# A Computation of Extremal Length in an Abstract Space 

Makoto Ohtsuka

(Received March 10, 1965)

In [2] and [3] we computed the extremal length of harmonic subflows in an $n$-dimensional $\mathscr{E}$-space. In this paper we shall compute the extremal length of a certain class of measures in an abstract space. The main results of [3] are special cases of the results in the present paper.

1. Let $X$ be an abstract space and $\mathfrak{X}$ be a $\sigma$-field ${ }^{1)}$ of subsets of $X$. By a measure in this paper we shall mean a non-negative countably additive set-function. Let $\mu$ be a measure on $\mathfrak{V}$. With each $x \in X$, we associate an abstract space $Y_{x}$, a $\sigma$-field $\mathfrak{B}_{x}$ of subsets of $Y_{x}$ and a measure $\nu_{x}$ defined on $\mathfrak{B}_{x}$. We shall denote by $Z$ the set of all couples $(x, y), x \in X, y \in Y_{x}$. Suppose that there is a $\sigma$-field $\left(\mathfrak{r}\right.$ of sets in $Z^{2)}$ which contains all sets of the form $\{(x, y)$; $\left.x \in A \in \mathfrak{Z}, y \in Y_{x}\right\}^{3)}$ and which, for every $E \in \mathfrak{F}$, satisfies
(1) $E_{x}=\left\{y \in Y_{x} ;(x, y) \in E\right\}$ belongs to $\mathfrak{B}_{x}$ for every $x \in X$ not belonging to $A_{E} \in \mathfrak{Z}$ with $\mu\left(A_{E}\right)=0,{ }^{4)}$
(2) $\nu_{x}\left(E_{x}\right)$ is an $\mathfrak{Y}$-measurable function defined on $X-A_{E}$. We set

$$
\alpha(E)=\int_{X} \nu_{x}\left(E_{x}\right) d \mu(x) \quad \text { for } E \in \mathfrak{F} .
$$

If $E^{(1)}, E^{(2)}, \ldots$ are mutually disjoint sets of $\left(F\right.$, then $\alpha\left(\cup_{n} E^{(n)}\right)=\sum_{n} \alpha\left(E^{(n)}\right)$. Thus, $\alpha$ is a measure on ( $\mathfrak{r}$. If $f$ is non-negative and $\mathfrak{r}$-measurable, it is inferred that $f(x, y)$ is a $\mathfrak{B}_{x}$-measurable function of $y$ on $Y_{x}$ for $\mu$-a.e. $x \in X$, that $\int_{Y_{x}} f d \nu_{x}$ is an $\mathfrak{N}$-measurable function defined for $\mu$-a.e. $x \in X$ and that

$$
\int f d \alpha=\int_{X}\left(\int_{Y_{x}} f d \nu_{x}\right) d \mu(x)
$$

[^0]Let $\pi$ and $\kappa$ be non-negative $\mathfrak{r}$-measurable functions in $Z$, and assume that $\kappa(x, y)$ restricted to $Y_{x}$ is $\mathfrak{B}_{x}$-measurable for each $x \in X$. We shall call an ( $\xi$-measurable function $\rho \geqq 0$ in $Z \kappa$-admissible (in association with $\left\{\nu_{x}\right\}$ ) if $\int_{Y_{x}} \kappa \rho d \nu_{x}{ }^{5)}$ is well-defined and $\geqq 1$ for every $x \in X$. For $p, 0<p<\infty$, we define a module by

$$
M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)=\inf _{\rho} \int \pi \rho^{\nu} \mathrm{d} \alpha
$$

where inf is taken with respect to $\kappa$-admissible $\rho$. Although $M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)$ depends also on the choice of $\mu, \mathfrak{2}, \mathfrak{F}$, etc. we shall not write them explicitly in it. If there is $x$ such that $\int_{Y_{x}} \kappa d \nu_{x}=0$, there exists no $\kappa$-admissible $\rho$. We set then $M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)=\infty$. If $\int_{Y_{x}} \kappa d \nu_{x}>0$ for each $x \in X$, then $\rho \equiv \infty$ is $\kappa$-admissible. We shall call $1 / M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)$ the $\kappa$-extremal length of $\left\{\nu_{x}\right\}$ with weight $\pi$. This is a special case of the extremal length defined in [1]. An admissible $\rho$ which gives $\int \pi \rho^{p} d \alpha=M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)$ will be called extremal. In this paper we shall assume that $\int \kappa d \nu_{x}>0$ for all $x$.

We shall state a property of $M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)$; see (1) for a proof.
(3) Let $A_{1}, A_{2}, \ldots \in \mathfrak{A}$ be all mutually disjoint, let $A_{1}^{\prime}, A_{2}^{\prime}, \ldots \in \mathfrak{H}$ and let $\cup_{n}^{\cup}\left(A_{n} \cup A_{n}^{\prime}\right)=X$. If $M_{p}\left(\left\{\nu_{x} ; x \in A_{n}^{\prime}\right\} ; \pi, \kappa\right)=0$ for every $n$, then

$$
M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)=\sum_{n} M_{p}\left(\left\{\nu_{x} ; x \in A_{n}\right\} ; \pi, \kappa\right) .
$$

2. We begin with a preliminary remark that we may assume that $\pi>0$ and $\kappa>0$ everywhere on $Z$ in computing $M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)$. Actually let $\rho$ be $\kappa$-admissible, and denote by $\pi^{+}, \kappa^{+}$and $\nu_{x}^{+}$the restrictions of $\pi, \kappa$ and $\nu_{x}$ to $E_{\kappa}^{+}=\{(x, y) ; \kappa(x, y)>0\}$ and to $E_{\kappa}^{+} \cap Y_{x}$ respectively. We observe easily that the restriction of $\rho$ to $E^{+}$is $\kappa^{+}$-admissible in association with $\left\{\nu_{x}^{+}\right\}$and derive $M_{p}\left(\left\{\nu_{x}^{+}\right\} ; \pi^{+}, \kappa^{+}\right) \leqq M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)$. The inverse inequality is evident, and the equality is established. Thus we may consider $E_{\kappa}^{+}$instead of $Z$. For this reason, we shall assume hereafter that $\kappa>0$ everywhere on $Z$.

