J. Sci. Hiroshima Univ. Ser. A-I 29 (1965), 87-96

A Computation of Extremal Length in an Abstract Space

Makoto Ohtsuka (Received March 10, 1965)

In [2] and [3] we computed the extremal length of harmonic subflows in an *n*-dimensional *C*-space. In this paper we shall compute the extremal length of a certain class of measures in an abstract space. The main results of [3] are special cases of the results in the present paper.

1. Let X be an abstract space and \mathfrak{A} be a σ -field¹⁾ of subsets of X. By a measure in this paper we shall mean a non-negative countably additive set-function. Let μ be a measure on \mathfrak{A} . With each $x \in X$, we associate an abstract space Y_x , a σ -field \mathfrak{B}_x of subsets of Y_x and a measure ν_x defined on \mathfrak{B}_x . We shall denote by Z the set of all couples $(x, y), x \in X, y \in Y_x$. Suppose that there is a σ -field \mathfrak{G} of sets in $Z^{(2)}$ which contains all sets of the form $\{(x, y); x \in A \in \mathfrak{A}, y \in Y_x\}^{(3)}$ and which, for every $E \in \mathfrak{G}$, satisfies

(1) $E_x = \{y \in Y_x; (x, y) \in E\}$ belongs to \mathfrak{B}_x for every $x \in X$ not belonging to $A_E \in \mathfrak{A}$ with $\mu(A_E) = 0$,⁴⁾

(2) $\nu_x(E_x)$ is an \mathfrak{A} -measurable function defined on $X - A_E$. We set

$$\alpha(E) = \int_X \nu_x(E_x) d\mu(x) \quad \text{for } E \in \mathfrak{G}$$

If $E^{(1)}$, $E^{(2)}$, ... are mutually disjoint sets of \mathfrak{S} , then $\alpha(\bigcup_{n} E^{(n)}) = \sum_{n} \alpha(E^{(n)})$. Thus, α is a measure on \mathfrak{S} . If f is non-negative and \mathfrak{S} -measurable, it is inferred that f(x, y) is a \mathfrak{B}_x -measurable function of y on Y_x for μ -a.e. $x \in X$, that $\int_{Y_x} f d\nu_x$ is an \mathfrak{A} -measurable function defined for μ -a.e. $x \in X$ and that

$$\int f d\alpha = \int_X \left(\int_{Y_x} f d\nu_x \right) d\mu(x).$$

¹⁾ This means that \mathfrak{A} is not empty, $A \in \mathfrak{A}$ implies X - A and $A_1, A_2, \ldots \in \mathfrak{A}$ implies $\bigcup_n A_n \in \mathfrak{A}$. Sometimes, it is called a Borel field or σ -algebra.

²⁾ The existence of & will be discussed in Section 6.

³⁾ Any set of this form satisfies conditions (1) and (2) imposed below, because $Z \in \mathfrak{G}$ satisfies condition (2).

⁴⁾ This fact will be expressed as "for μ -a.e. $x \in X$ ".

Let π and κ be non-negative \mathfrak{G} -measurable functions in Z, and assume that $\kappa(x, y)$ restricted to Y_x is \mathfrak{B}_x -measurable for each $x \in X$. We shall call an \mathfrak{G} -measurable function $\rho \ge 0$ in Z κ -admissible (in association with $\{\nu_x\}$) if $\int_{Y_x} \kappa \rho d\nu_x^{(5)}$ is well-defined and ≥ 1 for every $x \in X$. For p, 0 , we define a module by

$$M_{\rho}(\{\nu_{x}\}; \pi, \kappa) = \inf_{\rho} \int \pi \rho^{\rho} \mathrm{d}\alpha,$$

where inf is taken with respect to κ -admissible ρ . Although $M_p(\{\nu_x\}; \pi, \kappa)$ depends also on the choice of μ , \mathfrak{A} , \mathfrak{S} , etc. we shall not write them explicitly in it. If there is x such that $\int_{Y_x} \kappa d\nu_x = 0$, there exists no κ -admissible ρ . We set then $M_p(\{\nu_x\}; \pi, \kappa) = \infty$. If $\int_{Y_x} \kappa d\nu_x > 0$ for each $x \in X$, then $\rho \equiv \infty$ is κ -admissible. We shall call $1/M_p(\{\nu_x\}; \pi, \kappa)$ the κ -extremal length of $\{\nu_x\}$ with weight π . This is a special case of the extremal length defined in [1]. An admissible ρ which gives $\int \pi \rho^p d\alpha = M_p(\{\nu_x\}; \pi, \kappa)$ will be called extremal. In this paper we shall assume that $\int \kappa d\nu_x > 0$ for all x.

