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1. Introduction

The concept of association schemes was introduced first by Bose and
Shimamoto [4]. It was investigated in relation to the definition of the
partially balanced incomplete block (PBIB) designs introduced first by Bose
and Nair [3]. This concept, however, has recently been treated without
referring to the definition of the PBIB designs. An association scheme with
m associate classes, which is defined among v objects, usually called treat-
ments, is a relation of association defined among those satisfying the following
three conditions:

(i) Any two treatments are either 1st, 2nd, ..., or m-th associates, the
relation of association being symmetrical. Each treatment is the zeroth
associate of itself.

(ii) Each treatment « has n; i-th associates, the number n; being
independent of «.

(iii) If any two treatments « and 3 are i-th associates, then the number
of treatments which are j-th associates of « and k-th associates of 3 is pi,
and is independent of the pair of i-th associates « and 5.

Matrix representation of the relationship of association along the concept
of relationship algebra by James [ 8] was immediately followed by the defini-
tion of the association algebra by Bose and Mesner [ 2]. The structure of the
association algebras was studied by Ogawa [147], [15] in some detail. Further
steps were taken by Yamamoto and Fujii [23].

An association algebra with m associate classes is a semi-simple commuta-
tive matrix algebra generated by the association matrices A4y, A4, ---, 4, over
the real field. It is completely reducible and its minimum two sided ideals
are linear. The principal idempotents A5, A5, ..., A% of those ideals and the
association matrices are mutually linked by the linear combinations of the
others. That is, Aizin_‘sziAj and A;?:.m;z”Aj where z7=a;z;;/vn; and «;=

7= 7=
rank (4%). In many cases it happens that all of the idempotent matrices are
rational. In such cases we consider the association algebras to be defined
over the rational field.
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In his previous paper [227], Yamamoto, one of the present authors,
developed some theoretical aspects of the composition of the relationship
algebras of experimental designs using his notions of the similar and the
partially similar mappings of the semi-simple matrix algebras. He pointed
out that an association algebra defined by an association scheme was considered
as a sort of relationship algebra defined among a set of parameters, and that
the structure of the association algebra determined uniquely the decomposition
of the parameter sum of squares. Taking a step further, he suggested that
an association algebra could be considered a sort of relationship algebra
defined among a set of apparent parameters and could be composed of one or
more primitive relationships with which the primary objects of the experi-
menter were concerned. From this point of view, he suggested with some
examples that, without referring to the PBIB designs, most of the association
algebras introduced by the association schemes of the PBIB designs might
well be composed of one or more primitive relationship algebras, each of which
was generated by the identity relationship matrix I, (the unit matrix), and the
universal relationship matrix G, (a matrix whose elements are all unity).

The purpose of this paper is to realize the ideas of the above mentioned
paper and to deal with systematic compositions of the several series of the
association algebras, using series of similar or partially similar mappings and
the orthogonal composition of the algebras [227]. These results cover almost
all the association schemes and their algebras treated hitherto by many
workers. The latent structures of the associated parameters are also indicated
with reference to each of the ways of composition. These considerations may
be regarded as throwing a new light on the nature of the association schemes.

As Yamamoto [ 227] pointed out, even in the case of an incomplete block
design, an association scheme characterizing the latent structure of the
relevant parameters is not necessarily the same as the association scheme of
the block design. The existence of a PBIB design which admits a certain
association scheme, however, is one of the traditional problems in the theory
of experimental designs. Much work has been done with the necessary
conditions for the existence of the regular and symmetrical BIB and PBIB
designs in connection with Hasse’s p-invariant [17], [19], [21], [13], [15],
[17], (207, (6], [18],[10], (127, [167]. In such cases, the evaluation of the
Gramian is required with respect to each set of independent vectors which
span an invariant subspace of the parameter space determined by correspond-
ing idempotent matrix, provided all idempotent matrices are rational [15].
As a specific application of the systematic composition of the series of
association algebras, a straightforward method of evaluating these Gramians
is given. Hasse’s p-invariant may be calculated easily with respect to each of
the specific cases which have been treated by many workers.

The following notation is used throughout this paper:

I;: The unit matrix of order s.
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G,: An sxs matrix whose elements are all unity.

js: An s dimensional column vector whose components are all unity.

A’: Transpose of the matrix A.

ARB: Kronecker product of the matrices 4=l|a;;|| and B, t.e., AQB=
llai;Bl|.

¢: The superscript # indicates that the matrix is an idempotent matrix.

A=[4;;i=0,1, ..., m]: An algebra generated by the linear closure of
those matrices indicated in the [ .

A\ JAy: The smallest algebra containing both 2, and 2, as its sub-
algebras.

A, NAy: The largest subalgebra contained in both 2; and 2.

2. Triangular series of association schemes
(a) Definition of T,, type assoctation schemes

Suppose that there are v’”=<rfz> objects or treatments ¢(ai, az, -, Ap)

indexed by the combinations or subsets of m integers (a,, , ---, &,) out of
the set of s integers (1, 2, ..., s). Among those v, treatments, an association
of triangular type or T,, type with m associate classes is defined as follows:

Dermnition: Two treatments ¢(a, @, -, @) and ¢(B1, B2, ---, Bm) are
i-th associates if their indices (ay, @, -, @) and (B, B2, -+, Bn) have m—i
integers in common. Each treatment is the 0-th associate of itself.

In this section, m is assumed to be not greater than s/2. Otherwise, i can
assume at most an integral value not exceeding s/2. The latter case, however,
requires only a slight modification in the descriptions of this section.

The association defined above satisfies three conditions of the association
scheme with m associate classes, t.e.;

(i) Any two treatments are either 1st, 2nd, ..., or m-th associates, the
relation of association being symmetrical.

(ii) Each treatment has

=7

i-th associates, the number n?” being independent of ¢(1, ay, ---, Ap).

(iii) If any two treatments ¢ (a1, @2, -, &) and ¢(B1, Bz, ---, Bwm) are i-th
associates, then the number of treatments which are j-th associates of
é(ay, Ay, -, &) and at the same time k-th associates of ¢(81, B2, -+, Bm) i

P ) k) (i) e

and this is independent of the pair of i-th associates ¢(ay, a3, - -, @) and



184 Sumiyasu YamamoTto, Yoshio Fujir and Noboru Hamapa

¢(Bl, 529 ) BM)

This scheme is called a triangular type association scheme with m associate
classes, or briefly, T,, type association scheme. It is a generalization of what
is called a triangular association scheme with two associate classes [4] and
an association scheme of T; type defined by Kusumoto [10]. Ogasawara [12]]
has defined the scheme and studied it in some detail.

(b) Association matrices and association algebras.