Next we set $E_{\pi}^{0}=\{(x, y) ; \pi(x, y)=0\} \in \mathfrak{F}$ and

$$
X_{\pi}^{*}=\left\{x ; E_{\pi}^{0} \cap Y_{x} \text { is a set of } \mathfrak{B}_{x} \text { with positive } \nu_{x} \text {-measure }\right\} .
$$

This set belongs to $\mathfrak{U}$ and $M_{D}\left(\left\{\nu_{x} ; x \in X_{\pi}^{*}\right\} ; \pi, \kappa\right)=0$, because $\rho$ equal to $\infty$ on $\left\{(x, y) \in E_{\pi}^{0} ; x \in X_{\pi}^{*}\right\}$ and to 0 elsewhere is $\kappa$-admissible in association with $\left\{\nu_{x} ; x \in X_{\pi}^{*}\right\}$ and hence

[^1]$$
M_{p}\left(\left\{\nu_{x} ; x \in X_{\pi}^{*}\right\} ; \pi, \kappa\right) \leqq \int \pi \rho^{p} d \alpha=0 .
$$

On account of (3) it suffices to compute $M_{p}\left(\left\{\nu_{x} ; x \in X-X_{\pi}^{*}\right\} ; \pi, \kappa\right)$. Furthermore we may assume that $\pi>0$ everywhere on $\left\{(x, y) ; x \in X-X_{\pi}^{*}\right\}$. For, if we change the values of $\pi$ so that it is positive on $\left\{(x, y) ; x \in X-X_{\pi}^{*}\right\}$, the value of $M_{p}\left(\left\{\nu_{x} ; x \in X-X_{\pi}^{*}\right\} ; \pi, \kappa\right)$ remains the same. Consequently, we shall assume in the sequal that $\pi>0$ everywhere on $Z$.

Before calculating the extremal length we prove
Theorem 1. Let $p>1$. We can find $\left\{\nu_{x}^{\prime}\right\}$, each defined on $\mathfrak{B}_{x}$, such that

$$
\begin{equation*}
M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)=M_{p}\left(\left\{\nu_{x}^{\prime}\right\} ; 1, \kappa\right), \tag{4}
\end{equation*}
$$

where we allow $\nu_{x}^{\prime} \equiv 0$ for some $x$.
Proof. First we note that if $M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)=\infty$ then (4) is true with $\left\{\nu_{x}^{\prime} \equiv 0 ; x \in X\right\}$. We shall write $q$ for $1 /(p-1)$. We denote by $E_{\pi}^{\infty}$ the set $\{(x, y) ; \pi(x, y)=\infty\} \in \mathfrak{G}$. First we consider the case that $E_{\pi}^{\infty} \cap Y_{x} \in \mathfrak{B}_{x}$ and $\nu_{x}\left(Y_{x}-E_{\pi}^{\infty}\right)=0$ for $x$ belonging to $A \in \mathfrak{A}$ with $\mu(A)>0$. If $\rho$ is $\kappa$-admissible, $\rho(x, y)>0$ on a set of $\mathfrak{B}_{x}$ of positive $\nu_{x}$-measure for all $x$. For $x \in A, \int_{Y_{x}} \pi \rho^{p} d \nu_{x}$ $=\infty$ and hence

$$
\int \pi \rho^{p} d \alpha=\int_{X}\left(\int_{Y_{x}} \pi \rho^{\dagger} d \nu_{x}\right) d \mu(x)=\infty
$$

It follows that $M_{p}\left(\left\{\cdot_{x}\right\} ; \pi, \kappa\right)=\infty$. This case was already taken care of at the beginning of our proof.

Next, we consider the case that $\nu_{x}\left(Y_{x}-E_{\pi}^{\infty}\right)>0$ for $\mu$-a.e. $x$. We denote by $X_{0}$ the set of $x$, for which $\nu_{x}\left(Y_{x}-E_{\pi}^{\infty}\right)>0$ and $\pi(x, y)$ is $\mathfrak{B}_{x}$-measurable as a function of $y$. Then $\mu\left(X-X_{0}\right)=0$. For $x \in X_{0}$ we define $\nu_{x}^{\prime}$ by $\int \pi^{-q} d \nu_{x}$, and for $x \in X-X_{0}$ we set $\nu_{x}^{\prime}=\nu_{x}$. Evidently $M_{p}\left(\left\{\nu_{x} ; x \in X-X_{0}\right\} ; \pi, \kappa\right)=$ $M_{p}\left(\left\{\nu_{x}^{\prime} ; x \in X-X_{0}\right\} ; 1, \kappa\right)=0$. On account of (3) it suffices to show $M_{p}\left(\left\{\nu_{x}\right.\right.$; $\left.\left.x \in X_{0}\right\} ; \pi, \kappa\right)=M_{p}\left(\left\{\nu_{x}^{\prime} ; x \in X_{0}\right\} ; 1, \kappa\right)$. Consequently, we shall assume in the rest of the proof that $\pi(x, y)$ is a $\mathfrak{B}_{x}$-measurable function of $y$ and $\nu_{x}\left(Y_{x}-E_{\pi}^{\infty}\right)>0$ for all $x$.

