An Example of Non-minimal Kuramochi Boundary Points

Fumi-Yuki Maeda

(Received February 28, 1967)

Introduction.

Z. Kuramochi [3] constructed an example of a plane domain whose Kuramochi boundary contains non-minimal points. However, he showed only the existence of non-minimal points and did not determine the distribution of such points. In this note, applying his idea, we shall give an example of a domain in the *d*-dimensional Euclidean space R^d ($d \ge 2$) whose Kuramochi boundary contains non-minimal points and for which we are able to determine the distribution of non-minimal points completely. Our example is similar to, but simpler than Kuramochi's.

More precisely, let F be a compact set in \mathbb{R}^d such that components of F cluster to the origin and F lies on the hyperplane $P = \{x = (x_1, \dots, x_d); x_d = 0\}$. Unber certain conditions on F, we shall see that the Kuramochi boundary of $\mathbb{R}^d - F$ corresponding to the origin is homeomorphic to the closed interval [-1, 1], the points corresponding to 1 and -1 are minimal and the other points are non-minimal (Theorem 4.1).

One may refer to [2], [4] and [5] for the theory of Kuramochi boundary, including the notions of full-harmonic and full-superharmonic functions, those of potential type, Kuramochi kernel (denoted by N in [4], [5] and by \tilde{g} in [2]), minimal points and non-minimal points. To apply the general theory, we take the domain $\mathcal{Q} = \hat{R}^d - F$ (instead of $R^d - F$), where \hat{R}^d is the one point compactification of R^d . \mathcal{Q} is a space of type \mathfrak{S} in the sense of Brelot-Choquet. Let B be the unit ball $\{x; |x| < 1\}$ in R^d and suppose F is contained in B. Then $K_0 = \hat{R}^d - B$ is a compact set in \mathcal{Q} . Thus we can consider full-superharmonic functions on $\mathcal{Q}_0 = \mathcal{Q} - K_0 = B - F$ relative to \mathcal{Q} . The set of all harmonic full-superharmonic functions of potential type on \mathcal{Q}_0 will be denoted by $\mathcal{D}_b \equiv \mathcal{D}_b(\mathcal{Q}_0)$ (cf. [4]). We remark here that any $u \in \mathcal{D}_b$ vanishes on $S = \{x; |x| = 1\}$, i.e., u is continuous if it is extended by 0 on S.

For a subset A in \mathbb{R}^d , let \overline{A} and ∂A be the closure and the boundary (in \mathbb{R}^d) of A, respectively. If $A \subset P$, let $\partial' A$ be the boundary of A relative to the (d-1)-dimensional space P.

Fumi-Yuki MAEDA

§1. Preliminaries—some general results.

1.1. Let H^+ be the class of all non-negative harmonic functions on $B - \{0\}$ vanishing on S. The Green function g_0 of B with pole at x = 0 belongs to H^+ . Conversely, the following is well-known:

LEMMA 1.1. If $h \in H^-$, then $h = \alpha g_0$ for some $\alpha \ge 0$.

1.2. Let F be a relatively closed subset of B (not necessarily contained in P). We shall say that F is a regular closed set in B if B-F is a domain and each point of $\partial F - \{0\}$ is regular for B-F. In this section, let F be a regular closed set in B. Let H_F^+ be the class of all non-negative harmonic functions on $B-F-\{0\}$ which vanish on $S \cup \partial F - \{0\}$ and are dominated by functions in H^+ .

Let $V_n = \{x; |x| \le 1/n\}, n = 1, 2, ...$ For $h \in H^+$, let h_n be the Dirichlet solution (in the sense of Perron) on $B - V_n - F$ with boundary values h on $\partial V_m - F$ and 0 on $\partial F \cup S - (V_n - \partial V_n)$. Then $\lim_{n \to \infty} h_n$ exists and belongs to H_F^+ . We denote the limit function by $I_F(h)$.

THEOREM 1.1. If $u \in H_F^+$, then $u = \alpha I_F(g_0)$ for some $\alpha \ge 0$.