We shall state a property of $M_p(\{\nu_x\}; \pi, \kappa)$; see (1) for a proof.

(3) Let $A_1, A_2, \dots \in \mathfrak{A}$ be all mutually disjoint, let $A'_1, A'_2, \dots \in \mathfrak{A}$ and let $\bigcup (A_n \cup A'_n) = X$. If $M_p(\{\nu_x; x \in A'_n\}; \pi, \kappa) = 0$ for every *n*, then

$$M_p(\lbrace \nu_x
brace; \pi, \kappa) = \sum_n M_p(\lbrace \nu_x; x \in A_n
brace; \pi, \kappa).$$

2. We begin with a preliminary remark that we may assume that $\pi > 0$ and $\kappa > 0$ everywhere on Z in computing $M_p(\{\nu_x\}; \pi, \kappa)$. Actually let ρ be κ -admissible, and denote by π^+, κ^+ and ν_x^+ the restrictions of π, κ and ν_x to $E_{\kappa}^+ = \{(x, y); \kappa(x, y) > 0\}$ and to $E_{\kappa}^+ \cap Y_x$ respectively. We observe easily that the restriction of ρ to E^+ is κ^+ -admissible in association with $\{\nu_x^+\}$ and derive $M_p(\{\nu_x^+\}; \pi^+, \kappa^+) \leq M_p(\{\nu_x\}; \pi, \kappa)$. The inverse inequality is evident, and the equality is established. Thus we may consider E_{κ}^+ instead of Z. For this reason, we shall assume hereafter that $\kappa > 0$ everywhere on Z.

Next we set $E^0_{\pi} = \{(x, y); \pi(x, y) = 0\} \in \mathfrak{S}$ and

 $X_{\pi}^* = \{x; E_{\pi}^0 \cap Y_x \text{ is a set of } \mathfrak{B}_x \text{ with positive } \nu_x \text{-measure}\}.$

This set belongs to \mathfrak{A} and $M_p(\{\nu_x; x \in X^*_{\pi}\}; \pi, \kappa) = 0$, because ρ equal to ∞ on $\{(x, y) \in E^0_{\pi}; x \in X^*_{\pi}\}$ and to 0 elsewhere is κ -admissible in association with $\{\nu_x; x \in X^*_{\pi}\}$ and hence

⁵⁾ In this paper we set $\infty \cdot 0 = 0 \cdot \infty = 0$.

A Computation of Extremal Length in an Abstract Space

$$M_{p}(\{
u_{x}; x \in X_{\pi}^{*}\}; \pi, \kappa) \leq \int \pi
ho^{p} dlpha = 0.$$

On account of (3) it suffices to compute $M_p(\{\nu_x; x \in X - X_\pi^*\}; \pi, \kappa)$. Furthermore we may assume that $\pi > 0$ everywhere on $\{(x, y); x \in X - X_\pi^*\}$. For, if we change the values of π so that it is positive on $\{(x, y); x \in X - X_\pi^*\}$, the value of $M_p(\{\nu_x; x \in X - X_\pi^*\}; \pi, \kappa)$ remains the same. Consequently, we shall assume in the sequal that $\pi > 0$ everywhere on Z.

Before calculating the extremal length we prove

THEOREM 1. Let p > 1. We can find $\{\nu'_x\}$, each defined on \mathfrak{B}_x , such that

(4)
$$M_p(\{\nu_x\}; \pi, \kappa) = M_p(\{\nu'_x\}; 1, \kappa),$$

where we allow $\nu'_x \equiv 0$ for some x.

PROOF. First we note that if $M_p(\{\nu_x\}; \pi, \kappa) = \infty$ then (4) is true with $\{\nu'_x \equiv 0; x \in X\}$. We shall write q for 1/(p-1). We denote by E^{∞}_{π} the set $\{(x, y); \pi(x, y) = \infty\} \in \mathfrak{S}$. First we consider the case that $E^{\infty}_{\pi} \cap Y_x \in \mathfrak{B}_x$ and $\nu_x(Y_x - E^{\infty}_{\pi}) = 0$ for x belonging to $A \in \mathfrak{A}$ with $\mu(A) > 0$. If ρ is κ -admissible, $\rho(x, y) > 0$ on a set of \mathfrak{B}_x of positive ν_x -measure for all x. For $x \in A$, $\int_{Y_x} \pi \rho^{\beta} d\nu_x = \infty$ and hence

$$\int \pi \rho^{p} d\alpha = \int_{X} \left(\int_{Y_{x}} \pi \rho^{p} d\nu_{x} \right) d\mu(x) = \infty.$$

It follows that $M_p(\{\nu_x\}; \pi, \kappa) = \infty$. This case was already taken care of at the beginning of our proof.

