J. Sci. Hiroshima Univ. Ser. A-I 30 (1966), 41-43

Some Examples Related to Duality Theorem in Linear Programming

Michio YOSHIDA (Received March 11, 1966)

The duality problems in linear programming may read as follows. Suppose an $m \times n$ matrix $A = (a_{ij})$, a column vector $\mathbf{b} = (b_1, \dots, b_m)$ and a row vector $\mathbf{c} = (c_1, \dots, c_n)$ are given.

The primal problem: Find a column vector $\mathbf{u} = (u_1, \dots, u_n)$ which maximizes the linear form \mathbf{cu} subject to the conditions $A\mathbf{u} \leq \mathbf{b}$ and $\mathbf{u} \geq 0$.

The dual problem: Find a row vector $\mathbf{v} = (v_1, ..., v_n)$ which minimizes the linear form \mathbf{vb} subject to the conditions $\mathbf{v}A \ge \mathbf{c}$ and $\mathbf{v} \ge 0$.

In each problem a vector satisfying the required conditions is called feasible, and if it attains the maximum or minimum it is called optimal.

These problems can be represented by the following tableau:

(≧0)	u_1	 u_j		u_n	\leq
v_1	a_{11}	 a_{1j}		a_{in}	b_1
•	•			•	•
v_i	a_{i1}	 a_{ij}		a_{in}	b_i
		 •	• • •	•	•
v_m	a_{m1}	 a_{mj}	•••	a_{mn}	b_m
VI	c_1	 c_j		c_n	min max

By taking inner products of the row of u's with the rows of A and the row of c's, we obtain the constraints $Au \leq b$ and the linear form cu of the primal; the inner products of the column of v's with the columns of A and the column of b's yield the dual constraints $Av \geq c$ and the linear form vb.

Associated with these problems is the following well-known theorem:

The Duality Theorem. If the primal is feasible and if $\sup \mathbf{cu} < \infty$, then there exist optimal solutions in the dual as well as in the primal, and moreover the extremal values of the linear forms coincide, i.e., $\max \mathbf{cu} = \min \mathbf{vb}$.

In the foregoing paper [1], M. Ohtsuka investigated the problems in a very general situation, and obtained extensions of the duality theorem. We refer necessary notions and notations to [1]. We shall show in the present paper that the conditions imposed in Ohtsuka's Theorems 2 and 3 are in a way necessary. Actually, even if $\mathcal{M} \neq \emptyset$, $-\infty < M < \infty$ and \emptyset , f and g are

Michio Yoshida

all continuous and non-negative, we have examples where respectively

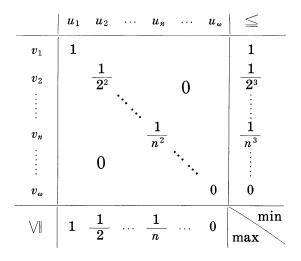
- 1. There exist no optimal measures in the primal.
- 2. Though an optimal measure exits in the primal, $\mathcal{M}' = \emptyset$.
- 3. There exists an optimal measure in the primal and $\mathscr{M}' \neq \emptyset$, M = M', nevertheless there exist no optimal in the dual.
- 4. Though there exist optimal measures both in the primal and the dual, nevertheless M < M'.

Examples shall be given by the tableaux which are so explanatory that further explanations will be superfluous.

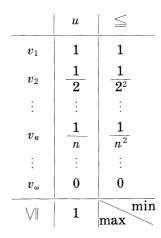
1. $X = \{1\}, Y = \{N, \omega\}$: the Alexandroff one point compactification of the discrete space N of all natural numbers.

	u_1	u_2		u_n		u_{ω}	\leq
v	1	$\frac{1}{2}$		$\frac{1}{n}$		0	1
\vee	$\left \begin{array}{c} \frac{1}{1} \left(1 - \frac{1}{1} \right) \right.$	$\frac{1}{2}\left(1-\frac{1}{2}\right)$) –	$\frac{1}{n}\left(1-\frac{1}{n}\right)$)	0	min max

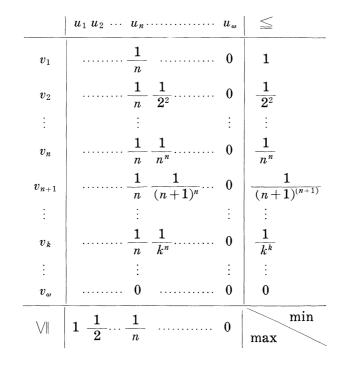
$$2. \quad X = Y = \{N, \omega\}$$



3.
$$X = \{N, \omega\}, Y = \{1\}$$



4. $X = Y = \{N, \omega\}$



Reference

[1] M. Ohtsuka: A generalization of duality theorem in the theory of linear programming, this journal.

Department of Mathematics, Faculty of Science, Hiroshima University