PROOF: Let u_n be the Dirichlet solution on $B - V_n$ with boundary values u on $\partial V_n - F$ and 0 on $(\partial V_n \cap F) \cup S$. Then $h = \lim_{n \to \infty} u_n$ exists and $h \in H^+$. Hence by Lemma 1.1, $h = \alpha g_0$ for some $\alpha \ge 0$. On the other hand, we can show that $I_F(h) = u$. Hence $u = I_F(h) = \alpha I_F(g_0)$.

COROLLARY 1.1. If u is a harmonic function on $B-F-\{0\}$ such that it vanishes on $S \cup \partial F - \{0\}$ and $|u| \leq g_0$ on $B-F-\{0\}$, then $u = \alpha I_F(g_0)$ for some α with $|\alpha| \leq 1$.

PROOF: Since $-u \leq g_0$ and -u vanishes on $S \cup \partial F - \{0\}$, we have $-u \leq I_F(g_0)$. Hence $u + I_F(g_0) \in H_F^+$. By the above theorem, $u + I_F(g_0) = \alpha' I_F(g_0)$ for some $\alpha' \geq 0$. Since $u + I_F(g_0) \leq 2g_0$, $0 \leq \alpha' \leq 2$. Hence $u = (\alpha' - 1)I_F(g_0)$ and $|\alpha' - 1| \leq 1$.

1.3. THEOREM 1.2. Let $0 \in \partial F$. Then $I_F(g_0) > 0$ on B - F if and only if 0 is an irregular point for B - F.

PROOF: Let $(g_0)_F$ be the reduced function of g_0 on F in B. (It is denoted by $\mathscr{B}_{g_0}^F$ in [1].) It is easy to see that $g_0 - I_F(g_0) = (g_0)_F$ on B - F. On the other hand, 0 is irregular for B - F if and only if F is thin at 0, or equivalently, $(g_0)_F \neq g_0$ ([1], Chap. VII and VIII). Hence 0 is irregular for B - F if and only if $I_F(g_0) > 0$.

\$2. Functions which are full-harmonic except at the origin.

2.1. Now, we turn to the case where F lies on the hyperplane P. Thus, in what follows, we assume that F satisfies the following conditions: 1) F is a compact set in B such that $0 \in F \subset P$; 2) {0} is a component of F and components of $F - \{0\}$ are isolated but cluster to 0; 3) $F' = \overline{P - F} \cap B$ is a regular closed set in B (in the sense defined in 1.2); 4) $\partial' F$ is a polar set in B.

For example, if d=2, then $F-\{0\}$ consists of a countable number of closed intervals on the real axis clustering nowhere except to 0. (Cf. the example in [3].)

Let \mathring{F} be the interior points of F relative to P, i.e., $\mathring{F}=(P-F)\cap B$ and let $\mathring{F}'=(P-F)\cap B$. Conditions 2) and 3) imply $\mathring{F}\neq \emptyset$ and $\mathring{F}'\neq \emptyset$. By condition 2), $0 \in \partial' F \subset F'$, so that $0 \notin \mathring{F}$ and $0 \notin \mathring{F'}$.

By condition 1), $\mathcal{Q}_0 = B - F$ is a domain. Let $B^+ = \{x \in B; x_d > 0\}$ and $B^- = \{x \in B; x_d < 0\}$. Obviously, $\mathcal{Q}_0 = B^+ \cup \vec{F}' \cup B^-$. For $x = (x_1, \dots, x_d)$, let $\hat{x} = (x_1, \dots, x_{d-1}, -x_d)$, i.e., the symmetric point of x with respect to P.

2.2. Let D be a domain in B such that $\partial D \cap F = \emptyset$ and D is symmetric with respect to P. The family of all such domains will be denoted by \mathcal{D}_s . For a function f defined on D-P, we define functions \tilde{f} , f and \hat{f} on D-P by

and $\hat{f}(x) = f(x) + f(\hat{x}) = \tilde{f}(x) + f(x)$. Obviously, \tilde{f}, f, \hat{f} are symmetric with respect to P.

We shall denote by HS(D, F) the class of all harmonic functions u on D-F such that \tilde{u} and u can be extended to be harmonic on D-F'. The extended functions are also denoted by \tilde{u} and u. If $u \in HS(D, F)$ and u is bounded on $D-P-V_n$ for any n, then \hat{u} can be extended to be harmonic on $D-\{0\}$, since $\partial' F$ is assumed to be a polar set.

