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The purpose of this paper is to construct an example of a holomorphic
function in the open unit disk D of the complex plane that has a certain kind
of boundary behavior at every point of the unit circle Γ. Before describing
our example, we introduce some notation and terminology, and then discuss
some results of Kurt Meier to which our work is closely related, in order to
place it in its proper setting.

Let / be a meromorphic function whose domain is D and whose range is
a subset of the Riemann sphere Ω. We assume that the reader is familiar
with some of the elementary notions of cluster set theory (see [5J). Thus,
the cluster set of / at a point ζ e Γ is denoted by C(/, ζ). If X is a chord at
C, then Cχ(f9 C) denotes the corresponding chordal cluster set of / at C We
say that / has a chordal limit at ζ provided that there exists a chord X at ζ
and a value ω e Ω such that Cχ(f, ζ)=α>; if, in particular, X is the radius at
C, then α) is called the radial limit of / at ζ. We suppose that the reader
knows what is meant when we say that / has an angular limit at a point ζ e Γ.

We define the chordal principal cluster set of / at a point ζ e Γ as the set

7Iχ(f, O-ΛW, O,
x

where X ranges over the set of all chords at ζ. The angular range of / at ζ
is defined to be the set Λ(/, ζ) of all values ω e Ω with the property that / as-
sumes the value ω in every Stolz angle at ζ arbitrarily close to ζ.

We also take for granted that the reader knows what is meant by a Fatou
point of / and by a Plessner point of /. A Meier point of / is defined to be a
point C e Γ at which

where the symbol C signifies proper inclusion. By an angular Picard point
of/ we mean a point ζ 6 Γ at which the set Ω — A(f, ζ) contains at most two
values. Finally, we define an alternative point of / to be a point ζ e Γ at
which
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When we say that almost every point of Γ has a certain property, we
mean that the exceptional set has Lebesgue measure zero and when we say
that nearly every point of Γ has a certain property, we mean that the excep-
tional set is of first Baire category.

The classical theorem of Plessner (see [5, p. 70, Theorem 1]) is a metrical
theorem and asserts the following.

THEOREM P. / / / is meromorphic in Z>, then almost every point of Γ is
either a Plessner point or a Fatou point of f.

Meier Q4, p. 330, Theorem 5] has proved the following topological counter-
part of Plessner's theorem (Meier works in a half-plane instead of a disk).

THEOREM M. / / / is meromorphic in D, then nearly every point of Γ is
either a Plessner point or a Meier point of f.

Meier Q4, p. 329, Theorems 1 and 2] has also established the following two
results.

THEOREM Sβ. / / / is meromorphic in D, then almost every point of Γ is
either an angular Picard point or an alternative point or a Fatou point of f.

THEOREM 2ft. / / / is meromorphic in D, then nearly every point of Γ is
either an angular Picard point or an alternative point or a Meier point off.

If we observe that in general every angular Picard point is a Plessner
point and every alternative point is a Plessner point, then it is apparent that
Theorems 5β and 2ft are refinements of Theorems P and M.

Meier also presents three illuminating examples which, in the light of
Theorems β̂ and 2ft, serve as existence theorems for the possible abundance
of alternative points or of angular Picard points.

The first example is that of the elliptic modular function M(z\ for which
the following properties hold:

(i) M is holomorphic in Z>,
(ii) M omits the values 0, 1, oo?

(iii) C(M, C)=ώ for every ζ <• Γ,
(iv) only enumerably many points of Γ are Fatou points of M.

It follows from (ii) that no point of Γ is an angular Picard point of M; (iii)
implies that no point of Γ is a Meier point of M; (iv) implies that almost
every point of Γ is not a Fatou point of M. Hence, Theorems Sβ and 2ft imply
the following:

Almost every and nearly every point of Γ is an alternative point of M(z).

The second example is that of a function Φ(z) constructed by Lusin and
Privalov, for which the following properties hold:
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(i) Φ is holomorphic in D, and not identically constant,
(ii) at almost every point of Γ, Φ has the radial limit 0.

These properties imply that almost every point of Γ is not an alternative
point of Φ and they also imply, in view of Privalov's uniqueness theorem
(see C5, p. 72, Theorem 2]), that almost every point of Γ is not a Fatou point
of Φ. Hence, Theorem β̂ implies the following:

Almost every point of Γ is an angular Picard point of Φ(z).

The third example is that of a function Ψ(z) for which the following pro-
perties hold:

(i) Ψ is holomorphic in D,
(ii) Ψ is unbounded at every point of Γ,
(iii) Ψ has a finite chordal limit at every point of Γ.