Consider a T,, type association scheme. After numbering v, indices in
some way but once for all, association matrices can be expressed as follows:

(m) N
A4;= ”agg,la[iz aﬁ')"z” (2-3)

, 1 if the treatments ¢(ay, as, ---, &) and
where a{fufe-i ) = é(B1, B2, -+, Bm) are i-th associates

0 otherwise

(m)
for i=0,1, ..., m. A’s are symmetric v, X v, matrices and satisfy the
following relations:

> “l (m)
Ao= v,,,, '%6 A4; :va

(2.4)
m)(m)  (m) (m) m (m)k (m)

A1A1=AJA1=kz::J)p ijAk'

. . m)  (m) (m)
The linear closure of the association matrices Ao, 4;, ---, An over the

rational field is called a T,, type association algebra and denoted by A(T.) or
(md
[A4;;i=0,1, ..., m].
The following linear relations are known between the association matrices

md (m>
(A,- (j=0,1, ..., m) and the principal idempotent matrices 4! (i=0, 1, ..., m) of
the two sided ideals of (T,):

(m) m
=S i (25)
(m> (m) m z('") (m)
or A”—szﬂ ,:; vtnzj y Ajs (2.5

where [|z7|| is an (m+1)x(m+1) non-singular matrix and «;=rank (A")
In the case m=1, we have
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D a1

AOZIS) :’41:65_[5

V) 1 €V)

Li=t¢, M=1-1g
S S

eV

A(T)=[ Ay, 4, 1=[ 42, 4]=(1., C.]

1 s-17 {1 1
1231l = 28]l = 5~ J
1 -1 s—1 —1].

(¢) Composition of the series {A(T,)}

Now we show the way of composing step by step the series of the
association algebras {%(T,)} starting from the primitive association algebra
A(T)=[ I, Gs] with the aid of the series of the partially similar mappings
{ak} as,

A(T)=[1, Gs] > A(Ts) > A(Ts) > o5 A (T 1) 3 A(To) >

Taking into account the geometric structure of the T,, type association scheme,
we define a v, xv,_, matrix F,_; giving a linear mapping from the v,_;=

<ms_1> dimensional vector space to the vm=<";> dimensional vector space as

Faor= || fituttn |, (26)
Whel‘e 1 if (ﬂl’ ﬂz, Tty /"m—l)C(aly az, Tty am)
[t =
; 0 otherwise.

Using F,_: we define a linear mapping ¢,_, of A(T, ) as
Omr: A(To )3 A—>F, AF . 2.7
In this connection, we have the theorem:

TueorReM 2.1 The linear mapping 0,_1 defined by the matriz F, _, s a
partially similar mapping of A(T._)) for any positive integer satisfying

2<m< ;_
The algebra A (T.) ts composed by the mapping:

AT =01 (AT ) VL L, . 258)
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Since A(T,)=[1I, G.] is well defined, we can compose the series of

triangular type association algebras {‘)I(Tm); m=23, ., [—;]} step by step

with the aid of the series of mappings {0;}. ([%_! denotes the greatest integer

not exceeding s/2.)

Proor. It is sufficient to show that ¢,_; is a partially similar mapping
of A(T._;) and that

Jm—l (2[ (Tm»l))u[lvm]:i)l(Tm)

under the assumption that %(Tu_)=[ 4i: i=0, 1, ..., m—1]=[ 47; j=0, 1,
m—17] has been composed.

(m—1>
From the definition of 4, and F,_;, we have

(m—-1) —1 1—10) mw 2l+1 — 1) @
A Ffln 1_£m )(,;ni 2 A+ ( +’%2@l ) 4,
[+1)
4 mz,) Vi (2.9)

m)

for [=0,1, ..., m—1, where A_, is assumed to be a zero matrix. From (2.4)
and (2.9), we have

(m)

I”m Tn2 .Ao

(m-1> 0 m>
Fo o AFL m 12 A,
(m—1 (m)
*lAlF,’,,_l 1 m(m—1) 3(m—1) 22 A,

= m? . . . :

(m » (md
Fo A F, (m+1-0(m—1) @I+1)(m—1) (+1) Apia
o 0 E RS
4 FL 2 @m—1) m? |4,

(2.10)

Since the (m+1)x(m-+1) matrix of the right hand side of (2.10) is non-
singular, we have

(m)
(L, Foy dFlyr; 1=0,1, ., m—1]=[ Aj; i=0, 1, ., m.

As the rank of F,, , is v, q, F,_,F,_, is a non-singular positive definite
matrix. It also satisfies the relation
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_ 1) m-1 1 m—
Fy B = 0= ) L e om0, @11

Thus we can write

m—1 (m—1)
FriFpy= 23" 4% (2.12)
i=0
where ¢ P (i=0,1, ..., m—1) are positive constants. The linear mapping

Om_1 0f A(T,_,) defined by F,_; is G-preserving partially similar [22]. The
algebra A(T,) is, therefore, an algebra composed of A(T,._;) by the partially
similar mapping ¢,_,, i.e.,

g{(Tm):o-m—l (%(Tm~l))u|:lvm]

(d) Some applications

The structure of the series of triangular type association algebras might
be useful in determing recurrently the properties of the T, type association
scheme and its algebra. We treat some of them in the following.

From the definition of the partially similar mapping [ 22],

(m—1)
"gi‘ml”—’D'F 1 AFF,_, (i=0,1, ..., m—1) are the mutually orthogonal idempo-
tents of A(T,). It is well known that the (m+1) mutually orthogonal idem-
(m) (m) (m
potents of A(T.), 4.%, 4,*, -- A,,,", are uniquely determined apart from their

order. We therefore number them step by step through the following
correspondence:

(m) 1 (m—1) , .
Ai#:FITFm—I A,-‘g Fm—l (LZO, 1, cey m——l)
(2.13)
(md m—1(m)
Amt’:Ivm— 2 Az#
i=o
From (2.11), (2.9), (2.4) and (2.13), we have
’ . (S— ) () 1 (m)— (3—2"7') mZ ’
Eoln= g1y Aot (g1 4= i1 Lot G D Frot B P
S—Zm m (m) ‘ (m—1 ) ,
= m? o (s—2m) | = (s—2m) o
3 {'(m+1)2 P+ i 1y }A,. i i (2.14)

On the other hand, from (2.12) we have



188 Sumiyasu YamamoTo, Yoshio Fujir and Noboru HamMapA
m (md
FIF, =3¢ 4+, (2.15)
i=0
Solving the recurrence relations obtained by comparing the corresponding
(m)
coefficients of A;* in (2.14) and (2.15), we have

m+1—i)(s—m—1i
eom— (mt (m>+<i)2 —i) (2.16)

for i=0,1,...,m and m=1,2, ..., [%:{—1. Thus we have the following

recurrence relations for mutually orthogonal idempotents.

(m> Tn2 (m—1)

= ’
At = (m—i)(s—m—i1+1) Fpy AFF, 217

for i=0,1,...,m—1 and

(m> m—1 (m)

Ai=1, —' ST 4" (2.18)
i=0

Next we derive two explicit formulas for z{” in (2.5) and (2.5), t.e.,

(S—.m) . .
o SO CTIETEEY e

s—m a
3
or

2= aé:’)(_l);’_a<m; i> <m—a> <s—m—-i+a> i, j=0,1, .., m). (219"

m—j a

Ogasawara [12] obtained (2.19") by an ingenious method which was a
generalization of an idea of Corsten’s [5]. The method, however, was very
involved. Our method of derivation presented in the following is based on
the structure of the series of triangular type association schemes and is
accordingly analytical.

