J. Sci. Hiroshima Univ. Ser. A-I 29 (1965), 11-15

Notes on the Theory of Differential Forms on Algebraic Varieties

Yoshikazu Nakai (Received February 27, 1965)

This note contains two rather separate topics. The first theorem is a version of Lefschetz' theorem in the language of differential forms. The second one is a characterization of abelian subvariety of an abelian variety. They are a continuation of our preceding papers [2] and $[3]^{1}$. As addenda we shall give corrections to the cited papers [2] and [3].

§ 1. Isomorphism of j_Y^* .

We shall prove in this § the following

THEOREM 1.1. Let X^n be a non-singular projective variety and let Y be a non-singular irreducible hypersurface section of X of order m. Let j_Y be the injection $Y \rightarrow X$ and j_Y^* be its adjoint map $H^0(X, \Omega_X) \rightarrow H^0(Y, \Omega_Y)$, where Ω_X, Ω_Y are the sheaves of germs of regular differential forms of degree 1 on X and Y respectively. Then if $n \ge 3$ and m is sufficiently large j_Y^* is an isomorphism of $H^0(X, \Omega_X)$ and $H^0(Y, \Omega_Y)$.

We have proved already in [2] that j_Y^* is an injective map provided *m* is sufficiently large (Theorem 5 in [2]). Hence to prove Theorem 1 it suffices to prove the following:

PROPOSITION 1.2. Let X be as in Theorem 1 and let \mathcal{O} be the structure sheaf of X and let m_0 be an integer such that

- (1) $H^{i}(X, \mathcal{O}_{X}(-m)) = 0 \text{ for } m \geq m_{0} \text{ and } i = 1, 2.$
- (2) $H^1(X, \mathcal{Q}_X(-m)) = 0 \text{ for } m \geq m_0.$

If Y is a generic hypersurface section of order $\gg m_0$, then j_Y^* is a surjective map.

PROOF. Let us denote by \mathscr{P} the sheaf of ideals defined by Y, i.e., the sheaf of germs of rational functions f such that (f) > Y. As before let $\mathscr{Q}_X, \mathscr{Q}_Y$ be the sheaves of germs of regular differential forms on X and Y respectively.

¹⁾ The numbers in the bracket refer to the bibliography at the end of the paper.

Then we have the following commutative diagram of cohomology groups (Cf. 5 of [2]).

Hence j_Y^* is certainly surjective if we have

(i) $H^1(X, \mathscr{P}/\mathscr{P}^2) = 0$ (ii) $H^1(X, \mathscr{P}\mathcal{Q}_X) = 0$

Now assume that Y is linearly equivalent to a hypersurface section of order m. Then as is seen easily $\mathscr{P}/\mathscr{P}^2$ is isomorphic to $\mathscr{O}_X(-m)/\mathscr{O}_X(-2m)$ and $\mathscr{P}\mathcal{Q}_X \cong \mathscr{Q}_X(-m)$. The equivalence of conditions (2) and (ii) is visible. On the other hand we have an exact sequence of sheaves

$$0 \longrightarrow \mathcal{O}_X(-2m) \longrightarrow \mathcal{O}_X(-m) \longrightarrow \mathcal{O}_X(-m) / \mathcal{O}_X(-2m) \longrightarrow 0$$

Hence if we have $H^1(X, \mathcal{O}_X(-m)) = 0, H^2(X, \mathcal{O}_X(-2m)) = 0$, then $H^1(X, \mathcal{O}_X(-m)/\mathcal{O}_X(-2m)) = 0$, i.e. the condition (i) follows from (1). q.e.d.

The existence of an integer m_0 satisfying the conditions of Proposition 1.2 follows from the general theory of algebraic coherent sheaves (Cf. [4]) and the assumption $n \ge 3$.

§ 2. A criterion of an abelian subvariety.

Let G be a group variety and let a, b be two points on G. Let T_a, T_b be tangent spaces to G at points a and b and let U_a and U_b be subspaces of T_a and T_b respectively. By the translation τ sending the point a to the point b, the tangent space T_a is mapped onto T_b and U_a is mapped onto a subspace $\tau(U_a)$ of T_b . If $\tau(U_a) = U_b$ we say that U_a and U_b are *parallel*. The main result in this paragraph is the following:

THEOREM 2.1. Let A be an abelian variety and let X be a non-singular

subvariety of A such that the tangent spaces to X at various points are parallel to each other. Then there exists an abelian subvariety B of A such that X is a translation of B^{2} .

