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We consider a n m x / ι matrix (α*7), a vector b with components bu -^bm

and a vector c with components cu •-, cn. We denote by Jί the set of vec-

tors u having non-negative components u i , . - 3 u s and satisfying

(7 = 1, •••, m\ and by Jί' the set of vectors v having non-negative components
m

υu ..., vm and satisfying ^auv^Cj (j = 1, ••-, Λ). We set

M = sup C M' = sup *ΣcjUj if Jίφ$ (the empty set)

and

Mr — inf 6-τ;' = inf

The well-known duality theorem in the theory of linear programming asserts
that, if Jίφ0 and M<oo, then Jί'Φtf and M=M'.

We shall generalize this theorem in the present paper. Let X and Y be
compact Hausdorff spaces and Φ(x, γ) a universally measurableυ function on
XxY which is bounded below. Let g(χ) be a universally measurable func-
tion on X which is bounded below and /(γ) a universally measurable function
on Y which is bounded above.

Under these general circumstances let Jί be the class of all non-negative
Radon measures2) μ on Y satisfying

γΦ(x,y)dμty)<,g(x) on X.

Such a measure is called feasible. In case Jί is not empty, we set

M=suv\f(y)dμ(γ) .
^JίJ

1) A function in a compact space is universally measurable if it is measurable with respect to all

Radon measures.

2) A measure means a non-negative Radon measure in this paper unless otherwise stated.
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If there is a measure of Jέ which attains the maximum, it is called optimal.
Similarly, we define the class Jί' of (dually) feasible measures v satisfying

[φ(x, y)dv(x)7>f(y) on Y, and set

M'= inί[g(x)dv(x)

if Jί'Φ 0. This is the dual problem. An element μ of J((Jίι resp.) is called
extreme if there are no distinct μu μ2£<Jί (Jίr resp.) such that 2μ = μι~\-μ2.

As in the discrete case we obtain

THEOREM 1. Assume Jίφ 0 and Jt'Φ 0. Then M<>M'. If μ € Jί, u € Jί'

and \fdμ=\gdv, then both μ and v are optimal.

PROOF. Suppose \φdμ<, g and \Φdv^>f. Then

[fdμ <: [ [φdvdμ = ( [φdμdv ^ { gdu

and M<,M! is derived. If the equality \fdμ = \gdv holds, then \fdμ = M —

M'=\ gdv. Thus both μ and v are optimal.

Next we prove

LEMMA 1.3) Assume Jίφ0, — oo<M<°o and either (i) /( j)>0 on Y or
(ii) there is xo£X such that Φ(χ0, γ)>0 on Y and g(χ0)<<oo. Assume also that
Φ is lower semicontinuous.4) Let D={κ} be a directed set. Let {Φκ; /cζD} be
a net of lower semicontinuous functions increasing to Φ, and {Xκ; κ£ D} be an

increasing net of sets in X. If g{χ) — oo on X— limX^ and \Φκ(x, γ)dμκ(y)<^
D J

g(x)-\-const, (independent of K) on Xκfor every /cζD, then there is κ0 such that
{μκ(Y)\ /c^>κo} are bounded.

PROOF. It is easy to obtain the conclusion under (ii). Hence assume (i).
Suppose that μκ(Y)-+oo along a subnet {μκ; κeD;} of {μκ}. We set μr

κ =
μκ/μκ(Y\ and choose a vaguely convergent subnet of {μ'κ\ κe.Df}. We shall
denote it again by {μ'κ; κeDf} and let μ'Q be the limit. Let g-(^)<oo. For
some κ=κx, xeXκ and it holds that

3) This very useful lemma and some improvements in Theorem 3 were suggested orally by

M. Yoshida, a colleague of the author. In the first manuscript, Φ^O was assumed in condition (i) of

this theorem and g ^ O was assumed at some place.

4) A lower (upper resp.) semicontinuous function is assumed to be bounded below (above resp.) in

this paper.
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φ(x, y)dμ'0(y) = \im[φκ(x, y)dμ'0(y)<>lim limU^*, y)dμUy)
D J D ~ D ^ ^

<lim[φκ,(x9

Take a μζ.Jί such that \fdμ is finite. Then

\Φ(χ, y)d(μ + Nμ'Q)<: g(x) everywhere on X

for any N> 0, or μ + Nμf

0 G Jί. On the other hand, since / > 0 on Y and

μ'Q(Y) = l, we see that \fdμ'0>§ and

Thus M=oo5 which is contrary to our assumption.

