J. Sci. Hiroshima Univ. Ser. A-I 30 (1966), 1-9

A Note on Normal Ideals

M. F. Janowitz

(Received November 20, 1965)

§1. Introduction

In $\lceil 3 \rceil$, p. 85 F. Maeda writes $a \bigtriangledown b$ in a lattice L with 0 to denote the fact that $a \wedge b = 0$ and $(a \vee x) \wedge b = x \wedge b$ for all x in L. He then uses this relation to investigate direct sum decompositions of such lattices. If L is modular the relation \bigtriangledown is symmetric and the mapping $S \rightarrow S^{\bigtriangledown} = \{f: s \bigtriangledown f \text{ for } f \}$ all $s \in S$ induces a Galois connection in the lattice I(L) of all ideals of L. The Galois closed objects (i.e., those ideals S such that $S = S^{\nabla \nabla}$) are called In a general continuous geometry (see $\lceil 3 \rceil$, p. 90) the normal normal ideals. ideals play a role analogous to that played by the center of a continuous geometry. In this note we investigate normal ideals in a more general setting. In §2 we show that in a lattice L with 0, an ideal J is in the center of I(L) if and only if it is a direct summand of L. In $\S3$ we use the fact that the relation \bigtriangledown is symmetric in a relatively complemented lattice with 0 to define normal ideals in such a lattice. We then show that if L is a relatively complemented lattice with 0 and 1, then the center of the completion by cuts \overline{L} of L is precisely the set of normal ideals which are kernels of In the case of a complemented modular lattice, the congruence relations. center of \overline{L} is just the set of normal ideals of L. In §4 these results are extended to the case of an arbitrary relatively complemented lattice with 0.

§2. Direct summands

Let $S_1, S_2, ..., S_n$ be subsets of a lattice L with 0. Following the terminology of F. Maeda ([3], p. 85) if

- (1°) for any element a of $L, a = a_1 \vee \cdots \vee a_n$ with $a_i \in S_i (i=1,\dots,n)$,
- (2°) $i \neq j$ implies $S_j \subseteq S_i^{\bigtriangledown}$,

we say that L is a direct sum of $S_1, ..., S_n$ and write $L = S_1 \oplus ... \oplus S_n$. The subsets $S_1, ..., S_n$ will be called *direct summands* of L. By [3], Lemma 1.3, p. 86 every direct summand is an ideal of L. We proceed to show that the direct summands are precisely the central elements of I(L).

THEOREM 1. Let L be a lattice with 0. An ideal J of L is a central element of I(L) if and only if it is a direct summand of L.

PROOF: Assume first that J is a central element of I(L), and let K be its complement. For each $a \in L$, let J_a denote the principal ideal generated by a. Then, working in I(L), we have that $J_a = J_a \cap (J \lor K) = (J_a \cap J) \lor (J_a \cap K)$. This implies that $a = b \lor c$ with $b \in J$ and $c \in K$. Furthermore, if $b \in J$ and $c \in K$, then for arbitrary x in L,

$$(J_b \lor J_x) \cap J_c \subseteq (J \lor J_x) \cap J_c = (J \cap J_c) \lor (J_x \cap J_c) = J_x \cap J_c = J_{x \land c}.$$

Thus $(b \lor x) \land c = x \land c$ and since $b \land c = 0$ is obvious we see that $b \bigtriangledown c$. A similar argument produces $c \bigtriangledown b$, and we have that $L = J \oplus K$.

Suppose conversely that $L = J \oplus K$. Then $J \cap K = (0)$ and since each a in L can be represented in the form $a = b \lor c$ with $b \in J$ and $c \in K$, it follows that $J \lor K = L$. Thus J and K are complements in I(L). In order to show that J is central it suffices ([2], Theorem 7.2, p. 299) to show that for each ideal I of L the following equations hold:

$$(1) I = (I \lor J) \cap (I \lor K)$$

$$(2) I=(I \cap J) \lor (I \cap K).$$

Now let $a \in I$ and write $a=b \lor c$ with $b \in J$, $c \in K$. This puts a in $(I \cap J) \lor (I \cap K)$ and establishes (2). In order to demonstrate (1), we need only show that $(I \lor J) \cap (I \lor K) \subseteq I$. Accordingly, let $a \leq (b_1 \lor c) \wedge (b_2 \lor d)$ with b_1, b_2 in I, c in J and d in K. We may then write $(b_1 \lor c) \wedge (b_2 \lor d) = x \lor y$ where $x \in J, y \in K$. But now, since $L = J \oplus K$ we have $d \bigtriangledown x$ so that

$$x = (b_1 \lor c) \land (b_2 \lor d) \land x = (b_1 \lor c) \land b_2 \land x \leq b_2.$$

