On Fixations and Reciprocal Images of Currents

Mitsuyuki Itano
(Received September 20, 1967)

Let Ω be a non-empty open subset of an N-dimensional Euclidean space R^{N}. The investigations have been made in our previous paper [1] about the multiplication between distributions defined on Ω. The multiplicative product of $S, T \in D^{\prime}(\Omega)$ is the section of $S(x) \otimes T(x-y)$ for $y=0$, if it exists, which will be denoted by $S \cdot T$ instead of $S \bigcirc T$ throughout this paper. $S \cdot T$ will then be in a certain sense the section of $S(x) \otimes T(y)$ for $x=y$. In this paper a distribution is understood as a current of degree 0 and of even kind.

Our main purpose of this paper is to introduce the notion of the section of a current on a submanifold so as to make it possible to generalize the multiplicative product of distributions to the exterior product of currents. We consider here two kinds of sections; one in a narrow sense, and the other in a wider sense. Accordingly we may discuss the exterior product of currents in either sense. Owing to these notions we can give an approach to define a reciprocal image of a current under a C^{∞} map. Of course, a C^{∞} map need not admit a reciprocal image of every current. A detailed discussion thereof confined to distributions was given in [2], where we introduced the concept of "admissible map". The section of a current on a submanifold $M_{0} \subset M$ will be, as we shall see in this paper, the reciprocal image of the current under the injection $j: M_{0} \rightarrow M$. This leads us to the study of Stokes' formula for currents, an attempt to generalize the formula $\int_{a}^{b} S^{\prime}(x) d x=$ $S(b)-S(a)$, where S is a one-dimensional distribution with values at a and b.

In what follows we shall call a current of even kind simply a current whenever no confusion may occur, however, we shall underline the letter denoting a current of odd kind. We note that a current on $\Omega \subset R^{N}$ is a form whose coefficients are distributions on Ω.

The presentation of the material is arranged as follows: In Section 1 we shall introduce the notion of the section of a current defined on $\Omega \subset R^{N}$ and show that it is invariant under diffeomorphisms. In Section 2 we shall study the section of a current on a submanifold $M_{0} \subset M$ and the exterior product between currents of any kind. We shall consider, in Section 3, the reciprocal image of a given current $T \in \mathscr{D}^{\prime}(M)$, which we define as follows: Let N^{\prime} and N be the dimensions of manifolds M^{\prime} and M respectively. For a $C^{\infty} \operatorname{map} \xi$ of M^{\prime} into M, the direct image $\xi \beta$ of every β of $^{N^{\prime}\left(\mathscr{D}^{p}\right.}\left(M^{\prime}\right)$ is an odd $(N-p)$-current.

If the exterior product $\xi \underline{\beta} \wedge T$ exists for every $\underline{\beta}$, we can show that the linear $\operatorname{map} \beta \rightarrow \int \xi \underline{\beta} \wedge T$ is continuous, then the current $\xi^{*} T$ determined by the equation $<\beta, \xi^{*} T>=\int \xi \beta \wedge T$ is called the reciprocal image of T under the map ξ. The same is true of odd currents, if the map ξ is oriented. Taking ξ for the injection j of a submanifold M_{0} into M, we show that $j^{*} T$ exists if and only if the section $T \mid M_{0}$ of T on M_{0} exists, and that if this is the case, $j^{*} T=T \mid M_{0}$. Stokes' formula is shown. In Section 4 we show that the trace map on a submanifold M_{0} coincides with the fixation to M_{0} for a space of currents with certain conditions. The final section is devoted to some considerations about an admissible map, which is defined as the map admitting a reciprocal image of every current, and the section closes with some statements refining the results of [2].

1. The section of a current defined on an open subset of $\boldsymbol{R}^{\boldsymbol{N}}$

Let Ω be a non-empty open subset of $R^{N}=R^{n} \times R^{m}$. A point of $R_{x}^{n} \times R_{y}^{m}$ will be denoted by (x, y), where $x=\left(x_{1}, \cdots, x_{n}\right)$ and $y=\left(y_{1}, \cdots, y_{m}\right)$. Let

$$
\Omega_{x_{0}}=\left\{y ;\left(x_{0}, y\right) \in \Omega\right\}
$$

where we suppose $\Omega_{x_{0}} \neq \varnothing$. We shall often use the symbol $T(x, y)$ for a distribution $T \in \mathscr{D}^{\prime}(\Omega)$.