LEMMA 2. Assume Jί' Φ 0, — oo < M< oo αtid sup Φ <0. Let h(x) be a
X*Y

function on X, and μ be a measure in Y with finite \fdμ. If \Φ(χ, y)dμ(y)<L

h(x) on X, then we can find a measure μ<Lμ such that μXY)<^ — (mfhy/sup Φ,
x X*Y

fdμ<λfdμ and \Φ(χ, y)dμ'(y)<ϊh(x) on X, where (inf h) =max( —inf Λ, 0).

PROOF. We may assume μ^έO. Suppose that there is a point xoζSμ

with /(#o)>O. If a is a large number, a\Φ(x, y)dμ(y)<:g(χ) on X because

sup<^<0 and g is bounded below on X. The measure aμJrNεXo belongs to
Jΐ for any 7V>0, where εXo is the unit point measure at x0. It holds that

M> [fd(aμ + NSXQ) = a [fdμ + Nf(x0) -> oo as 7V-> oo ,

contrary to our assumption. Therefore/^0 on 5 .̂ If Λ̂ >0 on X, then μ=

satisfies the required conditions. Otherwise, we set mh — \nίh. If

mh. then mh<,su])Φ μ(Y) and μ itself satisfies the conditions. If swp\Φdμ<
x J

mh we consider μ = μmh/sup\Φdμ. It holds that μ'<*μ, μXY)<^mh/swp Φ and
X J IxF

\Φdμ<;mh<;h on X. Since / ^ 0 on 5̂ , \fdμ<>\fdμ. Thus // satisfies all

the required conditions.
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Let us prove

THEOREM 2. Assume Jί Φ 0, M< oo and the lower semicontinuity of Φ
and —/. Assume also one of the following conditions: (i) /(y)>0 on F, (ii)
there is xoeX such that Φ(χ0, y)>0 on Y and g(χo)<°°, (iii) f(γ)<0 on F,
(iv) sup Φ(x, y)<0. Then there is an extreme optimal measure μ0 e Jί.

PROOF. If M= — oo, every feasible measure is optimal. Therefore we

assume — oo<M<oo. Choose μn^Jί such that \fdμn^>M as ra->oo. By

Lemma 1, μn(Y) is bounded under (i) or (ii). It is easy to obtain the same
conclusion under (iii). If we assume (iv), then we can find {μf

n} in Jί by

Lemma 2 such that μr

n(Y) is bounded and \fdμ'n^>M. Therefore we may

assume from the beginning that μn(Y) is bounded in all cases. We can ex-
tract a subsequence {μnk\ of {μn} which converges vaguely to a measure μ0.
It holds that -^""

r r r r
\ΦdμQ<L\\m\Φdμnh< g and M= lim\ fdμn, < \ fdμ0 .

Thus μoeJC and it is optimal.
We choose a sequence {μ(n)} in Jί§ such that μ(n\K) tends to mo = mΐ{μ(K);

μ^Jfo}. A subsequence converges vaguely to some measure which lies in
Jίo. Consequently, Jf*={μζ Jί0; μ(K) = m0} is convex and vaguely compact.
As a convex compact set in the locally convex linear Hausdorff space of meas-
ures of general sign with vague topology, Jί% has an extreme point; see [1Γ\
for instance. If μ6 Jί% is not extreme in Jί, there exist distinct μu μi^Jί

such that 2//, = μi + μ2 Since M—\fdμ — 2~ι[\fdμι-\- \fdμ2j<^M, both μι and

μ2 lie in Jί%. Consequently an extreme point of Jί* is extreme as a point
of Jί.

REMARK 1. M. Yoshida \_2~\ gave an example in which all Φ, g, f are
continuous non-negative and M< oo but in which no optimal measure exists.

REMARK 2. The existence of x0e X such that inf Φ(χ0, γ)<0 is not suffi-
Y

cient to obtain the above conclusion. Let X = {1, 2} and Y= {1, 2, , ω},
where n is supposed to tend to the point ω. We set Φ(l, y)=—l on Γ, Φ(2,
n)=-l/n and Φ(2,ω) = 0. Let g(x)=-l, f(n)=-l/n2 and /(ω) = 0. Then
the point measure μn at x = n with total mass n satisfies \Φ(χ, γ)dμn(γ)^ — l

on Xand \fdμn=—l/n. Thus M=0 but there is no optimal measure in Jί.

