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1. Summary

In this paper an attempt is made to throw light on the algebraic struc-
ture of symmetrical s^-fractional factorial designs, where s is not necessary
2 but a prime power. For such purpose a geometrical factorial association
scheme of PG(& — 1, s)-type and the corresponding s*"^-fractional factorial
association scheme are introduced in sections 2 and 3 respectively. The cor-
responding association algebras Wί(PG(k — 1, s)) and $l(sk~p — Fr) are also intro-
duced there.

Mutually orthogonal idempotents of those algebras are given in section
4. The notion of fractionally similar mapping is introduced in section 5 and
the relationship between 2ί(PG(& — 1, s)) and %(sk~p—Fr) is investigated there.
A general definition of the classical notion of aliases is given in section 6.
Blocking of the fractional factorial designs is discussed in section 7 in rela-
tion to the notion of partial confounding and the pseudo-block factors.

The following notation is used throughout this paper:

In: The unit matrix of order n,
Gn: An n x n matrix whose elements are all unity.
Af: Transpose of a matrix A.
A(g)B : Kronecker product of the matrices 4̂ = ||α/y|| and B, i.e., A(g)B

[Aii ΐ = l, •-, πi]\ An algebra generated by the linear closure of those
matrices indicated in the [_ ] .

GF(s): A finite field consists of s ( — qu) elements, where q is a prime
integer and u is a positive integer. An element a in GF(s) is repre-
sented by the coordinate representation or polynomial representa-
tion, i.e., a=<aa\ ••-, a(u)> where a(i) is an element of GF(gr), i = l,
2,..., a.

EG (A:, s): A ^-dimensional Euclidean space over GF(s).
z — 1, s): A k — 1-dimensional protective space over GF(s).

A subspace of PG(& — 1, s) generated by the linear closure of
column vectors of a matrix A.

This work was supported in part by a research grant of the Sakkokai Fundation.
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PG(& — 1, 5): A space containing PG(& — 1, s) and an additional null

vector 0 in EG (4, s\ i.e., P G ( * - 1 , s)=PG(A-l, s)v{0}.

φ w £ l : The smallest subspace containing both subspaces Sβ and £} in
PG(Jfc-l,s).

^?ΛQ: The largest subspace contained in both subspaces 3̂ and £) in
P G ( * - 1 , *).

α=(αi, • ••, ah)
f: A point in EG (A:, 5). Latin letters are used exclusively

for the points in EG (A:, s).
a=(au • ••, ak)

r: A point in PG(& — 1, 5). Greek letters are used exclu-
sively for the points in PG(& — 1, s).

2. PG(& — 1, .^-association scheme

Suppose that there are vk = sk objects or treatments φ(a) indexed by the
points a in EG(&, s). Among those vk treatments an association of geometri-
cal type is defined as follows:

Definition: Two treatments φ(a) and φ(b) are a-th associates, if the
difference of these indices a and b satisfies the relation

a-b = pa (2.1)

where p e GF(s), pφO, and a c PG(& — 1, 5). Each treatment is the O-th as-
sociate of itself.

The association defined above satisfies three conditions of the association
scheme with mk = (sk — l)/(s — 1) associate classes:

(i) Any two treatments are either αi-th, α2-th, ..., or αWfc-th associates,
where <xu , am/c e PG(A; —1, 5), the relation of association being symmetrical.

(ii) Each treatment φ(a) has

na = s-l (2.2)

α-th associates, the number na being independent of φ(a).
(iii) If any two treatments φ(a) and φ(b) are α-th associates, then the

number of treatments which are #-th associates of φ(a) and at the same time
r-th associates of φ(b) is p%r and it is independent of the pair of α-th as-
sociates φ{a) and φ(b). In fact, when α, β and T are in PG(& — 1, s\

Pΐr

' 1 if aφβ, T; βφr and α, β, r are

collinear in PG(& — 1, s)

5-2 if a = β=T

s 0 otherwise

and when some of the α, β and ΐ are zero,

(2.3)
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- l if β = rφθ

1 if β = r = O (2.4)

0 otherwise

ί l if a = β
Pβo — Poβ — \ \^ &)

{0 otherwise.