This shows that $x \in I$. Similarly, $y \in I$ and we conclude that a is in I, since $a \leq x \lor y$. This completes the proof.

§3. Normal ideals in a relatively complemented lattice

In this section we explore the relation between normal ideals of a relatively complemented lattice with 0 and 1 and central elements of L, the completion of L by cuts. We first need to know that the relation \bigtriangledown is symmetric.

THEOREM 2. Let e, f be elements of a relatively complemented lattice with 0. The following conditions are then equivalent:

(i) $e \bigtriangledown f$.

(ii) $e \lor f \le a$ implies f is contained in every complement of e in the interval L(0,a).

- (iii) $e_1 \leq e, f_1 \leq f, e_1$ perspective to f_1 imply that $e_1 = f_1 = 0$.
- (iv) $x = (x \lor e) \land (x \lor f)$ for all x in L.

PROOF: (i) \Rightarrow (ii) Let $e \lor f \le a$, and let y be a complement of e in L(0,a). Then $f=a \land f=(e \lor y) \land f=y \land f$ shows that $f \le y$.

(ii) \Rightarrow (iii) Let $e_1 \lor x_1 = f_1 \lor x_1$ with $e_1 \land x_1 = f_1 \land x_1 = 0$. Then with $a = e \lor f \lor x_1$, we may assume the existence of an element x which is a common complement for e_1 and f_1 in the interval L(0,a). Since $e \ge e_1$, we see that $e \lor x = a$ and consequently x dominates an element y which is a complement of e in L(0,a). Invoking (ii), we see that $f \le y \le x$, $f_1 = f_1 \land x = 0$, x = a and finally also $e_1 = 0$.

(iii) \Rightarrow (iv) For a fixed x in L, set $a = e \lor f \lor [(x \lor e) \land (x \lor f)]$. We then choose y so that $y \lor [(x \lor e) \land (x \lor f)] = a$ and $y \land [(x \lor e) \land (x \lor f)] = x$. Then $y \lor e = y \lor f = a$, so there exist elements $e_1 \le e$, $f_1 \le f$ having y as a common complement in a. By (iii), $e_1 = f_1 = 0$ so y = a and $x = (x \lor e) \land (x \lor f)$.

(iv) \Rightarrow (i) If $x = (x \lor e) \land (x \lor f)$ for all x in L, then $0 = (0 \lor e) \land (0 \lor f) = e \land f$ and for each x in L, $(x \lor e) \land f = (x \lor e) \land (x \lor f) \land f = x \land f$.

COROLLARY 1. In a relatively complemented lattice with 0 the relation \bigtriangledown is symmetric.

COROLLARY 2. Let L be a relatively complemented lattice with 0. If $e \bigtriangledown f_{\alpha}$ for each $\alpha \in A$, and if $f = \bigvee_{\alpha \in A} f_{\alpha}$ exists, then $e \bigtriangledown f$.

COROLLARY 3. Let L be a relatively complemented lattice with 0. Then if $e \lor f \le a$, $e \bigtriangledown f$ in the interval L(0,a) if and only if f is contained in every complement of e in a.

It is worth noting that one does not need anything nearly as strong as the fact that L is relatively complemented in order to conclude that the relation \bigtriangledown is symmetric. Indeed if L is a lattice with 0 and 1 having the property that e < f implies the existence of an element $g \neq 1$ such that $f \lor g = 1$ and $f \land g \ge e$ one can easily show that $e \bigtriangledown f$ is equivalent to the assertion that $x = (x \lor e) \land (x \lor f)$ for all x in L. An example of such a lattice is provided by a relatively co-atomic lattice with 0; i.e., a lattice Lwith 0 and 1 having the property that each $e \neq 1$ is the infimum of the co-atoms that dominate it. Here a *co-atom* denotes an element which is covered by 1.