If there exists a distribution $S \in \mathscr{D}^{\prime}\left(\Omega_{x_{0}}\right)$ such that

$$
\begin{equation*}
\lim _{\lambda \rightarrow+0} T\left(x_{0}+\lambda x, y\right)=S(y) \quad\left(=1_{x} \otimes S(y) \text { more precisely }\right) \tag{*}
\end{equation*}
$$

namely

$$
\lim _{\lambda \rightarrow+0}<T, \frac{1}{\lambda^{n}} \phi\left(\frac{x-x_{0}}{\lambda}\right) \phi(y)>=<S, \psi>\int \phi(x) d x
$$

for any $\phi \in \mathscr{D}\left(R^{n}\right), \psi \in \mathscr{D}\left(\Omega_{x_{0}}\right)$, then according to S. Lojasiewicz [3, p. 15] we shall say that $x=x_{0}$ can be fixed in $T(x, y)$ and that S is the section of T for $x=x_{0}$ with notation $T\left(x_{0}, y\right)$.

Recently R. Shiraishi has shown in [6, p. 91] that the condition (*) is equivalent to

$$
\lim _{k \rightarrow \infty}<T(x, y), \rho_{k}\left(x-x_{0}\right)>=S(y)
$$

for every restricted δ-sequence $\left\{\rho_{k}\right\}$ in $\mathscr{D}\left(R^{n}\right)$, that is, every sequence of nonnegative functions $\rho_{k} \in \mathscr{D}\left(R^{n}\right)$ with the following conditions:
(i) Supp ρ_{k} converges to $\{0\}$ as $k \rightarrow \infty$.
(ii) $\int \rho_{k}(x) d x$ converges to 1 as $k \rightarrow \infty$.
(iii) $\int|x|^{|p|}\left|D^{p} \rho_{k}(x)\right| d x \leqq K_{p}$, a constant independent of k.

We note that a sequence $\left\{\rho_{k}\right\}$ satisfying the conditions (i) and (ii), is called a δ-sequence. For simplicity we assume $x_{0}=0$.

Consider a diffeomorphism

$$
x: \begin{cases}x^{\prime}=\xi(x, y), & \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \\ y^{\prime}=\eta(x, y), & \eta=\left(\eta_{1}, \ldots, \eta_{m}\right)\end{cases}
$$

of Ω onto an open subset $\Omega^{\prime} \subset R_{x^{\prime}}^{n} \times R_{y^{\prime}}^{m}$, which refers $x=0$ in Ω to $x^{\prime}=0$ in Ω^{\prime}. The Jacobian of the map x will be denoted by J_{x}. For any $T \in D^{\prime}(\Omega)$ and $S \in D^{\prime}\left(\Omega_{0}\right)$ we define $T^{\prime} \in \mathscr{D}^{\prime}\left(\Omega^{\prime}\right)$ and $S^{\prime} \in \mathscr{D}\left(\Omega_{0}^{\prime}\right)$ as follows:

$$
\begin{aligned}
& <T^{\prime}\left(x^{\prime}, y^{\prime}\right), \phi\left(x^{\prime}, y^{\prime}\right)> \\
& \quad=<T(x, y),\left|J_{\chi}(x, y)\right| \phi(\xi(x, y), \eta(x, y))>, \quad \phi \in \mathscr{D}\left(\Omega^{\prime}\right)
\end{aligned}
$$

and

$$
<S^{\prime}\left(y^{\prime}\right), \phi\left(y^{\prime}\right)>=<S(y),\left|J_{\eta_{0}}\right| \psi\left(\eta_{0}(y)\right)>, \quad \psi \in \mathscr{D}\left(\Omega_{0}^{\prime}\right)
$$

where $\eta_{0}(y)=\eta(0, y)$ is the diffeomorphism of Ω_{0} onto Ω_{0}^{\prime}. We shall first show the following

Lemma 1. Let $T \in \mathscr{D}^{\prime}(\Omega)$ and let k be a real number. If there exists a distribution $S \in D^{\prime}\left(\Omega_{0}\right)$ such that

$$
\lim _{\lambda \rightarrow+0} \lambda^{k} T(\lambda x, y)=S(y)
$$

then $\lim _{\lambda \rightarrow+0} \lambda^{k} T^{\prime}\left(\lambda x^{\prime}, y^{\prime}\right)$ exists and is equal to $S^{\prime}\left(y^{\prime}\right)$.
Proof. It is sufficient to show that

$$
\lim _{\lambda \rightarrow+0}<\lambda^{k} T^{\prime}\left(\lambda x^{\prime}, y^{\prime}\right), \phi_{1}\left(x^{\prime}\right) \phi_{2}\left(y^{\prime}\right)>=<S^{\prime}\left(y^{\prime}\right), \phi_{2}\left(y^{\prime}\right)>\int \phi_{1}\left(x^{\prime}\right) d x^{\prime}
$$