2.3. LEMMA 2.1. Let $D \in \mathcal{D}_s$. If u is full-harmonic on D-F, then $u \in HS(D, F)$.

PROOF: Let D' be any domain in \mathcal{D}_s such that $\partial D'$ is smooth, $D' \supset D \cap F$ and $\overline{D}' \subset D$. Let u^* (resp. u_*) be the Dirichlet solution for D' - F' with boundary values \tilde{u} (resp. u) on $\partial D'$ and u on $\tilde{F}' \cap D'$ (any finite values on $\partial' F \cap D'$). By the Dirichlet principle, $||u^*||_{D'-F'} \leq ||\tilde{u}||_{D'-F}$ and $||u_*||_{D'-F'} \leq ||\tilde{u}||_{D'-P}$ where $|| ||_G$ denotes the Dirichlet norm on G. Let $v(x) = u^*(x)$ if $x \in D' \cap B^+, = u_*(x)$ if $x \in D' \cap B^-$. Then v is continuous on D' - F if it is extended by u on $\tilde{F}' \cap D'$. Since v = u on $\partial D'$, v and u have the same boundary values. We have

$$\begin{aligned} \|v\|_{D'-F}^2 &= \frac{1}{2} (\|u^*\|_{D'-F'}^2 + \|u_*\|_{D'-F'}^2) \\ &\leq \frac{1}{2} (\|\tilde{u}\|_{D'-F}^2 + \|\tilde{u}\|_{D'-F}^2) = \|u\|_{D'-F}^2. \end{aligned}$$

Since u is full-harmonic on D-F, it follows that v = u (see [2], [4] or [5]), i.e., $u^* = \tilde{u}$ and $u_* = u$. Therefore, $u \in HS(D, F)$.

We say that $u \in \mathcal{P}_b(\mathcal{Q}_0)$ is full-harmonic except at 0, if, for any $D \in \mathcal{D}_s$ such that $0 \notin D$, u is full-harmonic on D-F. Let $\mathcal{P}_h \equiv \mathcal{P}_h(\mathcal{Q}_0) = \{u \in \mathcal{P}_b; u \text{ is full-harmonic except at } 0\}$.

```
COROLLARY 2.1. \mathcal{D}_h(\mathcal{Q}_0) \subset HS(B, F).
```

PROOF: By condition 2) for F, we see that a harmonic function u on \mathcal{Q}_0 belongs to HS(B, F) if and only if $u \in HS(D, F)$ for any $D \in \mathcal{D}_s$ such that $0 \notin D$. Therefore, this corollary follows from the above lemma.

2.4. We define functions u_0 and g_α (α : real) on Ω_0 as follows:

$$u_0 = \left\{egin{array}{cccc} I_{F'}(g_0) & ext{on} & B^+ \ 0 & ext{on} & \dot{F}' & ext{and} & g_lpha = g_0 + lpha u_0 \ - I_{F'}(g_0) & ext{on} & B^- \end{array}
ight.$$

It is easy to see that u_0 and g_α are harmonic on Ω_0 and vanish on S. By Theorem 1.2, $g_\alpha \neq g_0$ for $\alpha \neq 0$ if and only if 0 is an irregular point for B-F'.

THEOREM 2.1. If $|\alpha| \leq 1$, then $g_{\alpha} \in \mathcal{D}_{h}(\mathcal{Q}_{0})$.

PROOF: Let D be any domain in \mathcal{D}_s such that $\overline{D} \subset B$ and ∂D is smooth. Let $\mu_x \equiv \tilde{\mu}_x^{D^-F}$ be the full-harmonic measure (cf. [2] or [4]) for the domain D-F. μ_x is a measure on ∂D . We shall show that $g_\alpha(x) \ge \int g_\alpha \ d\mu_x$ for all $x \in D-F$ and that the equality holds if $0 \in D$. Since $g_\alpha \ge 0$ (for $|\alpha| \le 1$), g_α vanishes on S and is harmonic on \mathcal{Q}_0 , it follows that $g_\alpha \in \mathcal{P}_h(\mathcal{Q}_0)$.