If L is a lattice with 0 in which the relation \bigtriangledown is symmetric, let us agree to call an ideal J normal in case $J=(J^{\bigtriangledown})^{\bigtriangledown}$. The term homomorphism kernel will denote an ideal which is the kernel of a congruence relation of L, and we will call J a normal homomorphism kernel if J is both a normal ideal and a homomorphism kernel. We are now ready to investigate the center of L. Suppose J is central in L and K is its complement therein. Then J induces a congruence relation on L by the formula $I_1 \equiv I_2$ if $I_1 \lor J = I_2 \lor J$. Since $a \to J_a$ is an isomorphism of L into L, the relation Θ on L defined by $a \equiv b(\Theta)$ if $J_a \lor J = J_b \lor J$ is evidently a congruence relation on L whose kernel

M. F. Janowitz

is J. Notice that if $e \in J$, $f \in K$ then $e \bigtriangledown f$. On the other hand, if $e \bigtriangledown f$ for all f in K then $J_e \cap K = (0)$ and since J is central this implies that $J_e \subseteq J$; i.e., that $e \in J$. Thus J is a normal homomorphism kernel. Until further notice it will be assumed that L is a relatively complemented lattice with 0 and 1. It will be our purpose to show that every normal homomorphism kernel of L is a central element of L.

LEMMA 3. Every normal ideal J of L is an element of L.

PROOF: If $b \in J^{\bigtriangledown}$, then every complement of b is an upper bound for J. It follows that if a is contained in every upper bound of J, then $a \bigtriangledown b$. But this puts a in $(J^{\bigtriangledown})^{\bigtriangledown} = J$, completing the proof.

An extremely useful observation is provided by

LEMMA 4. Let J be a normal homomorphism kernel of L. Then $a \in J^{\nabla}$ if and only if $J_a \cap J = (0)$.

PROOF: Suppose first that $J_a \cap J = (0)$. Let $b \in J$, $x \in L$, and choose c to be a complement of $x \wedge a$ in $(b \vee x) \wedge a$. Now if J is the kernel of the congruence relation Θ , we may write $c \equiv c \wedge (b \vee x) \equiv c \wedge x \equiv 0(\Theta)$. This implies that $c \in J$ and since $c \leq a$, we have c = 0 and $b \bigtriangledown a$. Thus $a \in J^{\bigtriangledown}$. On the other hand, if $a \in J^{\heartsuit}$, then $J_a \cap J = (0)$ is obvious, and we are done.

LEMMA 5. If J is a normal homomorphism kernel of L, the same is true of J^{\bigtriangledown} ; furthermore, J and J^{\bigtriangledown} are complements in L.

PROOF: Let J be the kernel of the congruence relation Θ and let Θ^* denote the pseudo-complement of Θ in the lattice of congruence relations of L. By [1], Lemma 17, p. 163 $a \equiv b(\Theta^*)$ iff $a \lor b \ge c \ge d \ge a \land b$ with $c \equiv d(\Theta)$ implies c = d. In particular, if $a \equiv 0(\Theta^*)$, then $a \ge c$ with $c \equiv 0(\Theta)$ implies c=0, so that $J_a \land J = (0)$. By Lemma 4, this puts a in J^{\bigtriangledown} . But if $a \in J^{\bigtriangledown}$ and if $a \ge c \ge d$ with $c \equiv d(\Theta)$, then by [4], Hilfsatz 4.5, p. 37 we may write $c = d \lor t$ with $t \in J$. At this point we see that t = 0 and c = d. This shows that J^{\bigtriangledown} is the kernel of Θ^* . Since J^{\bigtriangledown} is clearly normal, this completes the proof that J^{\bigtriangledown} is a normal homomorphism kernel of L.

