Dimensions of the Derivation Algebras of Lie Algebras

Shigeaki TôGô

(Received February 27, 1967)

Let L be a Lie algebra over a field of arbitrary characteristic. In the paper [3], J. Dozias has shown that if $L \neq[L, L]$ then the dimension of the derivation algebra $\mathfrak{D}(L)$ of L is not less than $\operatorname{dim} L$. In this paper, making use of the method of constructing outer derivations of L which has been shown in [6], we shall give some effective estimates of $\operatorname{dim} \mathfrak{D}(L)$.

In Section 1 we shall recall some results which have been already shown in [4] and [6]. In Section 2 we shall give several estimates of $\operatorname{dim} \mathfrak{D}(L)$. If $Z(L)$ is the center of L and $C([L, L])$ is the centralizer of $[L, L]$ in L, then one of the estimates is that if $L \neq[L, L]$

$$
\operatorname{dim} \mathfrak{D}(L) \geq \operatorname{dim} L+\max \{\operatorname{dim} Z(L) \operatorname{dim} L /[L, L]-\operatorname{dim} C([L, L]), 0\}
$$

In Section 3 we shall give several examples which are connected with the results in Section 2.

1. Throughout the paper we denote by Φ a field of arbitrary characteristic unless otherwise stated and by L a finite dimensional Lie algebra over a field Φ. We denote by $\mathfrak{D}(L)$ the derivation algebra of L, that is, the Lie algebra of all the derivations of L and by $\mathfrak{F}(L)$ the ideal of $\mathfrak{D}(L)$ consisting of all the inner derivations of L. We denote by $Z(L)$ the center of L and, for a subalgebra H of L, by $C(H)$ the centralizer of H in L. As usual $[L, L]$ will be denoted by L^{2}.

In the next section we need the following two results.
Lemma 1. Let L be a Lie algebra over a field Φ and let M be an ideal of L of codimension 1 containing $Z(L)$. Then:
(i) $[L, Z(M)] \subset Z(M)$ and

$$
\operatorname{dim} Z(M)=\operatorname{dim} Z(L)+\operatorname{dim}[L, Z(M)]
$$

(ii) If $L=(e)+M$ and $Z(L) \neq(0)$, every endomorphism of L sending e to any element of $Z(M) \backslash[L, Z(M)]$ and M into (0) is an outer derivation of L.

Lemma 2. Let L be a Lie algebra over a field Φ. If L is the direct sum of the ideals L_{1} and L_{2}, then

$$
\begin{aligned}
\operatorname{dim} \mathfrak{D}(L)=\operatorname{dim} \mathfrak{D}\left(L_{1}\right) & +\operatorname{dim} \mathfrak{D}\left(L_{2}\right)+\operatorname{dim} Z\left(L_{1}\right) \operatorname{dim} L_{2} / L_{2}^{2}+ \\
& +\operatorname{dim} Z\left(L_{2}\right) \operatorname{dim} L_{1} / L_{1}^{2} .
\end{aligned}
$$

The statements (i) and (ii) in Lemma 1 have been shown respectively in the proofs of Lemma 1 and Theorem 1 in [6] (see [5]). Lemma 2 is an easy consequence of Lemma 1 in [4].
2. We first prove the following

Theorem 1. Let L be a Lie algebra over a field Φ such that $L \neq L^{2}$ and $(0) \neq Z(L) \subset L^{2}$. Let $L=\left(e_{1}, e_{2}, \ldots, e_{n}\right)+L^{2}$ with $n=\operatorname{dim} L / L^{2}$ and let $M_{i}=$ $\left(e_{1}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{n}\right)+L^{2}$.
(i) If we denote by G the space spanned by all $x \in L$ such that $\left[x, e_{i}\right] \epsilon\left[e_{i}\right.$, $\left.Z\left(M_{i}\right)\right]$ for some i, then
(1) $\operatorname{dim} \mathfrak{D}(L) \geq \operatorname{dim} L+\operatorname{dim} Z(L)\left(\operatorname{dim} L / L^{2}-1\right)-\operatorname{dim} C\left(L^{2}\right)+\operatorname{dim}\left(C\left(L^{2}\right) \cap G\right)$.
(ii) If we put $Z_{i}=\left(\sum_{M \epsilon \mathfrak{F}_{i}} Z(M)\right) /\left[e_{i}, Z\left(M_{i}\right)\right]$ where \mathfrak{F}_{i} is the set of all the ideals M complementary to (e_{i}) and such that $\left[e_{i}, Z(M)\right]=\left[e_{i}, Z\left(M_{i}\right)\right]$, and if we denote by H the space spanned by all $x \in L$ such that $[x, L] \subset \bigcap_{i=1}^{n}\left[e_{i}, Z\left(M_{i}\right)\right]$, then