Since the domain D and the function g_0 are symmetric with respect to P, so is $\varphi(x) = \int g_0 d\mu_x$, i.e., $\tilde{\varphi} = \varphi$. φ is a bounded function and, since φ is fullharmonic on D-F, $\varphi \in HS(D, F)$ by Lemma 2.1. Hence φ can be extended to be harmonic on D (cf. 2.2). Let $\gamma = g_0 - \varphi$ on D. Since g_0 and φ have the same boundary values, $\gamma(x) = 0$ if $0 \in D$ and γ is the Green function of D with pole at x = 0 if $0 \in D$.

Next, let $\psi(x) = \int u_0 d\mu_x$ for $x \in D-F$. Since $u_0(\hat{x}) = -u_0(x)$ and D is symmetric with respect to P, we have $\psi(\hat{x}) = -\psi(x)$. Hence $\tilde{\psi} = -\psi$ and $\psi = 0$ on \dot{F}' . On the other hand, ψ is full-harmonic, so that $\tilde{\psi}$ is harmonic on D-F' by

Lemma 2.1. Let $u = I_{F'}(g_0) - \tilde{\psi}$. Then u is harmonic on D - F' and u = 0 on $(\dot{F'} \cap D) \cup \partial D$. Since $\tilde{\psi}$ is bounded, $u \ge 0$ by the minimum principle. Also, we see that $u(x) = |u_0(x) - \psi(x)|$ for all $x \in D - P$.

If $0 \notin D$, then u is bounded. Hence u=0, i.e., $\tilde{\psi}=I_{F'}(g_0)$. Hence, $\psi=u_0$, so that $g_{\alpha}(x)=g_0(x)+\alpha u_0(x)=\varphi(x)+\alpha \psi(x)=\int g_0 d\mu_x+\alpha \int u_0 d\mu_x=\int g_{\alpha} d\mu_x$.

If $0 \in D$, then we compute $\delta(x) = g_{\alpha}(x) - \int g_{\alpha} d\mu_x = g_0(x) + \alpha u_0(x) - \varphi(x)$ $-\alpha \psi(x) = \gamma(x) + \alpha (u_0(x) - \psi(x))$. Our theorem is proved if $\delta(x) \ge 0$ for all $x \in D-F$. Since $u \le g_0 - \tilde{\psi}, \ \gamma - u = (\gamma - g_0) + (g_0 - u) \ge \gamma - g_0 + \tilde{\psi}$. Since $\gamma - g_0$ is bounded on $D, \ \gamma - u$ is bounded below. Also, $\gamma - u = 0$ on ∂D and ≥ 0 on $\dot{F}' \cap D$. Hence, by the minimum principle, we have $\gamma - u \ge 0$ on D - F'. If $x \in D - P$, then $\delta(x) = \gamma(x) + \alpha (u_0(x) - \psi(x)) \ge \gamma(x) - |\alpha| u(x) \ge \gamma(x) - u(x) \ge 0$. If $x \in \dot{F}' \cap D$, then $\delta(x) = \gamma(x) \ge 0$.

2.5. We now prove our main theorem in this section:

THEOREM 2.2. $\mathcal{D}_{h}(\mathcal{Q}_{0}) = \{\beta g_{\alpha}; \beta \geq 0 \text{ and } |\alpha| \leq 1\}.$

PROOF: By the above theorem, we only have the show that any $v \in \mathcal{P}_h(\mathcal{Q}_0)$ is of the form βg_α with $\beta \ge 0$ and $|\alpha| \le 1$. By Corollary 2.1, $v \in HS(B, F)$. Hence, as remarked in 2.2, \hat{v} is harmonic on $B - \{0\}$. Since v vanishes on S, if follows that $\hat{v} \in H^+$. By Lemma 1.1, $\hat{v} = 2\beta g_0$ for some $\beta \ge 0$. Let $u = v -\beta g_0$. Then $u \in HS(B, F)$ and $\hat{u} = \hat{v} - 2\beta g_0 = 0$. Hence u = 0 on \dot{F}' . Obviously, u = 0 on S. Since v and g_0 are bounded on $\mathcal{Q}_0 - V_n$ and since each point of $F' - \{0\}$ is regular for B - F', \tilde{u} is a harmonic function on B - F' vanishing on $S \cup F' - \{0\}$. Also, $|\tilde{u}| = |\tilde{v} - \hat{v}/2| = |\tilde{v} - \underline{v}|/2 \le \hat{v}/2 = \beta g_0$. Hence, by Corollary 1.1, $\tilde{u} = \alpha \beta I_{F'}(g_0)$ with $|\alpha| \le 1$. Hence $u(x) = \tilde{u}(x) = \alpha \beta I_{F'}(g_0)(x)$ if $x \in B^+$ and $u(x) = -u(\hat{x}) = -\alpha \beta I_{F'}(g_0)(x)$ if $x \in B^-$. Thus, $u = \alpha \beta u_0$, so that $v = \alpha \beta u_0 + \beta g_0 = \beta g_\alpha$.

