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1. Introduction and Summary

The purpose of this paper is to give a unified treatment of the classical
least squares theory in the linear hypothesis model. The linear hypothesis
model treated here can be summarized as

y = θ + e (1.1)

where y is an n x 1 vector of observations, θ is the expectation of y which is
known to belong to a specified linear subspace

Ξ={θ\θ = Aτ, Bτ = 0} (1.2)

of the n dimensional Euclidean space Em and e is an n x 1 vector of random
errors which has the multivariate normal distribution with mean 0 and
covariance matrix (J2In, (J2 times the unit matrix In.

It is worthwhile to note that in our unified treatment no restriction is
imposed on the known n x m matrix A and the known Ixm matrix B. The
matrix A may be called a design matrix. The matrix equation Bτ = 0 is a set
of constraints imposed on the parameter vector r. Bτ — 0 is in some cases a
set of identifiability constraints of the parameter vector r, a set of hypo-
theses to be tested and a set of more complex constraints. The matrices A
and B and the parameter vector τ jointly specify the linear subspace Ξ of E».

The least squares estimate of the parameter τ in the extended sense and
the projection operator to the space Ξ obtained by using the generalized in-
verse matrices are given in the Theorem of section 2. Some properties of the
generalized inverse matrices and the projection operators are also given in
section 2.

Our general formula given in the Theorem contains as its special cases
the following three cases (i), (ii) and (iii):

(1)

(ii)
(iii)

YSink(A) =

r&nk(A)<

rank(J)<

771,

771

77X

and

and {0},

where X1 denotes the transposed matrix of X and 9ΐQX] denotes a vector space
spanned by the column vectors of a matrix X.

The case (i) is the simplest. The case (ii) has been treated in connection
with the theory of testing testable hypotheses by many authors (c.f. Goldman
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and Zelen [V\, Searle [7], Seber [8], [9]). The case (iii) has been treated in
connection with the identifiability constraints of the parameter vector τ
(c.f. Reiers0l Q5], Seber \~9~], Scheffe CIO]). These results are given in section
3 as special cases of the general results.

Our unified treatment of the problem may be useful in obtaining the least
squares estimates under various situations and in determining the likelihood
ratio test statistics in the analysis of variance where the identifiability con-
straints are necessary to be introduced in the underlying models.

2. The main results

The matrix Sg is called a generalized inverse of a matrix 5 (Rao \Ί$J) if
it has the property

SSgS=S. (2.1)

The role of the generalized inverse matrices in the least squares theory is well
known. The importance of the generalized inverse matrices stems from the
fact that a consistent matrix equation

SX=Y (2.2)

has a general solution

χ= SgY+(I-%ICS'J)Z (2.3)

where $β[I5'] is the projection operator to the di^S'J and Z is an arbitrary
matrix of appropriate dimensions. Although several special types of the gener-
alized inverse matrices have been proposed by several authors [1], pΓ], [3],
and [ΊΓ], the generalized inverse matrices of the least restrictive type having
only the property (2.1) are used in this paper.

LEMMA 1. Let X, Y and Z be n x m, Ix m and n x t matrices, respectively,
and suppose 3i[X'] D di[_ Y'J Then we have:

(i) X(X'XYX' is a symmetric idempotent matrix and is the projection
operator to 9ΪQX].

(ii) Y(X'XYX'X= Y.

(iii) Y(X'X)gYf is a symmetric matrix.

(iv) 9ΐ[ Y(X'Xγ Y'l = 3i[ Y(X'XYX'1 - SR[ Y(X'XY1 = 3ί[ YJ

(v) Sβ[X: ZJ =

PROOF, (i) The proof of (i) can be seen in Rao [_4Γ\, p. 187. We, how-
ever, give a direct proof of (i).

