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§ 1. Introduction

In [ 3 ] , p. 85 F. Maeda writes aXJb in a lattice L with 0 to denote the
fact that a/\b = 0 and (aVχ)Λb = xΛb for all % in L. He then uses this
relation to investigate direct sum decompositions of such lattices. If L is
modular the relation V is symmetric and the mapping S—• 5 V = {/: s\/f for
all 5 6 5} induces a Galois connection in the lattice I(JL) of all ideals of L.
The Galois closed objects (i.e., those ideals S such that S = 5VV) are called
normal ideals. In a general continuous geometry (see [ 3 ], p. 90) the normal
ideals play a role analogous to that played by the center of a continuous
geometry. In this note we investigate normal ideals in a more general set-
ting. In § 2 we show that in a lattice L with 0, an ideal / is in the center
of I(L) if and only if it is a direct summand of L. In § 3 we use the fact
that the relation V is symmetric in a relatively complemented lattice with 0
to define normal ideals in such a lattice. We then show that if L is a rela-
tively complemented lattice with 0 and 1, then the center of the completion
by cuts L of L is precisely the set of normal ideals which are kernels of
congruence relations. In the case of a complemented modular lattice, the
center of L is just the set of normal ideals of L. In §4 these results are
extended to the case of an arbitrary relatively complemented lattice with 0.

§ 2. Direct summands

Let 5i,52, ,5w be subsets of a lattice L with 0. Following the termi-
nology of F. Maeda ([3], p. 85) if

(1°) for any element a of I ,o=αiV Vα» with a, e Si(i = li---in\

(2°) iφj implies Sj^SJ,

we say that L is a direct sum of Siy,Sn and write L = Si φ φ Sn. The
subsets 5i, ,Sn will be called direct summands of L. By [ 3 ] , Lemma 1.3,
p. 86 every direct summand is an ideal of I . We proceed to show that the
direct summands are precisely the central elements of I(L).

THEOREM 1. Let L be a lattice with 0. An ideal J of L is a central
element of I(L) if and only if it is a direct summand of L.
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PROOF : Assume first that / is a central element of I(L\ and let K be
its complement. For each a e L, let Ja denote the principal ideal generated
by α. Then, working in /(£), we have that Ja=Jar\(JVK) = (Jar\J)V(Ja
ΓΛK). This implies that a = bVc with bej and c e K. Furthermore, if
b e / and c 6 K, then for arbitrary x in Z,

(JbVJx)r\jc<z(JVJx)ίΛjc = (JίΛjc)V(Jxr\Jc) = Jxr\jc = JXAC.

Thus (bVχ)Λc = xΛc and since bΛc = 0 is obvious we see that bSJc. A
similar argument produces c\7δ, and we have that L = J®K.

Suppose conversely that L = J^)K. Then jr\K = (0) and since each a
in L can be represented in the form a = b\/'c with b e J and c eK, it follows
that JVK=L. Thus / and K are complements in I(L). In order to show
that / is central it suffices ([2], Theorem 7.2, p. 299) to show that for each
ideal / of L the following equations hold:

(1) I=(IVJ)Γλ(IVK)

(2) i=(ir\j)v(ir\K).

Now let ae I and write a = bVc with b e/, c eK. This puts a in (IίλJ)
V(IΓ\K) and establishes (2). In order to demonstrate (1), we need only
show that (IVJ)Γ\(IVK)^I. Accordingly, let a<(bλ\fc)/\(b2\ίd) with
bu b2 in /, c in / and d in K. We may then write (όiVc)/\(b2Vd) = xVy
where x e /, y e K. But now, since L — JφK we have d\J x so that

This shows that x e I. Similarly, ye I and we conclude that a is in /, since
a<ix\ί y. This completes the proof.

§ 3. Normal ideals in a relatively complemented lattice

In this section we explore the relation between normal ideals of a rela-
tively complemented lattice with 0 and 1 and central elements of I, the com-
pletion of L by cuts. We first need to know that the relation V is symmet-
ric.

THEOREM 2. Let e,/ be elements of a relatively complemented lattice with

0. The following conditions are then equivalent:

(i) eVf.
(ii) e Vf<a implies f is contained in every complement of e in the in-

terval Z(0,o).
(iii) e i<e, / i < / , βi perspective to fι imply that eι=fι=0.
(iv) x = (χVe)Λ(χVf) for all x in L.
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PROOF: (i)=Φ(ii) Let eV/<α, and let y be a complement of e in Z(0,α).