§3. Kuramochi kernel for Ω_0 .

3.1. Let F and Ω_0 be as in the previous section. We denote by $N_p(x) \equiv N(p, x)$ the Kuramochi kernel (N-Green function) for Ω_0 (see [2], [4] or [5]). For a domain D, let $G_p^D(x) \equiv G^D(p, x)$ be the Green function for D.

THEOREM 3.1.

$$N(p, x) = \begin{cases} G^{B}(\hat{p}, x) + G^{B-F'}(p, x) & \text{if } p, x \in B^{+} \text{ or } p, x \in B^{-}, \\ G^{B}(\hat{p}, x) - G^{B-F'}(\hat{p}, x) & \text{if } p \in B^{+}, x \in B^{-} \text{ or } p \in B^{-}, x \in B^{+}, \\ G^{B}(\hat{p}, x) \equiv G^{B}(p, x) & \text{if } x \in \dot{F'} \text{ or } p \in \dot{F'}. \end{cases}$$

PROOF: Let $N_p^* \equiv N^*(p, x)$ be the function defined by the right hand side of the equation. It is easy to see that, for each p, N_p^* is harmonic on $\mathcal{Q}_0 - \{p\}$ and has the same singularity as G_p^B at x = p. Therefore, $w_p = N_p - N_p^*$ is bounded harmonic on \mathcal{Q}_0 . We shall show that $w_p \equiv 0$. Since N_p is full-harmonic on $\mathcal{Q}_0 - \{p\}$, Lemma 2.1 implies that $N_p \in HS(B - \{p, \hat{p}\}, F)$, so that \hat{N}_p is harmonic on $B - \{p, \hat{p}\}$. On the other hand, $\hat{N}_p^*(x) = N^*(p, x) + N^*(p, \hat{x})$ $= G^B(\hat{p}, x) + G^B(\hat{p}, \hat{x}) = G^B(\hat{p}, x) + G^B(p, x)$. Hence \hat{N}_p^* is also harmonic on $B - \{p, \hat{p}\}$. Hence \hat{w}_p is harmonic on B. Since $w_p = 0$ on S, $\hat{w}_p \equiv 0$. In particular, $w_p = 0$ on \dot{F}' .

Let $p \in B^+$. N_p is harmonic on $B^+ \cup B^-$ and since $N_p \in HS(B - \{p, \hat{p}\}, F)$, N_p is harmonic on B - F'. On the other hand, since $G_p^B - G_p^{B-F'}$ is bounded harmonic on B - F' and continuous everywhere on $B - \{0\}$, it is symmetric with respect to P, i.e., $G^B(p, \hat{x}) - G^{B-F'}(p, \hat{x}) = G^B(p, x) - G^{B-F'}(p, x)$. Hence, $N^*(p, x) = G^B(p, x) - G^{B-F'}(p, x)$ for any $x \in B^+ \cup B^-$. It follows that N_p^* is also harmonic on B - F'; hence so is w_p . Since w_p is bounded and vanishes on $\dot{F'} \cup S$, we have $w_p \equiv 0$.

Similarly, we obtain $\tilde{w}_p \equiv 0$ for $p \in B^-$, which implies $w_p \equiv 0$ for $p \in B^-$.