(m)
We define the vectors, 4, z/,, as follows:

(m/) m)  (md (m) (m>

A :(AO, Avy ey Ajy oy Am) (2 20)
i’ —(.,i0 i1 ij i -

zém)_(z(‘m)) z(tm)a Tty z(%): Tty z(’le)) (1‘09 15 ) m)

Then we can write (2.5") as
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(m) m)

Ak#:A/zfm) (k:0> 1) ) nl)'
On the other hand, we have from (2.13), (2.21) and (2.10)

(nﬂ£ 1 (m‘l?# 1 (m-1 .
P T 2 3
Ak - C;em—l') 6711—1( Ak )'— c;m—D O‘mfl( A z(m-l))

1 m>

1 (m*l/) A ) i
= ”E.—im—l)—o‘mfl( A )z\m—l/zfc;%rﬁ—l) AHm Bm-1

(kZO, 19 Tty m_1)9

where

m  m(m—1)

o 0
) J @AY m=j) (m—j) (m—j—1)
Hm:—i?j; * . t . e
m . . t.
. . h 2 !

Comparing (2.21) with (2.22), we have

Cgem_llzfmJZHmz{zm-D (k:07 1> ] m'—l)-

Adding (2.21) over k from 0 to m and using (2.4) and (2.18), we have

7’1‘ » o . r S -
Bl =1y, m=1,2, .., L2 1)

k=0
Whel‘e l;n:(l, 03 Tty 09 B 0)‘

Using (2.24) repeatedly and adding over & from 0 to i, we have

i i
Y Am—1 aim—2) ik — Nk
k—OCk Cp cCh z\m)"HmHnrl‘"Hi—?l(%_(l)z(i})-

Substituting (2.16) and (2.25) into (2.27), we have

SEHEH T 6ot

189

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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From the above relations, we have, after some calculations,

(s—2t+l)< )

(s—z—a—f—l)( —i ) <m ]>

.. i .
== 2 (~1
a=0

)
_ f—i:(—ly-“(m.—“) <m—‘.’> (3“"“). (2.29)

m
V" <s—m> a=0 ] m—i a
i

Hence, we obtain (2.19).
The formula (2.19) may be obtained as follows. Multiplying (2.28) by
z{® and adding over j from 0 to m, we have

ﬁ:(’”;)m)—(”" )(S_l—t) (G, t=0,1, ..., m). (2.30)

Solving (2.30), we have
= HE0 ) R Ot

=5 G @D

(e) Parameter models

In each stage of the composition of a T, type association algebra, the
method of composition induces a natural parameter vector associated with the
corresponding triangular type algebra. We show the structure of the composed
parameter vectors inductively. The decomposition of the sum of squares of
the composed parameters, which is determined uniquely by the composed
algebra, is also given.

Let 7, be an s dimensional parameter vector, the elements of which
represent the effects of s sub-factors or levels, respectively. Within these
elements, a primitive relationship algebra A(T,)=[1, G.] is assumed to be
defined. The associated decomposition of the parameter sum of squares is

a

T, =1 A} z'l-l—z'lAl*rl—er—}— }_,(z'lj 7, (2.32)
where | =(t,,, -+, T;,) and {-l:_SL i} t,;. The first component of the decom-
i=1

position is due to the general mean and the second component is due to the
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main effect of the level effects.
If we map A(T,) by ¢; and compose A(T,), the composed parameter vector
may naturally be defined as

62—_—F1 Tl+72, (233)

where F,7; is a partially similar image of the parameter vector of the level
effects and 7, is a residual parameter vector subject to the condition

Flz,=0 (2.34)

The first component vector F,z; of the composed parameter is a vector which
consists of all combination of two different level effects, 7.e., 1 (trit71) GF)).

The composed parameter, therefore, can be represented by the sum of such a
parameter vector and a parameter vector which cannot be explained by such
an image vector. The second component vector =, may naturally be explained
by the vector representing the first order interaction effects between two
different levels.

The parameter sum of squares associated to the composed association
algebra of T, type is

2 @)
§:6, = }:;5:;./1;'#62

and is reduced to

, s—1 /<1># s—2 ,<1>* ,<2>#
6262:-_2""71140 71“*‘“4 T d*t + 74,77,

-1 —2 s
— S(S?_) 2 4 _S4_ é (ty; _f1)2_|_z'é1'2_ (2.35)

In the same way, if we map 2(T;) by ¢, and define the composed para-
meter vector for A(T;) as

§=Fbrt+Ts=F, Fit.1+Fyt;+ 73, (2.36)
then the residual parameter vector =3 is subject to the restriction
Fyt3=0 (2.37)

and is explained by the vector representing the second order interaction
effects between three different levels.
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In general, the associated parameter vector for a T, type association
algebra 2(T,), which may naturally be defined along the line of the series
of composition, is

em:FmglFm—Z‘"F171+Fm-1Fm—2"'F272+ """ +Fm—ltm—1+z.m7 (238)

where 7, 73, ..., T, represent the effects of the 1lst order, 2nd order, ... and
(m—1)th order interaction within the level effects, respectively. They are
subject to the restrictions

F,_,7t,=0 (2.39)
for 1=2,3, ..., m

The decomposition of the parameter sum of squares uniquely determined
by the composed association algebra A(T,) is

m m)
er,nem - 2;_‘6 er/n Ai# em' (2.40)
Using (2.13), we can reduce the components as follows:

;™ -1 om=-2 Dt S\ =2
.4 8 =ci" Ve VT 4, 71=<m>71

)

(m) [@D) s
— m-D > _ Nt S = \2
g, A, 6, =c" VP AT, = me 'z{(fu—fl)
=

<s——2i>
m £ m—i
§ A =D T A, = e, (i=2,8, ., m—1)

("

, (m
em te ”_rmrm'

Thus we have

66— (27 +

The degree of freedom of these components are

s_2> s—21>
m e 5 [y T @

dt. (&, 4,48, =rank (1) = @ ‘(ii 1)
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for i=0,1, ..., m.

Note that some of the interaction parameters 7, ..., 7, are assumed to
be zero, and the corresponding degrees of freedom are assigned to the estima-
tion of error.

3. Nested series of association schemes

(a) Definition of N, type association schemes

Suppose that there are v,,=s;s;...s, treatments ¢(a,, as, -, a,) indexed
by m-tuples (ai, as, ---, a,) where a;=1,2, ..., s; and i=1,2, ..., m. Among
these treatments, we define a relation of m-fold nested type or N, type
association as follows:

DeriniTiON. A pair of treatments ¢(a, @, -, &) and @(B1, B2, -5 Bm)
are i-th associates if a;=p; for all j=1,2, ..., m—i and &u_;17Bn-i+1. Each
treatment is 0-th associate of itself.

We can easily verify that the association defined above satisfies three
conditions of the association scheme with m associate classes. For the case
m=2, Bose and Shimamoto [4] called it a group divisible association scheme.
Raghavarao [177] called the association a generalized group divisible associa-
tion scheme with m associate classes. Following traditional nomenclature, we
prefer to call the association an m-fold nested type association scheme, or an
N.. type association scheme.