for any $\phi_{1} \in \mathscr{D}\left(R^{n}\right)$ and $\phi_{2} \epsilon \mathscr{D}\left(\Omega_{0}^{\prime}\right)$.
Since J_{χ} does not vanish and $\xi(0, y) \equiv 0$, we must have $\left.\frac{d \xi}{d x} \frac{d \eta}{d y}\right|_{x=0} \neq 0$, where $\frac{d \xi}{d x}$ and $\frac{d \eta}{d y}$ stand for the Jacobians $\frac{\partial\left(\xi_{1}, \ldots, \xi_{n}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}$ and $\frac{\partial\left(\eta_{1}, \ldots, \eta_{m}\right)}{\partial\left(y_{1}, \ldots, y_{m}\right)}$ respectively. For any given compact set $K \subset \Omega_{0}, \frac{d \xi}{d x}$ does not vanish for $y \epsilon K$ and for sufficiently small $|x|$. We can therefore find positive constants c, c_{1} and ε satisfying the condition:

$$
\begin{equation*}
c|x| \leqq|\xi(x, y)| \leqq c_{1}|x|, \quad(x, y) \in B_{\varepsilon} \times K \subset \Omega \tag{i}
\end{equation*}
$$

where B_{ε} stands for the ball in R^{n} with center 0 and radius ε. Now we have for sufficiently small λ

$$
\begin{gathered}
<\lambda^{k} T^{\prime}\left(\lambda x^{\prime}, y^{\prime}\right), \phi_{1}\left(x^{\prime}\right) \phi_{2}\left(y^{\prime}\right)>=<\lambda^{k} T^{\prime}\left(x^{\prime}, y^{\prime}\right), \frac{1}{\lambda^{n}} \phi_{1}\left(\frac{x^{\prime}}{\lambda}\right) \phi_{2}\left(y^{\prime}\right)> \\
=<\lambda^{k} T(x, y), \frac{1}{\lambda^{n}}\left|J_{x}(x, y)\right| \phi_{1}\left(\frac{\xi(x, y)}{\lambda}\right) \phi_{2}(\eta(x, y))> \\
=<\lambda^{k}\left|J_{x}(\lambda x, y)\right| T(\lambda x, y), \phi_{1}\left(\frac{\xi(\lambda x, y)}{\lambda}\right) \phi_{2}(\eta(\lambda x, y))>.
\end{gathered}
$$

If we put $\psi_{\lambda}=\phi_{1}\left(\frac{\xi(\lambda x, y)}{\lambda}\right) \phi_{2}(\eta(\lambda x, y))$, then $\left\{\psi_{\lambda}\right\}$ will be uniformly bounded in $\mathscr{D}\left(R^{n} \times \Omega_{0}\right)$ for sufficiently small λ. Indeed, let K^{\prime} be any compact subset of Ω_{0}^{\prime} such that

$$
\begin{equation*}
\eta_{0}^{-1}\left(K^{\prime}\right) \subset K^{0} \subset K \tag{ii}
\end{equation*}
$$

We choose a positive constant δ so that

$$
\begin{equation*}
\chi^{-1}\left(B_{\delta} \times K^{\prime}\right) \subset B_{\varepsilon} \times K \tag{iii}
\end{equation*}
$$

Let $\phi_{1} \in \mathscr{D}_{B_{a}}, a>0$, and $\phi_{2} \in \mathscr{D}_{K^{\prime}}$. It then follows from these properties (i), (ii) and (iii) that $\operatorname{supp} \psi_{\lambda}(x, y), 0<\lambda \leqq \frac{\delta}{a}$, must be contained in a fixed compact set. In view of the fact that $\xi(0, y) \equiv 0$, we see that $\left|D_{y}^{p} \xi_{j}(x, y)\right|=O(|x|)$ uniformly for $y \in K$ as $|x| \rightarrow 0$ and so $\left|D_{y}^{p} \xi_{j}(\lambda x, y)\right|=O(\lambda|x|)$, whence the set $\left\{D_{x}^{p} D_{y}^{q} \psi_{\lambda}\right\}_{\lambda}$ is uniformly bounded for $0<\lambda \leqq \frac{\delta}{a}$. Therefore $\left\{\psi_{\lambda}\right\}_{0<\lambda \leqslant \frac{\delta}{a}}$ is bounded in $\mathscr{D}\left(R^{n}\right) \times \mathscr{D}\left(\Omega_{0}\right)$.

Thus we have

$$
\begin{aligned}
\lim _{\lambda \rightarrow+0} & <\lambda^{k}\left|J_{\chi}(\lambda x, y)\right| T(\lambda x, y), \phi_{\lambda}(x, y)> \\
& =<\left|J_{\chi}(0, y)\right| S(y), \phi_{2}(\eta(0, y)) \int \phi_{1}\left(\sum_{j} \frac{\partial \xi}{\partial x_{j}}(0, y) x_{j}\right) d x>
\end{aligned}
$$

and

$$
\int \phi_{1}\left(\sum_{j} \frac{\partial \xi}{\partial x_{j}}(0, y) x_{j}\right) d x=\int \phi_{1}\left(x^{\prime}\right) \frac{1}{|\Delta(y)|} d x^{\prime}
$$