$$
\begin{align*}
\operatorname{dim} \mathfrak{D}(L) \geq \operatorname{dim} L+\max _{i}\left(\operatorname{dim} Z_{i}\right) & +\operatorname{dim} Z(L)\left(\operatorname{dim} L / L^{2}-2\right) \tag{2}\\
& -\operatorname{dim} C\left(L^{2}\right)+\operatorname{dim}\left(C\left(L^{2}\right) \cap H\right) .
\end{align*}
$$

Proof. (i): Put $m=\operatorname{dim} Z(L)$. Then by (i) of Lemma 1 we have $\operatorname{dim}\left(Z\left(M_{i}\right) /\left[e_{i}, Z\left(M_{i}\right)\right]\right)=m$ for each i. Choose the elements $z_{i j}, j=1,2, \ldots, m$, in such a way that

$$
Z\left(M_{i}\right)=\left(z_{i 1}, \cdots, z_{i m}\right)+\left[e_{i}, Z\left(M_{i}\right)\right] .
$$

By (ii) of Lemma 1 every endomorphism $D_{i j}$ of L sending e_{i} to $z_{i j}$ and M_{i} into (0) is an outer derivation of L. The set of $D_{i j}$ with $i=1,2, \ldots, n$ and $j=1,2$, \ldots, m is linearly independent. If we denote by \mathfrak{M} the space spanned by all the $D_{i j}$, then $\operatorname{dim} \mathfrak{M}=\operatorname{dim} Z(L) \operatorname{dim} L / L^{2}$. Let $x \in L$ be such that ad x is a non-zero element of $\mathfrak{J}(L) \cap \mathfrak{M}$. Then $\left[x, L^{2}\right]=(0)$ and $\left[x, e_{i}\right] \notin\left[e_{i}, Z\left(M_{i}\right)\right]$ for $i=1,2, \ldots, n$. It follows that $x \in C\left(L^{2}\right) \backslash\left(C\left(L^{2}\right) \cap G\right)$. Hence

$$
\operatorname{dim}(\Im(L) \cap \mathfrak{M}) \leq \operatorname{dim} C\left(L^{2}\right)-\operatorname{dim}\left(C\left(L^{2}\right) \cap G\right)
$$

Consequently we have

$$
\begin{aligned}
\operatorname{dim} \mathfrak{D}(L) & \geq \operatorname{dim}(\Im(L)+\mathfrak{M}) \\
& =\operatorname{dim} \mathfrak{F}(L)+\operatorname{dim} \mathfrak{M}-\operatorname{dim}(\mathfrak{F}(L) \cap \mathfrak{M}) \\
& \geq \operatorname{dim} L+\operatorname{dim} Z(L)\left(\operatorname{dim} L / L^{2}-1\right)-\operatorname{dim} C\left(L^{2}\right)+\operatorname{dim}\left(C\left(L^{2}\right) \cap G\right)
\end{aligned}
$$