In order to show that J and J^{\bigtriangledown} are complements in L. We need only show that 1 is their only common upper bound in L. To see this, let a be an upper bound for both J and J^{\bigtriangledown} in L. Choosing b as a complement of a in L, we now have that $J_b \cap J = J_b \cap J^{\bigtriangledown} = (0)$. Since J and J^{\bigtriangledown} are both normal homomorphism kernels, two applications of Lemma 4 will now yield the fact that $b \in J \cap J^{\bigtriangledown} = (0)$, whence b = 0 and a = 1 as claimed.

LEMMA 6. Let J be a normal homomorphism kernel of L. Then for all K in L, $K = (K \cap J) \vee (K \cap J^{\bigtriangledown})$.

PROOF: Let $b \in K$ and suppose that $c \leq b$ is an upper bound for $J \cap J_b$.

Then if d is a complement of c in b, $J_d \cap J = J_d \cap J \cap J_b = (0)$. Applying Lemma 4, we conclude that $d \in J^{\bigtriangledown}$. It follows that b is the only common upper bound for $J \cap J_b$ and $J^{\bigtriangledown} \cap J_b$ in the interval L(0,b). Now let a be an upper bound for both $K \cap J$ and $K \cap J^{\bigtriangledown}$. Then $a \wedge b$ is an upper bound for both $J \cap J_b$ and $J^{\bigtriangledown} \cap J_b$ in L(0,b), whence $a \wedge b = b$ and $b \leq a$. Since b was an arbitrary element of K, we conclude that any upper bound for both $K \cap J$ and $K \cap J^{\bigtriangledown}$ is also an upper bound for K. Thus $K \subseteq (K \cap J) \vee (K \cap J^{\bigtriangledown})$. The reverse inclusion is obvious.

Now by [2], Theorem 7.2, p. 299 if we wish to show that J in the above lemma is a central element of L, we must show that $K = (K \lor J) \cap (K \lor J^{\bigtriangledown})$ for all K in L. We will demonstrate that this follows by duality. Let us write $e \bigtriangleup f$ in case $e \bigtriangledown f$ in the dual of L; i.e., if $e \lor f = 1$ and $(e \land x) \lor f =$ $x \lor f$ for all x in L. Also, for each ideal J of L, we shall let J^* denote the set of upper bounds of J. Clearly J^* is an element of the completion by cuts of the dual of L.

LEMMA 7. If J is a normal homomorphism kernel of L, then J^* is a normal homomorphism kernel of the dual of L.

PROOF: We have already noted that if J is the kernel of the congruence relation Θ , then J^{\bigtriangledown} is the kernel of Θ^* , the pseudo-complement of Θ in the lattice of congruence relations of L. Given a in J^* and b a complement of a in L, note that $J_b \cap J = (0)$, $b \in J^{\bigtriangledown}$, $b \equiv 0(\Theta^*)$ and consequently $a \equiv 1(\Theta^*)$. On the other hand, if $a \equiv 1(\Theta^*)$, then any complement b of a is in J^{\bigtriangledown} . Now if $e \in J$ then $e \bigtriangledown b$ implies $e \leq a$ so that $a \in J^*$. Thus $J^* = \{a : a \equiv 1(\Theta^*)\}$.

We next show that $J^{*\triangle} = J^{\heartsuit *}$. Let $e \in J^*$ and $f \in J^{\heartsuit *}$. If g is a complement of f, then $J_g \cap J^{\heartsuit} = (0)$ puts g in J. Thus e is an upper bound for the set of complements of f, and by the dual of Theorem 2, $e \triangle f$. Suppose next that $e \triangle f$ for all e in J^* . We must show that $f \in J^{\heartsuit *}$. If h is a complement of an element g of J^{\heartsuit} , then $h \in J^*$ implies $h \triangle f$ whence $f \ge g$. Thus f is indeed in $J^{\heartsuit *}$ and we conclude that $J^{*\triangle} = J^{\heartsuit *}$. If we now make use of the fact that $J = J^{\heartsuit \heartsuit}$, we may apply the above argument twice to see that

$$J^* = (J^{\bigtriangledown \bigtriangledown})^* = (J^{\bigtriangledown *})^{\vartriangle} = J^{* \bigtriangleup}$$