where $\Delta(y)$ is the Jacobian of the $\operatorname{map} x \rightarrow x^{\prime}=\sum_{j} \frac{\partial \xi}{\partial x_{j}}(0, y) x_{j}$.
Since $\xi_{j}(0, y) \equiv 0$ as already remarked, we obtain

$$
J_{\chi}(0, y)=J_{\eta_{0}}(y) \Delta(y)
$$

Thus we have

$$
\begin{aligned}
\lim _{\lambda \rightarrow+0}<\lambda^{k} T^{\prime}\left(\lambda x^{\prime}, y^{\prime}\right), \phi_{1}\left(x^{\prime}\right) \phi_{2}\left(y^{\prime}\right)> & =<S(y),\left|J_{\eta_{0}}(y)\right| \phi_{2}\left(\eta_{0}(y)\right)>\int \phi_{1}\left(x^{\prime}\right) d x^{\prime} \\
& =<S^{\prime}\left(y^{\prime}\right), \phi_{2}\left(y^{\prime}\right)>\int \phi_{1}\left(x^{\prime}\right) d x^{\prime}
\end{aligned}
$$

which completes the proof.
Let δ be the Dirac measure concentrated at origin and let $\phi \in \mathscr{D}\left(R^{n}\right)$ with $\phi \geqq 0$ and $\int \phi d x=1$. We put $\phi_{\lambda}(x)=\frac{1}{\lambda^{n}} \phi\left(\frac{x}{\lambda}\right)$. For our purpose later on we shall show

Lemma 2. For any real number k, the condition

$$
\lim _{\lambda \rightarrow+0} \lambda^{k} T(\lambda x, y)=S(y)
$$

is equivalent to

$$
\lim _{\lambda \rightarrow+0} \lambda^{k} \delta(x+\lambda u) T(x, y)=\delta_{x} \otimes S(y)
$$

or

$$
\lim _{\lambda \rightarrow+0} \lambda^{k} \check{\phi}_{\lambda}(x) T(x, y)=\delta_{x} \otimes S(y)
$$

Proof. It is clear that the last two conditions are equivalent. Now, suppose that $\lim _{\lambda \rightarrow+0} \lambda^{k} T(\lambda x, y)$ exists and equals $S(y)$. If $\psi_{1}(x) \in \mathscr{D}\left(R^{n}\right)$ and $\psi_{2}(y) \in \mathscr{D}\left(\Omega_{0}\right)$, then since we can write for sufficiently small λ

$$
\begin{aligned}
& <\lambda^{k} \check{\phi}_{\lambda}(x) T(x, y), \phi_{1}(x) \psi_{2}(y)>=<\lambda^{k} T(x, y), \check{\phi}_{\lambda}(x) \psi_{1}(x) \phi_{2}(y)> \\
= & <\lambda^{k} T(\lambda x, y), \check{\phi}(x) \psi_{1}(0) \psi_{2}(y)>+<\lambda^{k} T(\lambda x, y), \check{\phi}(x)\left(\psi_{1}(\lambda x)-\psi_{1}(0)\right) \psi_{2}(y)>,
\end{aligned}
$$

it follows that

$$
\begin{aligned}
\lim _{\lambda \rightarrow+0}<\lambda^{k} \check{\phi}_{\lambda}(x) T(x, y), \phi_{1}(x) \psi_{2}(y)> & =<1_{x} \otimes S(y), \check{\phi}(x) \psi_{1}(0) \phi_{2}(y)> \\
& =\psi_{1}(0)<S(y), \psi_{2}(y)>.
\end{aligned}
$$

This implies that the limit $\lim _{\lambda \rightarrow+0} \lambda^{k} \check{\phi}_{\lambda}(x) T(x, y)$ exists and equals $\delta_{x} \otimes S(y)$.
Conversely, suppose that $\lim _{\lambda \rightarrow+0} \lambda^{k} \check{\phi}_{\lambda}(x) T(x, y)$ exists and equals $\delta_{x} \otimes S(y)$. If we take $\psi_{1}(x) \in \mathscr{D}\left(R^{n}\right)$ to be 1 near the origin, then we have for any $\psi_{2}(y) \epsilon$ $\mathscr{D}\left(\Omega_{0}\right)$

$$
\begin{aligned}
\lim _{\lambda \rightarrow+0}<\lambda^{k} T(\lambda x, y), \phi(x) \psi_{2}(y)> & =\lim _{\lambda \rightarrow+0}<\lambda^{k} T(x, y), \phi_{\lambda}(x) \psi_{2}(y)> \\
& =\lim _{\lambda \rightarrow+0}<\lambda^{k} \phi_{\lambda} T(x, y), \psi_{1}(x) \psi_{2}(y)> \\
& =<\delta_{x} \otimes S(y), \psi_{1}(x) \psi_{2}(y)> \\
& =<S(y), \psi_{2}(y)>,
\end{aligned}
$$