(ii): We may assume that $\operatorname{dim} Z_{1}=\max \left(\operatorname{dim} Z_{i}\right)$. Put $h=\operatorname{dim} Z_{1}$. Then we can write

$$
\sum M \epsilon \mathfrak{F}_{1} Z(M)=\left(z_{11}, \cdots, z_{1 m}, z_{1, m+1}, \cdots, z_{1 m_{1}}, \ldots, z_{1, m_{k-1}+1}, \ldots, z_{1 m_{k}}\right)+\left[e_{1}, Z\left(M_{1}\right)\right]
$$

where $m_{k}=h,\left(z_{11}, \ldots, z_{1 m}\right) \subset Z\left(M_{1}\right),\left(z_{1, m+1}, \ldots, z_{1 m_{1}}\right) \subset Z\left(M_{11}\right), \ldots,\left(z_{1, m_{k-1}+1}, \ldots\right.$, $\left.z_{1 m_{k}}\right) \subset Z\left(M_{1 k}\right)$ and $M_{1 j} \in \mathfrak{F}_{1}$ for $j=1,2, \ldots, k$. Making a convention that $m=m_{0}$, for any j such that $m_{i-1}<j \leq m_{i}$ we denote by $D_{1 j}$ the endomorphism of L sending e_{1} to $z_{1 j}$ and $M_{1 i}$ into (0). Then by (ii) of Lemma $1 D_{1 j}$ is an outer derivation of L. For $i=1, \ldots, n$ and $j=1,2, \ldots, m$, we define $D_{1 j}$ as in the proof of (i). Then the set of all $D_{i j}$ is linearly independent. In fact, if $\sum_{i, j} \lambda_{i j} D_{i j}=0$, then $\sum_{j=1}^{h} \lambda_{1 j} D_{1 j} e_{1}=\sum_{j=1}^{h} \lambda_{1 j} z_{1 j}=0$. Hence $\lambda_{1 j}=0$ for $j=1,2, \ldots, h$. It is now immediate that $\lambda_{i j}=0$ for $i=2,3, \ldots, n$ and $j=1,2, \ldots, m$. Thus these $D_{i j}$ are linearly independent. If we denote by \mathfrak{M} the space spanned by all of these $D_{i j}$, then

$$
\operatorname{dim} \mathfrak{M}=h+\operatorname{dim} Z(L)\left(\operatorname{dim} L / L^{2}-1\right) .
$$

Let $x \in L$ be such that ad x is a non-zero element of $\mathfrak{y}(L) \cap \mathfrak{M}$. Then $\left[x, L^{2}\right]$ $=(0)$ and $\left[x, e_{i}\right]$ belongs to a subspace of L complementary to $\left[e_{i}, Z\left(M_{i}\right)\right]$ for $i=1,2, \ldots, n$. Hence $[x, L] \cap\left(\bigcap_{i=1}^{n}\left[e_{i}, Z\left(M_{i}\right)\right]\right)=(0)$. It follows that $x \in C\left(L^{2}\right)$ $\backslash\left(C\left(L^{2}\right) \cap H\right)$. Therefore

$$
\operatorname{dim}(\mathfrak{F}(L) \cap \mathfrak{M}) \leq \operatorname{dim} C\left(L^{2}\right)-\operatorname{dim}\left(C\left(L^{2}\right) \cap H\right)
$$

Consequently we have

$$
\begin{aligned}
\operatorname{dim} \mathfrak{D}(L) \geq & \operatorname{dim}(\Im(L)+\mathfrak{M}) \\
\geq & \operatorname{dim} L-\operatorname{dim} Z(L)+h+\operatorname{dim} Z(L)\left(\operatorname{dim} L / L^{2}-1\right) \\
& \quad-\operatorname{dim} C\left(L^{2}\right)+\operatorname{dim}\left(C\left(L^{2}\right) \cap H\right) \\
= & \operatorname{dim} L+h+\operatorname{dim} Z(L)\left(\operatorname{dim} L / L^{2}-2\right)-\operatorname{dim} C\left(L^{2}\right)+\operatorname{dim}\left(C\left(L^{2}\right) \cap H\right) .
\end{aligned}
$$

