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Introduction.

Z. Kuramochi [3] constructed an example of a plane domain whose Kura-
mochi boundary contains non-minimal points. However, he showed only the
existence of non-minimal points and did not determine the distribution of such
points. In this note, applying his idea, we shall give an example of a domain
in the ^-dimensional Euclidean space Rd ( d > 2 ) whose Kuramochi boundary
contains non-minimal points and for which we are able to determine the dis-
tribution of non-minimal points completely. Our example is similar to, but
simpler than Kuramochi's.

More precisely, let F be a compact set in Rd such that components of F
cluster to the origin and F lies on the hyperplane P={χ = (xi, •••:> χd)\ Xd = 0}.
Unber certain conditions on F, we shall see that the Kuramochi boundary of
Rd — F corresponding to the origin is homeomorphic to the closed interval Q—1,
1], the points corresponding to 1 and — 1 are minimal and the other points
are non-minimal (Theorem 4.1).

One may refer to pΓ], Q4Q and [β~] for the theory of Kuramochi boundary,
including the notions of full-harmonic and full-superharmonic functions, those
of potential type, Kuramochi kernel (denoted by N in [4], [5] and by g in
[_ZJ)> minimal points and non-minimal points. To apply the general theory,
we take the domain Ω—Rd — F (instead of Rd — F), where Rd is the one point
compactification of Rd. Ω is a space of type <§ in the sense of Brelot-Choquet.
Let B be the unit ball {χ; \χ\ <1} in Rd and suppose F is contained in B.
Then Ko = Rd — B is a compact set in Ω. Thus we can consider full-super-
harmonic functions on Ω0=Ω—K0=B—F relative to Ω. The set of all harmonic
full-superharmonic functions of potential type on Ωo will be denoted by
φbΞΞΞφb(Ω0) (cf. [4]). We remark here that any u e Φb vanishes on S={χ;
I x I =1}, i.e., u is continuous if it is extended by 0 on S.

For a subset A in Rd, let A and dA be the closure and the boundary (in Rd)
of A, respectively. If ACP, let d'A be the boundary of A relative to the
(d—l)-dimensional space P.
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§1. Preliminaries—some general results.

1.1. Let H+ be the class of all non-negative harmonic functions on
B — {0} vanishing on S. The Green function g0 of B with pole at x = 0 belongs
to H+. Conversely, the following is well-known:

LEMMA 1.1. If he H~, then h — ago for some α > 0 .

1.2. Let F be a relatively closed subset of B (not necessarily contained
in P). We shall say that F is a regular closed set in B if B — F is a .domain
and each point of dF— {0} is regular for B — F. In this section, let F be a
regular closed set in B. Let HF be the class of all non-negative harmonic
functions on B — F— {0} which vanish on S\JdF— {0} and are dominated by
functions in H+.

Let Vn={χ; \χ\<l/n}, rc = l, 2, •••. For h e H\ let An be the Dirichlet
solution (in the sense of Perron) on B—Vn — F with boundary values Λ, on
9 F,«-.F and 0 on dF\jS-{ Vn-d Vn). Then \\mhn exists and belongs to H+

F. We

denote the limit function by IF{h).

THEOREM 1.1. If u e Hp, then u = aIF(g0) for some α > 0 .

PROOF: Let un be the Dirichlet solution on B— Vn with boundary values
u ondVn — F and 0 on (dVnΓ\F)\jS. Then Λ = lim un exists and h e H+. Hence

by Lemma 1.1, h = ago for some α > 0 . On the other hand, we can show that
IFQI) = U. Hence u — IF(h) = aIF(go).

