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Introduction

Let L be a Lie algebra over a field of characteristic 0 and let Ώ(L) be the
derivation algebra of L. Let I(L) and C(L) be respectively the sets of all
inner derivations and of all central derivations of L. In the paper CIO], we
studied the relationship between the structures of D(L) and L and among
other results we showed some results on Lie algebras L which have as few
derivations as possible, that is, such that D(L) = I(L) + C(L). It is furthermore
natural to make a search for the properties of Lie algebras L such that
D(L) = I(L)* + C(L) where /(L)* is the algebraic hull of /(£), that is, Lie
algebras which have few derivations. The purpose of this paper is to study-
such a type of Lie algebras.

There actually exists a Lie algebra L such that D(L) = I{L)* + C{L) but
D(L)φI(L) + C(L\ as will be shown in Section 5. Owing to Lemma 1 in [10]
which states that /(L)* = ad£L* for a linear Lie algebra L, for such Lie
algebras we can show the results analogous to those for Lie algebras which
have as few derivations as possible.

In CIO], generalizing a result of G. Leger [7]> we showed that if D(L) =
/(£,) +C(L) then the radical of L is not quasi-cyclic or is the center of L. We
shall give the corresponding results with sharper assertions. Namely, we
shall show that, if D(L) = I(L)*J

rC(L\ then the radical R of L is the direct
sum of a central ideal of L and of an ideal Ri which has no abelian direct
summands and all semisimple elements of the radical of D(Rι) are contained
in /(Ri)*, and that, if R is further nilpotent, the radical of D(R{) consists
precisely of the nilpotent elements (Theorem 2). It will also be shown that
for a Lie algebra L such that D(L)=I(L)* we have similar statements with
R=Rι (Theorem 3). As one of the applications of these results we shall show
that any non-abelian nilpotent Lie algebra which is quasi-cyclic or whose
dimension is less than 6 cannot be the radical of a Lie algebra L such that
D(L) = I(L) + C(L) (Corollary 2 to Theorems 2 and 3).

We shall further prove that D(L)=I(L)* + C(L) if and only if this is the
case for every direct summand of L (Theorem 1) and clarify the structure of
Lie algebras whose radicals have few derivations (Theorem 4).
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l Preliminaries

Throughout the paper we shall use the same terminologies and notations
as in the paper [JL(Γ].

Let L be a Lie algebra over a field K of characteristic 0. Let D(L) be the
algebra of all derivations of L and let I(L) be the ideal of D(L) consisting of
all inner derivations of L. Let C(L) be the subalgebra of all central deriva-
tions of L, that is, of all derivations mapping L into the center Z of L. Then
C(L) is the set of all endomorphisms of L which map L into Z and |~L, L~] into
(0).

We first show that C(L) is an algebraic subalgebra of gI(L). Let D be
any element of C(L) and let D' be any replica of D. Then Dr can be expressed
in the form of polynomial in D with coefficients in K whose constant term is
zero ([2], p. 181). Therefore

Ό'LCZ and ZX [L, L] = (0),

whence Ώ' is contained in C(L). Thus we see that C(L) is algebraic.
Contrary to this fact, I(L) is not an algebraic subalgebra of gI(L) in

general.
By considering the fact that D(L) necessarily contains I(L) and C{L), in

CIO] we said that L has as few derivations as possible, provided that D(L) =
I(L) + C(L). Since D(L) is an algebraic subalgebra of gI(L), D(L) also contains
/(L)*. Thus we may say that L has few derivations, provided that D(L) =

2. L e m m a s

We start with

LEMMA 1. Any Lie algebra is the direct sum of a central ideal and an
ideal which has no abelian direct summands.

PROOF. Let L be a Lie algebra and let Z be the center of L. Suppose
that L has an abelian direct summand. Then Z is not contained in [L, IΓ\.
We first take a subspace hi of 2 such that

, L], LiΛ(ZA[L, L]) = (0).

We next choose a subspace L2 of L such that

L = U + L2? Liί\U = (0), L2 :> [L, L].