Suppose that rank(X) = r. Then there exist orthogonal matrices Hi and
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H2 such that

H1XH2 —
Dr

On-r,r

0r,m-r

where Dr is a diagonal matrix of order r with | Dr \
null matrix. Simple matrix multiplication gives

(2.4)

and 0PΛ is the p><q

X'X=H9

0r

Om-r,r

Since (X'Xf satisfies X'X(X'X)gX'X=X'X, (X'X)g must be of the form

U

(2.5)

H,
W m (2.6)

where U, F and W are arbitrary matrices of order rx(m—r), (m—r)xr and
(m — r)x(m — r), respectively. From (2.4) and (2.6) we have

1 = H[
Ir

On-r.r

Or,n-r

On-r,.-r

(2.7)

Hence we can see that X{X'X)gX' is a symmetric idempotent matrix and the
projection operator to di[_XJ.

(ii) Since 5R[X'] D 3ί[ F ] , there exists an Z x re matrix K such that Y= KX.
Thus, using (i) we have Y(X'X)gX'X=KX(X'X)gX'X=KX= Y.

(iii) Using (i) we have { Y(X'xγ Y'}' = {KX(X'X)eX'K'\' = KX{X'X)gX'K'
= Y(X'X)gT.

(iv) Since 3ΐC Y(X'X)g Y'J C 91C Y(X'X)gX'J C 9ΪC Y(X'X)gJ C 9iC ΓJ, it is suf-
ficient to show that rank (F)=rank ( Y(X'X)g F). In fact, we have rank (F) >
rank ( F(X'X/F') = rank {(F(X'Z/X / )( } Λ ( χ '^) ί χ / ) '> = rank(y"(JC'X)»Z') =
rank ( F(X'XyX'X)=rank (F).

(v) Since φQXM X: Z] = 5β[X], 3ipβ[* : Z] -ψCX]] = SR[(/- φ[X])
. Hence we haveSβ[X: Z]

LEMMA 2. The following three conditions (i), (ii) and (iii) are equivalent.

(i) TΆe equations Aτ = θ, Bτ=0 have a solution τ for every θ e

(ii) 9ϊCJGΓ\9ϊ[5':={0}.

(iii) (7-φ[52]) JB1 = 0 wfeere Bί=«pC^']ΰ' and B'2=(I-
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PROOF. It is well known that the conditions (i) and (ii) are equivalent
(c.f. Seber [9], p. 101). We show that the conditions (ii) and (iii) are equiv-
alent. We have

(2.8)

where V1 denotes the orthogonal complement of a linear subspace V. It can
be easily seen that

ί (/- φ M ) ] (2.9)

and

Q - {0}. (2.10)

Hence the conditions (ii) and (iii) are equivalent.
The least squares estimate τ of τ is the value of τ which minimizes

(γ-Aτ)Xy-Aτ)

subject to Bτ = 0. By using the Lagrange multiplier method we can see that
£ is identical with the solution of the equations

y (2.11)

and

Bτ = 0 (2.12)

where λ is a vector of Lagrange multipliers. It is known but not explicitly
stated that the equations (2.11) and (2.12) are consistent and have at least one

solution [? : λ'] for every y in EΛ. The results, however, seem not to be so
trivial. So, we give an algebraic proof of the consistency of equations (2.11)
and (2.12) by using Lemma 2.

Multiplying (2.11) on the left by ^A~\ and (I-^tA'J), respectively, the
equation (2.11) is equivalent to

y (2.13)

and

£pl - 0. (2.14)

Since ΪR!ΪA'2=$ILΛ'A : BQ, Lemma 2 shows that the consistency of (2.13),
(2.14) and (2.12) can be proved by showing that



The Linear Hyptheses and Constraints 215

' AΆ O B'

LB2 0.
= {0} (2.15)

Suppose that

"AΆ~

_ B1 _
u =

_β2 0 _ _ »2 _

holds for some vectors u, vx and u2. Then, since B/^Bf

ι(
+ Bf

2) and ^ [ ^ M + ̂ Π ^ M ^ {0}, we have

and

Solving (2.16) for u, we have

= B2V\

where v3 is an arbitrary vector. Substituting (2.18) into the
=0 obtained from (2.17), we have

= 0.

(2,16)

(2.17)

(2.18)

equation

Using Lemma 1. (ii), we get

This implies AΆu=0. Hence Bιu = 0. This completes the proof.
In general the solution τ is not unique. We, however, call r the least

squares estimate of r in the extended sense. Since (f — τ)Άf(y—^ίf ) = 0 for

all τ satisfying Bτ=0, we have (γ—Aτ)Xγ—Aτ) = (γ— Aτ)Xγ — Aτ)+

(r-r) 'A 1 A(τ-τ)>(y-Aτ)\y-At) for a solution t of the equations (2.11)

and (2.12). Thus t actually minimizes (j—Aτ)\y— AT) subject to ^ r = 0 .