(b) Association matrices and association algebras

Consider an N, type association scheme. After numbering v, treatments
in dictionary-wise, we can express the i-th association matrices as

md
Ai = Ivn.’-f ® (Gsrrb—i+l - Is,"4l'+ 1) ® Gsnv—i+2 ® o ® Gsm (3'1)
(l=09 1’ 2, Tty m‘),
where v;=sis:---s;. Some of the special cases are

(m)

Ao=1,, 3.2)
(m)
Al: Isl ®® Ism—l®(csm_ Ism.) (3‘3)
m)
Am:(csl'—Is1)®Gsz®"'®Gsm- (34)

. . - . (m) .
We call the linear closure of the association matrices A4; over the rational
field an m-fold nested type association algebra or an N, type association
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m)
algebra and denote it as A(N,,) or [(A,-; i=0,1, ..., m].

The mutually orthogonal idempotents of the algebra A(N,,) are denoted

m) m) md
by A%, 4% -, 4,5, For AN)=[I, G, ], we write

S1 1

(¢) Composition of the series {A(N.)}

Now we show the way of composing step by step the series of the
association algebra {2(N,)} starting from the primitive association algebra
AN =[1I, G, ] with the aid of the series of the similar mappings {0:} as,

Tm_g

AN =L, G, ]>AN) > AN ) > AN . (3.6)

As AN)=[1I, G, ] is well defined, it is sufficient to show how to
compose A(N,,) under the assumption that A(N,._;) has been composed.
Let F,_; be a v, Xv,_1 matrix defined by

Fm—l-——Ivm_l ®j‘sm (m’:l, 29 ) (37)
Let 0,1 be a linear mapping of A(N,_,) defined by

a AN,_1)2 A—>F, | AF) .. (3.8)

m—1 :
From (3.7) we have
Fo i F,  =s,1,  €AN,_1). 3.9

The linear mapping ¢,,_1 of 2A(N,_;) defined by F,_; is, therefore, similar.
Thus the composed full rank algebra is

Fopn AN ) Fpny VL, . (3.10)

On the other hand, as it is easy to prove that

n—1

(m)
Fo 4 F, =4, @i=2, ..., m) (3.11)

(m—1 (m) (m)

(m) b}
Ivm:A0> F,, AyF,_ =A4,+ 4,
and we have the theorem:

TueoreMm 3.1  For every integer m(>2) the mapping 6,_, of (m—1)-fold
nested type association algebra defined in (3.8) gives a similar mapping of
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A(Nu-1). The image algebra with I, gives an m-fold nested association algebra
AN.L), te.,

AND=0p 1 (ANa D)VL L, T (3.12)

The similarity of the mapping 0,_, defines a natural correspondence of
the mutually orthogonal idempotents of A(N._;) and AN,), z.e.,

m 1 (n—1)

Ai#:TFm-l Ai‘*F;n—l (lzoa 13 ] m—l) (3°13)

(m)

m—1Gm)
Ap=1, "SI 4r (3.14)
=0

m

for m=2,3, ....
Starting from (8.5) for 2A(N,), we have

(m)

Ar=1,_ 0L~

Le)e

Si

1

Sit1

1
Gsi+l®“'®7‘;‘;’:cs”

3

(3.15)

for i=0,1, ..., m. In particular,

m)
AO# - 71’ Gy

Ui m
(m) 1 1 1

#— T S =
Al - <Isl S1 Gsl>® S2 GSZ®® Sm Gsm

(m) 1
Am# = I81® Isz®® Ism.—l®<Is"‘— Sm GS,,,)'

Sm

(d) Parameter models

In each stage of the composition of an m-fold nested type association
algebra, the method of composition induces a natural parameter vector
associated to the corresponding nested type association algebra. We show
the structure of composed parameter vectors inductively. The results cor-
respond to the usual parameter models of the designs of nested type. The
decomposition of the sum of squares of the composed parameters, which is
determined uniquely by the composed algebra, is also given.

Let 7, be an s, dimensional parameter vector, the elements of which
represent the class effects of the first classification. Among s; elements of
7,, a primitive relationship algebra, A(N,)=[I, G, ], is assumed to be
defined. The associated decomposition of the parameter sum of squares is
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w oy s ~
TiT, =7 At + 7] A, v, =572+ %(rlj—rl)z (3.16)
=

where 7]=(ty;, 713, .-, T1;,) and 1"1:%%71,-. The first component of the
1 =1

decomposition is due to the general mean and the second component of it is

due to the main effects of the first classification.

If we map AN,;) by 6, and compose A(N;), the composed parameter
vector may naturally be defined as

E:=Fi7,+7y, 3.17

where Fir, is a similar image of the parameter of the first classification and
T, is a residual parameter vector subject to the condition

F{z,=0. (3.18)

The residual parameter vector may be accounted for by the parameter vector
representing the class effects of the second classification. The restriction
(3.18) means that the sum of the effects of the second classification within
each of the same classes of the first classification is zero. The parameter
model introduced here coincides with the usual parameter model associated
with a two-fold nested classification design.

In the same way, if we map 2A(N.) by ¢, and define the composed para-
meter vector for A(N;) as

Es=Fy 6o+ T3=F,F7,+F,7;+73, (3.19)
then the residual parameter vector z; is subject to the restriction
Fiz,=0 (3.20)

and is explained by the parameter vector representing the effects of the third
classification.

In general, the associated parameter vector for an m-fold nested associa-
tion algebra A(N,), which may naturally be defined along the lines of the
series of composition, is

En=Fu, 1 Fp o Fi014+F, 1 Fp s Foty+ ... +F, .. .Fi7+
+Fm—1rm—l+rma (321)

where 7, 73, ..., T, represent the effects of the second, the third, ... and the
m-th classification, respectively. They are subject to the restrictions
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F_,7,=0 (3.22)

for =23, ..., m.
The decomposition of the parameter sum of squares uniquely determined
by the composed association algebra A(N,) is

mn Gm )
erlnem = %(") er/n A i * em (3'23)

and can easily be reduced to the following form by using (3.13):

Uy

" 9] moop, )
erlnem:> 7'-{ AO#TI_*_ E**’T;Aﬁ‘f{
(2] i1 Ui
(3.24)
= 0, 4+ S (e, =)+ 3 e,
S1 ;7451 i=2 Vi
The degrees of freedom of these components are
(m) m>
d.f. (&), 4%¢,)=rank (A =s;5,---5;,_,(s;—1)
(=12, ..., m) (3.25)

(m> im>
d.f. (¢, 4A;¢,)=rank (4%)=1.

4. Factorial series of association schemes

(a) Definition of F, type association schemes

Suppose that there are v,=s;s2..-s, treatments ¢(ay, as, -, a,) indexed
by p-tuples (ai, as,---, @y) where a;=1,2,...,s; and i=1,2, ..., p. Among
those treatments, an association of factorial type or F, type is defined as
follows:

Derinrrion: Two treatments ¢(ay, as, -, «,) and @¢(Bi, S8z, ---, 8,) are
(e1, €2, ---, €p)-th associates if (e(a,— 1), (s —PB2), ---, (p—B8,)=(e1, €2, -, &),
where ¢(x) is a function of x which assumes either the value zero or one
according as «x is zero or not. Each treatment is (0, 0, -.., 0)-th associate of
itself.

Note that the number of associate classes is expressed not decimally but
in binary notation.