Then f=aΛf=(eVy)Λf=yΛf shows that f<y.

(ii)=Φ(iii) Let eiVχi=fi\/χi with e iA^ = /iAa;i=0. Then with a =

eVfVxi, we may assume the existence of an element x which is a common

complement for βi and/i in the interval 1,(0, α). Since e > e i , we see that

e\f x — a and consequently # dominates an element y which is a complement

of e in 1,(0,α). Invoking (ii), we see that / < y<x, f1=f1/\x = 09 x =a

and finally also ei = 0.

(iii)=Kiv) For a fixed # in L, set α = e V/V[(* Ve)Λ(*V/)] We then

choose y so that j V [ U V e ) Λ U V / ) ] = α and yΛ [(* Ve)Λ(* V/)] = * .

Then y\/e = yVf=a, so there exist elements βi<e, / i < / having y as a

common complement in a. By (iii), βi=/i = 0 so y=α and Λ;=(Λ;Ve)Λ(^V

/)•
(iv)=»(i) If χ = (χVe)Λ(χ\/f) for all x in Z, then 0 = (0Ve)Λ(0V/) =

e/\f and for each x in Z, (χVe)Λf=(χVe)Λ(χVf)Λf=χΛf.

COROLLARY 1. In a relatively complemented lattice with 0 the relation V

is symmetric.

COROLLARY 2. Let L be a relatively complemented lattice with 0. If e\7

fa for each a e A, and if f=VaeAfa exists, then eV/

COROLLARY 3. Let L be a relatively complemented lattice with 0. Then

if β\//<α? eV/ in the interval L(0,a) if and only if f is contained in every

complement of e in a.

It is worth noting that one does not need anything nearly as strong as

the fact that L is relatively complemented in order to conclude that the rela-

tion V is symmetric. Indeed if I is a lattice with 0 and 1 having the

property that e < / implies the existence of an element gφl such that

fVg=l and ff\g>e one can easily show that eX7f is equivalent to the

assertion that x = (xV e) Λ(χV f) for all x in L. An example of such a

lattice is provided by a relatively co-atomic lattice with 0; i.e., a lattice L

with 0 and 1 having the property that each eφ\ is the infimum of the

co-atoms that dominate it. Here a co-atom denotes an element which is

covered by 1.

If L is a lattice with 0 in which the relation V is symmetric, let us

agree to call an ideal / normal in case / = ( / v ) v . The term homomorphism

kernel will denote an ideal which is the kernel of a congruence relation of Z,

and we will call / a normal homomorphism kernel if / is both a normal ideal

and a homomorphism kernel. We are now ready to investigate the center of

Z. Suppose / is central in L and K is its complement therein. Then /

induces a congruence relation on I by the formula h = I2 if JiV/= h\f J>

Since α-*/α is an isomorphism of L into I, the relation Θ on L defined by

a=b(β) if JaVJ=JbVJ is evidently a congruence relation on L whose kernel
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is /. Notice that if e e /, / e K then eV/ On the other hand, if eV/ for
al l/in K then JeΓ\K=(0) and since / is central this implies that JβQj; i.e.,
that e 6 /. Thus / is a normal homomorphism kernel. Until further notice
it will be assumed that L is a relatively complemented lattice with 0 and 1. It
will be our purpose to show that every normal homomorphism kernel of L is
a central element of I.

LEMMA 3. Every normal ideal J of L is an element of L.

PROOF : If b e / v , then every complement of b is an upper bound for /.
It follows that if a is contained in every upper bound of /, then aXJb. But
this puts a in ( / v ) v = / , completing the proof.

An extremely useful observation is provided by

LEMMA 4. Let J be a normal homomorphism kernel of L. Then a e Jv if
and only if ΛΠ/=(0).

PROOF: Suppose first that ΛΠ/=(0). Let b e /, x e L, and choose c to
be a complement of x /\a in (b\/x)/\a. Now if / is the kernel of the con-
gruence relation Φ, we may write c = c A(b\/ χ) = c Aχ=0(Θ). This implies
that cej and since c<a, we have c = 0 and bXJa. Thus a€jv. On the
other hand, if a e / v , then JaΓ\J=(0) is obvious, and we are done.

