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This note contains two rather separate topics. The first theorem is a
version of Lefschetz5 theorem in the language of differential forms. The
second one is a characterization of abelian subvariety of an abelian variety.
They are a continuation of our preceding papers [2Γ\ and [β~]ι). As addenda
we shall give corrections to the cited papers [2Γ\ and [ΊΓ].

§ 1. Isomorphism of jγ

We shall prove in this § the following

THEOREM 1.1. Let Xn be a non-singular protective variety and let Y be a
non-singular irreducible hypersurface section of X of order m. Let j γ be the
injection Y-+X and j * be its adjoint map H°(X, ΩX)-+H°(Y, Ωγ), where Ωχ> Ωγ

are the sheaves of germs of regular differential forms of degree 1 on X and Y
respectively. Then if n^Z and m is sufficiently large j γ is an isomorphism of
H\X, Ωx) and H°(Y, Ωγ).

We have proved already in [2] that jp is an injective map provided m is
sufficiently large (Theorem 5 in [2J). Hence to prove Theorem 1 it suffices to
prove the following:

PROPOSITION 1.2. Let X be as in Theorem 1 and let Θ be the structure
sheaf of X and let m0 be an integer such that

(1) Hi(X,Θx(-m)) = 0 for m>m0 and i = 1, 2.

(2) Hι(X,Ωx(-mj) = 0 for m>m0.

IfYisa generic hypersurface section of order >/^0, then j * is a surjective
map.

PROOF. Let us denote by &> the sheaf of ideals defined by 7, i.e., the
sheaf of germs of rational functions / such that (/)> Y. As before let Ωx, Ωγ

be the sheaves of germs of regular differential forms on X and Y respectively.

1) The numbers in the bracket refer to the bibliography at the end of the paper.
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Then we have the following commutative diagram of cohomology groups
(Cf. §5 of

0

I
H°(X, &ΩX)

I
I
ΐ \

>H°(Y, Ωγ) >Hι(X, P/P"1

Hence j$ is certainly surjective if we have

(i) H\

(ii) H1(

Now assume that Y is linearly equivalent to a hypersurface section of order
m. Then as is seen easily &/&2 is isomorphic to Θx (— m)/Θx (— 2m) and
^Ωx^Ωxi—m). The equivalence of conditions (2) and (ii) is visible. On the
other hand we have an exact sequence of sheaves

0 >0x(-2m) >Θχ(-m) >Θx{-m)/Θx{-2m) >0

Hence if we have H\X, 0x(-mj) = O, H2(X, 0x(-2m)) = O, then H\X, Θχ(-m)/
(9x(—2m)) = 0, i.e. the condition (i) follows from (1). q.e.d.

The existence of an integer m0 satisfying the conditions of Proposition
1.2 follows from the general theory of algebraic coherent sheaves (Cf.
and the assumption

§ 2. A criterion of an abelian subvariety.

Let G be a group variety and let α, b be two points on G, Let Ta, Tb be
tangent spaces to G at points a and b and let Ua and Ub be subspaces of Ta and
Tb respectively. By the translation r sending the point a to the point b, the
tangent space Ta is mapped onto Tb and Ua is mapped onto a subspace r(Ua) of
Tb. If v(Ua) = Ub we say that Ua and Ub are parallel. The main result in this
paragraph is the following:

THEOREM 2.1. Let A be an abelian variety and let X be a non-singular
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subvarίety of A such that the tangent spaces to X at various points are parallel
to each other. Then there exists an abelian subvariety B of A such that X is a
translation of B2\

To prove the Theorem 2.1 we need several auxiliary results. Following
the conventions used in [ΊΓj we shall denote by k the universal domain of our
geometry. Let G be a group variety and let x be a point of G (rational over
k) and let (Θx, <Jfx)

3) be the local ring of x on G. We shall denote by Ωx the
module of ^-differentials of Θx and let ΩG=\JΩX be the sheaf of germs of

xEG

regular differential forms of degree 1 on G. Then for any given element wx

of Ωx there exists a unique left invariant differential form ω on G such that
l®ω(x) = l(g)wx in Θx/Jίx®Ωx (Th. 1 of [2]) which will be called the left
invariant differential form associated with wx. Let I be a non-singular
subvariety of G and let ω be a left invariant differential form on G. Then
we have j*(ω) = 0 if and only if ω is orthogonal to the tangent space Tx of X
at any point x e X. The following proposition is a generalization of the
Proposition 3 in [ΊΓ].

PROPOSITION 2.2. Let Gn be a group variety and let Xr be a non-singular
subvariety of G such that for any point x on X, the tangent space Tx to X at x is
parallel to the one and the same tangent space To. Let ωu .,ωr be r-independent
left invariant differential forms on G such that ;*(<tf;)φθ. Then the r-fold
differential form 7*(ωi)Λ Λ/*(αv) on X has no zero at all on X, where * is
the adjoint map associated with injection map X-+G.