It is easy to verify that the association defined above satisfies three
conditions of the association scheme with 2?—1 associate classes. Hinkelmann
and Kemphone [ 7] called the association an extended group divisible (EGD)
association. Hinkelmann [67] investigated the EGD (2”—1)-PBIBD in some
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detail. Following traditional nomenclature, we prefer to call the association
a p-way factorial association scheme or an F, type association scheme.

(b) Association matrices and assoctation algebras

Consider an F, type association scheme. After numbering v, treatments
#(a1, as, -+, ap) in dictionary-wise, we can express the (e, &, ---, ¢,)-th asso-
ciation matrices as

Aeeyoey=Ae, QAe, Q- R Ao, 4.1)
where
Ae;=1—¢) I, +6(Gs, — 1),
=0 or 1, i=1,2,...,p.

It is known that the linear closure of these association matrices 4., .,
over the rational field forms a linear associative algebra generated by these
association matrices. We call the algebra an F, type association algebra and
denote it as A(F,) or [4e .,;&=0,1,i=1, .., p].

The mutually orthogonal principal idempotents of 2? two-sided ideals of
the algebra 2A(F,) are

Abe,e,=AERALR- - R AL, (4.2)

where

Agl:ei(Isi - ~} Gs,.> +(1— e;)%Gs,,

(5{30, 1) l:‘l’ 27 ,P)

In the case p=1,

M=1, A=C.—L; Aj=—GC, A=I— ¢,
In the case p=2,

1400:151(8132 A01:Isl®(Gsz—Is2)

AIOZ(GS,—IS‘)®ISZ A11=(Gsl—Is‘)®(Gsz_Isz);

1 . 1 1
A= ~6.®6C, A= 6.®(L,— G,
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1
AiI;OZ <Isl — T

S1

6.)® 6., Ah=(L— 1 6)®(L— 1 ¢.).

S2

(¢c) Composition of the series {A(F,)}

Now we show the way of composing step by step the series of the
association algebras {A(F,)} starting from p primitive association algebras
W(F)=[1I, G;](i=1,2, ..., p), defined respectively over the s; levels of the
i-th factor.

It was already shown in [227] that the orthogonal composition of two
primitive algebra, say W (F)=[1, G, ] and W (F)=[I,, G, ], yield the two
way factorial association algebra A;;(F,). We therefore, show the way of
yielding ?(F,) by composing orthogonally p A(F,_,)’s simultaneously.

Consider p factors Sy, ..., S, with s;, .-, s, levels respectively and suppose
that among p—1 factors S), -, S;-1 81,1, ---, S, the (p—1)-way factorial
association algebra 2(,..;_1 ;.1..,(F,_1) has been composed for every (=1,2, ..., p.

Let

Oyyeyek = HIQHK) - Q Hy, (4.3)
where
ISa,‘ (li:bl, bz, <oy OF b/,
H,'z
Jsa; otherwise

for i=1,2, ..., k. Here a;<a:<...<a, are k different integers and b,<b,<C
..< b, are [ different integer selected from them. For example, some of the
special cases are illustrated below.

070 =1,Qj,, 07*"=j, Q1 Kj,
0Ly p—Is1® ®Is, Rjs, R 1, sy 1®"'®I$p‘
Let 0i.4y., be alinear mapping of ., 1;.1..,(F,-1) defined by
Tyt
Wiy 1p(Fym1) 2 A @0 L ADYZ Y L, (4.4)
for every [=1,2, ..., p.
It is easy to see that each of the linear mappings 0., gives a

similar mapping of 20y.;-1;.1.,(F,_1), respectively. Moreover, for each pair
of I and I'(I<!’), we can see that the intersection of the image algebras

QJ’{I,D 20-1...(1)...p (9,[1...1,1 I+1eeep (FI‘*1>)/—\0’1"‘(1/)'"1’ (9[1...1/- 117+1p (Fp_l))
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) 1 . ,
=4, ® 4L @ C DAL, DR AL,

® 3Gy @ AL, @D ALy & =0, 1, i1, V] 45

Sy

is the maximal common two-sided ideal of those algebras. Hence the two
mappings 0.y, Of iio11p1.,(Fpo1) and 01y of Wsiroq i1, (Fyoy) are
B! orthogonal [22]. Then we have the theorem:

Turorem 4.1  Stmilar mappings 61.qy.,'s of p (p—1)-way factorial as-
soctation algebras As..._1 1.1..,(F,_1) defined by 0342 ..., give pairwise ortho-
gonal mappings modulo Bi!, for every pair of | and I’ and the union, or
orthogonal composition of p image algebras for 1=1,2, ..., p with I,, yields a
p-way factorial association algebra Ui,..,(F,), i.e.,

b
9,{12...1; (Fp) = yldl...(z)...p (?[12...[_ 1Usleep (Fpﬁl))u[ Ipp]. (46)

(d) Parameter models

The composition of the series of factorial association algebras induces in
each stage of the composition a natural parameter vector associated to the
composed factorial association algebra. We show the structure of the com-
posed parameter vectors inductively in the following. The results correspond
to the usual parameter models of the designs of factorial type. The decom-
position of the sum of squares of the composed parameters, which is deter-
mined uniquely by the corresponding composed algebra, is also given.

Let 7., 7, .-, T, be the parameter vectors representing the level-effects
of the p factors Si, S, .-, S, respectively.

As was indicated in [227], the orthogonal composition of two algebras, say
A(F)=[I,, G, ] and WAy(F1)=[L,, G;,], yields a two-way factorial association
algebra .(F,), the composed parameter vector being

£1,=00"7,+ 01, + Ty, (4.7)

where 7, was subject to the conditions @{'?'z,,=@,'?'r,,=0 and was ex-
plained by an interaction parameter vector of two factors S, and S,. 7,,=0
or not according as the additivity of the level-effects of two factors was
assumed or not. Associated decomposition of the composed parameter sum of
squares was

612612—:6{2‘430612+${2Ai0612+e{2Aglelz+$;2A§1612

- 1 1
=48 4swl (L= | 6 )mitami(1,— 6. )Tt Tty (48)
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where 7,=s;'7/j,, (i=1,2).

Now we show the composition of the parameter vectors for three way
factorial association algebra composed of three factors, say Si, S, and Ss,
assuming that three parameter vector &,., £13 and &.; for . (F,), Asz3(F2) and
Wp5(Fy) are already composed, 7.e.,

— D (12) (127 HA2D e
§1,=0{%7t, + 05T, +7,, (09%'t,=03%'t,,=0)
_ ) 13 Vom _
§1;=0{¥7, + 0¥+ 7, (03T, =03¥'7,;=0) (4.9)
_ ) 23) 23/ o
£ =037, + 0¥, + 7, (OF¥ Ty =0P%'T,3=0).

Three matrices 0§}?®, 0{4*® and 04}?® which define 0143), 012)3, and 71y23 and
yield an orthogonal composition 2;,35(Fs) of Az (Fy), Ass(Fy) and Aszs(F,), map
those parameters to the v; dimensional space over which the algebra ;.;(F)
is composed. Paying attention to the fact that the composition is B-orthogonal,
t.e., that the images of those parameters, 0{2%¢,,, 03*¥¢,; and 052 ¢,; have
common elements each other as, for example,

(123) 012 — (1230 1B gm — 123
0% 01 T, =0\ 0{¥ v, =077,

we can naturally define a composed parameter as

§10s={01P &, V{OY 83 V{05Y 855} +T 105
=029, 4+ 0,2V 7, + 0527, (4.10)

+m<1?3) T, +¢\123)r +0(123>723+7123

where 7,,; is a residual vector orthogonal to the image algebras ,5)(2:2(F»)),
0123 (Wis(F2)) and 61)23(zs(F»)), simultaneously. It can be explained by the
second order interaction parameter vector of the three factors S;, S; and s,
subject to the restriction

(123)/ — 123> — 1237 —
D2 T, =0 T =042 7,,,=0.