Let $\rho$ be $\kappa$-admissible in association with $\left\{\nu_{x}\right\}$ such that $\int \pi \rho^{p} d \alpha<\infty$. It holds that $\rho=0 \alpha$-a.e. on $E_{\pi}^{\infty}$. If $\rho=0 \nu_{x}$-a.e. on $E_{\pi}^{\infty} \cap Y_{x}$ we set $\rho^{\prime}=\pi^{q} \rho$ on $Y_{x}$, and otherwise we set $\rho^{\prime}=\infty$ constantly on $Y_{x}$. If $\rho^{\prime}=\pi^{q} \rho$ on $Y_{x}$,

$$
\begin{aligned}
\int \kappa \rho^{\prime} d \nu_{x}^{\prime} & =\int_{0<\pi<\infty} \kappa \rho^{\prime} \mathrm{d} \nu_{x}^{\prime}=\int_{0<\pi<\infty} \kappa \pi^{q} \rho \pi^{-q} d \nu_{x} \\
& =\int_{0<\pi<\infty} \kappa \rho d \nu_{x}=\int \kappa \rho d \nu_{x} \geqq 1 .
\end{aligned}
$$

If $\rho^{\prime}=\infty$ on $Y_{x}$,

$$
\int \kappa \rho^{\prime} d \nu_{x}^{\prime} \geqq \int_{0<\pi<\infty} \kappa \cdot \infty d \nu_{x}^{\prime}=\infty
$$

Hence $\rho^{\prime}$ is $\kappa$-admissible in association with $\left\{\nu_{x}^{\prime}\right\}$ and it follows that

$$
M_{p}\left(\left\{\nu_{x}^{\prime}\right\} ; 1, \kappa\right) \leqq \iint^{\prime \prime} \rho^{\prime} d \nu_{x}^{\prime} d \mu=\iint_{0<\pi<\infty} \pi^{p q} \rho^{p} d \nu_{x}^{\prime} d \mu=\int \pi \rho^{p} d \alpha
$$

Hence

$$
M_{p}\left(\left\{\nu_{x}^{\prime}\right\} ; 1, \kappa\right) \leqq M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right) .
$$

On the other hand, let $\rho^{\prime}$ be $\kappa$-admissible in association with $\left\{\nu_{x}^{\prime}\right\}$. We define $\rho$ by $\pi^{-q} \rho^{\prime}$ everywhere. We observe

$$
1 \leqq \int \kappa \rho^{\prime} d \nu_{x}^{\prime}=\int_{0<\pi<\infty} \kappa \rho \pi^{q} \pi^{-q} d \nu_{x} \leqq \int \kappa \rho d \nu_{x} .
$$

We derive

$$
M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right) \leqq \int \pi\left(\rho^{\prime} \pi^{-q}\right)^{p} d \alpha=\iint_{0<\pi<\infty} \rho^{\prime p} \pi^{-q} d \nu_{x} d \mu=\iint \rho^{\prime p} d \nu_{x}^{\prime} d \mu
$$

and conclude

$$
M_{p}\left(\left\{\cup_{x}\right\} ; \pi, \kappa\right) \leqq M_{p}\left(\left\{\nu_{x}^{\prime}\right\} ; 1, \kappa\right) .
$$

Now (4) follows.
3. Let $p>1$. We write $f(x, y)$ for $\kappa^{p /(p-1)} \pi^{-1 /(p-1)}$, and $h(x)$ for $\int_{Y_{x}} f(x, y) d \nu_{x}(y)$. This is an $\mathfrak{V}$-measurable function defined for $\mu$-a.e. $x \in X$. We shall prove

Theorem 2. Let $p>1$. Then the equality

$$
\begin{equation*}
M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)=\int_{X} \frac{d \mu(x)}{h^{p-1}(x)} \tag{5}
\end{equation*}
$$

holds if and only if $M_{p}\left(\left\{\nu_{x} ; x \in X_{h}^{\infty}\right\} ; \pi, \kappa\right)=0$ for $X_{h}^{\infty}=\{x ; h(x)=\infty\}$. If, in particular, $0<h(x)<\infty$ for $\mu$-a.e. $x \in X$, then an extremal function is given by

$$
\rho_{0}(x, y)= \begin{cases}\frac{\kappa^{\frac{1}{p-1}} \pi^{-\frac{1}{p-1}}}{h} & \text { if } 0<h(x)<\infty  \tag{6}\\ \infty & \text { otherwise }\end{cases}
$$

Proof. First we consider the case that $E_{\pi}^{\infty} \cap Y_{x}$ belongs to $\mathfrak{B}_{x}$ and $h(x)$ vanishes for $x$ belonging to $\mathrm{A} \in \mathfrak{V}$ with $\mu(A)>0$. Since $\kappa>0, \pi=\infty \nu_{x}$-a.e. on $Y_{x}$ for $x \in A$. Let $\rho$ be any $\kappa$-admissible function. It follows that $\int \pi \rho^{p} d \nu_{x}=\infty$ for every $x \in A$ and hence that $\iint \pi \rho^{\dagger} d \nu_{x} d \mu=\infty$. Thus $M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)=\infty$. Both sides of (5) are now equal to $\infty$.