Next, we consider the case that $\nu_x(Y_x - E_\pi^{\infty}) > 0$ for μ -a.e. x. We denote by X_0 the set of x, for which $\nu_x(Y_x - E_\pi^{\infty}) > 0$ and $\pi(x, y)$ is \mathfrak{B}_x -measurable as a function of y. Then $\mu(X - X_0) = 0$. For $x \in X_0$ we define ν'_x by $\int \pi^{-q} d\nu_x$, and for $x \in X - X_0$ we set $\nu'_x = \nu_x$. Evidently $M_p(\{\nu_x; x \in X - X_0\}; \pi, \kappa) =$ $M_p(\{\nu'_x; x \in X - X_0\}; 1, \kappa) = 0$. On account of (3) it suffices to show $M_p(\{\nu_x; x \in X_0\}; \pi, \kappa) = M_p(\{\nu'_x; x \in X_0\}; 1, \kappa)$. Consequently, we shall assume in the rest of the proof that $\pi(x, y)$ is a \mathfrak{B}_x -measurable function of y and $\nu_x(Y_x - E_\pi^{\infty}) > 0$ for all x.

Let ρ be κ -admissible in association with $\{\nu_x\}$ such that $\int \pi \rho^p d\alpha < \infty$. It holds that $\rho = 0$ α -a.e. on E_{π}^{∞} . If $\rho = 0$ ν_x -a.e. on $E_{\pi}^{\infty} \cap Y_x$ we set $\rho' = \pi^q \rho$ on Y_x , and otherwise we set $\rho' = \infty$ constantly on Y_x . If $\rho' = \pi^q \rho$ on Y_x ,

$$egin{aligned} &\int &\kappa
ho'd
u_x'\!=\!\!\int_{0<\pi<\!\infty}\!\kappa
ho'd
u_x'\!=\!\!\int_{0<\pi<\!\infty}\!\kappa \pi^q
ho\pi^{-q}d
u_x \ =\!\!\int_{0<\pi<\!\infty}\!\kappa
ho d
u_x\!=\!\!\int\kappa
ho d
u_x\!\ge\!1. \end{aligned}$$

If $\rho' = \infty$ on Y_x ,

$$\int \kappa
ho' d
u'_x \ge \int_{0<\pi<\infty} \kappa \cdot \infty \, d
u'_x = \infty.$$

Hence ρ' is κ -admissible in association with $\{\nu'_x\}$ and it follows that

$$M_p(\{\nu'_x\}; \mathbf{1}, \kappa) \leq \int \int \rho'^p d\nu'_x d\mu = \int \int_{0 < \pi < \infty} \pi^{pq} \rho^p d\nu'_x d\mu = \int \pi \rho^p d\alpha.$$

Hence

$$M_p(\{\nu'_x\}; 1, \kappa) \leq M_p(\{\nu_x\}; \pi, \kappa).$$

On the other hand, let ρ' be κ -admissible in association with $\{\nu'_x\}$. We define ρ by $\pi^{-q}\rho'$ everywhere. We observe

$$1 \leq \int \kappa \rho' d\nu'_x = \int_{0 < \pi < \infty} \kappa \rho \pi^q \pi^{-q} d\nu_x \leq \int \kappa \rho d\nu_x.$$

We derive

$$M_p(\{\nu_x\}; \pi, \kappa) \leq \int \pi (\rho' \pi^{-q})^p d\alpha = \iiint_{0 < \pi < \infty} \rho'^p \pi^{-q} d\nu_x d\mu = \iiint \rho'^p d\nu'_x d\mu$$

and conclude

$$M_p(\{\nu_x\}; \pi, \kappa) \leq M_p(\{\nu'_x\}; 1, \kappa).$$

Now (4) follows.