Next we ask if the duality theorem holds, i.e. if the assumptions JίΦ0
and — oo < M< oo imply JίrΦ 0 and M = M. This is not true in general.
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Actually there is an example in which Φ, g, f are continuous non-negative
and an optimal measure exists in ^ , but in which Jί'= 0; see [2]. Another
example in [2] shows that even if Φ, g, f are continuous non-negative and
if μ G Jί and v £ Jί' are optimal, M may be strictly smaller than M.

Our main result is the following duality theorem:

THEOREM 3. Assume that Jί'=/= 0 and — oo<M<oo5 and that Φ, g and
—/ are lower semicontinuous. Assume at least one of the following condi-
tions: (i) /(y)>0 on F, (ii) there is xoeX such that Φ(χ0, γ)>0 on Y and
#(*<>)<<*>, (in) /( j)<0 on Y, (iv) sup<P<0. Then Jί'φ0 and M=M.

XxY

PROOF. First we consider the case where Φ is continuous and g is bound-
ed. We denote by (A, a) the couple of a bounded function h on X and a finite
number a. Let E be the linear space consisting of all such couples (A, a).
We regard it as a metric space by introducing the distance

d ( ( A i , α i ) , ( A 2 , α 2 ) ) = m a x ( s u p | / * i ( Λ ; ) — h2(x)\, \aλ — a2\) .

Let F be the set of all couples (A, a)eE such that there is a measure μ

which satisfies Wdμ^h and \fdμ^>a. It is certainly a convex cone in E.

We shall show that the closure Fa of F does not contain any point of the form
(g , Λf+δ) with δ>0. Suppose that there is a sequence {(A», an)} in F tending

to (g jifcf+δ). Then there exists a sequence {μn} such that \Φdμn^hn and

fdμn^>an for each n and such that hn-+ g uniformly and an-^M-\- δ. By

Lemma 1, μ»(F) is bounded under (i) or (ii). It is easy to have the same con-
clusion under (iii). Under (iv) we apply Lemma 2 and find {μ'n} such that

Λ)-/sup<P and [φdμ'n<Lhn on X Certainly {/4(F)} are

bounded. The inequality \fdμf

n^an remains true. Consequently, we may

assume from the beginning that μn(Y) is bounded under (iv) too. We extract
a subsequence {μnk} of {μn} which converges vaguely to a measure μ0. It fol-
lows that

r r r r

lim \ Φ dμnk = \ Φ dμ0 and lim \ fdμnk ^ \ fdμ0,

and hence \Φdμo^g and \fdμo^M+S. This is impossible because M=

By Theorem 2 there is μ satisfying \Φdμ<Lg and \fdμ — M. Hence g* =
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(g,M)eF. Let us write e* for (0, 1). On account of the fact that Fa is a
closed convex set and g * + δe* is outside Fa, there exists a hyperplane in E
separating Fa and g * + δe*; see pΓ]. Namely, there exists a linear functional
φ on E such that φ^a on Fa and <£>(#•* +δe*)<α. Since Fa is a cone, £>J>0
on Fa and 9>(0) = 0. Hence we may take a = 0. In particular, <£?(#*);>0.
Hence 0>^(^ *) + δ^>(e*)^δ^(β*). We may assume φ(e*)=—l without loss
of generality. The inequality φ ^ 0 on Fa implies that φ((h, 0)) ̂  0 for any
A >̂0. If φ((h, 0)) is regarded as a linear functional on the family of continu-
ous fnnctions in X, it is a positive functional. By Riesz's theorem, there is a

measure v such that φ((h, 0)) = \hdv for continuous A. The couple (<#(•, j),

/(j)) belongs to F if /( j)> -co, and hence φ((Φ(; y),/(y)))i>0 holds. It fol-
lows that

whence

r

if

This is evidently true if /(y)= — oo. Hence v^Jίf.
Let Λ be any continuous function satisfying Λ<Ξ g. We have

M)) =

( *)= [hdv-M,

or \Ady<M+δ. On account of the arbitrariness of A, we have M' <\gd»<L

M+δ, whence M'^M. This yields M—M in virtue of Theorem 1.
Secondly we consider the case where Φ is continuous but g may not be

bounded. It is not necessary to discuss the case subject to (iii). Under (iv),

Jί is equal to \μ\ \φ(χ9 y)dμ(y)<>— g~(χ)\, where ^~ = m a x ( - ^ 0). As we

saw above, Jίr is not empty and M= Ίnί\ — \ g~dv; » £ Jί'\. Naturally Λf ^

inf\ — \g~dv; \>£Jί'\. Let us show the inverse inequality. Take any v e Jί'

and denote by v~ its restriction to the set {x; g(χ)<,0}. As a measure in X,

v" belongs to Jίr because Φ<0, and it holds that — \ g~dv=\gdv~^>M\ Thus

we obtain M—M. Next, assuming (i) or (ii), we set
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Xn={xeX; g(χ)^n] and XTO = {xeX; g(χ) = 00} .