which completes the proof.
Now, let $\stackrel{p}{T}, 0 \leqq p \leqq N$, be a p-current defined on $\Omega \subset R^{N}=R_{x}^{n} \lessdot R_{y}^{m}$, which is understood as a form with distributional coefficients:

$$
\stackrel{p}{T}(x, y)=\sum_{I, K} T_{I, K} d x_{I} \wedge d y_{K}, \quad T_{I, K} \in D^{\prime}(\Omega)
$$

where $I=\left\{i_{1}, \ldots, i_{s}\right\}$ and $K=\left\{k_{1}, \ldots, k_{t}\right\}$ with $s+t=p$ are strictly increasing multi-indices between 1 and n and between 1 and m respectively and

$$
d x_{I} \wedge d y_{K}=d x_{i_{1}} \wedge \ldots \wedge d x_{i_{s}} \wedge d y_{k_{1}} \wedge \ldots \wedge d y_{k_{i}}
$$

Furthermore we shall write $T_{K}=T_{I, K}$ for $|K|=p$. We have for any positive real number λ

$$
\stackrel{p}{T}(\lambda x, y)=\sum_{I, K} \lambda^{|I|} T_{I, K}(\lambda x, y) d x_{I} \wedge d y_{K}
$$

where $|I|$ stands for the number of the components of I.
Definition 1. Let ${ }_{T}^{p}$ be a p-current on $\Omega \subset R^{n} \times R^{m}$. If the limit $\lim _{\lambda \rightarrow+0} T(\lambda x, y)$ exists and does not depend on x, then we say that $x=0$ can be fixed in $T(x, y)$ and that the limit is the section of T for $x=0$ with notation $T(0, y)$.

This definition means that the distributional limits

$$
\begin{array}{ll}
\lim _{\lambda \rightarrow+0} T_{I, K}(\lambda x, y)=T_{K}(0, y) & \text { for }|I|=0 \\
\lim _{\lambda \rightarrow+0} \lambda^{s} T_{I, K}(\lambda x, y)=0 & \text { for }|I|=s>0
\end{array}
$$

exist and

$$
\stackrel{p}{T}(0, y)=\sum_{K} T_{K}(0, y) d y_{K} .
$$

If T happens to be a distribution on Ω, that is, $p=0$, then the definition gives rise to that of the section of T for $x=0$.

When every $T_{I, K}$ has the section for $x=0$, then T has clearly the section $T(0, y)$. If this is the case, we shall call $T(0, y)$ the section of T in a narrow sense for $x=0$.

Let Ω, Ω^{\prime} and $\chi=(\xi, \eta)$ be the same as before. Then the direct image $\chi T=\widetilde{T}$ is represented by

$$
\sum_{J, L} T_{J, L}^{\prime}\left(x^{\prime}, y^{\prime}\right) d x_{J}^{\prime} \wedge d y_{L}^{\prime}, \quad \text { where } \quad T_{J, L}^{\prime}=\sum_{I, K} T_{I, K}^{\prime}\left(x^{\prime}, y^{\prime}\right) \frac{\partial\left(x_{I}, y_{K}\right)}{\partial\left(x_{J}^{\prime}, y_{L}^{\prime}\right)} .
$$

\tilde{T} is also the reciprocal image of T for the inverse map χ^{-1}. Let S be a current on Ω_{0} and let $y^{\prime}=\eta_{0}(y)=\eta(0, y)$. In a similar way the direct image
$\eta_{0} S=\tilde{S}$ is represented by

$$
\sum_{L} \widetilde{S}_{L}^{\prime}\left(y^{\prime}\right) d y_{L}^{\prime}, \quad \text { where } \quad \widetilde{S}_{L}^{\prime}\left(y^{\prime}\right)=\sum_{K} S_{K}^{\prime}\left(y^{\prime}\right) \frac{\partial \eta_{0 K}^{-1}}{\partial y_{L}^{\prime}} .
$$

Theorem 1. If a current $\stackrel{p}{T}$ on $\Omega \subset R_{x}^{n} \times R_{y}^{m}$ has the section $\stackrel{p}{S}$ for $x=0$, then the direct image $\chi \stackrel{p}{T}=\stackrel{\tilde{T}}{T}$ also has the section $\eta_{0} \stackrel{p}{S}=\stackrel{\tilde{b}}{S}$ for $x^{\prime}=0$.

