Notes on the Theory of Differential Forms on Algebraic Varieties

Yoshikazu Nakai
(Received February 27, 1965)

This note contains two rather separate topics. The first theorem is a version of Lefschetz' theorem in the language of differential forms. The second one is a characterization of abelian subvariety of an abelian variety. They are a continuation of our preceding papers [2] and [3] . As addenda we shall give corrections to the cited papers [2] and [3].

§ 1. Isomorphism of $\boldsymbol{j}_{\boldsymbol{Y}}^{*}$.

We shall prove in this § the following
Theorem 1.1. Let X^{n} be a non-singular projective variety and let Y be a non-singular irreducible hypersurface section of X of order m. Let j_{Y} be the injection $Y \rightarrow X$ and j_{Y}^{*} be its adjoint map $H^{0}\left(X, \Omega_{X}\right) \rightarrow H^{0}\left(Y, \Omega_{Y}\right)$, where Ω_{X}, Ω_{Y} are the sheaves of germs of regular differential forms of degree 1 on X and Y respectively. Then if $n \geq 3$ and m is sufficiently large j_{Y}^{*} is an isomorphism of $H^{0}\left(X, \Omega_{X}\right)$ and $H^{0}\left(Y, \Omega_{Y}\right)$.

We have proved already in [2] that j_{Y}^{*} is an injective map provided m is sufficiently large (Theorem 5 in [2]). Hence to prove Theorem 1 it suffices to prove the following :

Proposition 1.2. Let X be as in Theorem 1 and let \mathcal{O} be the structure sheaf of X and let m_{0} be an integer such that

$$
\begin{align*}
& H^{i}\left(X, \mathcal{O}_{X}(-m)\right)=0 \text { for } m \geqslant m_{0} \text { and } i=1,2 . \tag{1}\\
& H^{1}\left(X, \Omega_{X}(-m)\right)=0 \text { for } m \geqslant m_{0} .
\end{align*}
$$

If Y is a generic hypersurface section of order $\geqslant m_{0}$, then j_{Y}^{*} is a surjective map.

Proof. Let us denote by \mathscr{P} the sheaf of ideals defined by Y, i.e., the sheaf of germs of rational functions f such that $(f)>Y$. As before let Ω_{X}, Ω_{Y} be the sheaves of germs of regular differential forms on X and Y respectively.

[^0]Then we have the following commutative diagram of cohomology groups (Cf. §5 of [2]).

Hence j_{Y}^{*} is certainly surjective if we have
(i) $H^{1}\left(X, \mathscr{P} / \mathscr{P}^{2}\right)=0$
(ii) $H^{1}\left(X, \mathscr{P} \Omega_{X}\right)=0$

Now assume that Y is linearly equivalent to a hypersurface section of order m. Then as is seen easily $\mathscr{P} / \mathscr{P}^{2}$ is isomorphic to $\mathcal{O}_{X}(-m) / \mathcal{O}_{X}(-2 m)$ and $\mathscr{P} \Omega_{X} \cong \Omega_{X}(-m)$. The equivalence of conditions (2) and (ii) is visible. On the other hand we have an exact sequence of sheaves

$$
0 \longrightarrow \mathcal{O}_{X}(-2 m) \longrightarrow \mathcal{O}_{X}(-m) \longrightarrow \mathcal{O}_{X}(-m) / \mathcal{O}_{X}(-2 m) \longrightarrow 0
$$

Hence if we have $H^{1}\left(X, \mathcal{O}_{X}(-m)\right)=0, H^{2}\left(X, \mathcal{O}_{X}(-2 m)\right)=0$, then $H^{1}\left(X, \mathcal{O}_{X}(-m) /\right.$ $\left.\mathcal{O}_{X}(-2 m)\right)=0$, i.e. the condition (i) follows from (1). q.e.d.

The existence of an integer m_{0} satisfying the conditions of Proposition 1.2 follows from the general theory of algebraic coherent sheaves (Cf. [4]) and the assumption $n \geqslant 3$.

§ 2. A criterion of an abelian subvariety.

Let G be a group variety and let a, b be two points on G. Let T_{a}, T_{b} be tangent spaces to G at points a and b and let U_{a} and U_{b} be subspaces of T_{a} and T_{b} respectively. By the translation τ sending the point a to the point b, the tangent space T_{a} is mapped onto T_{b} and U_{a} is mapped onto a subspace $\tau\left(U_{a}\right)$ of T_{b}. If $\tau\left(U_{a}\right)=U_{b}$ we say that U_{a} and U_{b} are parallel. The main result in this paragraph is the following:

Theorem 2.1. Let A be an abelian variety and let X be a non-singular
subvariety of A such that the tangent spaces to X at various points are parallel to each other. Then there exists an abelian subvariety B of A such that X is a translation of B^{2}.