Next we assume that $h(x)>0$ for $\mu$-a.e. $x \in X$. We begin with the special case that $\pi \equiv 1$. Since $\int \kappa d \nu_{x}>0$ for each $x, h(x)=\int \kappa^{p /(p-1)} d \nu_{x}>0$ for each $x$. Suppose $h(x)<\infty$ for $\mu$-a.e. $x$. Let $\rho$ be $\kappa$-admissible. If $h(x)<\infty$ for $x$, we apply Hölder's inequality and obtain

$$
\left.1 \leqq\left(\int_{Y_{x}} \rho^{p} d \nu_{x}\right)^{1 / p}\left(\int_{Y_{x}} \kappa^{p /(p-1)} d \nu_{x}\right)^{(p-1) / p}=\int_{Y_{x}} \rho^{p} d \nu_{x}\right)^{1 / p} h^{(p-1) / p}(x)
$$

or

$$
\frac{1}{h^{p-1}(x)} \leqq \int_{Y_{x}} \rho^{p} d \nu_{x} .
$$

This is true for all $x$ and it holds that

$$
\int_{X} \frac{d \mu(x)}{h^{p-1}(x)} \leqq \int \rho^{p} d \alpha
$$

Hence

$$
\int_{X} \frac{d \mu(x)}{h^{p-1}(x)} \leqq M_{p}\left(\left\{\nu_{x}\right\} ; 1, \kappa\right) .
$$

On the other hand, we observe that $\rho_{0}$ is $\left(5-\right.$-measurable and check that $\rho_{0}$ is $\kappa$-admissible. It follows that

$$
M_{p}\left(\left\{\nu_{x}\right\} ; 1, \kappa\right) \leqq \iint \rho_{0}^{p} d \nu_{x} d \mu=\int_{X} \frac{d \mu(x)}{h^{p-1}(x)}
$$

and the equality is concluded. It is seen that $\rho_{0}$ is extremal.
In the case when $\mu\left(X_{h}^{\infty}\right)>0$, we have by (3)

$$
M_{p}\left(\left\{\nu_{x}\right\} ; 1, \kappa\right)=M_{p}\left(\left\{\nu_{x} ; x \in X_{h}^{\infty}\right\} ; 1, \kappa\right)+M_{p}\left(\left\{\nu_{x} ; x \in X-X_{h}^{\infty}\right\} ; 1, \kappa\right),
$$

and infer that

$$
M_{p}\left(\left\{\nu_{x} ; x \in X-X_{h}^{\infty}\right\} ; 1, \kappa\right)=\int_{X-X} \frac{d \mu(x)}{}=\int_{X} \frac{d \mu(x)}{h^{p-1}(x)} .
$$

Hence (5) holds if and only if $M_{p}\left(\left\{\nu_{x} ; x \in X_{h}^{\infty}\right\} ; 1, \kappa\right)=0$.
Finally we are concerned with a general $\pi$. The inequality $\nu_{x}\left(Y_{x}-E_{\pi}^{\infty}\right)>0$ is equivalent to $h(x)>0$. Let us assume this for each $x$. Let $\nu_{x}^{\prime}=\int \pi^{-1 /(p-1)} d \nu_{x}$. We observe that $h^{\prime}(x)$ defined by $\int \kappa^{p /(p-1)} d \nu_{x}^{\prime}$ is equal to $h(x)$. Hence the set $X_{h^{\prime}}^{\infty}=\left\{x ; h^{\prime}(x)=\infty\right\}$ is identical to $X_{h}^{\infty}$. By Theorem 1 we have $M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)=$ $M_{p}\left(\left\{\nu_{x}^{\prime}\right\} ; 1, \kappa\right)$ and $M_{p}\left(\left\{\nu_{x} ; x \in X_{h}^{\infty}\right\} ; \pi, \kappa\right)=M_{p}\left(\left\{\nu_{x}^{\prime} ; x \in X_{h^{\prime}}^{\infty}\right\} ; 1, \kappa\right)$. The relation

$$
M_{p}\left(\left\{\nu_{x}^{\prime}\right\} ; 1, \kappa\right)=\int \frac{d \mu(x)}{\left(h^{\prime}(x)\right)^{p-1}}=\int \frac{d \mu(x)}{h^{p-1}(x)}
$$

holds if and only if $M_{p}\left(\left\{\nu_{x} ; x \in X_{h}^{\infty}\right\} ; \pi, \kappa\right)=0$. Furthermore, in case $h(x)<\infty$ for $\mu$-a.e. $x$, we define $\rho_{0}^{\prime}$ by $\kappa^{1 /(p-1)} h^{-1}$ if $h(x)<\infty$ and by $\infty$ otherwise. It is extremal in association with $\left\{\nu_{x}^{\prime}\right\}$ as seen above. We observe that $\rho_{0}$ is $\kappa$-admissible in association with $\left\{\nu_{x}\right\}$ and

$$
\begin{aligned}
\int \pi \rho_{0}^{p} d \alpha & =\iint_{0<\pi<\infty} \pi \rho_{0}^{p} d \nu_{x} d \mu=\iint_{0<\pi<\infty} \rho_{0}^{\prime p} d \nu_{x}^{\prime} d \mu=M_{p}\left(\left\{\nu_{x}^{\prime}\right\} ; 1, \kappa\right) \\
& =M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)
\end{aligned}
$$