Then Zα is a central ideal of L and L2 is an ideal of L. If L2 has an abelian
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direct summand, the summand is contained in Z and does not intersect
Zr\[_L, L], which contradicts the choice of Lλ. Thus we see that L2 has no
abelian direct summands, completing the proof.

LEMMA 2. Let L be a Lie algebra with radical R and center Z. Assume

that D(L) = I(L)* + C(L).

(1) If R is abelian, then R=Z.
(2) // L has no abelian direct summands, then R has no abelian direct

summands.

PROOF. (1): If R is nilpotent, then all elements of s,dLR are nilpotent,
whence the radical a,dLR of I(L) is algebraic and therefore I(L) is algebraic.
If R is abelian and RφZ, then there exists a derivation of L which is not
contained in /(£) + C(L), as was shown in the proof of Theorem 5 in [[10].

(2): Since L has a faithful representation, we may assume that L is a
subalgebra of cjϊ(F) where V is a finite dimensional vector space over K.
Suppose that L has no abelian direct summands but R has. Then by (1) we
see that R is not abelian. Denoting by Z{R) the center of R, we have

Let L=S + R be a Levi decomposition of L. Then ad^S is completely reducible,
and Z(R) and [7?, RΓ\ are stable under ad^S. Therefore there exists a subspace
Ziφ(0) of Z(R) such that

Z(R) = Zi + Z(Λ)n[Λ, # ] , ZiΛ(Z(Λ)nCR, RJ) = (0),

We can then choose a subspace R1 of i? containing QR, RJ such that

j? = Zx + Ru ZιΓ\Rι = (0), (adzS)i?! C Λi.

Now define an endomorphism D of L as follows:

eZ! and Z)(S + Λi) = (0).

Then it is easy to see that D is a derivation of L.
Since L*=S + R* and Λ* = Zi* + Λi*, using Lemma 1 in [10] we see that

D can be expressed in the form

D = adZ5 + adzzi + adzri + Do

with seS, z1eZι", τxeR^ and Do e C(L).
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Since DS = (0) and D0S= (0), for any element s' of S we have

Dsf = [>, s'l + Zzi + ri, s'J = 0,

whence

[>, 5'] 6 SΛ#* - (0).

It follows that 5 = 0. Now for any element z of Zx we have

Dz = [>i, 2] + [n, zl

Since D is the identity on Z i ? we see that z e Z. Hence Zx C Z. It follows that
L is the direct sum of a central ideal Zλ and an ideal S+Ru which contradicts
our supposition that L has no abelian direct summands.

Thus the proof is complete.

Let L=S+R be a Levi decomposition of L. Following G. Hochschild [βj,
we denote by 91 (S) the set of all derivations of L which map S into (0). Then
it is known that

D(L) = I(L) + SI (S).

By a toroidal subalgebra of cjI(F) we mean an abelian subalgebra of gl(F)
consisting of semisimple endomorphisms.

We now show the following

LEMMA 3. Let L=S+R be a Levi decomposition of L. Then among
maximal toroidal subalgebras of the radical of D(R) there exists one which can
be imbedded in Sί(S).

PROOF. Since D(R) is algebraic, for the ideal 9ΐ of all nilpotent elements
of the radical 9ΐ of D(R) there exist a maximal semisimple subalgebra @i and
a maximal toroidal subalgebra S5i of 3ΐ such that

- (0), » !A5R - (0), [@1? S3J = (0)

(|ΊΓ], p. 40). Take a maximal semisimple subalgebra @ of Z)(.R) containing
ad#S. Then @ is the image of @i under an inner automorphism <s of D(R).
Denote by S3 the image of 33i under σ. Then S3 is a maximal toroidal sub-
algebra of 3ΐ and [@, S3] = (0). It follows that

, S3] - (0).
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For any D in 33, any s in S and any r in R, we have

Therfore D can be extended to be a derivation of L by putting DS = (0). Thus
we see that 33 can be imbedded in Sί(S).

The proof is complete.