T1.3 1S zero or not according as three composed parameter effects are assumed

to be additive or not.
Inductive application of the above arguments gives us a natural composed

parameter vector for p-way factorial association algebra ;...,(F,), w.e.,

§10mp= La)lz P, + Lawz VT,

Uyl

+o D) 0RE 71, ap e T T

)

(4.11)

where ' means that the summation extends over all subsets of £ elements
[QFTEFD)
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of the set {1,2,..., p} and 7., are subject to the restrictions @}/, ,..,71,..,
=0 forall [=1,2, ..., p. 7., is zero or not according as p composed para-
meter effects are assumed to be additive or not. The parameter vector =, _,,
is the (£ —1)th order interaction between k factors S;, S;,, ---, Si,.

The unique decomposition of the parameter sum of squares determined
by the p-way factorial association algebra Ui..,(F,) is

Elompbizs= 3 Eloup Abieseyfr2ep (4.12)
=

For those idempotents Aﬁlgz...ép satisfying }e‘si:k(>1), each member of
i=1
the right hand side of (4.12) can be reduced to

eiz...pAg‘gz,..gpelz‘..p:—__.'. . ‘Z';l...l,btl,...,k (4.13)
k

for ¢, =¢,=..-=¢;,=1. It can be explained by the (£ —1)-th order interaction
sum of squares between k factors S, S,, ---, Si,.

. e »
For those idempontents Aﬁlez...gp satisfying %}151-:1, each member can be

reduced to

Up

, , 1
Eloplharoabriny = Ti(L,— o 6.)r, (4.14)

for ¢,=1. This is the sum of squares for the main effect of the /-th factor S,.
For the idempotent A%,.,, it can reduce to

e{z...p Ago...o 612...1)-—_ Up(‘l_'l + 1-2 + cee + 1——!))2 (4.15)

and is explained by the sum of squares for grand mean.
The degrees of freedom of these components are:

, ; y _
Af. (81 AEere 1) = TANK (Mie,e)= 11 (5, =1
(6:=0,1;i=1,2, ..., p). (4.16)

Note that some of the interaction parameter vectors are assumed to be
zero, and the corresponding degrees of freedom are assigned for the estima-
tion of error.

(e) Hyper-cubic series of assoctation schemes

Suppose that there are v,=s” treatments ¢(«a;, - .-, @,) indexed by p-tuples
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(@1, -y ap), (@;=1,2,...,s;i=1,2, ..., p). Among these treatments, a p-
dimensional hyper-cubic association scheme is defined as follows:

Dermnition: Two treatments ¢é(«,, ---, a,) and ¢(B, ---, Bp) are i-th
associates if and only if }E‘a(ak—ﬁk)zi. Each treatment is 0-th associate of
k=1

itself.

For the case p=2, the association is called L, type [4]. For the case
p=3, Raghavarao and Chandrasekharao [18] called the association a cubic
type and studied it in some detail. For the case p>3, Kusumoto [11] called
the association a hyper-cubic type and studied it in some detail. We call the
series of association schemes for p=1,2, ... a hyper-cubic series of association
schemes, or a C, type series of association schemes.

It can easily be verified that a C, type association scheme is a reduced
association scheme of an F, type association scheme where s,=s,=...=s,=s.

. . . (€2 . .
The association matrices C; of C, type can be expressed by using the associa-

tion matrices A .. ’ of F, type as

2 .
Ci= X Aels

&yt &y tt Ep=i

(4.17)

2Ept

An association algebra of C, type, 2(C,), is a subalgebra of the algebra (F,).
)
The mutually orthogonal principal idempotents <Cp",f of A(C,) are
(¢
Ci= > AiRQ4LQ. & 4%, (4.18)
&yt Ep=i

where
1 1
Aty=e;( L= 6.)+ A=) G,
(€i=0’ 1> ]:17 2> Tty P)

The relation (4.18) shows that those 2? mutually orthogonal idempotents of

@®
A(F,) are pooled together into p+1 mutually orthogonal idempotents, C*%.

One of the parameter models naturally defined for (C,) is the same as
that of A(F,), where the number of levels of all p factors are equal. In this
case, the sum of squares of the parameters may be decomposed as

i 6]
612...p$12...P - ,2:‘(’)6{217 C?elz...p

4 -
=230 3 fhop Al (4.19)

&+ tEp=1i
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For i=0,

)] _ _
€10y CE8 1oy =Elpy Al €10 py=5"(F1+ ... +T,) (4.20)

and is explained by the sum of squares for grand mean.
For i=1,

1

’ @, 1 ‘b'\ 7
€10y Cllry =o' 20 7] (1s - Tcs>r, (4.21)

and is explained by the pooled sums of squares due to main effects of all p
factors.

For 2<i<p,

. .
&5, Ci8,,=s"" S T T, (4.22)

1)

and is explained by the pooled sum of squares of all the (i —1)-th order inter-
action sum of squares between i factors.
The degrees of freedom of these sum of squares are

(6] p .
d.f. (5., C?6,,..,)=rank (C1)= (1;’) (s—1Y (4.23)
(1213 23 Ty P)

In a factorial scheme, the main effects of different factors and the inter-
action effects of the sets of different factors are separated from each other
in the decomposition of the parameter sum of squares by the association
algebra. While, in a hyper-cubic scheme, they are pooled in p+1 groups and
the main effects of the different factors cannot be separated from each other.
The interaction effects of the same order cannot be separated from each
other. Those considerations lead to the another important model of the
parameters associated with the hyper-cubic schemes. The model is related to
the case where all factors S, S,, ---, S, are the same, t.e.,

N @l2em SV L2
612"-1)—,5_.1@11 YT+ L)@m, rr,
1

[Q2TF)

+.+ D 09T, 4+ T, (4.24)

Uyl

where 7, is a vector of the level effects of a factor S, and 7, (=2, .., p) is
explained by a vector of (k—1)-th order interaction effects between these s
level effects as was considered in the case of (T,).
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5. Orthogonal Latin square series of association schemes

(a) Definition of OL, type assoctation scheme

Suppose that there are v=/* treatments indexed respectively by 1,2,..., k*
and they are set forth in a square ¥ so that the {(i—1)k+;}-th treatment
lies in the j-th column of the i-th row. Suppose, further, there exist r—2
mutually orthogonal Latin squares, 83, ..., 8,, of order k(r<k+1).

Among those treatments, we define an association of orthogonal Latin
square type or OL, type with m associate classes as follows:

Derinirion: Two treatments a and /8 are 1st associates if they occur in
the same row, 2nd associates if they occur in the same column, and i-th
associates if they correspond to the same letter of i-th Latin square
B; (=3, ..., r). Otherwise they are (r+1)-th associates. Each treatment is
0-th associate of itself. Note that if r=£k+1, there is no pair of treatments
which are neither 1st, 2nd, ..., nor r-th associates. The number of associate
classes is therefore m=min(r+1, £+1).