We call this association scheme PG(& — 1, s)-association scheme with
(sk — l)/(s — 1) associate classes.

In the case k = 2, this scheme is an association of orthogonal Latin square
type or 0L r type with s + 1 associate classes [5], where r = s + l. After num-
bering vk indices in some way but once for all, the association matrices can
be expressed as follows:

Aa=\\a*a\\ (2.6)

where

(1 if the treatments φ(a) and φ(b) are

a>aa = \ < -̂th associates

10 otherwise.

In particular, the treatments φ(a) are numbered lexicographically by in-
dices α, i.e., numbered with respect to the coordinates in EG(&, s) and each
coordinate element is numbered with respect to the coordinates in GF(s), then
the association matrices Aa, a e PG(& — 1, s) have the following forms:

Aa=^Σsf
pa (2.7)

k u ,

where P is a qxq permutation matrix, Ppa=]J(g)Ppai, Ppai = ]J(g)P7i and pat =
ί = 1 / = 1

• •-, 7'^ )>, τ\n 6 GF(ςr), i = l, , k, 1 = 1, •••, w.
«'s are all symmetric vk x vk matrices and satisfy the following relations:

Σ
/O O\

From (2.3), (2.4), (2.5) and (2.8), we have

I A0Aa = AaA0 = Aa for a e ¥G(k — 1, 5)

* = (s-l)A0 + (s-2)Aa for aeFG(k-l,s) (2.9)

aAβ = AfiAa= Σ Ar for α, β e PG(A;-1, 5) and aφβ.
^ψCaβ)φxβ
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From (2.9), we have

for a e

Σ Ar for α, /? 6 P G ( i - l , 5 ) and aφβ.
Cα/9)

We call this association algebra generated by the above association
matrices, PG(k — 1, s)-association algebra and denote it as

2I(PG(&-1, s)) = [_Aa\ a e PG(A-1, 5)].

3. sk ^-fractional factorial association scheme

Let jF=||/i>|| be a pxk(p<k) matrix over GF(s), whose rank is p. All
points which satisfy the consistent and independent linear equation

Fx=f (3.1)

form a (k — p)-dimensional subspace, or (k— /?)-flat in EG (A, s) where x =
(xl9 ••-, xky c EG (A, 5) a n d / = ( / i , •••,//,)' e EG(p, 5). We denote the (&-/>>
flat in EG (A, 5) as

g*-* - {x IFΛ = / , Λ; e EG(k, s)}. (3.2)

Among those vk treatments {0(o)}5 if we select and consider a fractional
set of v = sk~p treatments {00*0} indexed by the points x in g*"^, we can in-
troduce into this fractional set of treatments an association induced by the
PG(& — 1, ^-association scheme in such a way that any two treatments φ(x)
and φ(y) are α-th associates if two indices x and y (Λ; ,J6 g*-^) are α-th as-
sociate in original PG(& — 1, ^-association scheme.

If $ » and 0(j) ( * , y e g M ) are α-th (aφO) associates, since a must
satisfy the relation F α = 0 , the set of all such a forms a (Jk — 1 — p)-flat in
PG(A-1, 5), i.e.,

It can be seen that the relation of association thus introduced in the
fractional set of treatments satisfies three conditions of the association
scheme with mk-p = (sh~p — V)/(s — l) associate classes:

(i) Any two treatments φ{x) and φ(y) (χ,y€ $k~p) are either αi-th, α2-th,
• •-, aMfc p-th associates, where au ..., amk_p e ^k"1~p, the relation of association
being symmetrical.