3.2. From the expression of N(p, x) in the above theorem, we see: If $p_i \rightarrow \xi \in F - \{0\}$ with $p_i \in B^+$ (resp. $p_i \in B^-$), then $\{N(p_i, x)\}$ converges to

$$N(\xi^+, x)(\text{resp. } N(\xi^-, x)) = \begin{cases} G^B(\xi, x) + G^{B-F'}(\xi, x) & \text{if } x \in B^+ \text{ (resp. } x \in B^-) \\ G^B(\xi, x) - G^{B-F'}(\xi, x) & \text{if } x \in B^- \text{ (resp. } x \in B^+) \\ G^B(\xi, x) & \text{if } x \in \dot{F'}. \end{cases}$$

We note that $G^{B-F'}(\xi, x) \neq 0$ for $\xi \in \dot{F}$. If $p_i \to 0$ and $\{N(p_i, x)\}$ converges, then the limit function u(x) belongs to $\mathcal{P}_h(\mathcal{Q}_0)$. Hence $u = \beta g_\alpha$ for some $\beta \geq 0$ and $|\alpha| \leq 1$ by Theorem 2.2. By Theorem 3.1, we see that $u(x) = g_0(x)$ if $x \in \dot{F'}$. It follows that $\beta = 1$. Thus, we have

THEOREM 3.2. To each $\xi \in F$, there correspond two Kuramochi boundary points ξ^+ and ξ^- and to each $\xi \in \partial'F - \{0\}$, there corresponds one point (denoted by ξ again). If $p_i \rightarrow 0$ and $\{N(p_i, x)\}$ converges, then the limit function is of the form g_{α} ($|\alpha| \leq 1$) and is different from any Kuramochi kernel corresponding to $\xi \in F - \{0\}$.

Thus the Kuramochi boundary Δ of Ω consists of two parts Δ' and Δ° , where $\Delta' = \{\xi^+, \xi^-; \xi \in \mathring{F}\} \cup \{\xi; \xi \in \partial'F - \{0\}\}$ and Δ° is the set of points defined by fundamental sequences tending to the origin.

§4. Kuramochi boundary at the origin.

4.1. For any $\xi \in \Delta^{\circ}$, let $N_{\xi}(x) \equiv N(\xi, x)$ be the corresponding Kuramochi

kernel. ξ is a minimal point if N_{ξ} is minimal in \mathcal{P}_b , i.e., if $N_{\xi} = u_1 + u_2$ with $u_i \in \mathcal{P}_b(i=1, 2)$ implies $u_1 = \lambda N_{\xi}$ for some constant λ .

LEMMA 4.1. $u \in \mathcal{P}_h$ is minimal in \mathcal{P}_b if and only if it is minimal in \mathcal{P}_h .

PROOF: Since $\mathcal{P}_h \subseteq \mathcal{P}_b$, the "only if" part is trivial. Suppose $u \in \mathcal{P}_h$ is minimal in \mathcal{P}_h and let $u = u_1 + u_2$ with $u_1, u_2 \in \mathcal{P}_b$. It is enough to show that $u_1, u_2 \in \mathcal{P}_h$. Take any $D \in \mathcal{D}_s$ such that $0 \in D$. Since u is full-harmonic on D-F and u_1, u_2 are full-superharmonic on $D-F, u_1, u_2$ must be full-harmonic there. Then it follows that $u_1, u_2 \in \mathcal{P}_h$.

LEMMA 4.2. If $u_0 \not\equiv 0$, then $u = g_a$ ($|\alpha| \leq 1$) is minimal in \mathcal{P}_h if and only if $|\alpha| = 1$.

PROOF: Since $u_0 \neq 0$, $g_1 \neq g_{-1}$. If $g_1 = \lambda g_{-1}$, then $2g_0 = \hat{g}_1 = \lambda \hat{g}_{-1} = 2\lambda g_0$ implies $\lambda = 1$, which is impossible. Hence g_1 and g_{-1} are not proportional. If $|\alpha| < 1$, then $g_{\alpha} = [(1+\alpha)/2]g_1 + [(1-\alpha)/2]g_{-1}$ and $(1+\alpha)/2$, $(1-\alpha)/2 \neq 0$. Hence g_{α} is non-minimal in \mathcal{P}_h .