3. Let p > 1. We write f(x, y) for $\kappa^{p/(p-1)}\pi^{-1/(p-1)}$, and h(x) for $\int_{Y_x} f(x, y) d\nu_x(y)$. This is an \mathfrak{A} -measurable function defined for μ -a.e. $x \in X$. We shall prove

THEOREM 2. Let p > 1. Then the equality

(5)
$$M_p(\{\nu_x\}; \pi, \kappa) = \int_X \frac{d\mu(x)}{h^{b-1}(x)}$$

holds if and only if $M_{\rho}(\{\nu_x; x \in X_h^{\infty}\}; \pi, \kappa) = 0$ for $X_h^{\infty} = \{x; h(x) = \infty\}$. If, in particular, $0 < h(x) < \infty$ for μ -a.e. $x \in X$, then an extremal function is given by

PROOF. First we consider the case that $E_{\pi}^{\infty} \cap Y_x$ belongs to \mathfrak{B}_x and h(x) vanishes for x belonging to $A \in \mathfrak{A}$ with $\mu(A) > 0$. Since $\kappa > 0$, $\pi = \infty \nu_x$ -a.e. on Y_x for $x \in A$. Let ρ be any κ -admissible function. It follows that $\int \pi \rho^b d\nu_x = \infty$ for every $x \in A$ and hence that $\int \int \pi \rho^b d\nu_x d\mu = \infty$. Thus $M_p(\{\nu_x\}; \pi, \kappa) = \infty$. Both sides of (5) are now equal to ∞ .

Next we assume that h(x) > 0 for μ -a.e. $x \in X$. We begin with the special case that $\pi \equiv 1$. Since $\int \kappa d\nu_x > 0$ for each x, $h(x) = \int \kappa^{p/(p-1)} d\nu_x > 0$ for each x. Suppose $h(x) < \infty$ for μ -a.e. x. Let ρ be κ -admissible. If $h(x) < \infty$ for x, we apply Hölder's inequality and obtain

$$1 \leq \left(\int_{Y_{x}} \rho^{p} d\nu_{x}\right)^{1/p} \left(\int_{Y_{x}} \kappa^{p/(p-1)} d\nu_{x}\right)^{(p-1)/p} = \left(\int_{Y_{x}} \rho^{p} d\nu_{x}\right)^{1/p} h^{(p-1)/p}(x)$$

or

$$\frac{1}{h^{p-1}(x)} \leq \int_{Y_x} \rho^p d\nu_x.$$

This is true for all x and it holds that

$$\int_X \frac{d\mu(x)}{h^{p-1}(x)} \leq \int \rho^p d\alpha.$$

Hence

$$\int_{X} \frac{d\mu(x)}{h^{p-1}(x)} \leq M_{p}(\{\nu_{x}\}; \mathbf{1}, \kappa)$$

On the other hand, we observe that ρ_0 is \mathfrak{G} -measurable and check that ρ_0 is κ -admissible. It follows that

$$M_p(\{
u_x\}; \mathbf{1}, \kappa) \leq \int \int
ho_0^p d
u_x d\mu = \int_X rac{d\mu(x)}{h^{p-1}(x)}$$

and the equality is concluded. It is seen that ρ_0 is extremal.

In the case when $\mu(X_h^{\infty}) > 0$, we have by (3)

$$M_{p}(\{\nu_{x}\}; 1, \kappa) = M_{p}(\{\nu_{x}; x \in X_{h}^{\infty}\}; 1, \kappa) + M_{p}(\{\nu_{x}; x \in X - X_{h}^{\infty}\}; 1, \kappa),$$

and infer that

$$M_{p}(\{\nu_{x}; x \in X - X_{h}^{\infty}\}; \mathbf{1}, \kappa) = \int_{X - X_{h}^{\infty}} \frac{d\mu(x)}{h^{p-1}(x)} = \int_{X} \frac{d\mu(x)}{h^{p-1}(x)}.$$

Hence (5) holds if and only if $M_p(\{\nu_x; x \in X_h^{\infty}\}; 1, \kappa) = 0$.

Finally we are concerned with a general π . The inequality $\nu_x(Y_x - E_{\pi}^{\infty}) > 0$ is equivalent to h(x) > 0. Let us assume this for each x. Let $\nu'_x = \int \pi^{-1/(p-1)} d\nu_x$. We observe that h'(x) defined by $\int \kappa^{p/(p-1)} d\nu'_x$ is equal to h(x). Hence the set $X_{h'}^{\infty} = \{x; h'(x) = \infty\}$ is identical to X_h^{∞} . By Theorem 1 we have $M_p(\{\nu_x\}; \pi, \kappa) = M_p(\{\nu'_x\}; 1, \kappa)$ and $M_p(\{\nu_x; x \in X_h^{\infty}\}; \pi, \kappa) = M_p(\{\nu'_x; x \in X_h^{\infty}\}; 1, \kappa)$. The relation

$$M_{p}(\{\nu'_{x}\}; 1, \kappa) = \int \frac{d\mu(x)}{(h'(x))^{p-1}} = \int \frac{d\mu(x)}{h^{p-1}(x)}$$