Let F, be the »xk incidence matrix for treatments vs. rows and F, be
that for trements vs. columns. Let F; be the v x k incidence matrix for treat-
ments vs. letters of the i-th Latin square (i=3, ..., r). Then we have the
following relations:

Fi=1,RQj, F, =& I, (5.1)
F/F,=kI, (i=1,2,..,71) (5.2)
FIF,=G, G i, j=1, 1) (5.3)
Note that the existence of the matrices Fi, ..., F,, whose elements are either

zero or one and satisfying (5.2) and (5.3), is equivalent to the existence of
r—2 mutually orthogonal Latin squares of order k.

Now we prove that the ralation of association above defined satisfies
three conditions of the association scheme. The first condition of the associa-
tion scheme is an immediate consequence of the definition. In order to verify
the second and the third condition of the association scheme, it is convenient
to use the association matrices:

=1,  A=FF—1I, (=11
A, 1=C,— > 4y, (5.4)
1=0
where Ao, A; and A4,,, are 0-th, i-th and, if r <k, (r + 1)-th association matrices,

respectively.
As it is easy to verify that
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Aojv=jva Aijv=(k_1)jva (i=1» ) r)
Ar+1jv:(k—‘1) (k—‘r'{'l)jv’ (6.5)
every treatment has n; j-th associates. The number is independent of the
treatment, i.e., no=1, n1=n,=...=n,=k—1 and, if r<k, n, ,=(k—1(k—r+1).

Thus the second condition of the association scheme is satisfied.
As we have after some easy calculation,

AoAi=A;Ay=A; @=0,1, ..., r+1)
A3 =(k—1) 4, +(k—2)4; (i=1,2,.,7) (5.6)

AiAjzAin=;=i‘zAk—Ai—Aj (#J; i j=1, 1)
and when r <k,
A,~A,+1=A,+1A,-:(k——r+l)lé‘iA,~—(k——r+1)A,-+(k—r)A,+1
A,+1A,+1=(k—1)(k—r+1)Ao+(k—r)(k—r—i—1)2A,~+ {(h—rY+r—2} 4,,1, (5.7)

the number of the treatments which are j-th associates of « and, at the same
time, k-th associates of 4 is seen to be independent of the pair of treatments
« and B, which are i-th associates. Thus the third condition of the association
scheme is also satisfied.

(b) OL, type association algebra

We call the linear closure of the association matrices Ao, 4y, ---, 4 (m=
min(r+1, k+1)) over the rational field an association algebra of orthogonal
Latin square type or OL, type and denote it A(OL,) or [4;;:i=0,1, ..., m7].

The mutually orthogonal idempotents of the algebra 2A(OL,) are

1
=
AO'_ v Gv
1 1 1 1
E P T r__ =
A= F,~<I,, : c,,)F,._ i F.Fi— =G, (5.8)
(1':1) 23 Tty r)

and for r <<k

At =1,— At — 21 A, (5.8)



Composition of some Series of Association Algebras 207
(¢) Composition of the series A(OL,)
Now we show the way of composing A(OL,) (r=2,3, ..., k+1) orthogonally

with r primitive algebras U;(OL,)=[1;, G;] i=1, 2, ..., r defined over the %
levels of the i-th factor, respectively.

Let 0; be a linear mapping of ;(OL,) defined by F; for every i=1,2,...,r,
ie.

0;: A;(OL,) > A—F; AF}. (5.9)
Then, from (5.2) ¢; is G-preserving similar and from (5.3) ¢; and ¢; give the

G-orthogonal composition of 2;(OL,) and 2;(OL,) for all pairs of i and j. The
full rank algebra orthogonally composed by o1, ¢, ---, 0, is

\J ¢ (2 (L) 1,]. (5.10)
i1
As F; I,F;=A4;+ A4, F,G,F;=G, forall i=1,2, ...,r, we have
\J 0:(OL)[ L]=[4;; i=0,1, ..., m]. (5.11)
iZ1

Thus we have the theorem:

Tueorem 5.1  The composed full-rank algebra defined in (5.10) is A(OL,).

The case r=2, A(OL;) is the special case of the F, type association
algebra with three associate classes where s,=s,=k. The generators of the
algebra are

F LF = 1,&6,, lekF§=Gk®Ik
F\.G,F,=F,G,F}=6G,Q6,, I=LI,. (5.12)

The mutually orthogonal idempotents are

1 1 .
A’::~];—F’<Ik—TGk>F: (=1, 2)
A= To— A% — A2 — 43, (5.12))

In the case r<k, the mutually orthogonal idempotents of A(OL,)
are
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ai=-te, = F(L- G =10
At =1, — Z(') 42, (5.13)

In the case r=k+1, the mutually orthogonal idempotents are

=t gl F,.(I,z——%——GQF; (i=1,2, ..., k+1). (5.14)

(d). Parameter models

We now define a natural parameter model for 2(OL,). Let 7z, 73, ---, T,
be k-dimensional parameter vectors representing the level-effects of the r
factors S, S, .-, S,, respectively. Assume that in each of the factor S;(i=
1, ..., r), a primitive relationship algebra ;(OL,)=[ I, G, ] is defined among
the level effects of the factor.

The orthogonal composition of these ;(OL;) by ¢; defined in (5.9) leads
to a natural definition of parameter model & for the composed full-rank
algebra A (OL,), i.e.,

&= S1Fit;+38, (5.15)
i=1

where F,r; are the similar images of the effects of the factors S; and 6, is a
residual parameter subjected to the restrictions

F18,=0 (5.16)

for i=1,2,...,r. The vector 6, may be explained by the non-additive part
of the effects of those r factors. In some cases, it is assumed to be zero. In
the case r=k+1, where complete set of orthogonal Latin squares exists, the
vector 0, is forced to be zero.

The unique decomposition of the parameter sum of squares thus defined
for A(OL,) is

gre, = zoe Atg, (5.17)
and is reduced to
&6, =BT+ 3k S~ 8} 4870, (5.18)

k
where i=(c;y, ---, T;;,) and T;= 7]17 Siti. Note that the last term of (5.18) is
=1
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zero when r=k+1. Otherwise it is assumed to be zero or not according to
the assumption adopted.

(e) L, association algebra

A subalgebra of an OL, association algebra for <k is known as an L,
association algebra [4]. We can reduce OL, to L, by pooling the association
matrices of OL, as

?

o= I,
A=A+ A+ -+ A4, (5.19)
~2:1‘174—1-

It can easily be verified that A,, A; and A, correspond to the association
matrices for 0-th, 1st and 2nd associates of the familiar L, association scheme.

It can also be seen that the mutually orthogonal idempotents of 2((OL,)
are pooled as follows:

A=At
A=At t .+ A (5.20)
jg:AfH-

The parameter models which are naturally introduced into the L, scheme
may be derived in two fashions as have been introduced in a C, type associa-
tion algebra. The desecription is trivial and is omitted here.