Moreover, if we have two solutions (r1? λi) and (r2, λ2) of (2.11) and (2.12), we

get (ri—τ2)
rAfA(τλ — f 2)=0. This implies that At, the projection of y to the

space Ξ, is unique.
In the following theorem, we give an explicit solution of the least squares

estimate t of τ in the extended sense and the projection operator P^ to the
space Ξ.

THEOREM. The least squares estimate t of τ in the extended sense and the
projection operator PΞ to the space Ξ are given by

τ - {/-(/- T}t(A'A)8Af-(AfA)gSf{S(AfA)gS'yS(AA)sA~\y

(2.19)
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and

PH = A(AA)gA-A(AA)gSr{S(AA)gS'}gS(AA)gA (2.20)

where Sr = B[(I-^lB2J), F = B^[_B2J + B'2, B^^AJB', B'2 = ( J -
and v is an arbitrary vector.

PROOF. Solving (2.13) and (2.14), we obtain

\ = (I-ψtBf\)Ul (2.21)

and

)u2 (2.22)

where uι and u2 are arbitrary vectors. To arrive at the desired solution, we
have to adjust ux and u2 so that (2.12) holds. Substituting (2.22) into (2.12),
we have

B(AA)gS'Uι - B2u2 = B(AA)gAy. (2.23)

Multiplying on the left by (/— ̂ B2J) and ^βd^II, respectively, the equation
(2.23) is equivalent to

'm = S(AA)gAy (2.24)

and

T(AA)gSf

Uι - B2u2 = T(AA)gAy. (2.25)

Solving (2.24) by using Lemma 1. (iv), we can write

(2.26)
and solving (2.25), we have

u2 = -BiT(

> (2.27)

where M3 and v are arbitrary vectors. From (2.22), (2.26) and (2.27) we have
a general solution of £ given in (2.19). Since Ai = T?Ξy for every y in En, we
have an explicit formula of P* given in (2.20).

From our explicit formulas given in the Theorem we have the following
corollaries.

COROLLARY 1. The following conditions are equivalent.

(i) PΞ

(ii) S=(I-

(iii)

(iv) Z?'λ = 0 for every y.
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PROOF. From (2.20) we have that ?S = A(AΆYA' if and only if
A(AΆγS'{S(AΆγS'}*S(AΆYA'=%tA(AΆγS'Ί = O. Therefore

(i)<F$A(A'A)8Sf = 0<^0= AfA(AΆ)gSf = Sf (by Lemma 1. (ii))

Hence (i) and (ii) are equivalent. Lemma 2 shows that (ii) and (iii) are equiv-
alent. From (2.21) and (2.26) we have

Br\ = S'{S(A'AYSfyS(A'AYA'y. (2.28)

Now, if (ii) is true, JJ'λ = O. Conversely, if (iv) is true, S'{S{Af A)8S'YS{Af A)gAf

— 0. Hence we get 5=0. This completes the proof of Corollary 1.

If rank(J5)=Z, the condition (iv) turns out to that λ = 0. This special
case was treated by Reiersol \JΓ\.

COROLLARY 2. The least squares estimate τ is uniquely determined if
and only if r a n k ^ ' : ZΓ] = m.

PROOF. Suppose that τ is uniquely determined. From (2.19) and Lemma
1. (v) we have I—5β[\4': JB'] = O. Hence rank [̂ 4' : Bf~} = m. Conversely, sup-
pose that rank[>C : B'2 = m. We have that (
and (AΆ + B'E) is nonsingular. Hence t is unique.

3. Some special cases

In this section we apply our Theorem to some special cases. Given that
&y = θ 6 Ω, a linear subspace in EΛ, then a linear hypothesis is a hypothesis
which states that θ e ω, a linear subspace of Ω. The role of P^ and Pω, the
projection operators to Ω and ω, in testing a hypothesis is well known (c.f.
Seber [8], [9]).