Thus the proof is complete.
In order to obtain further estimates of $\operatorname{dim} \mathfrak{D}(L)$, we first consider the case where L has no non-zero abelian direct summands. If $L=L^{2}$, then

$$
\begin{aligned}
\operatorname{dim} \mathfrak{D}(L) & \geq \operatorname{dim} \mathfrak{J}(L)=\operatorname{dim} L-\operatorname{dim} Z(L) \\
& =\operatorname{dim} L+\operatorname{dim} Z(L) \operatorname{dim} L / L^{2}-\operatorname{dim} C\left(L^{2}\right)
\end{aligned}
$$

If $L \neq L^{2}$ and $Z(L)=(0)$,

$$
\begin{aligned}
\operatorname{dim} \mathfrak{D}(L) & \geq \operatorname{dim} \mathfrak{J}(L)=\operatorname{dim} L \\
& =\operatorname{dim} L+\max \left\{\operatorname{dim} Z(L) \operatorname{dim} L / L^{2}-\operatorname{dim} C\left(L^{2}\right), 0\right\}
\end{aligned}
$$

Now assume that $L \neq L^{2}$ and $Z(L) \neq(0)$. Then $Z(L) \subset L^{2}$. With the notations of Theorem $1, Z(L) \subset C\left(L^{2}, \cap G\right.$. Hence by (i) of Theorem 1 we have

$$
\operatorname{dim} \mathfrak{D}(L) \geq \operatorname{dim} L+\operatorname{dim} Z(L) \operatorname{dim} L / L^{2}-\operatorname{dim} C\left(L^{2}\right)
$$

Let $D_{1 j}$ and $z_{1 j}$ for $j=1,2, \ldots, m$ be the same ones as defined in the first part of the proof of Theorem 1. If we denote by \mathfrak{M}_{1} the space spanned by the set of all $D_{1 j}$, then $\operatorname{dim} \mathfrak{M}_{1}=\operatorname{dim} Z(L)$. We assert that $\mathfrak{M}_{1} \cap \Im(L)=(0)$. In fact, suppose that ad $x \in \mathfrak{M}_{1} \cap \mathfrak{F}(L)$. Then ad $x=\sum_{j=1}^{m} \lambda_{j} D_{1 j}$. If $\sum_{j=1}^{m} \lambda_{j} z_{1 j} \neq 0, \sum_{j=1}^{m} \lambda_{j} D_{1 j}$ must be an outer derivation of L by (ii) of Lemma 1. Hence $\sum_{j=1}^{m} \lambda_{j} z_{1 j}=0$. It follows that $\lambda_{j}=0$ for all j. Thus ad $x=0$. We now have

$$
\begin{aligned}
\operatorname{dim} \mathfrak{D}(L) \geq \operatorname{dim}\left(\mathfrak{J}(L)+\mathfrak{M}_{1}\right) & =\operatorname{dim} \mathfrak{F}(L)+\operatorname{dim} \mathfrak{M}_{1} \\
& =\operatorname{dim} \mathfrak{F}(L)+\operatorname{dim} Z(L)=\operatorname{dim} L .
\end{aligned}
$$

Next we consider the case where L has a non-zero abelian direct summand. If L is abelian, then

$$
\operatorname{dim} \mathfrak{D}(L)=(\operatorname{dim} L)^{2}=\operatorname{dim} L+\operatorname{dim} Z(L) \operatorname{dim} L / L^{2}-\operatorname{dim} C\left(L^{2}\right) .
$$

Assume that L is not abelian. Then L is the direct sum of a non-zero abelian ideal L_{1} and an ideal L_{2} which has no non-zero abelian direct summands. Put $k=\operatorname{dim} L_{1}$. If $L_{2}=L_{2}^{2}$, by Lemma 2 we have

$$
\begin{aligned}
\operatorname{dim} \mathfrak{D}(L) & =\operatorname{dim} \mathfrak{D}\left(L_{1}\right)+\operatorname{dim} \mathfrak{D}\left(L_{2}\right)+\operatorname{dim} L_{1} \operatorname{dim} Z\left(L_{2}\right) \\
& \geq k^{2}+\operatorname{dim} L_{2}-\operatorname{dim} Z\left(L_{2}\right)+k \operatorname{dim} Z\left(L_{2}\right) \\
& =\operatorname{dim} L+\operatorname{dim} Z(L) \operatorname{dim} L / L^{2}-\operatorname{dim} C\left(L^{2}\right) \\
& =\operatorname{dim} L+(k-1) \operatorname{dim} Z(L),
\end{aligned}
$$