COROLLARY 1.1. If u is a harmonic function on B — F—{0} such that it
vanishes on SKJdF— {0} and \ u | <go on B — F— {0}, then u = aIF(g0) for some
a with \a\

PROOF: Since —u<Zgo and — u vanishes on SVJdF— {0}, we have — u <
iF(go)' Hence u+ IF(g0)e Hj. By the above theorem, u + IF(go) = a'IF(go)
for some α '>0. Since w + /Xgo)<2go, 0 < α ; < 2 . Hence u = (a'-l)IF(g0)
and | α ' -

1.3. THEOREM 1.2. Let 0 6 9F. Then IF(g0)>0 on B-F if and only if
0 is an irregular point for B — F.

PROOF: Let (go)F be the reduced function of g0 on F in B. (It is denoted
by £ζo in [1].) It is easy to see that g0— IF(g0) = (g0)F on B — F. On the
other hand, 0 is irregular for B — F if and only if F is thin at 0, or equiva-
lently, (go)Fφgo ([1], Chap. VII and VIII). Hence 0 is irregular for B-F if
and only if IF(gQ)>0.
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§2. Functions which are full-harmonic except at the origin.

2.1. Now, we turn to the case where F lies on the hyperplane P. Thus,

in what follows, we assume that F satisfies the following conditions: 1) F is

a compact set in B such that 0 e FCP; 2) {0} is a component of F and com-

ponents of F—{0} are isolated but cluster to 0; 3) F =P—FΓ\B is a regular

closed set in B (in the sense defined in 1.2); 4) d'F is a polar set in B.

For example, if d = 2, then F— {0} consists of a countable number of closed

intervals on the real axis clustering nowhere except to 0. (Cf. the example

• i n [ 3 ] ' }

Let F be the interior points of F relative to P, i.e., F={P—F'')Γ\B and

let F = (P-F)Γ\B. Conditions 2) and 3) imply FΦ 0 and F'φtf. By con-

dition 2), 0 e d'FCF, so that 0 <r F and 0 ί F.

By condition 1), Ω0 = B — F is a domain. Let B" = {xc B; χd>0} and

B={xβ B; χd<0}. Obviously, Ω0 = B+\jF\jB~. F o r * = (xu •••, * r f ) , l e t

£ = (xι, • ••, Λ;rf_i, — #</), i.e., the symmetric point of x with respect to P.

2.2. Let D be a domain in B such that dDΓ\F= 0 and D is symmetric

with respect to P. The family of all such domains will be denoted by ζbs.

For a function / defined on D — P, we define functions /, / and / o n D — P by

' / ( * ) if xeB + Γ\D ί/(.τ) if i e i

! /(£) if * e £-ΛZ> ~ I /(*) if Λ 6 i

and f(x)=f(χ)-irf(x) = f(χ)Jrf(χ). Obviously, /, / , / are symmetric with re-

spect to P.

We shall denote by HS(D, F) the class of all harmonic functions u on

D — F such that ύ and u can be extended to be harmonic on D — F. The ex-

tended functions are also denoted by u and u. If u e HS(D, F) and u is

bounded on D — P— Vn for any n, then ύ can be extended to be harmonic on

D— {0}, since d'F is assumed to be a polar set.

2.3. LEMMA 2.1. Let D e Q)s. If u is full-harmonic on D — F, then u 6

PROOF: Let D' be any domain in Q)s such that dD' is smooth, D'^)DnF

and D' C D. Let zx* (resp. u*) be the Dirichlet solution for D' — F' with bound-

ary values u (resp. it) ondD' and u on Fr\D' (any finite values on d'FίΛD'). By

the Dirichlet principle, | |w*||^-^<||w||^-/' and ||^*||J9'-F'<||w||z>'-/> where

|| | |G denotes the Dirichlet norm on G. Let v(χ)=u*(χ) if x e D'r\B+,= u*(χ)

iί x e D'ΓΛB. Then z; is continuous on .D' — F if it is extended by u on F'r\D'.

Since v = iίon dD', # and ^ have the same boundary values. We have
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\\v\\2

D>-F = K\\u*\\2

D'-F' +\\u*\\2

D>-F>)

Since u is full-harmonic on D — F, it follows that v — u (see pΓ], [_4Γ\ or C5J),
i.e., u* = ϊί and u* = u. Therefore, u e HS{D, F).

We say that u e §>b(βo) is full-harmonic except at 0, if, for any D e Q)s

such that 0 { D, u is full-harmonic on D — i\ Let φh~φh(Ω0)= {u e °Ph u is
full-harmonic except at 0}.

COROLLARY 2.1. Φh(Ω0) C HS(B, F).