holds if and only if $M_{\rho}(\{\nu_x; x \in X_{h}^{\infty}\}; \pi, \kappa) = 0$. Furthermore, in case $h(x) < \infty$ for μ -a.e. x, we define ρ'_0 by $\kappa^{1/(\rho-1)}h^{-1}$ if $h(x) < \infty$ and by ∞ otherwise. It is extremal in association with $\{\nu'_x\}$ as seen above. We observe that ρ_0 is κ -admissible in association with $\{\nu_x\}$ and

$$\begin{split} \int &\pi \rho_0^p d\alpha = \iint_{0 < \pi < \infty} \pi \rho_0^p d\nu_x d\mu = \iint_{0 < \pi < \infty} \rho_0'^p d\nu'_x d\mu = M_p(\{\nu'_x\}; \mathbf{1}, \kappa) \\ &= M_p(\{\nu_x\}; \pi, \kappa). \end{split}$$

Thus ρ_0 is extremal.

It remains to treat the case when h(x) = 0 for some x. We set $X_h^0 = \{x; h(x) = 0\}$. Since $\mu(X_h^0) = 0$,

$$M_{p}(\{\nu_{x}; x \in X_{h}^{0}\}; \pi, \kappa) = 0 = \int_{X_{h}^{0}} \frac{d\mu(x)}{h^{p-1}(x)}.$$

We know that

$$M_p(\{
u_x; x \in X - X_h^0\}; \pi, \kappa) = \int_{X - X_h^0} \frac{d\mu(x)}{h^{p-1}(x)}$$

if and only if $M_p(\{\nu_x; x \in X_h^{\infty}\}; \pi, \kappa) = 0$. It is concluded that (5) holds if and only if $M_p(\{\nu_x; x \in X_h^{\infty}\}; \pi, \kappa) = 0$. It is easy to check that (6) is extremal if $0 < h(x) < \infty$ for μ -a.e. x. Our proof is completed.

4. A condition for $M_p(\{\nu_x; x \in X_h^\infty\}; \pi, \kappa) = 0$ is found in

THEOREM 3. Let p > 1. Suppose that $h(x) = \infty$ for all $x \in X$. Then $M_p(\{\nu_x\}; \pi, \kappa) = 0$ if and only if μ is σ -finite and there exists $Z_0 \in \mathfrak{S}$ with the following property: The restriction of α to Z_0 is σ -finite and

(7)
$$\int_{Y_x \cap Z_0} f d\nu_x = \infty \qquad for \quad \mu\text{-}a.e. \ x,$$

where $f = \kappa^{p/(p-1)} \pi^{-1/(p-1)}$ as before.

PROOF. We may assume that $\pi(x, y)$ is \mathfrak{B}_x -measurable on Y_x for each x. It does not happen for any x that $\pi(x, y) = \infty \nu_x$ -a.e. on Y_x , because it implies h(x)=0. Hence by taking $\int \pi^{-1/(p-1)} d\nu_x$ for ν'_x , $M_p(\{\nu'_x\}; \mathbf{1}, \kappa) = M_p(\{\nu_x\}; \pi, \kappa)$ by Theorem 1, and for any set $B \in \mathfrak{B}_x$, it holds that $\int_B f d\nu_x = \int_B \kappa^{p/(p-1)} d\nu'_x$. Consequently, it suffices to consider the case $\pi \equiv 1$.

Assume the condition in the theorem. Let X^* be the set of x for which (7) holds. If we denote by ν_x^* the restriction of ν_x to $Y_x \cap Z_0$ for $x \in X^*$, then $M_p(\{\nu_x^*; x \in X^*\}; 1, \kappa) \ge M_p(\{\nu_x\}; 1, \kappa)$. Hence we may assume that $Z = Z_0$ and (7) holds for every x. Let $\{E_n\}$ be an increasing sequence in \mathfrak{E} such that $\bigcup E_n = Z$ and $\alpha(E_n) < \infty$ for every n. If we set $\min(\kappa, n) = \kappa_n$, we have

$$\int_{X} \left(\int_{Y_{x} \cap E_{n}} \kappa_{n}^{p/(p-1)} d\nu_{x} \right) d\mu(x) \leq n^{p/(p-1)} \int_{X} \nu_{x}(Y_{x} \cap E_{n}) d\mu(x)$$
$$= n^{p/(p-1)} \alpha(E_{n}) < \infty$$