3. Main theorems

In this section we shall give some properties of Lie algebras which have
few derivations. We first show the following theorem corresponding to
Theorem 4 in [10].

THEOREM 1. Let L be a Lie algebra over a field K of characteristic 0 and
assume that L is the direct sum of the ideals L{ (ί = l, 2,. , n). Then D(L) —
I(L)* + C(L) if and only if D(Li) = I(Ld* + C(Li) for every ί.

PROOF. By Lemma 1 in [9] we see that

and that for ίφj D(Lh Ly)CC(L). Since /(L;)*C/(£)*, if D(L( ) = /(L, )*
for every i then D(L)=I(L)* + C(L).

To prove the converse, we may assume that V is the direct sum of finite
dimensional vector spaces V{ (i = l9 2, •••, 71) over K9LCβKV) and Li CsK^d
for every ί. Then L* is the direct sum of the ideals L, *. Suppose that D(L) =
I(Jj)* + C(L) and let D{ be any derivation of L, . Then D{ is trivially extended
to a derivation of L which we denote by D. By Lemma 1 in [10], D can be
expressed in the form

D = ad z* + Do with xeL* and Do e C(L).

n _

Let x= *ΣJXJ with Xj in Ly* and put D0—Di — a d ^ . Then

where Z and Z, are respectively the centers of L and L, . Hence 5 0 is contained
in C(L, ). Thus we have D(Ld=I(Ld* + C(Li).

The proof of the theorem is complete.

Now we can show the following main theorems.
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THEOREM 2. Let L be a Lie algebra over a field K of characteristic 0 and
let R be the radical of L. Assume that D(L) = I(L)* + C(L). Then:

(1) R is the direct sum of a central ideal of L and of an ideal Rι which
has no abelian direct summands, and all semisimple derivations in the radical
of D(Rι) are contained in /(Λi)*.

(2) // R is nilpotent, the radical of D(R{) consists precisely of the
nilpotent elements.

(3) // L is solvable (resp. nilpotent), L is the direct sum of a central ideal
and a characteristically solvable {resp. characteristically nilpotent) ideal.

PROOF. (1): By Lemma 1 L is the direct sum of an ideal L± which has
no abelian direct summands and of a central ideal L2. By Theorem 1 we see
that D(Li)=/(Li)* + D(Li). Let Λi be the radical of Lx. Then R is the direct
sum of the ideals Rι and L2, and by Lemma 2 Rι has no abelian direct
summands.

Let Li — S+Ri be a Levi decomposition of L\. By Lemma 3 we see that
there exists a maximal toroidal subalgebra S5i of the radical 9ΐ of D(Ri) which
can be imbedded in 31 (S). We may assume that Lλ is a subalgebra of gl(F)
with V a finite dimensional vector space over K. Therefore by Lemma 1 in
CIO] we have

/(Li)* = ad L l i i* = adZ lS + adLlJ?i*.

For any element D of SSi we denote by D the derivation of Li to which D is
trivially extended. Then D is expressed in the form

D = adLl5 + adL lr + Do with se S,r 6 Rλ* and Do 6 C(Li).

Since ZλS = (O) and D0S = (0), for any element s' of S we have

whence

Cs, s'] e 5n#χ* = (0).

It follows that 5 = 0. Therefore we have

D = B,dLlr + D o .

Since Lx has no abelian direct summands, the center Zλ of Lγ is contained in
CLi, L J and therefore
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whence Do is nilpotent. And we have

[adz/, AGLi C[r, DoLi] + A>[>, L J

which shows that Do commutes with adz/ and therefore with the semisimple
and the nilpotent components of ad^r. It follows that D is the semisimple
component of ad^r, which is contained in the algebraic hull of ad^Ri*. Since
adχti?i* is algebraic, D is contained in ad^Ri*. It follows from Lemma 1 in
[10] that D is contained in /(Ri)*. Thus we see that S3i C/(Ri)*.