Thus $\rho_{0}$ is extremal.
It remains to treat the case when $h(x)=0$ for some $x$. We set $X_{h}^{0}=$ $\{x ; h(x)=0\}$. Since $\mu\left(X_{h}^{0}\right)=0$,

$$
M_{p}\left(\left\{\nu_{x} ; x \in X_{h}^{0}\right\} ; \pi, \kappa\right)=0=\int_{X_{h}^{0}} \frac{d \mu(x)}{h^{p-1}(x)} .
$$

We know that

$$
M_{p}\left(\left\{\nu_{x} ; x \in X-X_{h}^{0}\right\} ; \pi, \kappa\right)=\int_{X-X_{h}^{0}} \frac{d \mu(x)}{h^{p-1}(x)}
$$

if and only if $M_{p}\left(\left\{\nu_{x} ; x \in X_{h}^{\infty}\right\} ; \pi, \kappa\right)=0$. It is concluded that (5) holds if and only if $M_{p}\left(\left\{\nu_{x} ; x \in X_{h}^{\infty}\right\} ; \pi, \kappa\right)=0$. It is easy to check that (6) is extremal if $0<h(x)<\infty$ for $\mu$-a.e. $x$. Our proof is completed.
4. A condition for $M_{p}\left(\left\{\nu_{x} ; x \in X_{h}^{\infty}\right\} ; \pi, \kappa\right)=0$ is found in

Theorem 3. Let $p>1$. Suppose that $h(x)=\infty$ for all $x \in X$. Then $M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)=0$ if and only if $\mu$ is $\sigma$-finite and there exists $Z_{0} \in \mathfrak{G}$ with the following property: The restriction of $\alpha$ to $Z_{0}$ is $\sigma$-finite and

$$
\begin{equation*}
\int_{Y_{x} \cap Z_{0}} f d \nu_{x}=\infty \quad \text { for } \mu \text {-a.e. } x \text {, } \tag{7}
\end{equation*}
$$

where $f=\kappa^{p /(p-1)} \pi^{-1 /(p-1)}$ as before.
Proof. We may assume that $\pi(x, y)$ is $\mathfrak{B}_{x}$-measurable on $Y_{x}$ for each $x$. It does not happen for any $x$ that $\pi(x, y)=\infty \nu_{x}$-a.e. on $Y_{x}$, because it implies $h(x)=0$. Hence by taking $\int \pi^{-1 ;(p-1)} d \nu_{x}$ for $\nu_{x}^{\prime}, M_{p}\left(\left\{\nu_{x}^{\prime}\right\} ; 1, \kappa\right)=M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)$ by Theorem 1, and for any set $B \in \mathfrak{B}_{x}$, it holds that $\int_{B} f d \nu_{x}=\int_{B} \kappa^{p \backslash(p-1)} d \nu_{x}^{\prime}$. Consequently, it suffices to consider the case $\pi \equiv 1$.

Assume the condition in the theorem. Let $X^{*}$ be the set of $x$ for which (7) holds. If we denote by $\nu_{x}^{*}$ the restriction of $\nu_{x}$ to $Y_{x} \cap Z_{0}$ for $x \in X^{*}$, then $M_{p}\left(\left\{\nu_{x}^{*} ; x \in X^{*}\right\} ; 1, \kappa\right) \geqq M_{p}\left(\left\{\nu_{x}\right\} ; 1, \kappa\right)$. Hence we may assume that $Z=Z_{0}$ and (7) holds for every $x$. Let $\left\{E_{n}\right\}$ be an increasing sequence in ${ }^{5}$ such that $\cup E_{n}=Z$ and $\alpha\left(E_{n}\right)<\infty$ for every $n$. If we set $\min (\kappa, n)=\kappa_{n}$, we have $n$

$$
\begin{gathered}
\int_{X}\left(\int_{Y_{x} \cap E_{n}} \kappa_{n}^{p /(p-1)} d \nu_{x}\right) d \mu(x) \leqq n^{p /(p-1)} \int_{X} \nu_{x}\left(Y_{x} \cap E_{n}\right) d \mu(x) \\
=n^{p /(p-1)} \alpha\left(E_{n}\right)<\infty
\end{gathered}
$$

so that $\int_{Y_{x} \cap E_{n}} \kappa_{n}^{\phi /(p-1)} d \nu_{x}<\infty$ for $\mu$-a.e. $x$. Let us set $X_{n}=\{x ; 1 \leqq$ $\left.\int_{Y_{x} \cap E_{n}} \kappa_{n}^{p i(p-1)} d \nu_{x}\right\}$. We shall denote by $\nu_{x}^{(n)}$ the restriction of $\nu_{x}$ to $E_{n}$. By Theorem 2 we have, for $m \geqq n$,
$M_{p}\left(\left\{\nu_{x} ; x \in X_{n}\right\} ; 1, \kappa\right) \leqq M_{p}\left(\left\{\nu_{x}^{(m)} ; x \in X_{n}\right\} ; 1, \kappa_{m}\right)=\int_{X_{n}} \frac{d \mu(x)}{\left(\int \kappa_{m}^{p(p-1)} d \nu_{x}^{(m)}\right)^{p-1}} \leqq \mu(X)$.
If $\mu(X)<\infty$, the integral decreases to zero as $m \rightarrow \infty$. Since $X=$ $\cup X_{n}, M_{p}\left(\left\{\nu_{x}\right\} ; 1, \kappa\right)=0$ by (3). We obtain the same conclusion on account of (3) if $\mu$ is $\sigma$-finite.