(ii) Each treatment φ(x) has

na = s-l (3.3)

α-th associates, the number na being independent of φ(χ).
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(iii) If any two treatments φ(x) and φ(y) are α-th associates, then the
number of treatments which are /ϊ-th associates of φ(χ) and at the same time
r-th associates of φ(y) is p"βr and it is independent of the pair of α-th associ-
ates φ(x) and φ(y). In fact, when α, β and 7 are in <^k~1-p,

1 if aφβ, 7; βφ7 and α, £, 7 are collinear in ^k~γ~p

5-2 if a = β = 7 (3.4)

0 otherwise

and

and

when some of the α, β

P°βo

andr

3 -

1

0

Ptβ

are zero,

1

•c

if β = γφo

if j9 = r = o

otherwise

if a = β

otherwise.

(3.5)

(3.6)

We call this scheme sk~p-fractional factorial association scheme with mk-p

associate classes induced by the PG(& — 1, s)-association scheme. Thus we
have the following theorem.

THEOREM 1. The induced relation of association of the PG(& — 1, s)~as-
sociation scheme defined among a fractional set of sk~p treatments {φ(x)\χζ
$k~p}, satisfies the three conditions of the association scheme with τnk-p associate
classes. The parameters of the sk~p-fractional factorial association scheme are
given in (3.3), (3.4), (3.5) and (3.6).

After numbering v indices #'s in some way but once for all, the associa-
tion matrices can be expressed as follows:

(3.7)

where

[ 1 if the treatments φ(x) and φ(y) are α-th associates

[ 0 otherwise.

Ba$ are all symmetric vxv matrices and satisfy the following relations:

I Σ Ba = Gv

«6, — (3.8)
I BaBβ = BβBa = Σ praβBr

From (3.4), (3.5), (3.6) and (3.8), we have
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for aeψ~ι-p

for α e ^ (3.9)

BaBβ = BβBa = Σ Br for a, βa φ*-1-* and aφβ.

From (3.9), we have

f (Bo+Ba)
2 = s(B0+Ba) for a e ψ~λ-p

(3.90
(Bo+Ba)(BoJrBβ) = Bo+ Σ Br for a, βe^k~ι~p and aφβ.

We call this association algebra generated by the above association
matrices /"^-fractional factorial association algebra and denote it as

SICs*-*-Fr) = lBa; a e ψ-ι~pJ

4. Mutually orthogonal idempotents of 21(PG(&-1, s)) and S l ^ ^ - F r )

It is well-known that an association algebra is commutative and com-
pletely reducible and each of its minimum two sided ideals is linear over the
field containing all characteristic roots of the matrices [2], [3].

We wish to find the principal idempotent matrices A\ and B\ of the
minimum two sided ideals of the association algebras 2ί(PG(& — 1, s)) and
3I(s*-*-Fr) defined in sections 2 and 3.

Let F be the (k—p) x k matrix over GF(s) such that the rank of the matrix
(Ff Fr) is equal to &, for the matrix F defined in section 3.

The following two lemmas are useful in obtaining the mutually orthogonal
principal idempotents A\ and B\ the algebras SI(PG(A; —1, sj) and SI(/~^ — Fr),
respectively.

LEMMA 1.

(i) The matrix s'1(A0-\- Aa) (oc e PG(A: — 1, s)) is idempotent.
(ii) For any a and β (φa) in PG(& — 1, s\

= Π (s-\A0 + Ar)). (4.1)
ψ c β y

(iii) When ^ is a fiat generated by I linearly independent points au ...,

in PG(& — 1, s\ i.e., 5β=φ(αi, •••, ai), we have

at)) = Π(s-\AO+Ar)) = sΛAo+ Σ Ar).

In particular, when Sβ=PG(A —1, 5), we have (4.2)

Π (s-\A0+Aa)) = υj;1GVk (4.3)
αePG(*-i)S)

(iv) For any two flats 3̂ and O in PG(A; — 1, 5), we have
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KAo+Afij)= Π (s-\A0+Aa)). (4.4)

PROOF, (i) is an immediate consequence of (2.90- The latter half of
(2.90 shows that the product of s~\A0+Aa) and s~XA0+Aβ) is independent of
the pair a and β. Hence we have

for any Ύ e Sβ(α,0). This implies (ii).