LEMMA 5. If J is a normal homomorphism kernel of L, the same is true
of Jv; furthermore, J and Jv are complements in L.

PROOF: Let / be the kernel of the congruence relation Θ and let (9*
denote the pseudo-complement of Θ in the lattice of congruence relations of
L. By [1] , Lemma 17, p. 163 α = δ(0*) iff aVb>c>d>aΛb with c = d(θ)
implies c = d. In particular, if α^0(©ϊ!ί), then a>c with c = 0(Θ) implies
c = 0, so that ΛΛ/=(0). By Lemma 4, this puts a in / v . But if a e / v and
if a>c>d with c = rf(β), then by [4] , Hilfsatz 4.5, p. 37 we may write
c = dVt with t 6 /. At this point we see that t = 0 and c = d. This shows
that / v is the kernel of ®*. Since / v is clearly normal, this completes the
proof that / v is a normal homomorphism kernel of L.

In order to show that / and / v are complements in L. We need only
show that 1 is their only common upper bound in L. To see this, let a be an
upper bound for both / and / v in L. Choosing b as a complement of a in Z,
we now have that JbΓ\J= ΛΛ/V = (0). Since / and / v are both normal
homomorphism kernels, two applications of Lemma 4 will now yield the fact
that ό e / n / v = (0), whence ό = 0 and a = l as claimed.

LEMMA 6. Let J be a normal homomorphism kernel of L. Then for all
K in L,K=(Kr\J)V(Kr\Jv).

PROOF: Let b e K and suppose that c <& is an upper bound for JίΛJb-
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Then if d is a complement of c in b, JdΓλJ = ΛΠ/ΛΛ = (0). Applying
Lemma 4, we conclude that d e / v . It follows that b is the only common
upper bound for JfλJb and JvίλJb in the interval 1,(0, ό). Now let a be an
upper bound for both Kr\J and KίλJv. Then af\b is an upper bound for
both JίλJb and JvΓ\Jb in L(O,Z>), whence aΛb = b and 6<α. Since δ was
an arbitrary element of K, we conclude that any upper bound for both KίΛj
and Kr\Jv is also an upper bound for K. Thus KQ(Kr\J)\/(Kr\Jv). The
reverse inclusion is obvious.

Now by C2II, Theorem 7.2, p. 299 if we wish to show that / in the above
lemma is a central element of I, we must show that K=(KV J) Γ\(KV / v )
for all I in I. We will demonstrate that this follows by duality. Let us
write e Δ / incase eV/ in the dual of L; i.e., if eVf=l and (eΛχ)Vf=
xWf for all x in L. Also, for each ideal / of L, we shall let /* denote the
set of upper bounds of /. Clearly /* is an element of the completion by
cuts of the dual of L.

LEMMA 7. If J is a normal homomorphism kernel of L, then / * is a
normal homomorphism kernel of the dual of L.

PROOF : We have already noted that if / is the kernel of the congru-
ence relation Θ, then / v is the kernel of (9*, the pseudo-complement of Θ in
the lattice of congruence relations of L. Given a in /* and b & complement
of a in Z, note that Jbr\J=(0\ b e / v , b = 0(Θ*) and consequently α = l(0*).
On the other hand, if α = l(©*)5 then any complement b of a is in Jv. Now
if e e J then e\/b implies e < α so that aej*. Thus / * = {a: α = l(β*)}.

We next show that /* Δ = /V*. Let e e /* and fe / v *. If g is a com-
plement of /, then JgΓ\Jv=(0) puts g in /. Thus e is an upper bound for
the set of complements of /, and by the dual of Theorem 2, eΔ/. Suppose
next that e Δ / for all e in /*. We must show that fejv*. If A is a
complement of an element g- of / v , then Λ 6 /* implies AΔ/ whence / > # .
Thus / is indeed in / v * and we conclude that /*A ; = :/V*. If we now make
use of the fact that / = / v v , we may apply the above argument twice to see
that

It is now obvious that the dual of Lemma 6 can be invoked. For if / is
a normal homomorphism kernel of L, working in the completion by cuts of
the dual of i , we have that for every K in I, K* = (K*ίλJ*)\/(K*r\Jv*).
Now a is a lower bound for K*Γ\J* if and only if a is contained in every
element b which is an upper bound for both K and /. This is equivalent to
saying that a e KVJ. Similarly a e KVJV if and only if a is a lower bound
for ^*Λ/V*. Thus if α e (KVJ)ίλ(KVJv) then a is a lower bound for both
K*ί\J* and i^*n/ v *. This implies that a is a lower bound for (K*r\J*)V

) = i<:*, whence a e K. It follows that K=(KV J)ίλ(KV / v ) .
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Combining all these results, we have

THEOREM 8. The center of L coincides with the set of normal homomo-
phism kernels of L.