To prove the Theorem 2.1 we need several auxiliary results. Following the conventions used in [2] we shall denote by k the universal domain of our geometry. Let G be a group variety and let x be a point of G (rational over k) and let $\left(\mathcal{O}_{x}, \mathscr{M}_{x}\right)^{3)}$ be the local ring of x on G. We shall denote by Ω_{x} the module of k-differentials of \mathcal{O}_{x} and let $\Omega_{G}=\cup \Omega_{x \in G}$ be the sheaf of germs of regular differential forms of degree 1 on G. Then for any given element w_{x} of Ω_{x} there exists a unique left invariant differential form ω on G such that $1 \otimes \omega(x)=1 \otimes w_{x}$ in $\mathcal{O}_{x} / \mathscr{M}_{x} \otimes \Omega_{x}$ (Th. 1 of [2]) which will be called the left invariant differential form associated with w_{x}. Let X be a non-singular subvariety of G and let ω be a left invariant differential form on G. Then we have $j_{x}^{*}(\omega)=0$ if and only if ω is orthogonal to the tangent space T_{x} of X at any point $x \in X$. The following proposition is a generalization of the Proposition 3 in [3].

Proposition 2.2. Let G^{n} be a group variety and let X^{r} be a non-singular subvariety of G such that for any point x on X, the tangent space T_{x} to X at x is parallel to the one and the same tangent space T_{0}. Let $\omega_{1}, \cdots, \omega_{r}$ be r-independent left invariant differential forms on G such that $j^{*}\left(\omega_{i}\right) \neq 0$. Then the r-fold differential form $j^{*}\left(\omega_{1}\right) \wedge \ldots \wedge j^{*}\left(\omega_{r}\right)$ on X has no zero at all on X, where j^{*} is the adjoint map associated with injection map $X \rightarrow G$.

Proof. Let $\Omega_{1}, \ldots, \Omega_{n}$ be left invariant differential forms on G. We shall show for any choice of indices $i_{1}, \ldots, i_{r}(1 \leq i \leq n)$ the r-fold differential $\widehat{\alpha=1}_{r} j^{*}\left(\Omega_{i_{\alpha}}\right)$ can be written as $a\left(\bigwedge_{i=1}^{r} j^{*}\left(\omega_{i}\right)\right)$ with $a \in k$. In fact, as a basis of the left invariant differential forms, we can take, $\omega_{1}, \ldots, \omega_{r}$ and $\tau_{1}, \ldots, \tau_{n-r}$, such as $\tau_{1}, \ldots, \tau_{n-r}$ are contained in the orthogonal complement of T_{0}. Then $\Omega_{i}=$ $\sum_{j=1}^{r} a_{i j} \omega_{j}+\sum_{s=1}^{n-r} b_{i s} \tau_{s}$. Since $j^{*}\left(\tau_{s}\right)=0$ we see immediately the assertion with $a=\operatorname{det}\left|a_{i j}\right|$. Next we shall show that for any point x on X, there exist r differential forms $\Omega_{i}^{\prime}(1 \leq i \leq r)$ such that $\bigwedge_{i=1}^{r} j^{*}\left(\Omega_{i}^{\prime}\right)$ is not 0 at x. Take for instance a system of local parameters $t_{1}, \cdots, t_{r}, t_{r+1}, \cdots, t_{n}$ such that the subvariety X is defined locally at x by the ideal $\left(t_{r+1}, \cdots, t_{n}\right)$, and let Ω_{i}^{\prime} be left invariant differential forms associated with $1 \otimes d t_{i}$ at $x(1 \leq i \leq r)$. Then clearly we have $\bigwedge_{i=1}^{r} j^{*}\left(\Omega_{i}^{\prime}\right)$ is not zero at x, a fortiori $\bigwedge_{i=1}^{r} j^{*}\left(\Omega_{i}^{\prime}\right) \neq 0$ on X. The assertion

[^1]now follows easily from these considerations.

Corollary 2.3. Under the same assumptions as in Proposition 2.2. and assume moreover that G is an abelian variety, then the canonical divisor of X is the zero divisor.

Corollary 2.4. Under the same assumptions and notations, $j^{*}\left(\omega_{1}\right), \ldots$, $j^{*}\left(\omega_{r}\right)$ form a basis of $D_{k}(K)$ over K where K is the function field of X over k.

Proposition 2.5. Let G and X be as is Prop. 2.2. and assume moreover that G is an abelian variety. Let ω be a differential form of the first kind on X, then ω has no zero on X.

Proof. In fact assume that ω has zero at the point x on X. Since $j^{*}\left(\omega_{i}\right)$ ($1 \leq i \leq r$) form a basis of the vector space $D_{k}(K)$ over K (where K is the function field of X over k) it is possible to find $r-1$ forms, say $j^{*}\left(\omega_{i}\right), i=1, \ldots$, $r-1$, such that $\omega, j^{*}\left(\omega_{1}\right), \ldots, j^{*}\left(\omega_{r-1}\right)$ form a K-basis of $D_{k}(K)$. Then $\omega \wedge j^{*}\left(\omega_{1}\right) \wedge$ $\cdots \wedge j^{*}\left(\omega_{r-1}\right)$ is not 0 and we see easily that the r-fold differential $\Omega=$ $\omega \wedge j^{*}\left(\omega_{1}\right) \wedge \ldots \wedge j^{*}\left(\omega_{r-1}\right)$ has 0 at the point x. Hence the divisor of the differential form Ω must contain a positive divisor. This is a contradiction to Corollary 2.3, and thereby the Proposition is proved.