To prove the Theorem 2.1 we need several auxiliary results. Following the conventions used in [2] we shall denote by k the universal domain of our geometry. Let G be a group variety and let x be a point of G (rational over k) and let $(\mathcal{O}_x, \mathcal{M}_x)^{3}$ be the local ring of x on G. We shall denote by \mathcal{Q}_x the module of k-differentials of \mathcal{O}_x and let $\mathcal{Q}_G = \bigcup \mathcal{Q}_x$ be the sheaf of germs of regular differential forms of degree 1 on G. Then for any given element w_x of \mathcal{Q}_x there exists a unique left invariant differential form ω on G such that $1 \otimes \omega(x) = 1 \otimes w_x$ in $\mathcal{O}_x/\mathcal{M}_x \otimes \mathcal{Q}_x$ (Th. 1 of [2]) which will be called the left invariant differential form associated with w_x . Let X be a non-singular subvariety of G and let ω be a left invariant differential form on G. Then we have $j_x^*(\omega) = 0$ if and only if ω is orthogonal to the tangent space T_x of X at any point $x \in X$. The following proposition is a generalization of the Proposition 3 in [3].

PROPOSITION 2.2. Let G^n be a group variety and let X^r be a non-singular subvariety of G such that for any point x on X, the tangent space T_x to X at x is parallel to the one and the same tangent space T_0 . Let $\omega_1, \ldots, \omega_r$ be r-independent left invariant differential forms on G such that $j^*(\omega_i) \neq 0$. Then the r-fold differential form $j^*(\omega_1) \wedge \cdots \wedge j^*(\omega_r)$ on X has no zero at all on X, where j^* is the adjoint map associated with injection map $X \rightarrow G$.

PROOF. Let $\mathcal{Q}_1, \dots, \mathcal{Q}_n$ be left invariant differential forms on G. We shall show for any choice of indices i_1, \dots, i_r $(1 \le i \le n)$ the *r*-fold differential $\bigwedge_{\alpha=1}^r j^*(\mathcal{Q}_{i_\alpha})$ can be written as $a\left(\bigwedge_{i=1}^r j^*(\omega_i)\right)$ with $a \in k$. In fact, as a basis of the left invariant differential forms, we can take, $\omega_1, \dots, \omega_r$ and $\tau_1, \dots, \tau_{n-r}$ such as $\tau_1, \dots, \tau_{n-r}$ are contained in the orthogonal complement of T_0 . Then $\mathcal{Q}_i =$ $\sum_{j=1}^r a_{i_j} \omega_j + \sum_{s=1}^{n-r} b_{i_s} \tau_s$. Since $j^*(\tau_s) = 0$ we see immediately the assertion with $a = \det |a_{i_j}|$. Next we shall show that for any point x on X, there exist rdifferential forms $\mathcal{Q}'_i(1 \le i \le r)$ such that $\bigwedge_{i=1}^r j^*(\mathcal{Q}'_i)$ is not 0 at x. Take for instance a system of local parameters $t_1, \dots, t_r, t_{r+1}, \dots, t_n$ such that the subvariety X is defined locally at x by the ideal (t_{r+1}, \dots, t_n) , and let \mathcal{Q}'_i be left invariant differential forms associated with $1 \otimes dt_i$ at $x(1 \le i \le r)$. Then clearly we have $\bigwedge_{i=1}^r j^*(\mathcal{Q}'_i)$ is not zero at x, a fortiori $\bigwedge_{i=1}^r j^*(\mathcal{Q}'_i) \ne 0$ on X. The assertion

²⁾ The case where dim X=1 is proved in [3], and this result was presented as a conjecture there. According to the Review (MR 28 #93), J. P. Serre obtained the affirmative answer soon after the publication of [3].

³⁾ This means that O_x is a local ring with the maximal ideal \mathcal{M}_x .

now follows easily from these considerations.

COROLLARY 2.3. Under the same assumptions as in Proposition 2.2. and assume moreover that G is an abelian variety, then the canonical divisor of X is the zero divisor.

COROLLARY 2.4. Under the same assumptions and notations, $j^*(\omega_1), \dots, j^*(\omega_r)$ form a basis of $D_k(K)$ over K where K is the function field of X over k.

PROPOSITION 2.5. Let G and X be as is Prop. 2.2. and assume moreover that G is an abelian variety. Let ω be a differential form of the first kind on X, then ω has no zero on X.