PROOF. Let Ωw- ,Ωn be left invariant differential forms on G. We shall

show for any choice of indices ίu , ίr (l<d<ji) the r-fold differential /\j*(Ωia)

can be written as a (Λ;*(α>, )) with a e k. In fact, as a basis of the left

invariant differential forms, we can take, ωιy-.,ωr and r l 5 ,rw_r such as
r l5..., rΛ_r are contained in the orthogonal complement of To. Then Ω{ =

r n — r

^]β/y^y + Σ ^ srs. Since /'*(O = 0 w e s e e immediately the assertion with

α = det \aa\. Next we shall show that for any point x on X, there exist r-
differential forms ^ i ( l < i < r ) such that Λ;*(ώ ) is not 0 at x. Take for

instance a system of local parameters h,---,tn tr+i, ,tn such that the sub-
variety X is defined locally at x by the ideal (tr+U"-,tn)9 and let Ω\ be left
invariant differential forms associated with l ® ώ , at x(l<j,<Cr). Then clearly

r r
we have I\f(Ω'>) is not zero at x, a fortiori Λj^Ω'^φO on X. The assertion

f = l « = 1

2) The case where dim X= 1 is proved in [3], and this result was presented as a conjecture there.

According to the Review (MR 28 #93), J . P. Serre obtained the affirmative answer soon after the

publication of [3].

3) This means that Ox is a local ring with the maximal ideal JKX.
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now follows easily from these considerations.

COROLLARY 2.3. Under the same assumptions as in Proposition 2.2. and
assume moreover that G is an abelian variety, then the canonical divisor of X
is the zero divisor.

COROLLARY 2.4. Under the same assumptions and notations, y*(α)i), ,
y*(ωr) form a basis of Dk(K) over K where K is the function field of X over k.

PROPOSITION 2,5. Let G and X be as is Prop. 2.2. and assume moreover
that G is an abelian variety. Let ω be a differential form of the first kind on
X, then ω has no zero on X.

PROOF. In fact assume that ω has zero at the point x on X. Since j*(o)i)
(1<O*<>) form a basis of the vector space Dk(K) over K (where K is the
function field of X over k) it is possible to find r—1 forms, say j*(ωi)9 i=l, • -,
r—1, such that ω, ;*(fl>i), ,7*(ft>r-i) form a X-basis of Dk(K). Then α>Λy*(α>i)Λ
... Λ;*(a>r-i) is not 0 and we see easily that the r-fold differential Ω =
Λ>Λ/*(α>i)Λ ••• Λf(ft)r_i) has 0 at the point x. Hence the divisor of the
differential form Ω must contain a positive divisor. This is a contradiction
to Corollary 2.3, and thereby the Proposition is proved.

PROPOSITION 2.6. Let A be an abelian variety and let X be a non-singular
subvariety of X and let j be the injection X >A. Then the adjoint map y *:
H\A,ΩA) >H°(X,ΩX) is surjective, and dim H°(X, Ωx) = dim X.

PROOF. Let ω e H° (X, Ωx) and let x be an arbitrary point of X. Then
l®ω is not 0 in Θf/Jίf®D(Θf), where (Θf, Jff) is the local ring of x on X We
shall denote by (Θ, Jt) the local ring of the point x on A and let 0> be the
defining ideal of X in Θ. Then Θ' = Θ/& and Jίr = Jί/0>. Since (Θ/0>)®D(β)

>D(Θ') is surjective, Θ/Jί®Ώ(Θ) >(Θf/<J(')®D(Θ') is also surjective. Take
an element w of D(Θ) such that l®w is mapped onto l®ω. If we denote by Ω
the left invariant differential associated with l®w we see easily that jx(Ω) —
ω has 0 at x. jx(Ω) — ω is also a differential form of the first kind, hence
ix(Ω) — ω = 0 on X by Prop. 2.5. proving the assertion.

PROOF of Theorem 2.1. Assume that X contains the neutral element. If
we denote by q the dimension of the Albanese variety of X we know that dim
JEΓ°(X, Ωxy>q ([1]). In our case we have r=dim H°(X, Ωx) by Proposition
2.6. and hence r>^. Let B be the abelian subvariety of A generated by X,
then there is a surjective homomorphism of the Albanese variety of X onto
B, hence <7̂ >dim B^>r. Combining these inequalities we have q=r, i.e., X is
itself the Albanese variety of X q.e.d.
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ADDENDA

1. Corrections to the paper [ΊΓ].
The curves which are denoted by Γ in Prop. 20, Th. 8 and Cor. 1 and by C
in Theorem 9 should be non-singular.

2. Corrections to the paper [3J.
p. 127, Abolish the sentence beginning at line 15 by the word "As a" and

ending in the line 17 and footnote 2).
p. 130, line 2. Insert "if X is non-singular" after i%(ω) = 0.

p. 131, line 11. Insert "non-singular" after "let X be a",

p. 131, line 8. Abolish "outside a bunch of subvarieties".

p. 133, line 12. Insert "if ΓφΓ is non-singular".