Next, let $g_1 = u_1 + u_2$ with $u_i = \beta_i g_{\alpha_i}$, $\beta_i \ge 0$, $|\alpha_i| \le 1$ (i=1, 2). Since $2g_0 = \hat{g}_1 = \hat{u}_1 + \hat{u}_2 = 2\beta_1 g_0 + 2\beta_2 g_0 = 2(\beta_1 + \beta_2) g_0$, $\beta_1 + \beta_2 = 1$. It follows that $u_0 = \beta_1 \alpha_1 u_0 + \beta_2 \alpha_2 u_0$, or $\beta_1 \alpha_1 + \beta_2 \alpha_2 = 1$. These equalities can hold only when $\alpha_1 = \alpha_2 = 1$. Hence g_1 is minimal in \mathcal{P}_h . Similarly, we see that g_{-1} is minimal in \mathcal{P}_h .

4.2. Now, we are able to determine the part Δ° . Our final and main result is:

THEOREM 4.1. If 0 is a regular point for B-F', then Δ° consists of a single point and the corresponding Kuramochi kernel is equal to g_0 . If 0 is an irregular point for B-F', then Δ° is homeomorphic to the closed interval [-1, 1] in such a way that the points corresponding to -1 and 1 are minimal and other points are non-minimal; the Kuramochi kernel corresponding to $\alpha \in [-1, 1]$ is equal to g_{α} .

PROOF: Let $\{p_i\}$ be a sequence of points in B-F tending to 0 such that $\{N(p_i, x)\}$ is convergent. The limit function is of the form $g_{\alpha}(|\alpha| \leq 1)$ by Theorem 3.2. If 0 is a regular point for B-F', the $u_0 \equiv 0$ by Theorem 1.2, so that $g_{\alpha} = g_0$ for any α . Hence g_0 can be the only limit function of $\{N(p_i, x)\}$.

If 0 is an irregular point for B-F', then $u_0 \neq 0$ by Theorem 1.2. It is generally known (see [2], [4] or [5]) that any \mathcal{P}_b -minimal function is a constant multiple of $N(\xi, x)$ for some $\xi \in \Delta$. Thus, it follows from Theorem 3.2, Lemma 4.1 and Lemma 4.2 that there exist sequences $\{p_i\}$ and $\{q_i\}$ such that $p_i \rightarrow 0, q_i \rightarrow 0, N(p_i, x) \rightarrow g_1(x)$ and $N(q_i, x) \rightarrow g_{-1}(x)$. Now, we shall show that, for each α with $|\alpha| < 1$, there exists a sequence $\{p_i^{(\alpha)}\}$ such that $p_i^{(\alpha)} \rightarrow 0$ and $N(p_i^{(\alpha)}, x) \rightarrow g_\alpha(x)$. We may assume that $p_i, q_i \in V_i - F$. We can connect p_i Fumi-Yuki Maeda

and q_i by a curve Γ_i in $V_i - F$. Fix $x_0 \in \mathcal{Q}_0 - P$. There exists $p_i^{(\alpha)} \in \Gamma_i$ such that $N(p_i^{(\alpha)}, x_0) = [(1+\alpha)/2]N(p_i, x_0) + [(1-\alpha)/2]N(q_i, x_0)$. Subtracting a subsequence, if necessary, we may assume that $\{N(p_i^{(\alpha)}, x)\}$ is convergent. Then it is easy to see that $N(p_i^{(\alpha)}, x) \rightarrow g_\alpha(x)$. Thus, there is a one-to-one mapping φ of [-1, 1] onto Δ° such that $N(\varphi(\alpha), x) = g_\alpha(x)$. From the definition of g_α , we see that φ is a homeomorphism. Now our theorem follows from Lemmas 4.1. and 4.2.

References

- [1] M. Brelot, Eléments de la théorie classique du potentiel, 3e éd., Paris, C.D.U., 1965.
- [2] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Berlin-Göttingen-Heidelberg, 1963.
- [3] Z. Kuramochi, Examples of non minimal points on Riemann surfaces of planar character, J. Fac. Sci. Hokkaido Univ., Ser. I, 19 (1965), 28-48.
- [4] F-Y. Maeda, On full-superharmonic functions, Proceedings of Symposium on Kuramochi Boundary, 1965, (mimeographed).
- [5] M. Ohtsuka, An elementary introduction of Kuramochi boundary, J. Sci. Hiroshima Univ., Ser. A-I Math., 28 (1964), 271-299.

Department of Mathematics, Faculty of Science, Hiroshima University