It follows from (i) and (iii) that no point of Γ is an alternative point of Ψ,
and (ii) and (iii) imply that no point of Γ is a Meier point of Ψ. Hence, Theo-
rem 9Ή implies the following:

Nearly every point of Γ is an angular Picard point of ¥(z).

A comparison of the italicized statements following the second and third
examples with that following the first immediately suggests the problem of
ascertaining whether or not there exists a holomorphic function in D for
which almost every and nearly every point of Γ is an angular Picard point.
Our example solves this problem.

We shall in fact establish the existence of a function Y(z) for which the
following properties hold:

(i) Y is holomorphic in D,
(ii) every point of Γ is a Plessner point of Y,
(iii) 0 is a chordal limit of Y at every point of Γ.

(With regard to (iii), it will be shown that the limit in question is actually
uniform with respect to ζ e Γ.) It follows from (ii) that no point of Γ is a
Fatou point of Y and no point of Γ is a Meier point of Γ, and (i) and (iii)
imply that no point of Γ is an alternative point of Y. Hence, Theorems $β
and 2JΪ imply the following:

Almost every and nearly every point of Γ is an angular Picard point of

This example also serves to carry further a remark made in Ql, p. 1072].
Suppose that f(z) is a meromorphic function in D. Let us call a point ζ e Γ a
saturated Plessner point of/ provided that Cχ(f9 ζ) = Ω for every chord X at
ζ. The remark in question is that a Plessner point need not be a saturated
Plessner point; in fact, for the function Φ(z) described in the second example
above, almost every point of Γ is a Plessner point but not a saturated Ples-
sner point. We may now evidently assert the following:
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Every point of Γ is a Plessner point but not a saturated Plessner point of

Let us turn to the construction of the function T(z).
If zi, z2 are points of D, let p(zu z2) denote the non-Euclidean hyperbolic

distance between them (see [3, p. 343]). Denote by Ko the circle \z\ =
2 '

Suppose that - g - < r < l , and that K denotes the circle \z\=r. Then it is

readily seen that, given any positive number ε, there exists an r satisfying

r < r ' < l such that if Q is any rectilinear segment extending from a point of

Ko to a point of Γ, and if we denote the point of intersection of Q with K by

z and the point of intersection of Q with K'= {z: \z\ =/} by z\ then ρ(z, z')<ε.

It follows that there exists a sequence {rw}, where

such that, given any ε>0, there exists a natural number no = no(ε) with the
property that if we draw any rectilinear segment from a point of ^ 0 to a
point of Γ, and if we denote the point of intersection of this segment with
the circle

Kn={z: \z\=rn} (* = 1,2,3, •••)

by zn, then p(zn, zn+ί)<-~- for every n>n0.

Let S be the set of all points on the circle Ko of the form

1 ±/(o.;1/2;3,..)7r

2

where O.tιt2t3. is a ternary fraction in which each tj is either 0 or 2. For
every z e S, let Xz be the chord extending from the point z to the point

where O.bιb2b3.. is the binary fraction such that, for 7 = 1,2,3, .

f 0 if ί y =0,

I 1 if ί y = 2

(we consider the point z as belonging to XZ9 the point ζ as not). The set S
is a perfect nowhere dense subset of Ko. Let Au A2, A3, be the enumerably
many open subarcs of Ko that are complementary to 5. Let zmU zm2 be the
left and right end points of Am as viewed by an observer at the origin, and
let jum0 be the midpoint of the arc Am. Then to every point ζ of Γ, with the
exception of an enumerable everywhere dense subset V of Γ, there corres-
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ponds exactly one z e S such that Xz is a chord at C On the other hand, to
every point ζ e V there correspond exactly two points, zmU zm2, in 5 such that
XZmί and XZm2 are chords at ζ; let X* denote the chord at ζ extending from
βmo to C, and let βmn be the point of intersection of X* and Kn(n = l, 2, 3, • ••)•
The region whose boundary is

will be called Aζ.
On each arc ^4m, let z'mj ( / = 1 , 2) be a point between # w 0 and zmj; and let

i?m; be a circular arc extending from z'mj to C that lies (except for the points
z'mj and C) in Δ f and is tangent to X^. at the point ζ.

Now let m be an arbitrary natural number, and let ζ be the point of V
associated with Am. For every n = 0, 1, 2, •-, we carry out the following con-
struction. Take 7i + 3 numbers r(j\j=l, 2, 3, •••, n + S) such that

For y = l , 2, ••-, τz + 1, let Â » be the point of intersection of the chord Xj? with
the circle | z | =r(j\ Let σmw be the intersection of the arc Bml with the circle

and let rww be the intersection of the arc Bm2 with the circle
Designate as Jm the arc consisting of the rectilinear segments

extending from μmn to λ^ι\ from λc^Ό to σmn9 from σmn to rww, and from tmn

t o A W , « + I (7i = 0, 1, 2, ...).