The former half of (iii) can be proved inductively by using (ii). The
latter half of (iii) can be proved by induction with respect to the number of
independent points in *β. In fact, (2.9') shows that the formula certainly
holds for 1 = 2. Assuming the formula holds for l = n — l and using (2.9),
we have

Σ Aa)s-XAO+ Aan)
)

= i"U+ Σ Aa)

for 1 = 71, thus we have (4.2).
When φ=PG(fc-1, s\ the formula (2.8) shows that the formula (4.3) holds.
(iv) can be proved from (iii) by selecting independent base points which

generate ^ Λ θ first and then selecting the remaining base points in order to
generate 3̂ and D, respectively.

LEMMA 2.

(i) For any flat β̂ in PG(& — 1, 5), the matrix

Tl(s~XAo+ Aaj)—viιGυ is idempotent.

(ii) For any flats ^ and O in PG(& — 1, 5), the matrices

)-vllGVk and τi(s-χ

are mutually orthogonal if and only if ^\j£l = PG(k — 1, s).

PROOF. From (4.3) and (4.4), we have (i). The sufficiency of (ii) is ob-
vious and the necessity of (ii) follows from the linear independency of the
association matrices.

Duality of the protective space shows that the correspondence α<->^Sα is
one-to-one for any a e PG(& — 1, s) and a (k — 2)-flat $ α defined by

5ββ - {β\a'β = 0, β c PG(A-1, s)}.

Utilizing the correspondence, if we define a set of mk idempotent matrices
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as

A*= Π (s-χAo + Ar))-v?GVk (4.5)

and define Al=υ^ιGVk, then we have the theorem.

THEOREM 2. The set of idempotent matrices {Al\aePG(k — l, s)} is the
set mutually orthogonal principal idempotent matrices of the minimum two
sided ideals of PG(& — 1, s)-association algebra.

PROOF. Orthogonality of those matrices can easily be proved by using

(ii) of Lemma 2. Using (2.9) and (2.9'), we can prove that each [_Aξ]

{a 6 PG(A;-1, 5)) is a principal two sided ideal of SI(PG(&-1, s)).
Using (4.2) and (2.8) we have the following formula:

\A*a = v-k

1{(s-l) Σ A$- Σ Afi} « 6 P G ( i - l , ί )
) β^%a βG%a (4.6)

Since sk"^-fractional factorial association algebra has the same algebraic
structure as that of PG(& — 1, s)-association algebra except some small changes
such as the range of indexing points of the former is restricted to a (k — 1— p)-
flat φ*-1-^ in PG(& — 1, s), etc.. We, therefore, do not describe the versions
of Lemmas 1 and 2 here.

For any β e ?β(F;), i.e., for any point in PG(& — 1, s) which is independent
of all points in Sφ(F'), there corresponds a (A — 2 — />)~flat

ψf2-* = {a \β'a = 0, ae ?$k

in ^β*"1"^. It can be seen that the correspondence

is one-to-one.
Utilizing the correspondence, if we define a set of mk^p idempotent

matrices as

B*β= Π 2 (s \B0+Ba))-v~ιGv

and define

Then, we have the theorem.

THEOREM 3. The set of idempotent matrices {B*β\β e ^(F;)} is the set of
mutually orthogonal idempotent matrices of the minimum two sided ideals of
sk'p-fractional factorial association algebra.