Conversely, suppose $M_{p}\left(\left\{\nu_{x}\right\} ; 1, \kappa\right)=0$. There exists a $\kappa$-admissible $\rho_{n}$ satisfying $\int \rho_{n}^{p} d \alpha<1 / n$. Since $\int \kappa \rho_{n} d \nu_{x} \geqq 1$ for every $x, \int \rho_{n}^{p} d \nu_{x}>0$ for every $x$. We set $X_{m}=\left\{x ; 1 / m \leqq \int_{Y_{x}} \rho_{n}^{b} d \nu_{x}\right\}$. Evidently, $X=\cup_{m} X_{m}$. We have

$$
\frac{\mu\left(X_{m}\right)}{m}=\frac{1}{m} \int_{X_{m}} d \mu \leqq \int_{X_{m}} \int_{Y_{x}} \rho_{n}^{p} d \nu_{x} d \mu \leqq \int \rho_{n}^{p} d \alpha<1 / n .
$$

This shows that $\mu$ is $\sigma$-finite. We set next $Z_{n}=\left\{(x, y) ; \rho_{n}(x, y)>0\right\}$. We shall show that $\cup_{n} Z_{n}$ may be taken for $Z_{0}$. Let $Z_{n}^{(m)}=\left\{(x, y) ; \rho_{n}(x, y)>1 / m\right\}$. Evidently $Z_{n}=\cup_{m} Z_{n}^{(m)}$. Since the fact $\int_{Z_{n}^{(m)}} \rho_{n}^{p} d \alpha<1 / n<\infty$ implies $\alpha\left(Z_{n}^{(m)}\right)<\infty$,
the restriction of $\alpha$ to $Z_{n}$ and hence to $\bigcup_{n} Z_{n}$ is $\sigma$-finite. Suppose that there were $M<\infty$ and $A \in \mathfrak{A}$ with $\mu(A)>0$ such that $\int_{Y_{x} \cap\left(U_{n} Z_{n}\right)} f d \nu_{x}<M$ for every $x \in A$. It would hold

$$
\begin{aligned}
1 \leqq & \left.\int_{Y_{x} \cap Z_{n}} \kappa \rho_{n} d \nu_{x}\right)^{p} \leqq\left(\int_{Y_{x} \cap Z_{n}} \rho_{n}^{p} d \nu_{x}\right)\left(\int_{Y_{x} \cap Z_{n}} \kappa^{p /(p-1)} d \nu_{x}\right)^{p-1} \\
& =\left(\int_{Y_{x} \cap Z_{n}} \rho_{n}^{p} d \nu_{x}\right)\left(\int_{Y_{x} \cap Z_{n}} f d \nu_{x}\right)^{p-1} \leqq M^{p-1} \int \rho_{n}^{p} d \nu_{x} .
\end{aligned}
$$

Hence

$$
0<\frac{\mu(A)}{M^{p-1}}=\frac{1}{M^{p-1}} \int_{A} d \mu \leqq \iint \rho_{n}^{p} d \nu_{x} d \mu=\int \rho_{n}^{p} d \alpha<\frac{1}{n} .
$$

This is impossible if $n$ is large. Consequently $\int_{Y_{x} \cap\left({ }_{n} Z_{n}\right)} f d \nu_{x}=\infty$ for $\mu$-a.e. $x$. Thus all conditions on $Z_{0}$ are satisfied.
5. We shall apply Theorem 2. Using the notations of [3], we take $\tau \cap[\Gamma]$ for $X$, the flux $\rho$ restricted to $\tau \cap[\Gamma]$ for $\mu, c_{Q}$ for $Y_{x}$ and the length $s$ on $c_{Q}$ for $\nu_{x}$. As $\mathfrak{F}$ we take the class of all Lebesgue measurable sets in $[\Gamma]$, and given $\pi^{\prime}$ in $\mathscr{E}$, we take $\pi^{\prime} /|\operatorname{grad} H|$ for $\pi$. Then, for any $E \in \mathfrak{F}$,

$$
\alpha(E)=\int \nu_{x}\left(E_{x}\right) d \mu(x)=\int_{Q E \tau \cap[r]}\left(\int_{E \cap c Q} d s\right) d \mathscr{}(Q)
$$

and

$$
\int \pi \rho^{p} d \alpha=\int\left(\int_{c_{Q}} \frac{\pi^{\prime} \rho^{p}}{|\operatorname{grad} H|} d s\right) d \rho(Q)=\int_{[\Gamma]} \pi^{\prime} \rho^{p} d v .
$$

It is easy to derive Theorem 1 and its generalizations in [3] from our present results.

Another choices are, with the notations of § 6 in [3], $T$ for $X, t$ for $\mu, S_{t}$ for $Y_{x}$ and $\sigma$ for $\nu_{x}$. Then Theorem 5 of [3] is obtained immediately.
6. Next we are interested in the existence of $\mathfrak{F}$. Suppose that $Z, \mathfrak{N}, \mu$, $\mathfrak{B}_{x}$ and $\nu_{x}$ are given. At the beginning we assumed the existence of $\mathfrak{F}$ satisfying the required conditions. One might wonder if $\mathfrak{F}$ really exists. Obviously it is a necessary condition that $\nu_{x}\left(Y_{x}\right)=\nu_{x}\left\{y \in Y_{x} ;(x, y) \in Z\right\}$ is an $\mathfrak{Q}$-measurable function. Conversely, assume that $\nu_{x}\left(Y_{x}\right)$ is an $\mathfrak{Q}$-measurable function. Then the class of all sets of the form $\left\{(x, y) ; x \in A \in \mathfrak{N}, y \in Y_{x}\right\}$ may be taken as $\mathfrak{F}$ and is, in fact, the smallest one. Furthermore, if $Z$ can be
written as ${\underset{n}{n}}_{\cup} Z_{n}$ such that each $\nu_{x}\left(Z_{n} \cap Y_{x}\right)$ is a finite-valued $\mathfrak{N}$-measurable function defined for $\mu$-a.e. $x$, then the class of all sets $E \subset Z$ satisfying (1) and (2) may be taken as $\mathfrak{F}$ and is the largest one.