Now let T be any semisimple element of 9ΐ. Take a maximal toroidal
subalgebra 35 of 9ΐ containing T. Then 35 is conjugate with 35X under an
inner automorphism ύ of 3ΐ of the form exp (ad^iV) where N is an element of
the derived algebra of 91 ([8], p. 209). Since I(Rι) is stable under adRiV,
/(Ri)* is also. It follows that J(Λi)* is stable under ΰ. Thus we see that
S3C/(Ri)* and therefore that T belongs to /(Ri)*.

(2): If R is nilpotent, then Rγ is nilpotent. Hence /(Ri)* consists of
only the nilpotent elements. By using (1) proved above we see that any
semisimple element of the radical 9ΐ of D(R{) is 0. Since 9ΐ is algebraic and
therefore splittable, we obtain that 9ΐ consists precisely of the nilpotent
elements.

(3): If L is solvable (resp. nilpotent), then L=R and therefore L is the
direct sum of a central ideal and an ideal Ri. By Theorem 1

From the fact that the center of Rλ is contained in [Ru j?J, it follows that
C(Ri) is a central ideal of D(Rι). Therefore D(Ri) is solvable (resp. nilpotent).
By using (2) we see that Ri is characteristically solvable (resp. characteristi-
cally nilpotent).

Thus the proof of the theorem is complete.

THEOREM 3. Let L be a Lie algebra over a field of characteristic 0 and let
R be the radical of L. Assume that D(L)=I(L)*. Then:

(1) R has no abelian direct summands and all semisimple elements of the
radical of D(R) are contained in /(J?)*.

(2) If R is nilpotent, L is not solvable and the radical of D(R) consists
precisely of the nilpotent elements.

(3) If L is solvable, L is characteristically solvable and not nilpotent.

PROOF. If L has an abelian direct summand Li, then D(Lι), considered as
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a subset of D(L), is not contained in /(L)*. Therefore L has no abelian
direct summands. Hence by Lemma 2 we see that R has no abelian direct
summands.

If L is nilpotent, L has an outer derivation, which contradicts the
assumption since I(L) is algebraic. Hence if R is nilpotent, L is not solvable.
If L is solvable, L is not nilpotent.

All other assertions follow from Theorem 2.

As an immediate consequence of Theorems 2 and 3 we have first the
following statement, which gives us a test for seeing whether a nilpotent Lie
algebra can be the radical of a Lie algebra with few derivations.

COROLLARY 1. Let L be a Lie algebra whose radical R is nilpotent. If
either Z)(L) = /(L)*-fC(L) and L has no abelian direct summands or D(L) = /(L)*,
then the trace of any derivation of R is 0.

PROOF. By (2) in Theorems 2 and 3 we have

where @ is a maximal semisimple subalgebra of D(R) and 9ί is the ideal of
all nilpotent elements of the radical of D(R). Since © = [©, ©], we see that
the trace of any element of D(R) is 0, completing the proof.

As the second consequence of Theorem 2 we have

COROLLARY 2. Any non-abelian nilpotent Lie algebra R satisfying each of
the following conditions cannot be the radical of a Lie algebra L such that

(1) R is quasi-cyclic.
(2) The dimension of R is less than 6.

PROOF. Assume that R is the radical of a Lie algebra L such that D(L) =
I(L) + C(L). Then by Theorem 2 we see that R is the direct sum of a central
ideal of L and an ideal Rι which has no abelian direct summands and such
that

where © is a semisimple subalgebra and 5ft is an ideal consisting of nilpotent
elements. Hence the traces of all derivations of Rι are 0.

(1): Suppose that R is quasi-cyclic. Then there exists a subspace U of
R such that
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and Uir\UJ = (0) for ίψj
i

where U1 = U and Ui+1 = \V, t/'] for ί>l. Denote by U1 the projection of U
onto jRi. Then we have

and f/inE7ί = (0) for £=#/.