The proof of this theorem is quite similar to that of Theorem 2 and is
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omitted here.
In this case, the formula similar to that of (4.6) is

Σ Ba}9

It is well-known [4]] that each of the association matrices A{ (ΐ = 0, 1, ...,
m) of an association algebra 2I=[^4O5 • •-, Am~] can be expressed as a linear
combination of the principal idempotent matrices A] (7 = 0, 1, • •-, m) of the
minimum two-sided ideals of 21, i.e.,

j=o

and that each of the A\ can also be expressed as a linear combination of the
Ah i.e.,

J=o

It is also known Q5] that there exists a simple relation between those
coefficients zυ and zih i.e.,

ztJ = riZij

where v is the number of treatments, nj is the number of the 7-th associates
and τ{ = rank(^4f). In our case, since zae = vkz

βa in (4.6), we have

a = (s-1) Σ A%- Σ A for α e P G ( i - l , ί )
β^a β$%a (4.8)

o= Σ A\

and since za$ — vz$a in (4.7), we have

/ i β L-Λ β iΛJi-

(4.9)

5. Relations between Sΐ(PG(A;-l, s)) and %(sk-p-Fr)

Taking into account the interrelationship between the geometric struc-
ture of the association algebra SI(PG(A; — 1, 5)) and that of induced algebra
%(sk"p—Fr), we define a vxvk matrix Φ giving a linear mapping from vk

dimensional vector space to v dimensional vector space as a function of F and
/, such that

) (5.1)
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where

ί 1 if x = a

[0 if xφa.

The linear mapping Φ naturally induces the following linear mapping 6

of ( ( , ) )

σ: 2I(PG(&-1, s)) lA >ΦAΦ'.

From the definition of Aa% BβS and Φ, we have

f Ba if aeψ-ι-p

ΦAaΦ' = (5.2)
[ 0 otherwise.

We, therefore, have

%(sk-p-¥τ)={ΦAΦ'\Ae%(PG(k-l, *))}. (5.3)

Since ^(F%^(Ff) is the empty set and P G ( i - l , s)=φ(/ i /)w5β(F), every

α of PG(A; —1, 5) has a unique representation as a linear combination

a = ξaι + a2 (5.4)

where α^ e φ(F'\ a2 6 φ(F) and ξ e GF(5). The condition α e f ( F ) is equiv-
alent to the condition ξ = 0 and the condition a <r ψ(Fr) is equivalent to ξφΰ.
From the definition ^3α and ?$k~1~p, we have

fφ*" 2 -* if ξφO or α

[ψ-i-P if f = 0 or α

Thus we have the following lemma.

LEMMA 3. With respect to the linear mapping 6 defined by the matrix Φ,
we have

(i) ΦA*Φ' = s-pB* (5.5)

f , if ξφO or α φ ( )
(ii) ΦA\Φ' = (5.6)

{\ if f = 0 or α

/or α ^ α = ^α! + α 2 c PG(A;-1, s\ where aλ e ψ(F'\ a2 e φ(F) α^d ξ e GF(s).

PROOF, (i) can be easily derived from (5.2) by using (4.6) and (4.7). (ii)
can also be derived from (5.2) by using (4.6) and (4.7). In fact, for a —

or ξ φθ, we have
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v];H(s-ΐ) Σ Bβ- Σ Bβ)

and for a e S$(F) or ζ = 0, we have

ΦA%Φf = v~k \s - 1 ) Σ Bβ = s-\s - 1 ) 5 * .

Although a linear mapping <s of SI(PG(£; — 1, 5)) may be naturally defined
by an arbitrary matrix Ψ such as

σ: 2ί(PG(&-l, s)) >{ΨAΨ'\Ae 3I(PG(£-1, 5))},

the image of Sί(PG(& — 1, s)) is not necessarily an algebra.
Among those linear mappings, the linear mapping of SΪ(PG(& — 1, s)) in-

duced by Φ defined in (5.1) has some implications. We call a linear mapping
σ induced by Ψ a fractionally similar mapping of 9I(PG(& — 1, s)) onto
Wί(sk~p — Fr) when it has the properties (i) and (ii) described in Lemma 3.

We have the following theorem.