As an example, we take the interval $0<x<1$ on the $x$-axis as $X$ and the linear measure as $\mu$. Let $X_{1}$ be a non-measurable subset of $X$ with the inner measure $\underline{m} X_{1}=0$ and the outer measure $\bar{m} X_{1}=1$. For $X_{2}=X-X_{1}, \underline{m} X_{2}=0$ and $\bar{m} X_{2}=1$. At each point of $X_{1}$ we take the interval $0<y<1$ for $Y_{x}$, and at each point of $X_{2}$ we take $-1 / 2<y<1 / 2$ for $Y_{x}$. The linear measure is taken for $\nu_{x}$ on each $Y_{x}$. Since $\nu_{x}\left(Y_{x}\right) \equiv 1$ is a measurable function on $X$, there exists $\mathfrak{F}$ satisfying the required conditions. By our Theorem 2 we have $M_{p}\left(\left\{\nu_{x}\right\} ; 1,1\right)=1$ for any choice of $\mathfrak{F}$.
7. So far we have assumed that each $\mathfrak{B}_{x}$ consists of subsets of $Y_{x}$ and $\nu_{x}$ is defined on $\mathfrak{B}_{x}$. Suppose now that $Y_{x}$ is contained in a larger space $Y_{x}^{\prime}$ for each $x$. We take any $\sigma$-field $\mathfrak{B}_{x}^{\prime}$ in $Y_{x}^{\prime}$ whose restriction to $Y_{x}$ coincides with $\mathfrak{B}_{x}$, and define $\nu_{x}^{\prime}$ on $\mathfrak{B}_{x}^{\prime}$ so that $\nu_{x}=\nu_{x}^{\prime}$ on $\mathfrak{B}_{x}$ and $\nu_{x}^{\prime}\left(Y_{x}^{\prime}-Y_{x}\right)=0$. Let $\mathfrak{\lessgtr}$ and $\mathfrak{F}^{\prime}$ be $\sigma$-fields of sets in $Z=\left\{(x, y) ; x \in X, y \in Y_{x}\right\}$ and $Z^{\prime}=\left\{(x, y) ; x \in X, y \in Y_{x}^{\prime}\right\}$ respectively which satisfy the required conditions, and suppose $\mathfrak{F} \subset \mathfrak{F}^{\prime}$. We define $\alpha(E)$ by $\int_{X} \nu_{x}\left(E_{x}\right) d \mu^{\prime}(x)$ for $E \in\left(\mathscr{F}\right.$, and $\alpha^{\prime}\left(E^{\prime}\right)$ by $\int_{X} \nu_{x}^{\prime}\left(E_{x}^{\prime}\right) d \mu_{0}(x)$ for $E^{\prime} \in \mathfrak{C}^{\prime}$. If $E \in \mathfrak{F}$,

$$
\alpha^{\prime}(E)=\int_{X} \nu_{x}^{\prime}\left(E_{x}\right) d \mu(x)=\int_{X} \nu_{x}\left(E_{x}\right) d \mu(x)=\alpha(\boldsymbol{E})
$$

Hence $\alpha^{\prime}$ is an extension of $\alpha$. Furthermore, if $f(x, y)$ is non-negegative and $\mathfrak{r}^{\prime}$-measurable,

$$
\int f d \alpha^{\prime}=\int_{X}\left(\int_{Y_{x}^{\prime}} f d \nu_{x}^{\prime}\right) d \mu(x)=\int_{X}\left(\int_{Y_{x}^{\prime}} f d \nu_{x}\right) d \mu(x)=\int f d \alpha .
$$

We see easily that $M_{p}\left(\left\{\nu_{x}\right\}: \pi, \kappa\right)=M_{p}\left(\left\{\nu_{x}^{\prime}\right\} ; \pi^{\prime}, \kappa^{\prime}\right)$ if $\pi^{\prime}$ and $\kappa^{\prime}$ are non-negative $\mathfrak{F}^{\prime}$-measurable extensions of $\pi$ and $\kappa$ in $Z^{\prime}$ such that the restriction of $\kappa^{\prime}$ to $Y_{x}^{\prime}$ is $\mathfrak{B}_{x}^{\prime}$-measurable for each $x$. Roughly speaking, the extremal length does not change for any extension of $Y_{x}$ if $\nu_{x}$ is extended by the value 0 .

Next we consider the special case that $Y_{x}$ is common. Namely, $Z$ is the product space $\{(x, y) ; x \in X, y \in Y\}$. Furthermore, $\mathfrak{B}_{x}$ and $\nu_{x}$ may or may not be common. To illustrate it, let us be concerned with the example discussed at the end of Section 6. We take as $Y$ the $y$-axis or any interval containing the interval $-1 / 2<y<1$, and take as $\mathfrak{B}_{x}$ the common class $\mathfrak{B}$ of linearly measurable subsets of $Y$. We take as $\nu_{x}$ the linear measure on $\{(x, y) ; 0<y<1\}$ (on $\{(x, y) ;-1 / 2<y<1 / 2\}$ resp.) for $x \in X_{1}$ ( $X_{2}$ resp.), extended by 0 elsewhere. Then again $M_{p}\left(\left\{\nu_{x}\right\} ; 1,1\right)=1$ for any choice of $\mathfrak{\xi}$. However, we cannot take the class of Lebesgue measurable sets in $Z$ as $\mathfrak{F}$, because $E=\{0<x<1$, $0<y<1 / 2\}$, for instance, does not satisfy condition (2). We add as a remark
that $\inf _{\rho} \iint \rho^{2} d x d y=4 / 3$ as computed in $\$ 2$ of [2], where $\rho$ is a non-negative Lebesgue measurable function satisfying $\int_{0}^{1} \rho d y \geqq 1$ if $x \in X_{1}$ and $\int_{-1 / 2}^{1 / 2} \rho d y \geqq 1$ if $x \in X_{2}$.