PROOF. In fact assume that ω has zero at the point x on X. Since $j^*(\omega_i)$ $(1 \le i \le r)$ form a basis of the vector space $D_k(K)$ over K (where K is the function field of X over k) it is possible to find r-1 forms, say $j^*(\omega_i)$, i=1,...,r-1, such that ω , $j^*(\omega_1), ..., j^*(\omega_{r-1})$ form a K-basis of $D_k(K)$. Then $\omega \land j^*(\omega_1) \land$ $\dots \land j^*(\omega_{r-1})$ is not 0 and we see easily that the r-fold differential $\mathcal{Q} =$ $\omega \land j^*(\omega_1) \land \dots \land j^*(\omega_{r-1})$ has 0 at the point x. Hence the divisor of the differential form \mathcal{Q} must contain a positive divisor. This is a contradiction to Corollary 2.3, and thereby the Proposition is proved.

PROPOSITION 2.6. Let A be an abelian variety and let X be a non-singular subvariety of X and let j be the injection $X \longrightarrow A$. Then the adjoint map j^* : $H^0(A, \mathcal{Q}_A) \longrightarrow H^0(X, \mathcal{Q}_X)$ is surjective, and dim $H^0(X, \mathcal{Q}_X) = \dim X$.

PROOF. Let $\omega \in H^0(X, \mathcal{Q}_X)$ and let x be an arbitrary point of X. Then $1 \otimes \omega$ is not 0 in $\mathcal{O}'/\mathscr{M}' \otimes D(\mathcal{O}')$, where $(\mathcal{O}', \mathscr{M}')$ is the local ring of x on X. We shall denote by $(\mathcal{O}, \mathscr{M})$ the local ring of the point x on A and let \mathscr{P} be the defining ideal of X in \mathcal{O} . Then $\mathcal{O}' = \mathcal{O}/\mathscr{P}$ and $\mathscr{M}' = \mathscr{M}/\mathscr{P}$. Since $(\mathcal{O}/\mathscr{P}) \otimes D(\mathcal{O})$ $\longrightarrow D(\mathcal{O}')$ is surjective, $\mathcal{O}/\mathscr{M} \otimes D(\mathcal{O}) \longrightarrow (\mathcal{O}'/\mathscr{M}') \otimes D(\mathcal{O}')$ is also surjective. Take an element w of $D(\mathcal{O})$ such that $1 \otimes w$ is mapped onto $1 \otimes \omega$. If we denote by \mathcal{Q} the left invariant differential associated with $1 \otimes w$ we see easily that $j_X^*(\mathcal{Q}) - \omega$ ω has 0 at x. $j_X^*(\mathcal{Q}) - \omega$ is also a differential form of the first kind, hence $i_X^*(\mathcal{Q}) - \omega = 0$ on X by Prop. 2.5. proving the assertion.

PROOF of Theorem 2.1. Assume that X contains the neutral element. If we denote by q the dimension of the Albanese variety of X we know that dim $H^0(X, \mathcal{Q}_X) \ge q$ ([1]). In our case we have $r = \dim H^0(X, \mathcal{Q}_X)$ by Proposition 2.6. and hence $r \ge q$. Let B be the abelian subvariety of A generated by X, then there is a surjective homomorphism of the Albanese variety of X onto B, hence $q \ge \dim B \ge r$. Combining these inequalities we have q=r, i.e., X is itself the Albanese variety of X. q.e.d.

BIBLIOGRAPHY

- [1] Igusa, J-I. A fundamental inequality in the theory of the Picard Varieties, Proc. N.A.S., U.S.A. 41 (1955), 317-320.
- [2] Nakai, Y. On the theory of differentials on algebraic varieties, J. Sci. Hiroshima Univ. Vol. 27 (1963), 7-34.
- [3] Nakai, Y. Note on invariant differentials on abelian varieties, J. Math. Kyoto Univ. Vol. 3 (1963), 127-135.
- [4] Serre, J. P. Faisceaux algébriques cohérénts, Ann. Math. 61 (1955), 197-278.

Addenda

- Corrections to the paper [2]. The curves which are denoted by Γ in Prop. 20, Th. 8 and Cor. 1 and by C in Theorem 9 should be non-singular.
- 2. Corrections to the paper [3].
 p. 127, Abolish the sentence beginning at line 15 by the word "As a" and ending in the line 17 and footnote 2).
 - p. 130, line 2. Insert "if X is non-singular" after $i_X^*(\omega) = 0$.
 - p. 131, line 11. Insert "non-singular" after "let X be a".
 - p. 131, line 8. Abolish "outside a bunch of subvarieties".
 - p. 133, line 12. Insert "if $\Gamma \oplus \Gamma$ is non-singular".