THEOREM 4. The linear mapping 6 of 2I(PG(&-15 s)) onto VL(sk-p-Fr)
defined by Φ described in (5.1) is fractionally similar. It carries those
(sp-l)/(s-l) + l idempotents A\{a e φ(F)) o/Sί(PG(A;-l, s)) to the idempotent
Bo °f yt(sk~p — Fr) exclusive of the scale factors, and those sp idempotents A\a^a^
for fixed ax e ^(Ff)(a2 e φ(F'), ξφO) o/SI.(PG(A;-l, s)) to an idempotent B^ of

exclusive of a common scale factor.

6. The aliases pattern

For every pair of a and β in PG(£ — 1, s), we say that they are
equivalent and write a=& (mod ^(Ff)) when and only when a — βe ^>{Fr). It
is easily verified that φ^O-equivalence is indeed an equivalence relation.

Thus we can decompose PG(& — 1, s) into the set of equivalence classes under
the relation as follows:

a e φ(F0> (6.1)

where ^%F) ={β\β==a (mod ^(F))>.
In the fractionally similar mapping σ of 2I(PG(&-1, s)) onto *Ά(sk-p — Fr)

defined by Φ, two idempotents A% and A\ are called aliases to each other if and
only if a^β (mod ^(F')). In this case, the set of all mutually orthogonal
idempotents A% of Sΐ(PG(& —1, s)) is decomposed into the union of the aliases
classes:

= \J {Ai\a^\F)} (6.2)
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where any two idempotents belonging to the same class are aliases to each

other. We call the formula (6.2) the aliases pattern of {A*\ae PG(A;-1, s)}
with respect to the fractionally similar mapping σ.

Theorem 4 shows that any two idempotents which are aliases to each
other correspond to the single idempotent of 3I(s*~p—Fr) under the linear
mapping σ defined by Φ described in (5.1).

It can be seen that the independent set of consistent equation Fx=f
which define a fractional set of treatments corresponds to the generalization
of the set of defining relations introduced by Box and Hunder [1] in the 2k~p-
fractional factorial designs.

The implications of the general definition of aliases pattern given in this
section can also be understood in connection with the definition introduced by
Box and Hunter [ Ί ] .

7. Block design and Relationship algebra

Let Bu B2, •••, Br be Zx k matrices over GF(s), respectively, and suppose
F, Bu • ••, Br satisfy the condition

rank(F; B{; ... B'r) = p + rl<,k. (7.1)

Consider rsι flats 33ίu of (k— p — Z)-dimension in EG(&, s) defined by

u} (7.2)

where ί = l, . , r and M 6 E G ( / , 5 ) . Evidently, there are κ=sk~p~ι points in
each of these flats. Corresponding to each flat 23ίu, we define a block φQ8iu)
consists of all treatments whose indexing points lie in the flat, i.e.,

= {#*)!**»,•.} (7.3)

With respect to a fractional set of v = sk~p treatments φ(x) (χ
defined in section 3 by F and /, we consider a design

composed of all b = rsι blocks φ@biu) (ί = l, ..., r, ue EG(Z, s)).
It can be easily seen that the number of replications of the design is r

and that the block size is fc=sk~p~~ι. Since any two treatments φ(x) and φ(y)
which are α-th associates can occur together in the same block 95ίu if and
only if BiX = B{y = u or BiCC=O (a e ?$k~ι~p), the number λa of such blocks de-
pends only on the index of the associate class a. The design is, therefore,
a partially balanced incomplete block design (PBIBD) with parameters v = sk~p,
b = rsι, r = r, /c = sk~p-1 and λa (a € φ*- 1 "*) .

Let N be the treatment-block incidence matrix of the design such that

N=\\nX9iu\\ (7.4)
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where

J 1 if x e SB,-.

[ 0 otherwise,

then we have

NN' = rB0+ Σ λaBa. (7.5)

The formula (7.5) shows that the association algebra induced by the in-
cidence matrix of the PBIBD mentioned above is a subalgebra of the sk~p-
fractional factorial association algebra U(sk~p — Fr). Thus the relationship
algebra of the design preserves partial similarity to the /^-fractional fac-
torial association algebra when the block effects are eliminated [Ί?].