As another example in which $Y$ and $\mathfrak{B}$ are common but $\nu_{x}$ are different, we consider again a harmonic subflow $\Gamma$ treated in Section 5 . As before we take $\tau \cap[\Gamma]$ for $X$ and take the flux $\varphi$ restricted to $\tau \cap[\Gamma]$ for $\mu$. Here, we take the $t$-axis for the common $Y$ and the class of linearly measurable sets for the common $\mathfrak{B}$. As $\nu_{x}$ we take the measure which is equal to the linear measure on the image of $c_{Q}$ by $t=H(P)$ and which vanishes outside the image. As $\mathfrak{F}$ we take the class of Lebesgue measurable sets in the product space $Z$. Given $\pi^{\prime}$ in $\mathscr{E}$, we take $\pi^{\prime} /|\operatorname{grad} H|^{2}$ for $\pi$, and obtain the same value of the module as in Section 5. If we want to keep the same value of the module while taking the linear measure on the $t$-axis as the common $\nu$, we take $\kappa^{\prime}$ which is the extension of $\kappa$ by 0 . The same remark holds for the preceding example.

Finally, we remark that we may limit ourselves to the case when $Y$ and $\mathfrak{B}$ are common if we want. Let $X, \mathfrak{N}, \mu, Y_{x}, \nu_{x}$ and $\mathfrak{F}$ be given as in Section 1. We consider the sum-space $Y=\sum_{x} Y_{x}$. In order to avoid a possible confusion between the points in the product space $X \times Y$ and the points of $Y_{x}$, we shall write $Y=\sum_{u} Y_{u}$. Let $\mathfrak{B}$ be the $\sigma$-field in $Y$ whose restriction to $Y_{u}$ is equal to $\mathfrak{B}_{u}$ for each $u$. If $\mathfrak{B}$ is regarded as a $\sigma$-field on $\{(x, y) ; y \in Y\}$, then we shall use the notation $\mathfrak{B}^{(x)}$. Let $\nu_{x}^{\prime}$ be the measure on $\mathfrak{B}^{(x)}$ such that $\nu_{x}^{\prime}=\nu_{x}$ on $\mathfrak{B}_{x}$ and $\nu_{x}^{\prime}\left(Y-Y_{x}\right)=0$, let $\mathfrak{F}^{\prime}$ be a $\sigma$-field in $X \times Y$ containing $f$ and let $\pi^{\prime}$ and $\kappa^{\prime}$ be respectively non-negative ( $5^{\prime}$-measurable extensions of $\pi$ and $\kappa$ in $X \times Y$ such that the restriction of $\kappa^{\prime}$ to $\{(x, y) ; y \in Y\}$ is $\mathfrak{B}^{(x)}$-measurable for each $x$. Then we have

$$
M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)=M_{p}\left(\left\{\nu_{x}^{\prime}\right\} ; \pi^{\prime}, \kappa^{\prime}\right) .
$$

If we want to take the common $\nu_{x}$, we define $\nu$ on $\mathfrak{B}$ by the equality $\nu=\nu_{u}$ on $\mathfrak{B}_{u}$ for each $u$ and set $\kappa^{\prime}=0$ in $X \times Y$ outside $\left\{(x, y) ; x \in X, y \in Y_{x}\right\}$. As a measure on $\{(x, y) ; y \in Y\}, \nu$ being denoted by $\nu^{(x)}$, it holds that $M_{p}\left(\left\{\nu_{x}\right\} ; \pi, \kappa\right)$ $=M_{p}\left(\left\{\nu^{(x)}\right\} ; \pi^{\prime}, \kappa^{\prime}\right)$.

## References

[1] B. Fuglede: Extremal length and functional completion, Acta Math., 98 (1957), pp. 171-219.
[2] M. Ohtsuka: Extremal length of families of parallel segments, J. Sci. Hiroshima Univ. Ser. A-I Math., 28(1964), pp. 39-51.
[3] M. Ohtsuka: Extremal length of level surfaces and orthogonal trajectories, ibid., pp. 259-270.
Department of Mathematics, Faculty of Science, Hiroshima University


[^0]:    1) This means that $\mathfrak{H}$ is not empty, $A \in \mathfrak{H}$ implies $X-A$ and $A_{1}, A_{2}, \ldots \in \mathfrak{H}$ implies $\cup_{n} A_{n} \in \mathfrak{H}$. Sometimes, it is called a Borel field or $\sigma$-algebra.
    2) The existence of (\&) will be discussed in Section 6.
    3) Any set of this form satisfies conditions (1) and (2) imposed below, because $Z \in \mathbb{C}$ satisfies condition (2).
    4) This fact will be expressed as "for $\mu$-a.e. $x \in X$ ".
[^1]:    5) In this paper we set $\infty \cdot 0=0 \cdot \infty=0$.