(a) Consider the case where underlying assumption is

θe Ω= {θ\θ = Aτ} (3.1)

and suppose we wish to test a hypothesis Hτ=0:

Aτ, Hτ = 0} (3.2)

(i) rank(A)=m: In this case we have (A'AY=(A'A)~1 and for θeωwe have
Bi = H9 B2 = 0 and S=H. Thus we have that τΩ={AfA)-1Afy, VΩ=A(A'A)-1 A'
zτιάVω=A(AfAyιAf-A(ArAyιHf{H(ΆA)-ιHfyH(A'A)-ιA\ where τΩ denotes
the least squares estimate of r under i?. Therefore, we have

Pa-P. - A{AAy1E'{E{AtAy1HfYR{AAy1A (3.3)

and
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(3.4)

When the rows of H are linearly independent, the generalized inverses of the
matrices in (3.3) and (3.4) can be replaced by the inverses of them.

(ii) rank {A) < m and 9t[^'] D 9ΐ[iT]: In this case, since Bλ = HψiΛf~] = H,
B2 = 0and S=H for θ e ω, we have that τΩ = (AΆ)gA/γ + (I-^[_A/J)v, Έ>Ω =
A{AΆ)gA' and Pω = A{AΆ)gA'- A{AΆ)gR{H(AΆ)gH'}sH(ArA)gA'. There-
fore, we have

P Λ - P ω = AW A)gH' {H{A'A)gH'YH{A! A)g A (3.5)

and

/ ( P Λ - P . i y = (HτΩ)'{Cov(HτΩ, τ'ΩH')Y{HτΩ)ΰ\ (3.6)

When the rows of H are linearly independent, Lemma 1. (iv) shows that
,{H{AΆ)gH'Y and {cov(HΪΩ, τ'ΩH')}g can be replaced by {HiAΆγH'}-1 and
{cov(ίfrβ, f βi/')}"1, respectively.

(b) Consider the case where identifiability constraints are introduced in
underlying assumption:

θeΩ={θ\θ = Aτ, Cτ = 0} (3.7)

where Cr=0 is a set of identifiability constraints (c.f. Seber Q9J, Scheffe
i.e., the matrix C satisfies the conditions 3i[J']Λ3fί[C"] = {0} and rank[X : C]
= m. Suppose we wish to test the hypothesis Hτ=0:

θeω={θ\θ = Aτ, [ J ] *• = <>}. (3.8)

Using Lemma 2, Theorem and Corollary 1, we have fΩ = {/-(/- 5β[J'])CfC}
(A'AfA'y, VΩ=A(AΆ)gA' and Vω=A(AΆ)gΆ-A(AΆγS'{S(ΆA)gS'}gS(AΆ)gA',
where C'2 = (I-^A'J)C, 5=(7-5βC52:)S1, βί=φ[J']β', ^ = (/-5βC^':)5'
and5'=[C: ίΓ'Π

(i) 'SiZA'J^ίΆlH'y. In this case we have S = (/-tf o2])[#] =

(I-φLC2J)C1 + H=H, where Cί=φC^']C. Thus we have

P β - P ω = A{A'A)gH'{H{A'AYH'YH{A'A)gA' (3.9)

and

/ ( P Λ - P . ) y = (tffΛ)'{cov(tffrβ, τΩH'YHτΩσ2. (3.10)

We note that if ί̂C '̂D D9iC "̂'H, or if ϋfr is a set of estimable parametric func-
tions, then Ps - Pω does not depend on the identifiability constraints.

(ii) 3ϊ[Λ';]:p9ΐ[#']: In this case

[£])[S (8 n )
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where [^] = [#}ϊX^) and [ ^ ^ [ ^ J U - ^ O ) . Thus we have

(3.12)

and

γXPΏ-Pω)y = (SfΛ)'{cov(SfΛ, τ'aS')}*(SτΩ)β2 (3.13)

These results show that the sum of squares appropriate for testing the
hypothesis Hτ = 0 depends upon how the parameter vector r is defined by the
identifiability constraints. Such a situation happens in multi-way analysis
of variance where interactions are assumed in the models.
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