It is now obvious that the dual of Lemma 6 can be invoked. For if J is a normal homomorphism kernel of L, working in the completion by cuts of the dual of L, we have that for every K in \overline{L} , $K^* = (K^* \cap J^*) \vee (K^* \cap J^{\nabla *})$. Now a is a lower bound for $K^* \cap J^*$ if and only if a is contained in every element b which is an upper bound for both K and J. This is equivalent to saying that $a \in K \vee J$. Similarly $a \in K \vee J^{\nabla}$ if and only if a is a lower bound for $K^* \cap J^{\nabla *}$. Thus if $a \in (K \vee J) \cap (K \vee J^{\nabla})$ then a is a lower bound for both $K^* \cap J^*$ and $K^* \cap J^{\nabla *}$. This implies that a is a lower bound for $(K^* \cap J^*) \vee$ $(K^* \cap J^{\nabla *}) = K^*$, whence $a \in K$. It follows that $K = (K \vee J) \cap (K \vee J^{\nabla})$. Combining all these results, we have

THEOREM 8. The center of \overline{L} coincides with the set of normal homomophism kernels of L.

We close this section by showing that in a complemented modular lattice L, every normal ideal is a central element of \overline{L} . In view of [4], Satz 4.5, p. 38 we need only show that a normal ideal is closed under perspectivity.

LEMMA 9. Let L be a relatively complemented modular lattice with 0. Then $e \bigtriangledown f$ and $b \ge e \lor f$ imply that $(e \lor x) \land g \bigtriangledown (f \lor x) \land g$ for all x, g which are complements in the interval L(0,b).

PRROF: Applying Theorem 2 to the interval L(0,b) we see that $x = (x \lor e) \land (x \lor f)$, and if $x \le a \le b$, then $a = (a \lor e) \land (a \lor f) = (a \lor x \lor e) \land (a \lor x \lor f)$. This shows that $e \lor x \bigtriangledown f \lor x$ in L(x,b). We now use the fact that $a \to a \land g$ is an isomorphism of L(x,b) onto L(0,g) to conclude that $(e \lor x) \land g \bigtriangledown (f \lor x) \land g$ in L(0,g). Since L is a modular lattice, it is easily seen that this implies $(e \lor x) \land g \bigtriangledown (f \lor x) \land g$ in L.

LEMMA 10. Let J be a normal ideal of a relatively complemented modular lattice with 0. Then if g is perspective to an element of J, g itself is in J.

PROOF: Since L is modular we may assume the existence of an element f of J such that f and g have a common complement x in $f \lor g$. For arbitrary e in J^{\bigtriangledown} , $e \bigtriangledown f$ and $x \land (e \lor g) = x \land (e \lor g) \land (f \lor g) = x \land g = 0$. Also, $x \lor (e \lor g) = e \lor f \lor g$ so that x is a complement of $e \lor g$ in $e \lor f \lor g$. Now

$$(e \lor x) \land (e \lor g) = e \lor [x \land (e \lor g)] = e \lor 0 = e$$
 and
 $(f \lor x) \land (e \lor g) = (f \lor g) \land (e \lor g) = g$,

so by Lemma 9, $e \bigtriangledown g$. Since e was an arbitrary element of J^{\bigtriangledown} , we conclude that g is in J.

We are now ready to state our result.

THEOREM 11. An ideal J of a complemented modular lattice L is a central element of L if and only if it is a normal ideal.

§4. The general case

Here we shall assume that L is a relatively complemented lattice with 0. Our goal will be to extend the results of §3 to such a lattice. Instead of considering L, it turns out to be appropriate to work in \tilde{L} , the set of ideals Jsuch that $J \cap J_a \in L$ for all a in L. Since the intersection of an arbitrary family of elements of \tilde{L} falls back in \tilde{L} , it is obvious that \tilde{L} is a complete lattice with set inclusion as the partial order and set intersection as the meet operation; furthermore, the mapping $a \rightarrow J_a$ embeds L as a sublattice of \tilde{L} . In case L happens to have a greatest element, it is worth mentioning the trivial fact that $\tilde{L} = L$.

LEMMA 12. Every normal ideal of L is an element of \tilde{L} .

PROOF: This follows with no difficulty from Theorem 2.

LEMMA 13. Every central element of \tilde{L} is a normal homomorphism kernel of L.