We see that Xn is a closed set and Xn/X—X^ as rc->°o. By Lemma 1 there

exists n0 with the property that the inequality \Φ(χ, γ)dμ(γ)<; g(χ) on any

Xn (nT>no) implies the boundedness of μ(Y). Hence there is a finite number

co such that \Φ(χ, y)dμ(y)<c0 on X whenever \Φ(χ, y)dμ(y)<Lg(x) on some

Xn (n^>n0). For ^i^max(c0, n0) we have w(χ, y)dμ(y)<;g(χ) on X whenever

Φ(x, y)dμ(y)<^g(x) is true on XKl. Since g(x) is bounded on Xni,

^gίx) on

= i n f W . ; #(*, y)d^x)^f(y) on

We shall denote both sides by M± and M[ respectively. We observe readily

that M=Mι. We take v which satisfies \ Φ(x, γ)dv(x)~^>f(γ) on F, and

regard it as a measure in X. Then v<E Jί' and Mf^M[. Since Mi = M<^M!
by Theorem 1 and Mι = M[, M=Mr is concluded.

Finally we consider the general case where Φ may not be continuous.
We consider the directed set D of continuous functions not greater than Φ,
and use the notations Jtψ, Jί'ψ, Mψ and M'ψ when Ψ € D is taken as kernel.
If Ψ, ΨreD and Ψ<LΨ\ then i Ό J r O ^ . Hence MΨ\ along Z> and
lim Mψ^>M. If M= c>o5 \im MΨ = M. Suppose next M<°o and lim M

We choose δ, 0<δ<lim MΨ — M, and μΨe~//ψ for each '/ € i) such that \fdμΨ

>M+δ. First we assume (i) or (ii). By Lemma 1 there exists fF0<ED such
that W(F); Ψ eD, Ψ^FQ} are bounded under any one of (i) and (ii). Since
M+δ<sup/ /x?r(F) for every ΨeD, {μτ(Y); ΨeD} are bounded under (iii).
We do not need pay attention to (iv). We choose a subnet {μ¥;
vaguely convergent to μ0, and have

D'

Thus ιiQζ.Jΐ. On the other hand

Ό'

This is impossible. Thus limM^^M. We know that Jt'ψφ$ and M¥ = J
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for each ΨeD. Since Jί'ΨQJί\ Jί'φψ and M'Ψ^M'. Hence by Theorem 1

M =\im MΨ = lim M'ψ^M^M
D D

and M= M is derived. Our theorem is completely proved.

Finally we prove

THEOREM 4. We have the same result as in Theorem 3 if the lower semi-
continuity of g is replaced by the condition that g is upper semicontinuous and
bounded above5\ while the other assumptions are kept.

PROOF. Let D={h} be the directed set of continuous functions satitfy-
ing h^>g. We use the notations u?h, ufί, Mh, M!h in an obvious manner.
Evidently Jt'^Jl' for every heD. Since ufOui*Ouf if h, h'eD and h^
h\ Mh decreases along D and lim Mh^M. The same relation is true for M'h

D

and M'. Assume that lim Mh>M and choose δ > 0 such that lim Mh>M+δ.
D D

We select μhe^h for each heD such that [fdμh^>M+δ. If (i) or (ii) is as-
sumed, then by Lemma 1 there exists hoeD with the property that {μh(Y);
h£D, h<,ho} are bounded. The same is true under (iii). Let us assume (iv).
By Lemma 2 we may assume μh(Y)< — (inf #)~/supΦ for every heD. Thus

we may assume that {μh(Y); heD} are bounded in all cases.

We choose a subnet {μh; heD'} which converges vaguely to some meas-
ure μ0. We have

Namely, μQ e Jί. Consequently

Ό'

which is impossible. Accordingly lim Mh = M. On the other hand, we see
D

Jί' — Jί'hΦ0 on account of Theorem 3 and obtain

D D

by Theorems 1 and 3. We have now M=M'.

5) Since Λφφ, there is μ satisfying \Φdμ^g. This shows that g is bounded. Thus the assump-

tion on g made at the beginning holds.
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