Denote by c^ (£ = 0,1, 2, ) the enumerable set of complex numbers whose
real and imaginary parts are both rational, and agree that co = O. We define
a function g(z) on Jm as follows. We let

(2) g(βmn) = c0 (* = 0,1,2, ...),

(3) gUUΪ) = Cj U = 0, l ,2, •••; / = 1 , 2 , ..., n + ΐ),

(4) g(<Γmn)= g(rmn)=Cn + i ( ^ = 0, 1, 2 , •••),

and we define #(*) to be linear (possibly identically constant) on each one of
the (open) segments that go to make up Jm. Evidently g(z) as defined in this
way is continuous on Jm.

For every z e S, define g(z) on Xz to be identically equal to zero. Finally,
join each z e S as well as each βm0 to the origin by means of a rectilinear seg-
ment, and take g(z) to be identically equal to zero on each such segment.

Denote by T the set on which g(z) has thus been defined. Then T is a
tress [2, p. 186, Definition 1] having the property described in [2, p. 190,
Corollary 2], and g(z) is continuous on T. It follows from the proof of [2,
p. 190, Corollary 2] that there exists a function T(z\ holomorphic in D, such
that
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(5) iim(roo-#oo)=

Clearly then, for every z e S,

l imrU)=0,
Izhl

so that 0 is a chordal limit of Y at every point of Γ. It remains to be shown
that every point of Γ is a Plessner point of T.

Suppose first that ζe Γ—V. Let Δ be a Stolz angle at ζ. We have to
show that, in every neighborhood of C, T comes arbitrarily close in Δ to
every point of Ω. To do this, it suffices to show that given any ε > 0, any
δ > 0, and any nonnegative integer k, there is a point z e Δ with

(6) \z-ζ\<d and |/(*)-c* |<e.

Since Cf F, there exists a unique point z e S such that Xz is a chord at
C. The angle Δ contains points that lie either to the left of Xz or to the right
of Xz. Assume, for the sake of definiteness, that there are points of Δ that
lie to the left of Xz. Assume further that ε', with 0<ε'<ε, is less than the
smaller of the following two positive numbers: the non-Euclidean hyperbolic
distance between the sides of Δ the non-Euclidean hyperbolic distance be-
tween the left side of Δ and the chord Xz. Since the set V is everywhere
dense on Γ, there exists a sequence of points ζp 6 V tending to ζ from the left
as JD -̂OO. Let Jmp denote the arc at ζp that was constructed above, and ob-
serve that juMp0 tends to z from the left as/?-voo. Consequently, for all suf-
ficiently large/?, the arc JMp intersects Δ in a subarc of JMp. Let no(e') be the
natural number associated with the sequence {rn} at the beginning of the
construction of T. Determine a number δ\ with 0<δf<δ, so small that the
following conditions are satisfied:

(a) If Kn intersects the disk U8,= {z: \z — ζ | <£'}, then n>no(ef).
(b) If Kn intersects the disk U8,, then n^>k.
(c) If l-δ'<\z\<lB.ndz€ T, then \r(z)-g(z)\<ε.
Now let Δ(δ')=Δr\ UB'. Because of the assumption made about ε relative

to Δ, and as a consequence of (a), it is possible to find a p so large that the
intersection of JMp with Δ(ί') contains a subarc of JMp extending from a point
βmpa to λ%pQ

Ώ. It then follows from (b) that Δ(<f) contains the point λ^pq if
&>0. In any case, in view of (2) and (3), A(δ') contains a point z at which
g(z)=ck, and due to (c) this implies that (6) is satisfied.

Suppose finally that ζe V. Let Δ again be a Stolz angle at ζ. Consider
the region Δr that was associated above (see (1)) with the point ζ. If Δ inter-
sects Δr, then it is clear from the definition of the arcs Bmj (; = 1, 2) that, for
all sufficiently large values of n, Δ intersects the rectilinear segment extend-
ing from σmn to τmn. In view of (4), the definition of g(z) on the af oremention-
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ed rectilinear segment, and (5), we see directly that

cΔ(r, ζ)=Ω.

If, however, Δ does not intersect Δf, then Δ contains points that lie either to
the left of XZml or to the right of X*m2, say the former. Then as before there
exists a sequence of points ζp e V tending to ζ from the left; and an argument
analogous to the one given earlier leads once more to the conclusion that ζ is
a Plessner point of Γ.
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