We close this section by showing that in a complemented modular lattice
£, every normal ideal is a central element of £. In view of Q4]3 Satz 4.5, p.
38 we need only show that a normal ideal is closed under perspectivity.

LEMMA 9. Let L be a relatively complemented modular lattice with 0.
Then eV/ and 6>eV/ imply that (eV x)Λ gV(/V x)Λ g for all x9 g which
are complements in the interval £(0, 6).

PRROF: Applying Theorem 2 to the interval £(0,6) we see that x = (x V
e)Λ(*V/), and if x<a<b, then α = (αVe)Λ(αV/) = (a\/xV e)A(a\/xVf).
This shows that eV χ\/fV x in L(x,b). We now use the fact that a-+aΛg
is an isomorphism of L(x,b) onto L(0,g) to conclude that (eV#)Λ #V(/V
x) Λ g in £(0, g). Since £ is a modular lattice, it is easily seen that this
implies (eV^)Λ^V(/VΛ;)Λ^ in £.

LEMMA 10. Let J be a normal ideal of a relatively complemented modular
lattice with 0. Then if g is perspective to an element of /, g itself is in /.

PROOF : Since £ is modular we may assume the existence of an element
/ of / such that / and g have a common complement x in /V g. For arbi-
trary e in / v , eVf and x A(eV g)= x A(e\/ g)A(fV g) = x A g=0. Also,
χV(eVg) = eVfVg so that x is a complement of e\/g in eVfWg. Now

(eVx)Λ(eV g) = eV[xΛ(eV g)J = eV0 = e and

so by Lemma 9, e\/ g. Since e was an arbitrary element of / v , we conclude
that g is in /.

We are now ready to state our result.

THEOREM 11. An ideal J of a complemented modular lattice L is a central
element of L if and only if it is a normal ideal.

§ 4. The general case

Here we shall assume that L is a relatively complemented lattice with 0.
Our goal will be to extend the results of §3 to such a lattice. Instead of

considering £, it turns out to be appropriate to work in £, the set of ideals /
such that J ΓλJatL for all a in £. Since the intersection of an arbitrary

family of elements of £ falls back in £, it is obvious that £ is a complete
lattice with set inclusion as the partial order and set intersection as the meet
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operation; furthermore, the mapping α->/α embeds L as a sublattice of L.
In case L happens to have a greatest element, it is worth mentioning the

trivial fact that L = L.

LEMMA 12. Every normal ideal of L is an element of L.

PROOF : This follows with no difficulty from Theorem 2.

LEMMA 13. Every central element of L is a normal homomorphism kernel
of L.

PROOF: The argument is almost identical with the one preceding Lem-
ma 3.

We now proceed to show that the center of L is precisely the set of
normal homomorphism kernels of L. In connection with this, it will prove
convenient to let Lx denote the completion by cuts of the lattice Z(0, x).

LEMMA 14. For each x in L, Lx is a sublattice of L and

Lx={JίλJx:JeL} .

PROOF : We first observe that if K in L has x as an upper bound, then
Ke Lx. This follows from the fact that y is an upper bound for K in L if

and only if y/\x is an upper bound for K in L(0,x). Thus, if / e ί , then

JΓΛJX e Lx> On the other hand, given Ke Lx we claim that Ke L. To see
this, we must show that Kr\Ja e I for every a e L. Accordingly, let d be
contained in all upper bounds of Kr\Ja- Then if y is an upper bound for K
in 1,(0,Λ;), surely y is an upper bound for Kr\Ja and we have d<iy. It
follows that d e K, and since a is an upper bound for KΓ\Ja, we also have

Hence d e KίλJa, and we see that Kr\Ja e L. This shows that Lx =
' J£ ί) and that LX^L. Since the infimum operation in both Lx and

L is set intersection, it is evident that Lx is a meet sublattice of L. On the
other hand, if /, K are elements of Lx and M is their join in Lx, then Me L

and is an upper bound for both / and K in L. If Ne L is a common upper
bound for / and K, then NΓ\JX is an upper bound in Lx. It follows that
NΓ\JXΏM and consequently that NΏ.Nr\JxΏ.M. Thus M is effective as the

join of / and K in L, thereby completing the proof.