Proposition 2.6. Let A be an abelian variety and let X be a non-singular subvariety of X and let j be the injection $X \longrightarrow A$. Then the adjoint map j^{*} : $H^{0}\left(A, \Omega_{A}\right) \longrightarrow H^{0}\left(X, \Omega_{X}\right)$ is surjective, and $\operatorname{dim} H^{0}\left(X, \Omega_{X}\right)=\operatorname{dim} X$.

Proof. Let $\omega \in H^{0}\left(X, \Omega_{X}\right)$ and let x be an arbitrary point of X. Then $1 \otimes \omega$ is not 0 in $\mathcal{O}^{\prime} / \mathscr{M}^{\prime} \otimes D\left(\mathcal{O}^{\prime}\right)$, where $\left(\mathcal{O}^{\prime}, \mathscr{M}^{\prime}\right)$ is the local ring of x on X. We shall denote by (\mathcal{O}, \mathscr{M}) the local ring of the point x on A and let \mathscr{P} be the defining ideal of X in \mathcal{O}. Then $\mathcal{O}^{\prime}=\mathcal{O} / \mathscr{P}$ and $\mathscr{M}^{\prime}=\mathscr{M} / \mathscr{P}$. Since $(\mathcal{O} / \mathscr{P}) \otimes D(\mathcal{O})$ $\longrightarrow D\left(\mathcal{O}^{\prime}\right)$ is surjective, $\mathcal{O} / \mathscr{M} \otimes D(\mathcal{O}) \longrightarrow\left(\mathcal{O}^{\prime} / \mathscr{M}^{\prime}\right) \otimes D\left(\mathcal{O}^{\prime}\right)$ is also surjective. Take an element w of $D(\mathcal{O})$ such that $1 \otimes w$ is mapped onto $1 \otimes \omega$. If we denote by Ω the left invariant differential associated with $1 \otimes w$ we see easily that $j_{X}^{*}(\Omega)$ ω has 0 at x. $j_{X}^{*}(\Omega)-\omega$ is also a differential form of the first kind, hence $i_{X}^{*}(\Omega)-\omega=0$ on X by Prop. 2.5. proving the assertion.

Proof of Theorem 2.1. Assume that X contains the neutral element. If we denote by q the dimension of the Albanese variety of X we know that dim $H^{0}\left(X, \Omega_{X}\right) \geqslant q$ ([1]). In our case we have $r=\operatorname{dim} H^{0}\left(X, \Omega_{X}\right)$ by Proposition 2.6. and hence $r \geqslant q$. Let B be the abelian subvariety of A generated by X, then there is a surjective homomorphism of the Albanese variety of X onto B, hence $q \geqq \operatorname{dim} B \geqq r$. Combining these inequalities we have $q=r$, i.e., X is itself the Albanese variety of X.

Bibliography

[1] Igusa, J-I. A fundamental inequality in the theory of the Picard Varieties, Proc. N.A.S., U.S.A. 41 (1955), 317-320.
[2] Nakai, Y. On the theory of differentials on algebraic varieties, J. Sci. Hiroshima Univ. Vol. 27 (1963), 7-34.
[3] Nakai, Y. Note on invariant differentials on abelian varieties, J. Math. Kyoto Univ. Vol. 3 (1963), 127-135.
[4] Serre, J. P. Faisceaux algébriques cohérénts, Ann. Math. 61 (1955), 197-278.

Addenda

1. Corrections to the paper [2].

The curves which are denoted by Γ in Prop. 20, Th. 8 and Cor. 1 and by C in Theorem 9 should be non-singular.
2. Corrections to the paper [3].
p. 127, Abolish the sentence beginning at line 15 by the word "As a" and ending in the line 17 and footnote 2).
p. 130, line 2. Insert "if X is non-singular" after $i_{X}^{*}(\omega)=0$.
p. 131, line 11. Insert "non-singular" after "let X be a".
p. 131, line 8. Abolish "outside a bunch of subvarieties".
p. 133, line 12. Insert "if $\Gamma \oplus \Gamma$ is non-singular".

[^0]: 1) The numbers in the bracket refer to the bibliography at the end of the paper.
[^1]: 2) The case where $\operatorname{dim} X=1$ is proved in [3], and this result was presented as a conjecture there. According to the Review (MR 28 \#93), J. P. Serre obtained the affirmative answer soon after the publication of [3].
 3) This means that O_{x} is a local ring with the maximal ideal \mathscr{M}_{x}.