The endomorphism D of i?i defined by

Du = iu for weί/ί (i = l, 2,...)

is a derivation of Rx whose trace is not 0, which is a contradiction.
(2): Suppose that dim j?<6. Then d i m # i < 6 . In [3] J. Dixmier has

given all nilpotent Lie algebras whose dimensions are <6. By using the
result, we see that Rι is quasi-cyclic or one of the Lie algebras described in
terms of a basis xu x2, X3, ΛJ4, #5 by the following multiplication tables:

( a ) [_XU X2~] = X4, [ > 1 , ΛJ4H = ^5, [#2, Λ?3] = χ5-

( b ) [ > i , X2~] = X3, [Xu ^s] = #4, D*l> ^ ] = ^5, [X2, ^ 3 ] = XS-

In addition \jc^ XjJ= —\JCJ, xf] and for i<Cj fe, xj~] = 0 if it is not in the tables
above. In the case where Rι is given by the table (a), the endomorphism D
of Rι defined by

Dxi = xι, Dx2 = x2, Dx3 = 2Λ;3, Dx^ = 2x4, Dxs — Sx5

is a derivation of Rι. In the case where Rλ is given by the table (b), the
endomorphism D of Rλ defined by

Dxi = ίxi (ί = 1, 2, , 5)

is a derivation of Rγ. Therefore, together with the proof of (1), we see that
Rι has a derivation whose trace is not 0, which is a contradiction.

Thus the proof is complete.

As for the case where R is a non-nilpotent solvable Lie algebra we don't
know any result corresponding to Corollary 2. However we may of course
apply the statement (1) in Theorem 2 to concrete algebras. For example, we
can apply the statement to conclude that the non-nilpotent solvable Lie
algebra given in [9], p. 213, cannot be the radical of any Lie algebra which
has few derivations, as will be shown in Example 4 of Section 5.

As another consequence of Theorems 2 and 3 we have
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COROLLARY 3. Any non-zero abelian Lie algebra R is the radical of a Lie
algebra L such that D(L)=I(L)* + C(L) if and only if R is the center of L. R
cannot be the radical of a Lie algebra L such that JD(L)=/(L)* .

PROOF. If R is the center of L, L is the direct sum of a semisimple ideal
S and R. Since D(S, R)=D(R, S) = (0), by Lemma 1 in [9] we have

D(L) = D(S) + D(R) = I(L) + C(L).

The other assertions are immediate from Theorems 2 and 3.

REMARK. The Lie algebra which will be given in Example 3 of Section 5
is an example for the statements (1) in Theorems 2 and 3. The Lie algebra
L given by J. Dixmier and W. G. Lister in [4] is an example for the state-
ments (2) and (3) in Theorem 2. Namely, L is characteristically nilpotent
and D(L)=I(L) + C(L) (see Remark 3 in [10]). The converses of the state-
ments (1) and (2) in Theorems 2 and 3 are not valid in general. An example
for these is the characteristically nilpotent Lie algebra L which was given in
[1], p. 123. Namely, D(L) is nilpotent and consists of nilpotent elements,
but D(L)φI(L)* + C(L) (see Remark 1 in [10]).

4. Lie algebras whose radicals have few derivations

In the last section of [10] we studied the properties of Lie algebras
whose radicals have as few derivations as possible. In this section we shall
show the corresponding properties for Lie algebras whose radicals have few
derivations.

THEOREM 4. Let L be a Lie algebra over a field of characteristic 0 and let
R be the radical of L. D(R)=I(R)* + C(R) if and only if L is the direct sum
of the ideals L\ and L2 satisfying the following conditions:

(1) Li is the direct sum of a semisimple ideal, a central ideal and a
characteristically solvable ideal Rι with D(Rι)=I(Rι)* + C(Rι).

(2) The radical of L2 is abelian, the center of L2 is (0) and L2 — {L2, L2].

And then L\ and L2 are characteristic ideals of L and

Z)(Li) = 7(L0* + CiL^ D(L2)φI(L2)* + C(L2).