Proof. Let $S=\sum_{K} S_{K}(y) d y_{K}, S_{K}(y)=\lim _{\lambda \rightarrow+0} T_{I, K}(\lambda x, y)$ for $|I|=0$. By Lemma $1 \lim _{\lambda \rightarrow+0} T_{I, K}^{\prime}\left(\lambda x^{\prime}, y^{\prime}\right)$ exists for $|I|=0$ and equals S_{K}^{\prime} and $\lim _{\lambda \rightarrow+0} \lambda^{|I|} \times$ $T_{I, K}^{\prime}\left(\lambda x^{\prime}, y^{\prime}\right)=0$ for $|I|>0$. Put $a_{I, K, J, L}\left(x^{\prime}, y^{\prime}\right)=\frac{\partial\left(x_{I}, y_{K}\right)}{\partial\left(x_{J}^{\prime}, y_{L}^{\prime}\right)}$. Since $\xi(0, y) \equiv 0$, it follows that

$$
\left|a_{I, K, J, L}\left(\lambda x^{\prime}, y^{\prime}\right)\right|=\left\{\begin{array}{lll}
O\left(\lambda^{|I|-|J|}\right) & \text { for } & |I|>|J| \\
O(1) & \text { for } & |I| \leqq|J|
\end{array}\right.
$$

as $\lambda \rightarrow+0$. Thus we have

$$
\lim _{\lambda \rightarrow+0} \lambda^{|J|} T_{J, L}^{\prime}\left(\lambda x^{\prime}, y^{\prime}\right)= \begin{cases}\left.\sum_{|I|=0, K} T_{I, K}^{\prime}\left(0, y^{\prime}\right) \frac{\partial y_{K}}{\partial y_{L}^{\prime}}\right|_{x^{\prime}=0} & \text { for }|J|=0 \\ 0 & \text { for }|J|>0\end{cases}
$$

and again by Lemma 1 we have

$$
\begin{aligned}
\lim _{\lambda \rightarrow+0} T\left(\lambda x^{\prime}, y^{\prime}\right) & =\sum_{L}\left(\left.\sum_{|I|=0, K} T_{I, K}^{\prime}\left(0, y^{\prime}\right) \frac{\partial y_{K}}{\partial y_{L}^{\prime}}\right|_{x^{\prime}=0}\right) d y_{L}^{\prime} \\
& =\sum_{L} \sum_{K} S_{K}^{\prime}\left(y^{\prime}\right) \frac{\partial \eta_{0} \bar{K}_{K}^{1}}{\partial y_{L}^{\prime}} d y_{L}^{\prime} \\
& =\sum_{L} \tilde{S}_{L}^{\prime}\left(y^{\prime}\right) d y_{L}^{\prime}=\tilde{S}\left(y^{\prime}\right),
\end{aligned}
$$

which completes the proof.
For a current T on Ω, we shall define the section $T(0, y)$ to be the sum of the sections of the homogeneous components of T whenever they exist.

2. The section of a current on a submanifold

Let M be a manifold of dimension N. In what follows we always understand a manifold to be a differentiable manifold denumerable at infinity [4]. Let $\mathscr{D}(M)$ stand for the space of even C^{∞} forms on M with compact support, equipped with the usual topology, and $\mathscr{D}(M)$ the subspace of p-forms $\epsilon \mathscr{D}(M)$. $\mathscr{D}(M)$ is the space of odd C^{∞} forms with compact support. The spaces $D^{\prime}(M)$, $\mathscr{D}^{p}(M), \mathscr{D}^{\prime}(M)$ and $\mathscr{D}^{\prime}(M)$ are defined as the strong duals of $\mathscr{D}(M),{ }^{N-D}(M)$,
$\mathscr{D}(M)$ and ${ }^{N-\mathscr{D}}(M)$ respectively. We shall denote by $\delta(M)$ the space of even C^{∞} forms with the usual topology and by $\underline{\delta}^{\prime}(M)$ the strong dual of $\delta(M)$, which consists of the odd currents $\epsilon \mathscr{D}^{\prime}(M)$ with compact support. The same is true of $\underline{\varepsilon}(M)$ and $\delta^{\prime}(M)$.

Let $\{\kappa\}$ be a complete family of coordinate systems in M, where κ is a homeomorphism of an open set $V_{\kappa} \subset M$ onto an open set $\tilde{V}_{\kappa} \subset R^{N}$, and the map

$$
\kappa \kappa^{\prime-1}: \kappa^{\prime}\left(V_{\kappa} \cap V_{\kappa^{\prime}}\right) \rightarrow \kappa\left(V_{\kappa} \cap V_{\kappa^{\prime}}\right)
$$

is a diffeomorphism for any κ, κ^{\prime}. Let $T \in \mathscr{D}^{\prime}(M)$. To every κ there is associated a current $T_{\tilde{V}_{\kappa}}$ on \tilde{V}_{κ} such that $T_{\tilde{V}_{\kappa}}=\kappa \kappa^{\prime-1} T_{\tilde{V}_{\kappa^{\prime}}}$ in $\kappa\left(V_{\kappa} \cap V_{\kappa^{\prime}}\right)$ and we can identify T with such a system as $\left\{T_{\tilde{V}_{\kappa}}\right\}$. Similar considerations hold true of an odd current \underline{T}. We consider a distribution on M as an even 0 current on M, or, what is the same, an element of $\mathscr{D}^{\prime}(M)$.