so that $\int_{Y_x \cap E_n} \kappa_n^{p/(p-1)} d\nu_x < \infty$ for μ -a.e. x. Let us set $X_n = \{x; 1 \leq \int_{Y_x \cap E_n} \kappa_n^{p/(p-1)} d\nu_x \}$. We shall denote by $\nu_x^{(n)}$ the restriction of ν_x to E_n . By Theorem 2 we have, for $m \ge n$,

$$M_{p}(\{\nu_{x}; x \in X_{n}\}; 1, \kappa) \stackrel{\bullet}{\leq} M_{p}(\{\nu_{x}^{(m)}; x \in X_{n}\}; 1, \kappa_{m}) = \int_{X_{n}} \frac{d\mu(x)}{\left(\int \kappa_{m}^{p/(p-1)} d\nu_{x}^{(m)}\right)^{p-1}} \leq \mu(X).$$

If $\mu(X) < \infty$, the integral decreases to zero as $m \to \infty$. Since $X = \bigcup_{n} X_{n}$, $M_{p}(\{\nu_{x}\}; 1, \kappa) = 0$ by (3). We obtain the same conclusion on account of (3) if μ is σ -finite.

Conversely, suppose $M_p(\{\nu_x\}; \mathbf{1}, \kappa) = 0$. There exists a κ -admissible ρ_n satisfying $\int \rho_n^p d\alpha < 1/n$. Since $\int \kappa \rho_n d\nu_x \ge 1$ for every x, $\int \rho_n^p d\nu_x > 0$ for every x. We set $X_m = \{x; 1/m \le \int_{Y_x} \rho_n^p d\nu_x\}$. Evidently, $X = \bigcup_m X_m$. We have

$$\frac{\mu(X_m)}{m} = \frac{1}{m} \int_{X_m} d\mu \leq \int_{X_m} \int_{Y_x} \rho_n^p d\nu_x d\mu \leq \int \rho_n^p d\alpha < 1/n.$$

This shows that μ is σ -finite. We set next $Z_n = \{(x, y); \rho_n(x, y) > 0\}$. We shall show that $\bigcup_n Z_n$ may be taken for Z_0 . Let $Z_n^{(m)} = \{(x, y); \rho_n(x, y) > 1/m\}$. Evidently $Z_n = \bigcup_m Z_n^{(m)}$. Since the fact $\int_{Z_n^{(m)}} \rho_n^p d\alpha < 1/n < \infty$ implies $\alpha(Z_n^{(m)}) < \infty$, the restriction of α to Z_n and hence to $\bigcup_n Z_n$ is σ -finite. Suppose that there were $M < \infty$ and $A \in \mathfrak{A}$ with $\mu(A) > 0$ such that $\int_{Y_x \cap (\bigcup Z_n)} f d\nu_x < M$ for every $x \in A$. It would hold

$$1 \leq \left(\int_{Y_x \cap Z_n} \kappa \rho_n d\nu_x\right)^p \leq \left(\int_{Y_x \cap Z_n} \rho_n^p d\nu_x\right) \left(\int_{Y_x \cap Z_n} \kappa^{p/(p-1)} d\nu_x\right)^{p-1}$$
$$= \left(\int_{Y_x \cap Z_n} \rho_n^p d\nu_x\right) \left(\int_{Y_x \cap Z_n} f d\nu_x\right)^{p-1} \leq M^{p-1} \int \rho_n^p d\nu_x.$$

Hence

$$0 < \frac{\mu(A)}{M^{p-1}} = \frac{1}{M^{p-1}} \int_A d\mu \leq \int \int \rho_n^p d\nu_x d\mu = \int \rho_n^p d\alpha < \frac{1}{n}.$$

This is impossible if *n* is large. Consequently $\int_{Y_x \cap (\bigcup_n Z_n)} f d\nu_x = \infty$ for μ -a.e. *x*. Thus all conditions on Z_0 are satisfied.

5. We shall apply Theorem 2. Using the notations of [3], we take $\tau \cap [\Gamma]$ for X, the flux φ restricted to $\tau \cap [I']$ for μ , c_Q for Y_x and the length s on c_Q for ν_x . As \mathfrak{G} we take the class of all Lebesgue measurable sets in $[\Gamma]$, and given π' in \mathscr{E} , we take $\pi'/|\text{grad } H|$ for π . Then, for any $E \in \mathfrak{G}$,

$$\alpha(E) = \int \nu_x(E_x) d\mu(x) = \int_{Q \in \tau \cap [\Gamma]} \left(\int_{E \cap c_Q} ds \right) d\varphi(Q)$$

and

$$\int \pi \rho^{p} d\alpha = \int \left(\int_{c_{Q}} \frac{\pi' \rho^{p}}{|\operatorname{grad} H|} ds \right) d\varphi(Q) = \int_{[\Gamma]} \pi' \rho^{p} dv.$$

It is easy to derive Theorem 1 and its generalizations in [3] from our present results.