PROOF: The argument is almost identical with the one preceding Lemma 3.

We now proceed to show that the center of \tilde{L} is precisely the set of normal homomorphism kernels of L. In connection with this, it will prove convenient to let L_x denote the completion by cuts of the lattice L(0, x).

LEMMA 14. For each x in L, L_x is a sublattice of \tilde{L} and

$$L_x = \{J \cap J_x \colon J \in L\}$$
.

PROOF: We first observe that if K in L has x as an upper bound, then $K \in \overline{L}_x$. This follows from the fact that y is an upper bound for K in L if and only if $y \wedge x$ is an upper bound for K in L(0,x). Thus, if $J \in L$, then $J \cap J_x \in L_x$. On the other hand, given $K \in L_x$ we claim that $K \in \tilde{L}$. To see this, we must show that $K \cap J_a \in \overline{L}$ for every $a \in L$. Accordingly, let d be contained in all upper bounds of $K \cap J_a$. Then if γ is an upper bound for K in L(0,x), surely y is an upper bound for $K \cap J_a$ and we have $d \leq y$. It follows that $d \in K$, and since a is an upper bound for $K \cap J_a$, we also have $d \leq a$. Hence $d \in K \cap J_a$, and we see that $K \cap J_a \in L$. This shows that $L_x =$ $\{J \cap J_x : J \in \tilde{L}\}$ and that $\tilde{L}_x \subseteq \tilde{L}$. Since the infimum operation in both L_x and \tilde{L} is set intersection, it is evident that L_x is a meet sublattice of \tilde{L} . On the other hand, if J, K are elements of \overline{L}_x and M is their join in \overline{L}_x , then $M \in \widetilde{L}$ and is an upper bound for both J and K in L. If $N \in L$ is a common upper bound for J and K, then $N \cap J_x$ is an upper bound in L_x . It follows that $N \cap J_x \supseteq M$ and consequently that $N \supseteq N \cap J_x \supseteq M$. Thus M is effective as the join of J and K in L, thereby completing the proof.

LEMMA 15. Let $K \in \tilde{L}$ and let J be a normal homomorphism kernel of L. Then $K \vee J = \bigcup_{a \in L} [(K \cap J_a) \vee (J \cap J_a)]$ and for each b in L

$$(K \lor J) \cap J_b = (K \cap J_b) \lor (J \cap J_b)$$
.

PROOF: Let $M = \bigcup_{a \in L} [(K \cap J_a) \vee (J \cap J_a)]$. Since $K = \bigcup_{a \in L} (K \cap J_a)$ and J =

 $\bigcup_{a \in L} (J \cap J_a)$ it is evident that M contains both K and J. Furthermore, if $N \in \tilde{L}$ is an upper bound for both K and J, then N contains $K \cap J_a$ and $J \cap J_a$, $N \supseteq (K \cap J_a) \lor (J \cap J_a)$ and finally N contains M. Thus, in order to show that Mis the join of K and J in \tilde{L} , we need only verify that M is in fact an element of \tilde{L} . In order to demonstrate this we must prove that for each b in $L, M \cap$ $J_b \in \tilde{L}_b$. This will follow if it can be shown that $M \cap J_b = (K \cap J_b) \lor (J \cap J_b)$. Evidently $M \cap J_b \supseteq (K \cap J_b) \lor (J \cap J_b)$. To obtain the reverse inclusion, choose $x \ge a \lor b$ and work in the interval L(0, x). Suppose $f \le x$ and $e \bigtriangledown f$ for all e in $J \cap J_x$. Then $J_f \cap J = J_f \cap J \cap J_x = (0)$ and by Lemma 4 we see that $f \in J^{\bigtriangledown}$. On the other hand, if $f \in J^{\bigtriangledown} \cap J_x$ we must clearly have that $e \bigtriangledown f$ in L(0, x)for all e in $J \cap J_x$. Thus $(J \cap J_x)^{\bigtriangledown}$ as computed in L(0, x) is the ideal $J^{\bigtriangledown} \cap J_x$. We thus see that $J \cap J_x$ is a normal homomorphism kernel of L(0, x) and by Theorem 8, it is a central element of L_x . Hence

$$[(K \cap J_a) \lor (J \cap J_x)] \cap J_b = (K \cap J_a \cap J_b) \lor (J \cap J_x \cap J_b) \subseteq (K \cap J_b) \lor (J \cap J_b).$$