and

$$
(k-1) \operatorname{dim} Z(L) \geq 0
$$

If $L_{2} \neq L_{2}^{2}$, then by using Lemma 2 and the first case above we have

$$
\begin{gathered}
\operatorname{dim} \mathfrak{D}(L)=\operatorname{dim} \mathfrak{D}\left(L_{1}\right)+\operatorname{dim} \mathfrak{D}\left(L_{2}\right)+\operatorname{dim} L_{1} \operatorname{dim} Z\left(L_{2}\right)+\operatorname{dim} L_{1} \operatorname{dim} L_{2} / L_{1}^{2} \\
\geq k^{2}+\operatorname{dim} L_{2}+\max \left\{\operatorname{dim} Z\left(L_{2}\right) \operatorname{dim} L_{2} / L_{2}^{2}-\operatorname{dim}\left(C\left(L_{2}^{2}\right) \cap L_{2}\right), 0\right\} \\
\quad+k \operatorname{dim} Z\left(L_{2}\right)+k \operatorname{dim} L_{2} / L_{2}^{2} \\
=\operatorname{dim} L+\max \left\{\operatorname{dim} Z(L) \operatorname{dim} L / L^{2}-\operatorname{dim} C\left(L^{2}\right),\right. \\
\\
\left.\quad k\left(\operatorname{dim} Z(L)-1+\operatorname{dim} L_{2}-\operatorname{dim} L_{2}^{2}\right)\right\}
\end{gathered}
$$

and

$$
k\left(\operatorname{dim} Z(L)-1+\operatorname{dim} L_{2}-\operatorname{dim} L_{2}^{2}\right)>0
$$

Therefore, in this case we obtain
$\operatorname{dim} \mathfrak{D}(L) \geq \operatorname{dim} L+\max \left\{\operatorname{dim} Z(L) \operatorname{dim} L / L^{2}-\operatorname{dim} C\left(L^{2}\right), 0\right\}$.
Thus we have proved the following theorems.
Theorem 2. Let L be a Lie algebra over a field Φ which has a non-zero abelian direct summand. Let L_{1} be such a direct summand of maximal dimension.
(i) If $L / L_{1}=\left(L / L_{1}\right)^{2}$, then

$$
\operatorname{dim} \mathfrak{D}(L) \geq \operatorname{dim} L+\operatorname{dim} Z(L)\left(\operatorname{dim} L_{1}-1\right)
$$

(ii) If $L / L_{1} \neq\left(L / L_{1}\right)^{2}$, then

$$
\begin{aligned}
\operatorname{dim} \mathfrak{D}(L) \geq & \operatorname{dim} L+\max \left\{\operatorname{dim} Z(L) \operatorname{dim} L / L^{2}-\operatorname{dim} C\left(L^{2}\right)\right. \\
& \left.\operatorname{dim} L_{1}(\operatorname{dim} Z(L)-1)+\operatorname{dim} L_{1}\left(\operatorname{dim} L / L_{1}-\operatorname{dim}\left(L / L_{1}\right)^{2}\right)\right\}
\end{aligned}
$$

Theorem 3. Let L be a Lie algebra over a field Φ. Then

$$
\operatorname{dim} \mathfrak{D}(L) \geq \operatorname{dim} L+\operatorname{dim} Z(L) \operatorname{dim} L / L^{2}-\operatorname{dim} C\left(L^{2}\right)
$$

In particular, if $L \neq L^{2}$, then

$$
\begin{equation*}
\operatorname{dim} \mathfrak{D}(L) \geq \operatorname{dim} L+\max \left\{\operatorname{dim} Z(L) \operatorname{dim} L / L^{2}-\operatorname{dim} C\left(L^{2}\right), 0\right\} \tag{3}
\end{equation*}
$$