Let M_{0} be a submanifold of dimension $m<N$. Then to every $a \in M_{0}$ there is associated a coordinate system $\kappa=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right\}, n+m=N$, which is valid on an open neighbourhood V_{κ} of a point a in M such that $x_{1}(a)=\ldots$ $=x_{n}(a)=y_{1}(a)=\ldots=y_{m}(a)=0$ and such that the restriction κ_{0} of κ to

$$
U_{\kappa}=V_{\kappa} \cap M_{0}=\left\{b \in V_{\kappa} ; x_{1}(b)=\ldots=x_{n}(b)=0\right\}
$$

forms a coordinate system in M_{0}. We have $\tilde{V}_{\kappa}=\left\{\left(x_{1}(b), \ldots, x_{n}(b), y_{1}(b), \ldots\right.\right.$, $\left.\left.y_{m}(b)\right) ; b \in V_{k}\right\}$, and $\tilde{U}_{\kappa}=\left\{\left(y_{1}(b), \ldots, y_{m}(b)\right) ; b \in U_{k}\right\}$.

If every $T_{\tilde{v}_{\kappa}}$ has the section $S_{\tilde{U}_{k}}$ on \tilde{U}_{k}, there exists a unique current $S \in D^{\prime}\left(M_{0}\right)$ determined by the system $\left\{S_{\tilde{\sigma}_{k}}\right\}$. This is an immediate consequence of Theorem 1. The consideration holds also true of the section in a narrow sense. If T is of degree p, then so is S. Then we can introduce

Definition 2. Let $T \in D^{\prime}(M)$. If $T_{\mathscr{V}_{\kappa}}$ has the section (resp. in a narrow sense) on \tilde{U}_{κ} for every V_{κ}, the uniquely determined current $S \in D^{\prime}\left(M_{0}\right)$ is called the section of T (resp. in a narrow sense) on the submanifold M_{0} and denoted by $T \mid M_{0}$.

As an application of the notion of the section of a current we can deal with an exterior product of two homogeneous currents $\stackrel{p}{S}, \stackrel{q}{T} \epsilon \mathscr{D}^{\prime}(M)$. Owing to the principle of localization, it suffices to define an exterior product in a coordinate neighbourhood V of every $a \in M$. Let $\stackrel{p}{S} \tilde{\tilde{V}}^{p}$ and $\stackrel{q}{T_{\tilde{V}}}$ be written in the form

$$
\stackrel{p}{S_{\tilde{V}}}=\sum_{I} S_{I}(x) d x_{I}, \quad \stackrel{q}{T \tilde{V}}=\sum_{K} T_{K}(x) d x_{K}, \quad S_{I}, T_{K} \in \stackrel{\circ}{\mathscr{D}}^{\prime}(\tilde{V}) .
$$

We shall consider the current

$$
\stackrel{p}{S} \tilde{V} \otimes \stackrel{q}{T} \tilde{V}=\sum_{I, K} S_{I}(x) T_{K}(z) d x_{I} \wedge d z_{K} \quad \text { in } \quad \tilde{V} \times \tilde{V},
$$

where $S_{I}(x) T_{K}(z)$ denotes the multiplicative products [2, p. 78$]$.
 the system of the sections $\left\{\left(S_{\tilde{V}} \otimes T_{\tilde{V}}\right) \mid \Delta_{\tilde{V}\}}\right\}$ defines the current W on Δ, the diagonal of $M \times M$. The map $j: M \ni a \rightarrow(a, a) \in \Delta$ is a diffeomorphism. The reciprocal image $j^{*} W$ will be termed the exterior product of S and T with notation $S \wedge T$, a $(p+q)$-current.

From this definition it follows that
(1) If $S \wedge T$ exists, then so does $T \wedge S$ and we have $S \wedge T=(-1)^{p q}(T \wedge S)$.
(2) If $S \wedge T$ exists, then so do (αS) $\wedge T, S \wedge(\alpha T)$ for every $\alpha \in C^{\infty}(M)$, and we have $\alpha(S \wedge T)=(\alpha S) \wedge T=S \wedge(\alpha T)$. If S and T are distributions on M, the definition is tantamount to that of the multiplicative product $S \cdot T$ given in [1, p. 165].

When $S_{I} T_{K}$ exists for every I, K and V, it is clear from our definition that the exterior product $S \wedge T$ is well defined, and we can write

$$
(S \wedge T)_{\tilde{V}}=\sum_{I, K} S_{I}(x) T_{K}(x) d x_{I} \wedge d x_{K}
$$

If this is the case, we shall say that the exterior product of S and T exists in a narrow sense.