6. Supplementary remarks

Each of these association schemes and their algebras treated so far has
specific statistical implications in the structure of their associated parameters,
as was indicated in each of the discussions.

There remain, however, many possibilities of composing the relationship
algebras which indicate the structure of the associated parameter vectors.
The composed relationship algebra may or may not be an association algebra
in the sense of Bose.

Even in the case of the composition of the association algebras, the right
angular association scheme due to Tharthare [20] and its extension are
examples of other possibilities. The right angular association scheme can be
composed of an A(F;) for s;=2 by a similar mapping 0,53, defined in (4.4).
Immediate extension of the scheme may be obtained by the similar composi-
tion of 2(F,) using a similar mapping 012_,.1)- Those procedures are simple
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and straightforward. Details are omitted here.

7. Evaluation of Gramians

It is well known that the Gramian of a set of independent column vectors
of a rational symmetric matrix M is independent of the selection of the set,
apart from a square factor of some rational number. Thus we call it the
Gramian of M and denote it g(M).

The following lemma is useful in evaluating the Gramians:
Lemma 7.1 Let A and B be two symmetric rational matrices of the same

order and let C be a symmetric rational matriz. Then:
(i) AB=0 implies

g4+ B)~ g(4) g(B), (7.1)

provided A=~0 and B=+0. Where a~b means that a/b is a square of some
rational number.

(i1) gARC)~[g(NH] [ g(C)F (7.2)

or 1: if both p and q are even
g(4): if p 18 even and q is odd

gARC)~ o .
g(C): if q is even and p is odd

g(A) g(C): if both p and q are odd

where p=rank(4), g=rank(C).
(iii) gkA)~ g(4) (7.3)

where k 18 a rational number.

Let A be a semi-simple algebra over the rational field, the mutually
orthogonal principal idempotents of the minimum two-sided ideals being
E, E,, ...,E, Assume thatthese idempotents are rational symmetric matrices
of order u. Let F be a vxu rational matrix which define a linear mapping
o of ¥, i.e.,

0: A2 A—> A¥*=FAF (7.4)

and assume that F satisfies the sufficient condition that ¢ be partially similar
1227, i.e.,
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i

FF= XiC;E; (0120) (7.5)
i=

Note that the condition (7.5) is not always necessary because the field under
consideration is rational.

We assume without loss of generality that ¢;>0 for i=1, ...,/ and ¢;=0
for j=I+1, ..., m. Then, the mutually orthogonal principal idempotents of
the minimum two-sided ideals of the composed full-rank algebra [227], A=
oc(AV[ L], are

E[+1=Iv— EE‘, (76)

In this connection, the following theorem plays a fundamental role in
evaluating the Gramians of those idempotents.

THeorEM T.1
¢)) g(E)~c¥ g(E) (7.7
where o;=rank (E;)
.. . 1 . .
(i) gk, )~ '1;11 gE)~ .131 ci g(E)). (7.8)

(]/:_ FE; F = %‘FE,(FE,)I and rank (E,) =rank (E,)

Proor. (i) Since E£;=

=a;, we have
gE)~ glciE)~ g(FE)~ g(FE¥)
=|E¥ F'FE¥|=cY|EYEY|~c} g(E)),

where E¥* is a matrix whose column vectors are a set of a; independent
column vectors of E;. Hence we have (7.7).

I+1 _
(iii) Since I,=3>FE; we have
i=1

- [ ~
gEry) ‘I=11 g(E)~ g(I,)~1.

Thus we have
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I 1 I - a;
gk )~ ,1]1 g~ Dl cig(k;)
i= i=

In the special case where U is the rational field and F=j,, since E;=1,
FF=v and

E1= 'i‘FElF/'—_——GU, EZZL,— “];_ Gv,
v v v
we have
g(% G,,) ~ v, g([v — AE - GU> ~ . (7.9)

(m)

For the Gramians of the series of association algebras A, =[ 4%;

i=0,1, ..., m] which are composed of [ I, G] by the series of (partially)
similar mappings ¢,_; defined by F,_, satisfying

m—1 (m—1)
Fr o F,p =20 cm Y 43, (7.10)
i=o
we have the recurrence relations
(md N (m—1)
gAD~(cm ) g( A} (7.11)
for i=0,1, ..., m—1 and
(m>, m—1 (md
g(A)~"11 g(4). (7.12)
1=0
There recurrence relations lead to the following formula:
(m) m—i il PN
g(AD~ { T e Py I {0}, (7.13)
k=1 =0

Some special cases are as follows:
(i) For a T, type association algebra, since

et = ,(}:ijdl%%; D it Ds—1-) (1.14)

we have from (7.13)

2 (A~ <5“_2.">“" z”: (G=1) (s—i— 1+ 1)} (7.15)

m-—i



Composition of some Series of Association Algebras 213

where «; = <f> — (i j 1).

This coincides with the value calculated by M. Ogasawara [127].
(ii) For an N,, type association algebra, since

=5, (7.16)

we have from (7.13)

(m)
AN~ (SpSp1--5541) s (7.17)

(m)
where Aog= 1, ;= rank (Af): Vi—U;_1=38182-- ~S,'_1(S,' — 1)
(iili) For an OL, type association algebra, since

FiF,=kI, A§=—LFi ick F§=*"1"G
k k

v v

[y

Aﬁ:%ﬂ([k— Gk>F§, rank(4H)=k—1 (=1,2, ...,71)

and if r<k,
Afa=1,— 3343,
i=0

we have from (7.11) and (7.12),
gAD~K~1,  g(dhH~Fk (7.18)
and if r <k,

gl )~E" (7.19)
(iv) For an L, type association algebra, we have
gAH~1, gAD~K*,  g(AH~K" (7.20)

For the evaluation of the Gramians of the series of association algebras
generated by the series of orthogonal compositions; Lemma 7.1 is useful. i.e.,
(v) For an F, type association algebra, we have

11 (S[ - 1)61

i 11 (s;—1)%
g(Al e, .ep)~ lelg(Agi) 1+i N th

1 sl (7.21)

i=1

—

Il

(vi) For a C, type association algebra, we have
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o . i, s i—1 4
g(CH~ I1 g(dl,, )~ {so-oevisicni-n (D), (7.22)

EytotEp=i

This coincides with the value calculated by K. Kusumoto [117].

The necessary conditions for the existence of a regular symmetrical
PBIB design admitting an association algebra

QI:[AM Ala Tty Am]:EAga A’{a Tty Affl]

over tha rational field may be derived as follows.
Let NN be the incidence matrix of a PBIB design and assume that a pair
of treatments which are i-th associates occur in 4; blocks. Then, we have

NN'= 312, 4;,= 310, 4%, (7.23)
i=0 =0
where 4;= §_‘, z;; A% and consequently
7j=0
O]- - X zjili
1=0

which are positive for all j=0,1, ..., m [23].
One of the necessary conditions for the existence of such a design derived
from (7.23) by Hasse’s theorem [97] is

=3

p%i~ 1 (7.24)

1

by virtue of i} g(4H)~1.
i=0
Another necessary condition derived from (7.23) by Hasse’s theorem is

ai(ai+1)

(=100, 2 (05,84D), 1 _ (0,005 =1. (7.25)

<j
These conditions are the straightforward generalization of those due to
Ogawa [157].
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