Another choices are, with the notations of § 6 in [3], T for X, t for μ , S_t for Y_x and σ for ν_x . Then Theorem 5 of [3] is obtained immediately.

6. Next we are interested in the existence of \mathfrak{S} . Suppose that Z, \mathfrak{A}, μ , \mathfrak{B}_x and ν_x are given. At the beginning we assumed the existence of \mathfrak{S} satisfying the required conditions. One might wonder if \mathfrak{S} really exists. Obviously it is a necessary condition that $\nu_x(Y_x) = \nu_x\{y \in Y_x; (x, y) \in Z\}$ is an \mathfrak{A} -measurable function. Conversely, assume that $\nu_x(Y_x)$ is an \mathfrak{A} -measurable function. Then the class of all sets of the form $\{(x, y); x \in A \in \mathfrak{A}, y \in Y_x\}$ may be taken as \mathfrak{S} and is, in fact, the smallest one. Furthermore, if Z can be

written as $\bigcup_{n} Z_n$ such that each $\nu_x(Z_n \cap Y_x)$ is a finite-valued \mathfrak{A} -measurable function defined for μ -a.e. x, then the class of all sets $E \subset Z$ satisfying (1) and (2) may be taken as \mathfrak{G} and is the largest one.

As an example, we take the interval 0 < x < 1 on the x-axis as X and the linear measure as μ . Let X_1 be a non-measurable subset of X with the inner measure $\underline{m}X_1=0$ and the outer measure $\overline{m}X_1=1$. For $X_2=X-X_1$, $\underline{m}X_2=0$ and $\overline{m}X_2=1$. At each point of X_1 we take the interval 0 < y < 1 for Y_x , and at each point of X_2 we take -1/2 < y < 1/2 for Y_x . The linear measure is taken for ν_x on each Y_x . Since $\nu_x(Y_x)\equiv 1$ is a measurable function on X, there exists \mathfrak{S} satisfying the required conditions. By our Theorem 2 we have $M_p(\{\nu_x\}; 1, 1)=1$ for any choice of \mathfrak{S} .

7. So far we have assumed that each \mathfrak{B}_x consists of subsets of Y_x and ν_x is defined on \mathfrak{B}_x . Suppose now that Y_x is contained in a larger space Y'_x for each x. We take any σ -field \mathfrak{B}'_x in Y'_x whose restriction to Y_x coincides with \mathfrak{B}_x , and define ν'_x on \mathfrak{B}'_x so that $\nu_x = \nu'_x$ on \mathfrak{B}_x and $\nu'_x(Y'_x - Y_x) = 0$. Let \mathfrak{S} and \mathfrak{S}' be σ -fields of sets in $Z = \{(x, y); x \in X, y \in Y_x\}$ and $Z' = \{(x, y); x \in X, y \in Y'_x\}$ respectively which satisfy the required conditions, and suppose $\mathfrak{S} \subset \mathfrak{S}'$. We define $\alpha(E)$ by $\int_X \nu_x(E_x) d\mu(x)$ for $E \in \mathfrak{S}$, and $\alpha'(E')$ by $\int_X \nu'_x(E'_x) d\mu(x)$ for $E' \in \mathfrak{S}'$. If $E \in \mathfrak{S}$,

$$\alpha'(E) = \int_X \nu'_x(E_x) d\mu(x) = \int_X \nu_x(E_x) d\mu(x) = \alpha(E).$$

Hence α' is an extension of α . Furthermore, if f(x, y) is non-negegative and \mathfrak{C}' -measurable,

$$\int f d\alpha' = \int_{X} \left(\int_{Y'_{x}} f d\nu'_{x} \right) d\mu(x) = \int_{X} \left(\int_{Y_{x}} f d\nu_{x} \right) d\mu(x) = \int f d\alpha.$$

We see easily that $M_p(\{\nu_x\}: \pi, \kappa) = M_p(\{\nu'_x\}; \pi', \kappa')$ if π' and κ' are non-negative \mathfrak{G}' -measurable extensions of π and κ in Z' such that the restriction of κ' to Y'_x is \mathfrak{B}'_x -measurable for each x. Roughly speaking, the extremal length does not change for any extension of Y_x if ν_x is extended by the value 0.

