.

We shall show that, for every $\varepsilon > 0$, every point p of M can be joined to N' by a curve of length $\langle (\delta/4) + \varepsilon$ with respect to g'. There exists a point $q \in N'$ and a piecewise differentiable curve α in M, from p to q, of length l with respect to g such that

(2)
$$d(p, N') \leq d(p, q) \leq l < d(p, N') + \varepsilon$$

Let $s \to \alpha(s)$ be a parametric representation of α , where s is the length of the subarc of α from $q = \alpha(0)$ to $\alpha(s)$ with respect to g. Then by (1) and (2)

 $s - \varepsilon < d(\alpha(s), N') \leq \varphi(\alpha(s)).$

Hence the length l' of α with respect to g' is estimated as follows:

$$l' = \int_0^l e^{-K\{\varphi(\alpha(s))\}^2} ds < \int_0^l e^{-K(s-\varepsilon)^2} ds$$
$$< \int_0^\infty e^{-Ks^2} ds + \int_0^\varepsilon e^{-Ks^2} ds = \frac{\sqrt{\pi}}{2\sqrt{K}} + \int_0^\varepsilon e^{-Ks^2} ds < \frac{\delta}{4} + \int_0^\varepsilon e^{-Ks^2} ds.$$

Since ε is arbitrary, d'(p, N') is not larger than $\delta/4$. Q.E.D.

4 Completeness

LEMMA 2 ([4]) Let (M, g) be a separable, connected Riemannian manifold. Then there exists a complete Riemannian metric g_0 which is conformal to g and $g_0 \geq g$.

PROOF. Let $\{U_i\}$ be a denumerable increasing sequence of connected open sets such that \bar{U}_i are compact, $\bar{U}_i \subset U_{i+1}$ and $\cup U_i = M$. For every $i \ge 1$, we define a Riemannian metric on the set $U_{2i+1} - \bar{U}_{2i-2}$ $(U_0 = \emptyset)$ by $g_i = g/K_i^2$, where $K_i = \text{Min} \{1, \text{the distance between } \bar{U}_{2i-1} \text{ and } M - U_{2i}, \text{ with respect to } g\}$. Then we smoothly unify the metrics g_i on $U_{2i+1} - \bar{U}_{2i-2}$ (i=1, 2, ...) by a partition of unity. Then the Riemannian metric g_0 which results is conformal to g and $g_0 \ge g$. We note here that $g_0 = g_i$ on $U_{2i} - \bar{U}_{2i-1}$ and $d_0(U_{2i}, U_{2i-1}) \ge 1$, where d_0 is the distance with respect to g_0 .

We shall show that g_0 is complete. Let $Q = \{p_i\}$ be a Cauchy sequence with respect to g_0 . Then Q is contained in some U_k . For if not, for every point $p_i \in Q$, there exists an integer l and a point $p_j \in Q$, such that $p_i \in U_{2l-1}$ and $p_j \notin U_{2l}$. Consequently $d_0(p_i, p_j) \ge d_0(U_{2l}, U_{2l-1}) \ge 1$. This contradicts the fact that Q is a Cauchy sequence. Thus Q converges to a point of \overline{U}_k , because \overline{U}_k is compact. Q.E.D.

Akira Tominaga

THEOREM 4 Let M, N and h be the same as in Theorem 2. If M is connected and h is complete, then there exists a C^s -extension g of h to M such that (M, g) is complete and N is totally geodesic in a strong sense.

PROOF. Let g_1 be an extension of h_1 (Theorem 2) and define a complete Riemannian metric g'_1 on M-N such that $g'_1 \ge g_1$ (Lemma 2).

Let $\{U_i\}$ be an increasing sequence of open sets such that \bar{U}_i are compact, $\bar{U}_i \subset U_{i+1}$ and $\cup U_i = M$. We now define an open set W containing N as follows: let p be a point in $N \cap (\bar{U}_i - U_{i-1}) (U_0 = \emptyset)$ and W(p) a spherical neighborhood of p with radius <1/i (with respect to g_1) whose closure is compact and is contained in a coordinate neighborhood of M on which a canonical coordinate system with respect to N is defined. Since $N \cap (\bar{U}_i - U_{i-1})$ is compact, there exists a finite number of points, p_1, \dots, p_k , in it such that $\bigvee_{j=1}^k W(p_j) \supset N \cap (\bar{U}_i - U_{i-1})$. Then the closure of $\bigvee_{j=1}^k W(p_j) = W_i$ is compact. Denote $\cup W_i$ by W. \bar{W} is a complete metric space with respect to the natural distance d_1 derived from g_1 , because (N, h_1) is complete.

By a partition of unity, we smoothly unify g_1 on W and g'_1 on M-N. Then we have a Riemannian metric g such that $g \ge g_1$ on W and $g = g'_1$ on $M - \overline{W}$.

We shall show that g is complete. Let Q be a Cauchy sequence with respect to g. If infinitely many points p_i 's of Q are contained in W, $Q_1 = \{p_i\}$ is also a Cauchy sequence with respect to g_1 , because $g \ge g_1$ on W. Since \overline{W} is complete with respect to d_1 , Q_1 (and also Q) converges to a point.

Suppose that infinitely many points p_i of Q are contained in $M-\overline{W}$. Let $\alpha(i, j)$ be a piecewise differentiable curve from p_i to p_j , whose length $L(\alpha(i, j))$ with respect to g is less than $d(p_i, p_j) + (1/2^{i+j})$. If $\alpha(i, j)$ is contained in $M-\overline{W}$, $L(\alpha(i, j))$ is equal to the length of $\alpha(i, j)$ with respect to g_1' . Therefore, if infinitely many curves $\alpha(i, j)$ are contained in $M-\overline{W}$, a subsequence of Q is a Cauchy sequence with respect to g_1' and converges to a point, because $(M-N, g_1')$ is complete. If infinitely many curves $\alpha(i, j)$ meet W, for each k we choose a point q_k of $\alpha(i, j) \cap W$. Then $\{q_k\}$ is a Cauchy sequence in W with respect to g, for if $q_k \in \alpha(i, j)$ and $q_{k'} \in \alpha(i', j')$ then

$$d(q_k, q_{k'}) \leq L(\alpha(i, j)) + d(p_j, p_{i'}) + L(\alpha(i', j'))$$

$$\leq d(p_i, p_j) + d(p_j, p_{i'}) + d(p_{i'}, p_{j'}) + (1/2^{i+j}) + (1/2^{i'+j'}).$$

Hence the Cauchy sequence $\{q_k\}$ in W, with respect to g, converges to a point. Q.E.D.

References

^[1] Auslander, L. and R. E, Mackenzie, Introduction to differentiable manifolds, McGraw-Hill, 1963.

Extensions of Riemannian Metrics

- [2] Bing, R. H., Extending a metric, Duke Math. J. 14 (1947), 511-519.
- [3] Lang, S., Introduction to differentiable manifolds, Interscience Publishers, 1962.
- [4] Nomizu, K. and H. Ozeki, The existence of complete Riemannian metrics, Proc. Amer. Math. Soc. 12 (1961), 889-891.
- [5] Tominaga, A., On extensions of a metric, J. Sci. Hiroshima Univ., Ser. A, 17 (1953), 185-191.

Faculty of General Education, Hiroshima University