PROOF : By condition 2) for F, we see that a harmonic function u on Ωo

belongs to HS(B, F) if and only if u e HS(D, F) for any D e Q)s such that 0 <r D.
Therefore, this corollary follows from the above lemma.

2.4. We define functions u0 and ga (a: real) on Ωo as follows:

on 5 +

o = ^ 0 on F and g α

-lF'(go) on .fl-

it is easy to see that u0 and ga are harmonic on J20 and vanish on S. By Theo-
rem 1.2, gaφgo ΐor aφO if and only if 0 is an irregular point for B — F'.

THEOREM 2.1. 7/ | a \ < 1, ίfcew ga e Φ

PROOF: Let D be any domain in Q)s such that DCiB and dD is smooth.
Let jux=/iζ~F be the full-harmonic measure (cf. [_2~] or Q4Γ|) for the domain

D — F. ^ , is a measure on dD. We shall show that ga\χ)>\ga dμx for all

x 6 D — F and that the equality holds if 0 * D. Since g α > 0 (for \a\ <1) , ^Λ

vanishes on 5 and is harmonic on J20, it follows that g Λ 6 ^Λ(i2o).
Since the domain i) and the function g0 are symmetric with respect to P,

so is #>(#)= \go djux, i.e., <̂  = <̂ . ^ is a bounded function and, since φ is full-

harmonic on D — F, φ e HS(D, F) by Lemma 2.1. Hence <p can be extended to,

be harmonic on D (cf. 2.2). Let γ= g0 — φonD. Since g0 and ^ have the same

boundary values, γ(χ)=0 if 0 ξ D and γ is the Green function of D with pole

Next, let ψ(x)= \u0 djux for x e D — F. Since uo(χ)= — uo(x) and D is sym-

metric with respect to P, we have φ(x)= —φ(χ). Hence ψ=—ψ and 0 = 0 on

F'. On the other hand, ψ is full-harmonic, so that ψ is harmonic on D — F by
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Lemma 2.1. Let u — IF,(g0) — ψ. Then u is harmonic on D — Fr and u = ΰ on
(FΓ\D)\JdD. Since ψ is bounded, w > 0 by the minimum principle. Also, we
see that u(x) = \ uo(χ) — ψ(χ)\ for all x e D — P.

If 0 <f D, then u is bounded. Hence u = 0, i.e., ψ=Ip,(g0). Hence, ψ = u0,

so that ga(x)=go(x) + auo(x) = φ(x) + aφ(x)=\go fe + αU 0 dβx=\ga dβx.

If 0 e D, then we compute tf(#) = ga(x)— \ga djux= go(χ) + auo(χ) — φ(x)

= γ(χ) + a(uo(x) — ψ(x)). Our theorem is prvoed if δ(χ)~>0 for all
xeD-F. Since a < go-</s γ-u = (γ- go) + (go-u)>γ- go + ψ. Since r - g o
is bounded on D,γ—u is bounded below. Also, γ— u = 0 on dD and > 0 on
F'r\D. Hence, by the minimum principle, we have γ— u^>0 on D — F'. If
x e D-P, then <?(*) = r(^) + a(uo(x) - ψ(χ)) > γ(χ) - \ a \ u(χ) ^ γ(x) - u(χ) > 0.
lίxeF'nD, then δ(x) = γ(x)>0.

2.5. We now prove our main theorem in this section:

THEOREM 2.2. 5>ΛC0O) ={£#*; /?>0 and | α

PROOF : By the above theorem, we only have the show that any υ e §)h(ΩQ)
is of the form βga with /9>0 and \a\<l. By Corollary 2.1, v e HS(B, F).
Hence, as remarked in 2.2, v is harmonic on B — {0}. Since v vanishes on S,
if follows that ϋeH+. By Lemma 1.1, v = 2βg0 for some β > 0 . Let u = v
-βgo. Then ueHS(B,F) and ύ = ϋ-2βgo = O. Hence ^ = 0 on F. Obvi-
ously, u = 0 on S. Since v and g0 are bounded on i20 — Vn and since each point
of Fr —{ϋ\ is regular for B — F\ U is a harmonic function on B — F' vanishing
on SWF'-{0}. Also, | £ | = | £ - ί > / 2 | H £ - * H / 2 : 0 / 2 = /?go. Hence, by Corol-
lary 1.1, u = a(3IF,(g0) with | α | < 1 . Hence u(x) = ύ(x) = aβIF,(go)(x) \ί x e B+

and M ( # ) = — u(x)= — aβIF,(g0)(x) if x e B~. Thus, u = aβu0, so that v = aβu0

§3. Kuramochi kernel for Ωo.