As an immediate consequence of Theorem 3 we have the following
Corollary 1. Let L be a Lie algebra over a field Φ. If $\operatorname{dim} C\left(L^{2}\right) \leq$ $k \operatorname{dim} Z(L)$ and $\operatorname{dim} L / L^{2}>k$ for some integer $k>0$, then

$$
\operatorname{dim} \mathfrak{D}(L) \geq \operatorname{dim} L+\operatorname{dim} Z(L)\left(\operatorname{dim} L / L^{2}-k\right)
$$

Corollary 2. Let L be a Lie algebra over a field Φ. If $C\left(L^{2}\right)=Z(L)$, or if L satisfies the condition that $(\operatorname{ad} x)^{2}=0$ implies ad $x=0$, then

$$
\operatorname{dim} \mathfrak{D}(L) \geq \operatorname{dim} L+\operatorname{dim} Z(L)\left(\operatorname{dim} L / L^{2}-1\right)
$$

Proof. If L satisfies the condition that $(\operatorname{ad} x)^{2}=0 \operatorname{implies}$ ad $x=0$, then for any $y \in C\left(L^{2}\right)$ we have $(\operatorname{ad} y)^{2} L \subset(\operatorname{ad} y) L^{2}=(0)$ and therefore ad $y=0$, that is, $y \in Z(L)$. Hence $C\left(L^{2}\right)=Z(L)$. Therefore the statement follows from Corollary 1.
3. In this section we shall show several examples which are connected with the results obtained in Section 2.

Let L be the Lie algebra over a field Φ described in terms of a basis e_{1}, $e_{2}, e_{3}, e_{4}, e_{5}$ by the table:

$$
\left[e_{1}, e_{2}\right]=e_{5},\left[e_{1}, e_{3}\right]=e_{3},\left[e_{2}, e_{4}\right]=e_{4}
$$

($[1]$, p. 126). Then with the notations in Theorem 1 we have $L^{2}=\left(e_{3}, e_{4}, e_{5}\right.$), $Z(L)=\left(e_{5}\right), L=\left(e_{1}, e_{2}\right)+L^{2}, G=L, C\left(L^{2}\right)=L^{2}$, and $\operatorname{dim} \mathfrak{D}(L)=6$. Hence in this case equality holds in the inequality (1) of Theorem 1.

Let L be the Lie algebra over a field of characteristic $\neq 2$ described in terms of a basis $e_{1}, e_{2}, \ldots, e_{8}$ by the table:

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=e_{3},\left[e_{1}, e_{3}\right]=e_{4},\left[e_{1}, e_{4}\right]=e_{5},\left[e_{1}, e_{5}\right]=e_{6},} \\
& {\left[e_{1}, e_{6}\right]=e_{8},\left[e_{1}, e_{7}\right]=e_{8},\left[e_{2}, e_{3}\right]=e_{5},\left[e_{2}, e_{4}\right]=e_{6},} \\
& {\left[e_{2}, e_{5}\right]=e_{7},\left[e_{2}, e_{6}\right]=2 e_{8},\left[e_{3}, e_{4}\right]=-e_{7}+e_{8},} \\
& {\left[e_{3}, e_{5}\right]=-e_{8}}
\end{aligned}
$$

($[1]$, p. 123). Then with the notations of Theorem 1 we have $L^{2}=\left(e_{3}, e_{4}, \ldots\right.$, $\left.e_{8}\right), Z(L)=\left(e_{8}\right), L=\left(e_{1}, e_{2}\right)+L^{2},\left[e_{i}, Z\left(M_{i}\right)\right]=\left(e_{8}\right), \sum_{M \epsilon \mathfrak{F}_{2}} Z(M)=\left(e_{6}, e_{7}, e_{8}\right)$, $\operatorname{dim} Z_{i}=2(i=1,2), H=C\left(L^{2}\right)=\left(e_{6}, e_{7}, e_{8}\right)$, and $\operatorname{dim} \mathfrak{D}(L)=10$. Hence in this case equality holds in the inequality (2) of Theorem 1.