LEMMA 15. Let Ke L and let J be a normal homomorphism kernel of L.
Then KVJ= U[(^Λ/ 3)V(/nΛ)] and for each b in L

a€L

(κvj)r\jb = {Kr\jb)vur\h).

PROOF: Let M= \J[_(Kr\Ja)V(Jr\Ja)J. Since K= \j(Kr\Ja) and / =
ae L a€ L
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( ) it is evident that M contains both K and /. Furthermore, \ί N e L
aeL

is an upper bound for both K and /, then N contains Kr\Ja and JΓ\Ja, NΏ.
(KΓ\Ja)V(JΓ\Ja) and finally N contains M. Thus, in order to show that M
is the join of K and / in Z, we need only verify that M is in fact an element
of Z. In order to demonstrate this we must prove that for each b in L, MΓ\
JbeLb. This will follow if it can be shown that M Γ\ Jb = (K Γ\ Λ) V (/ Γ\ Jb).
Evidently MnΛ3(lΛ/j)V(/Λ/j). To obtain the reverse inclusion, choose
x^>aVb and work in the interval L(0,x). Suppose f<χ and eV/ for all
e in Jr\Jx. Then JfrλJ=JfrλJrλJx = (O) and by Lemma 4 we see that fe / v .
On the other hand, if fe JVΓ\JX we must clearly have that eV/ in 1/(0, x)
for all e in Jί\Jx. Thus (Jr\Jx)

v as computed in Z(0,Λ;) is the ideal JvΓ\JX.
We thus see that JΓ\JX is a normal homomorphism kernel of L(0,x) and by
Theorem 8, it is a central element of Lx. Hence

- (Kr\jar\jb)vur\jxr\jb) c (Kr\jb)v(JrMb).

It follows that for each α in L

and therefore that

thus completing the proof.

Now let ^ e L and let / be a normal homomorphism kernel of L. We
claim first that K=(KV J)Γ\(KV / v ) . In order to see this, we choose an
element a of L. Since Jr\Ja is a normal homomorphism kernel of L(0,α)
with (jΓλJaf as computed in Z(0,α) equal to JvΓ\Ja, we may invoke Lemma
15 and Theorem 8 to see that

(κvj)ίλ(κvjv)r\ja = [(^n/ α ) v(/nΛ)]n[(iΓnΛ) v ( / v n / α ) ] = κr\ja.

Since this holds for every a in Z, we conclude that K = (K\/J)Γλ(K\/Jv).
We next show that K=(KίΛj)W(Kr\Jv). Working in the interval L(0,α),
we have from Theorem 8 that

Kr\Ja =

Hence iΓ= \j(Kr\Ja)^(Kr\J)V(Kr\Jv)QK and we have equality. By [2],

Theorem 7.2, p. 299 we conclude that / is a central elememt of L. Combin-
ing the above results with Lemma 10, we have
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THEOREM 16. Let L be a relatively complemented lattice with 0. An ideal
J of L is a central element of L if and only if it is a normal homomorphism
kernel. In the presence of modularity, the central elements of L are precisely
the normal ideals of L.

In connection with the above theorem notice that the partial order in L
is given by set inclusion. Since the intersection of an arbitrary family of
normal homomorphism kernels is itself a normal homomorphism kernel, we
see that the center of L is a complete Boolean sublattice of L. As an imme-
diate consequence of these observations we have the following result of F.
Maeda ([3], Theorem 3.2, p. 89): Let L be a conditionally upper continuous,
relatively complemented modular lattice with 0. The family of normal ideals
in L is a complete Boolean algebra, where lattice-order means set-inclusion.

In closing we mention that in a later paper we shall prove that with L
as in F. Maeda's theorem, L is an upper continuous complemented modular
lattice. This fact together with Theorem 16 provide considerable insight
into the dimension theory of a general continuous geometry as outlined in
[3] , pp. 90-92.
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