3.1. Let F and J20 be as in the previous section. We denote by Np{x)
N(p, x) the Kuramochi kernel (TV-Green function) for Ωo (see Q2J, [_4Γ\ or

For a domain D, let Gζ(χ)^GD(p, x) be the Green function for D.

THEOREM 3.1.

' GB(β, x) + GB-FXP, x) if p,χe B+ or p,xe JB",

, x)= GB(p, x)-GB~FXp, x) if pe B+, x e B~ or P e B~, x a B+,

s G
B(p, x)^GB(p, x) if xeF or pe F.
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PROOF: Let N'%=N*(p, x) be the function defined by the right hand side
of the equation. It is easy to see that, for each p, TV* is harmonic on Ωo — {p}
and has the same singularity as GB

P at χ=p. Therefore, wp = Np — Nf is
bounded harmonic on ΩQ. We shall show that wp=0. Since Np is full-har-
monic on Ω0—{p}, Lemma 2.1 implies that Np e HS(B— {p, p}, F)> so that
Np is harmonic on B— {p, p}. On the other hand, N*(x) = N*(p, χ) + N*(p, x)
=GB(p, x) + GB(p, x) = GB(p, x) + GB(p, x). Hence Nf is also harmonic on
B—{p, p}. Hence wp is harmonic on B. Since wp = 0 on 5, ϊvp=0. In parti-
cular, wp = 0 on F".

Let peB+. Np is harmonic oτvBΛ\jB~ and since NpeHS(B— {p,p},F\ Np

is harmonic on B — F. On the other hand, since G^ — Gξ~p/ is bounded harmo-
nic on B — F' and continuous everywhere on B— {0}, it is symmetric with
respect to P, i.e., GB(p, x)-GB~FXp, χ)=GB(p, x)-GB~FXp, x). Hence, N*(p, x)
=GB(p, χ) — GB'FXp, x) for any x e B+\JB~. It follows that N* is also harmo-
nic on B — F hence so is wp. Since wp is bounded and vanishes on F'KJS, we
have wp=0. Since % ^ 0 , it follows that ϊbp=0 and hence wp=0.

Similarly, we obtain ϊύp=0 for p e B~, which implies wp=0 for p e B~.

3.2. From the expression of N(p, x) in the above theorem, we see: If
Pi^ξ 6 F— {0} with pi e i?+(resp. p{ e B~), then {N(pi9 x)} converges to

GB($, χ) + GB~FXξ, x) if x 6 B+ (resp. x e B~)

GB(ξ, χ) — GB~FXξ, x) if x e B~ (resp. x e B+)

GB{ξ,x) if xeF.

We note that GB'FXξ, x) Φ 0 for ξ e F. If p^O and {N(ph x)} converges, then
the limit function u(χ) belongs to §>h(Ωo). Hence u — βga for some /?>0 and
\a\ < 1 by Theorem 2.2. By Theorem 3.1, we see that u(x)=go(x) if x e F".
It follows that /? = 1. Thus, we have

THEOREM 3.2. To each ξ 6 F, there correspond two Kuramochi boundary
points ξ+ and ξ~ and to each ξ e drF— {0}, there corresponds one point (denoted
by ξ again). If p^O and {N{p^ x)} converges, then the limit function is of
the form ga (| a \ < 1) and is different from any Kuramochi kernel correspond-
ing to ξ e F- {0}.

Thus the Kuramochi boundary Δ of Ω consists of two parts A' and Δ c ,
where Δ '= {£+, ξ~ ξ e F} \j {ξ ξ e d'F- {0}} and Δ° is the set of points defined
by fundamental sequences tending to the origin.

§4. Kuramochi boundary at the origin.