In the remainder of the paper, for simplicity we denote by $m \max \{\operatorname{dim} Z(L)$ $\left.\operatorname{dim} L / L^{2}-\operatorname{dim} C\left(L^{2}\right), 0\right\}$.

For every non-zero abelian Lie algebra L over Φ, equality holds in the inequality (3) of Theorem 3 and m is >0 if $\operatorname{dim} L>1$.

Let L be the Lie algebra over a field of characteristic $\neq 2,3$ described in terms of a basis $e_{1}, e_{2}, \ldots, e_{8}$ by the table:

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=\mathrm{e}_{5},\left[e_{1}, e_{3}\right]=e_{6},\left[e_{1}, e_{4}\right]=e_{7},\left[e_{1}, e_{5}\right]=-e_{8},} \\
& {\left[e_{2}, e_{3}\right]=e_{8},\left[e_{2}, e_{4}\right]=e_{6},\left[e_{2}, e_{6}\right]=-e_{7},} \\
& {\left[e_{3}, e_{4}\right]=-e_{5},\left[e_{3}, e_{5}\right]=-e_{7},\left[e_{4}, e_{6}\right]=-e_{8}}
\end{aligned}
$$

([2]). Then $L^{2}=\left(e_{5}, e_{6}, e_{7}, e_{8}\right), Z(L)=\left(e_{7}, e_{8}\right), C\left(L^{2}\right)=L^{2}$ and $\operatorname{dim} \mathfrak{D}(L)=12$. Hence in this case equality holds in the inequality (3) of Theorem 3 and $m=4$.

Let L be the Lie algebra of $n \times n$ triangular matrices over a field of characteristic 0 . Then $\operatorname{dim} Z(L)=1, \operatorname{dim} C\left(L^{2}\right)=2$ and $\operatorname{dim} L / L^{2}=n$. Hence if $n \geq 3$ then L satisfies the condition in Corollary 1 to Theorem 3 with $k=2$.

Let L be the Lie algebra over a field Φ described in terms of a basis $e_{1}, e_{2}, \ldots, e_{7}$ by the table:

$$
\begin{aligned}
& {\left[e_{1}, e_{3}\right]=e_{4},\left[e_{1}, e_{4}\right]=-e_{3},\left[e_{2}, e_{5}\right]=e_{6},} \\
& {\left[e_{2}, e_{6}\right]=-e_{5},\left[e_{3}, e_{4}\right]=\left[e_{5}, e_{6}\right]=e_{7} .}
\end{aligned}
$$

Then $L^{2}=\left(e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right), Z(L)=C\left(L^{2}\right)=\left(e_{7}\right)$ and $\operatorname{dim} L / L^{2}=2$. Hence L satisfies the first condition in Corollary 2 to Theorem 3 and $m=\operatorname{dim} Z(L)$.

Let Φ be the field of real numbers and let L be the Lie algebra given above. Then we can show that if $(\operatorname{ad} x)^{2}=0$ then $\operatorname{ad} x=0$. Thus L satisfies the second condition in Corollary to Theorem 3.

References

[1] N. Bourbaki, Groupes et Algèbres de Lie, Chap. I, Algèbres de Lie, Hermann, Paris, 1960.
[2] J. Dixmier and W. G. Lister, Derivations of nilpotent Lie algebras, Proc. Amer. Math. Soc., 8 (1957), pp. 155-158.
[3] J. Dozias, Sur les dérivations des algèbres de Lie, C. R. Acad. Sc. Paris, 259 (1964), pp. 2748-1750.
[4] S. Tôgô, On the derivation algebras of Lie algebras, Can. J. Math., 13 (1961), pp. 201-216.
[5] S. Tôgô, Derivations of Lie algebras, Bull. Amer. Math. Soc., 72 (1966), pp. 690-692.
[6] S. Tôgô, Outer derivations of Lie algebras, to appear in Trans. Amer. Math. Soc.

Department of Mathematics, Faculty of Science, Hiroshima University