As is indicated in Q4Γ], (7.5) can be expressed in terms of the mutually
orthogonal idempotents i? | (a e φ(F')) of ^(sk~p — Fr) as

NN'= Σ^.βaBl (7.6)

where

β

-'-J" ( 7 . 7 )
- Σ λ,

k. — 2—p

The formula (7.7) may also be written as

= s Σ λβ-r(fc-s)(s-l)~ι for ae^(F'). (7.8)Σ

According to the general theory of the analysis of the relationship algebra
of PBIBD developed in [4], the behavior of the component sum of squares
corresponding to B\ is determined by the corresponding characteristic root
βa of NN', i.e., the component is orthogonal to the block space if and only if
βa = 0, partially confounded with the block space if and only if 0<βa<rtc and
totally confounded with the block space if and only if βa = πc.

As to the classification of the behavior of the component sum of spuares,
we have the following theorem.

THEOREM 5. In the PBIBD

the characteristic root μa corresponding to B | is
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0 if a^(Bf

{) forall ί = l, ...,r.

Λ; if there exists a 3̂(2?O such that α e $(5[).

classification of the behavior of the component sum of squares are as fol-
lows:

(i) /jίa = 0 (Orthogonal case) if and only if a <r $β(2?, ) /or α££ ι'.= 1, , r.
(ii) 0<βa<rtc (Partially confounded case) if and only ifr^>2 and there

exist a B{ such that a e ^(Br

{), In this case, the confounding coefficient is 1/r.
(iii) βa—rκ (Totally confounded case) if and only ifr=l and a e

PROOF. TO evaluate μa we first evaluate the sum of λβ which appears in
(7.8) using the definition of λβ, i.e.,

r

Σ Λ * = Σ Σ n%ju Σ nx+$,iu. (7.9)

Since nx>iu. can assume the value 1 when and only when BiX = Uj and zero
otherwise for any fixed B{ and x, we can simplify (7.9) as

Σ λβ=Σ Σ nXΛβJu% (7.10)

where BiX = m. To evaluate the sum of ^ over β e 3̂£ 2 ^ since nx+βju. can
assume either 1 or 0, it is sufficient to evaluate the number of points β which
satisfy Fβ=O, arβ=0 and B$=0 simultaneously.

Thus we have

/ _k-p-l~l 1

if a
sk-p-i-ι_1

Σnx+β,iUi={ ' \ (7.11)
Jt-P-l 1

s 1 - if

It should be noted that the following two cases can happen:
(i) a does not belong to any 3̂(2? 0 and (ii) a belongs to one and only one
•). Thus we have

7^~τ^ if a * ̂ PĈ iO f° r a ^ i = l> •? Γ5
2J

I ( Γ ^ Ξ ^ + Λ ; ) if there exists a 5, such that a e

Substituting these to the formula (7.8) we have

ΓO if αfSpCBί) for all i = l, ...,r

[ K if there exists a .β, such that α e ^β(5 •)•
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The remaining part of the theorem is the immediate consequence of the
theorem described in [_4Γ\.

Theorem 5 shows that, when r = l, each component sum of squares is
either orthogonal to the block space or totally confounded with the block
space, and that, when r;>2, each component sum of squares is either ortho-
gonal to the block space or partially confounded with the block space. The
confounding coefficient of the latter case is r"1.

Lemma 3 shows that

holds for every A% with a f %(F'). For such idempotent, Theorem 5 shows
that if 0Lχ e 5βCSf ) for a certain ί, the sum of squares corresponding to Bix is
either confounded with the block factors when r = l or partially confounded
with block factors with confounding coefficient 1/r when r 2> 2. The family
of s — 1 independent contrasts corresponding to such an A\{a ί SβCF) and
a e Sβ(F'; Bi)) can be called the pseudo-block factors. A\ can be called pseudo-
block idempotent.
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