4.1. For any ξ e Δ°, let Nξ(χ)=N(ξ, x) be the corresponding Kuramochi
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kernel. $ is a minimal point if Nξ is minimal in °Ph, i.e., if Nξ = uι-{-u2 with
Ui e Φb(ί = l, 2) implies uι = λNξ for some constant λ.

LEMMA 4.1. u € §)h is minimal in ψb if and only if it is minimal in §>h

PROOF: Since φh^φb, the "only if" part is trivial. Suppose u e φh is
minimal in §)h and let u = uι-\- u2 with uu u2 e @>b. It is enough to show that
uu u2 € Φh Take any D eQ)s such that 0 * D. Since u is full-harmonic on
D — F and uu u2 are full-superharmonic on D — F, uu u2 must be full-harmonic
there. Then it follows that uu u2 e °Ph.

LEMMA 4.2. // u0 Φ 0, then u = ga (| a \ < 1) is minimal in §>h if and only

if \a\=l.

PROOF: Since uo^O, gι¥= g-i- I f gi = λg-i,theτι 2go = gι = λg^1 = 2λgo im-
plies λ = l, which is impossible. Hence gι and g_i are not proportional. If
| α | < l , then ga = Πl + ay2Jgl + [_(l-a)/2Jg^ and (l + α)/2, (l-a)/2φQ.
Hence ga is non-minimal in φh.

Next, let £1 = ^1 + 2̂ with Ui = βigai, A > 0 , | ^ | < 1 (ί = l, 2). Since
2̂ -0 = £i = ώi+a 2 = 2β1go + 2β2go = 2(β1 + β2)g0, β! + β2 = l. It follows that
uo = βι<Xiuo + β2<X2Uo, or /?iαi + jS2α2 = l. These equalities can hold only when
ax = a2 = l. Hence gι is minimal in φh. Similarly, we see that g _i is minimal
in &h.

4.2. Now, we are able to determine the part Δ°. Our final and main
result is:

THEOREM 4.1. If 0 is a regular point for B — F\ then Δ° consists of a
single point and the corresponding Kuramochi kernel is equal to g0. If 0 is
an irregular point for B — F\ then Δ° is homeomorphic to the closed interval
Q —1, 1] in such a way that the points corresponding to —1 and 1 are minimal
and other points are non-minimal the Kuramochi kernel corresponding to
a e Q — 1, 1] is equal to ga.

PROOF : Let {pi} be a sequence of points in B — F tending to 0 such that
{N(pi, x)} is convergent. The limit function is of the form ga (\a\<X) by
Theorem 3.2. If 0 is a regular point for B — F\ the uo=O by Theorem 1.2,
so that ga= go for any a. Hence g0 can be the only limit function of
{N(Phx)}.

If 0 is an irregular point for B — F\ then uo^O by Theorem 1.2. It is
generally known (see [2J, Q4] or [βj) that any ^-minimal function is a con-
stant multiple of N(ξ, x) for some ξ e Δ. Thus, it follows from Theorem 3.2,
Lemma 4.1 and Lemma 4.2 that there exist sequences {pi} and {g*} such that
/>,•—•(), <7ί—•(), N(pi, x)^*gι(x) and N(qh x)^>g_ι(x). Now, we shall show that,
for each a with \a\ < 1, there exists a sequence {pi(a)} such that />/α)^0 and
N(pi{a\ χ)->ga(χ). We may assume that pt, q{ e Vi — F. We can connect p{
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and q{ by a curve Γ{ in Vi — F. Fix x0 e Ωo — P. There exists pi(a) e Γ{ such
that N(Pi

(a\ xo) = [(1 + a)/2JN(Ph xo) + [(1 - a)/2JN(qh x0). Subtracting a sub-
sequence, if necessary, we may assume that {N(p{

(a\ x)} is convergent. Then
it is easy to see that N(p{

(a\ x)^»ga(x). Thus, there is a one-to-one mapping
φ of Q — 1, 1] onto Δ° such that N(φ(a), x)= ga(x). From the definition of ga,
we see that φ is a homeomorphism. Now our theorem follows from Lemmas
4.1. and 4.2.
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