It follows that for each a in L

$$\lceil (K \cap J_a) \lor (J \cap J_a) \rceil \cap J_b \subseteq (K \cap J_b) \lor (J \cap J_b)$$

and therefore that

$$\begin{split} M &\cap J_b = \{ \bigcup_{a \in L} [(K \cap J_a) \lor (J \cap J_a)] \} \cap J_b \\ &= \bigcup_{a \in L} \{ [(K \cap J_a) \lor (J \cap J_a)] \cap J_b \} \subseteq (K \cap J_b) \lor (J \cap J_b) \,, \end{split}$$

thus completing the proof.

Now let $K \in \tilde{L}$ and let J be a normal homomorphism kernel of L. We claim first that $K = (K \lor J) \cap (K \lor J^{\bigtriangledown})$. In order to see this, we choose an element a of L. Since $J \cap J_a$ is a normal homomorphism kernel of L(0,a) with $(J \cap J_a)^{\bigtriangledown}$ as computed in L(0,a) equal to $J^{\bigtriangledown} \cap J_a$, we may invoke Lemma 15 and Theorem 8 to see that

$$(K \vee J) \cap (K \vee J^{\nabla}) \cap J_a = [(K \cap J_a) \vee (J \cap J_a)] \cap [(K \cap J_a) \vee (J^{\nabla} \cap J_a)] = K \cap J_a.$$

Since this holds for every *a* in *L*, we conclude that $K = (K \lor J) \cap (K \lor J^{\bigtriangledown})$. We next show that $K = (K \cap J) \lor (K \cap J^{\bigtriangledown})$. Working in the interval L(0,a), we have from Theorem 8 that

$$K \cap J_a = [(K \cap J_a) \cap (J \cap J_a)] \vee [(K \cap J_a) \cap (J^{\bigtriangledown} \cap J_a)] \subseteq (K \cap J) \vee (K \cap J^{\bigtriangledown}).$$

Hence $K = \bigcup_{a \in L} (K \cap J_a) \subseteq (K \cap J) \lor (K \cap J^{\nabla}) \subseteq K$ and we have equality. By [2], Theorem 7.2, p. 299 we conclude that J is a central element of \tilde{L} . Combining the above results with Lemma 10, we have THEOREM 16. Let L be a relatively complemented lattice with 0. An ideal J of L is a central element of \tilde{L} if and only if it is a normal homomorphism kernel. In the presence of modularity, the central elements of \tilde{L} are precisely the normal ideals of L.

In connection with the above theorem notice that the partial order in \tilde{L} is given by set inclusion. Since the intersection of an arbitrary family of normal homomorphism kernels is itself a normal homomorphism kernel, we see that the center of \tilde{L} is a complete Boolean sublattice of \tilde{L} . As an immediate consequence of these observations we have the following result of F. Maeda ([3], Theorem 3.2, p. 89): Let L be a conditionally upper continuous, relatively complemented modular lattice with 0. The family of normal ideals in L is a complete Boolean algebra, where lattice-order means set-inclusion.

In closing we mention that in a later paper we shall prove that with L as in F. Maeda's theorem, \tilde{L} is an upper continuous complemented modular lattice. This fact together with Theorem 16 provide considerable insight into the dimension theory of a general continuous geometry as outlined in [3], pp. 90-92.

Bibliography

- G. Grätzer and E. T. Schmidt, Ideals and congruence relations in lattices, Acta Math. Acad. Sci. Hung. 9 (1958), pp. 137-175.
- [2] M. F. Janowitz, A characterization of standard ideals, Acta Math. Acad. Sci. Hung. 16 (1965), pp. 289-301.
- [3] F. Maeda, Direct sums and normal ideals of lattices, J. Sci. Hiroshima Univ. Ser. A 14 (1949), pp. 85–92.
- [4] F. Maeda, Kontinuierliche Geometrien, Berlin (1958).

University of New Mexico