PROOF. The statement corresponding to Lemma 7 in [10] is that if
D(R)=I(R)* + C(R) then L is the direct sum of a characteristically solvable
ideal Lλ with D(Li)=/(Li)* + C(Li) and of an ideal L2 whose radical is abelian.
This can be shown in the same way as in the proof of Lemma 7 in [10] by
using respectively Theorem 1 and (3) in Theorem 2 instead of Theorem 4 and
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Corollary 2 to Theorem 5 in CIO]. Now we can prove the theorem exactly as
in the proof of Theorem 7 in [10] by using respectively the result stated
above and Theorem 1 instead of Lemma 7 and Theorem 4 in CIO]]. Therefore
we omit the detail.

COROLLARY. Let Lbe a Lie algebra with radical R. If D(R)=I(R)*, then
L is the direct sum of a semisimple ideal and R, and D(L)=I(L)*.

PROOF. If Z)(R)=J(R)*, then L is the direct sum of the ideals Lλ and L2

which are stated in Theorem 4. Since R has no abelian direct summands,
2,2 = (0) and L is the direct sum of a semisimple ideal S and R. Consequently
by Lemma 1 in [9] we see that

I(R)* = /(L)*,D(L) = D(β) + D(R) =

completing the proof.

5. Examples

EXAMPLE 1. Let L be a Lie algebra over the field of real numbers
described in terms of a basis xu x2, χ3 by the following multiplication table:

vx3, = 0

where r is an irrational number. In addition £xi9 XJ2= — [_XJ, xϊ}. Let D be a
derivation of L and put

Dxi= 'hλijxj (ί =1,2, ,3).

Then after calculation we obtain

Λll = Λ21 = ^23 = Λ31 = λz2 = 0 .

Therefore the matrix of D is

f 0 λ12 λu

0 λ22 0

0 0 λ^

From this the matrix of an inner derivation of L is obtained by putting
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Hence D(L)φI(L). However, by using Proposition 2 in [2], p. 160, it is easily
shown that D(L)=I(L)*.

EXAMPLE 2. Let L be the direct sum of the Lie algebra in Example 1
and a non-zero abelian Lie algebra over the field of real numbers. Then
C(L)Φ(0). After calculation we see that D(L)=I(L)*+C(L) but D(L)Φ

EXAMPLE 3. Let L be a Lie algebra over a field of characteristic 0
described in terms of a basis xu x2,•••, x6 by the following multiplication
table:

O i , xf\ = 2x2, [>i, xs] = — 2x3, [_x2, X3] = %u

In addition fe, ^ G = — fe? xϊ} a n ( i f ° r i < ; C^ 5 ŷll = θ if it is not in the table
above. After calculation we see that D(L)=I(L). The radical R of L is (Λ4,
#5? Λβ). For a derivation D of Rwe put

0*ί+3 = Σ^/*/+3 (ί = l,2, 3).
y=i

Then after calculation we see that the matrix of any derivation in the radical
3t of D(R) is

0 λ12 ^13 I

0 λ22 0

I 0 0 λ22

and that (3l=I(R)=I(R)*. Thus L is an example for the statements (1) in
Theorems 2 and 3.

EXAMPLE 4. Let .R be a solvable Lie algebra over a field of characteristic
0 described in terms of a basis xu χ2y--, X5 by the following multiplication
table:

[XU X2~] = X2, L%U X3l = X3, \jXl, X4~] = 2X4,

In addition [_xh χj~] = —[_χj, xi] and for ί<,j \jc^ xjJ — 0 if it is not in the table
above. This was given in pΓ], p. 213. Let D be a derivation of R and put
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Then the matrix of D is

' 0
0

0

0

0

Λl2

A22

0

0

0

-*13

Λ23

0

0

λu

-λ12

λ22+λ33

0 :

Λ i 5

0

- ^ 1 2

From this the matrix of an inner derivation of R is obtained by putting

^23 — 0 , λ22 — ^33-

D(R) is solvable and I(R) is algebraic. The semisimple derivation of R
defined by

xi — Ό%2 — 0, Dx3 = x3, = Λ ; 4 ?
= X5

is not contained in I(R). Therefore by using the statement (1) in Theorem 2
we see that R cannot be the radical of a Lie algebra L such that D(L) =
7(L)* + C(L).
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