Next we consider the special case that Y_x is common. Namely, Z is the product space $\{(x, y); x \in X, y \in Y\}$. Furthermore, \mathfrak{B}_x and ν_x may or may not be common. To illustrate it, let us be concerned with the example discussed at the end of Section 6. We take as Y the y-axis or any interval containing the interval -1/2 < y < 1, and take as \mathfrak{B}_x the common class \mathfrak{B} of linearly measurable subsets of Y. We take as ν_x the linear measure on $\{(x, y); 0 < y < 1\}$ (on $\{(x, y); -1/2 < y < 1/2\}$ resp.) for $x \in X_1$ (X_2 resp.), extended by 0 elsewhere. Then again $M_p(\{\nu_x\}; 1, 1)=1$ for any choice of \mathfrak{E} . However, we cannot take the class of Lebesgue measurable sets in Z as \mathfrak{E} , because $E = \{0 < x < 1, 0 < y < 1/2\}$, for instance, does not satisfy condition (2). We add as a remark that $\inf_{\rho} \iint_{\rho} e^2 dx dy = 4/3$ as computed in § 2 of [2], where ρ is a non-negative Lebesgue measurable function satisfying $\int_{0}^{1} \rho dy \ge 1$ if $x \in X_1$ and $\int_{-1/2}^{1/2} \rho dy \ge 1$ if $x \in X_2$.

As another example in which Y and \mathfrak{B} are common but ν_x are different, we consider again a harmonic subflow Γ treated in Section 5. As before we take $\tau \cap [\Gamma]$ for X and take the flux φ restricted to $\tau \cap [\Gamma]$ for μ . Here, we take the *t*-axis for the common Y and the class of linearly measurable sets for the common \mathfrak{B} . As ν_x we take the measure which is equal to the linear measure on the image of c_Q by t=H(P) and which vanishes outside the image. As \mathfrak{S} we take the class of Lebesgue measurable sets in the product space Z. Given π' in \mathfrak{E} , we take $\pi'/|\operatorname{grad} H|^2$ for π , and obtain the same value of the module as in Section 5. If we want to keep the same value of the module while taking the linear measure on the *t*-axis as the common ν , we take κ' which is the extension of κ by 0. The same remark holds for the preceding example.

Finally, we remark that we may limit ourselves to the case when Y and \mathfrak{B} are common if we want. Let $X, \mathfrak{A}, \mu, Y_x, \nu_x$ and \mathfrak{E} be given as in Section 1. We consider the sum-space $Y = \sum_{x} Y_x$. In order to avoid a possible confusion between the points in the product space $X \times Y$ and the points of Y_x , we shall write $Y = \sum_{u} Y_u$. Let \mathfrak{B} be the σ -field in Y whose restriction to Y_u is equal to \mathfrak{B}_u for each u. If \mathfrak{B} is regarded as a σ -field on $\{(x, y); y \in Y\}$, then we shall use the notation $\mathfrak{B}^{(x)}$. Let ν'_x be the measure on $\mathfrak{B}^{(x)}$ such that $\nu'_x = \nu_x$ on \mathfrak{B}_x and $\nu'_x(Y - Y_x) = 0$, let \mathfrak{E}' be a σ -field in $X \times Y$ containing \mathfrak{E} and let π' and κ' be respectively non-negative \mathfrak{E}' -measurable extensions of π and κ in $X \times Y$ such that the restriction of κ' to $\{(x, y); y \in Y\}$ is $\mathfrak{B}^{(x)}$ -measurable for each x. Then we have

$$M_{p}(\{\nu_{x}\}; \pi, \kappa) = M_{p}(\{\nu'_{x}\}; \pi', \kappa').$$

If we want to take the common ν_x , we define ν on \mathfrak{B} by the equality $\nu = \nu_u$ on \mathfrak{B}_u for each u and set $\kappa' = 0$ in $X \times Y$ outside $\{(x, y); x \in X, y \in Y_x\}$. As a measure on $\{(x, y); y \in Y\}$, ν being denoted by $\nu^{(x)}$, it holds that $M_p(\{\nu_x\}; \pi, \kappa) = M_p(\{\nu^{(x)}\}; \pi', \kappa')$.

References

- [1] B. Fuglede: Extremal length and functional completion, Acta Math., 98 (1957), pp. 171-219.
- M. Ohtsuka: Extremal length of families of parallel segments, J. Sci. Hiroshima Univ. Ser. A-I Math., 28(1964), pp. 39-51.
- [3] M. Ohtsuka: Extremal length of level surfaces and orthogonal trajectories, ibid., pp. 259-270.

Department of Mathematics, Faculty of Science, Hiroshima University