We know that on an oriented manifold every odd current is associated with an even current in a natural way. On the other hand, every coordinate neighbourhood V_{κ} is supposed to be oriented according to the natural ordering of coordinates in κ. To every odd current S there is associated a system of currents $S_{\tilde{V}_{k}}$ such that

$$
\underline{S}_{\tilde{\sigma}_{\kappa}}=\sum_{I} S_{I}(x) d x_{I},
$$

but with the rules of transformations:

$$
S_{\tilde{V}_{\kappa^{\prime}}}\left(x^{\prime}\right)=\frac{J_{\kappa \kappa^{\prime}}-1}{\left|J_{\kappa \kappa^{\prime}-1}\right|} \sum_{I, J} S_{I}^{\prime}\left(x^{\prime}\right) \frac{\partial x_{I}}{\partial x_{J}^{\prime}} d x_{J}^{\prime} \quad \text { in } \quad \kappa^{\prime}\left(V_{\kappa} \cap V_{\kappa^{\prime}}\right)
$$

This observation leads us to the definition of the exterior products between currents of any kind. For example, let us consider two currents S and T on M. If $W_{\kappa}=\underline{S}_{\sigma_{\kappa}} \wedge T_{\vartheta_{\kappa}}$ exists for every κ, we can see that $\left\{W_{\kappa}\right\}$ uniquely determines an odd current \underline{W}, a fact which is verified straight forward. Then we call \underline{W} the exterior product $\underline{S} \wedge T$ of S and T. The parity of the exterior product obeys to the usual law for the exterior multiplication when one of the factors is a C^{∞} form.

Now we turn to the consideration about the section of an odd current $T \in \mathscr{D}^{\prime}(M)$ on a submanifold M_{0}, where the injection $j: M_{0} \rightarrow M$ is supposed to be oriented. We shall continue to use the notations as before. The map j assigns to the canonical orientation of U_{κ} a fixed orientation of V_{κ} in each point of U_{κ}, which may or may not coincide with the canonical orientation of V_{κ} and accordingly we define $\varepsilon(p), p \in U_{\kappa}$, to be 1 or -1 . Taking this into account, if the section $S_{\tilde{\sigma}_{\kappa}}$ of $T_{\tilde{\mathscr{V}}_{\kappa}}$ for $x=0$ exists for every κ, we can conclude
that $\left\{\varepsilon S_{\tilde{U}_{k}}\right\}$ uniquely determines an odd current \underline{S} on M_{0}, which we shall call the section of \underline{T} on M_{0} and denote it by $\underline{T} \mid M_{0}$.

The same is true of the section in a narrow sense.

3. Sections and reciprocal images

Consider a $C^{\infty} \operatorname{map} \xi$ of a manifold M^{\prime} of N^{\prime}-dimension into a manifold M of dimension N. The reciprocal image $\xi^{*} \alpha, \alpha \in \stackrel{\not D}{D}(M)$, belongs to $\stackrel{p}{\delta}\left(M^{\prime}\right)$. Then the integral

$$
\left.\int \underline{\beta} \wedge \xi^{*} \alpha, \quad \text { where } \underline{\beta} \epsilon^{N^{\prime}-p} \underline{D}^{(} M^{\prime}\right)
$$

defines a continuous linear form on $\stackrel{\not D}{\mathscr{D}}(M)$, and in turn an odd current $\xi \underline{\beta}$ of degree $N-p$ which is called the direct image of $\xi \beta$.

Now consider a current $T \epsilon \stackrel{\neq \mathscr{D}^{\prime}}{ }(M)$. If $\xi \underline{\beta} \wedge T$ exists for every $\left.\underline{\beta} \epsilon^{N^{\prime}-\underline{D}} \underline{D}^{(} M^{\prime}\right)$, the linear map

$$
\underline{\beta} \rightarrow \int \xi \underline{\beta} \wedge T
$$

will be continuous. Indeed, it is enough to show the assertion when M^{\prime}, M are open subsets Ω^{\prime}, Ω of Euclidean spaces of dimension N^{\prime} and of dimension N. In this case we may write $\xi \beta$ and T in the following forms:

$$
\begin{aligned}
\xi \beta & =\sum_{I} S_{I}(x) d x_{I}, & & S_{I} \in \AA^{\prime}(\Omega), \\
T & =\sum_{K} T_{K}(x) d x_{K}, & & T_{K} \in \mathscr{D}^{\prime}(\Omega),
\end{aligned}
$$

and therefore

$$
\xi \underline{\beta} \wedge T=\left(\sum_{I}(-1)^{\rho(I, C I)} S_{I}(x) T_{C I}(x)\right) d x
$$

where $(-1)^{\rho(I, K)}$ denotes the signature of the permutation $\{I, K\}$ of $\{1,2, \ldots$, N, and we used the notation $\sum_{I}(-1)^{\rho(I, C I)} S_{I}(x) T_{C I}(x)$ for the abbreviation of $\lim _{\lambda \rightarrow+0} \sum_{I}(-1)^{\rho(I, C I)} S_{I}(x) T_{C I}(x+\lambda u)$. By making use of a restricted δ-sequence $\left\{\rho_{k}\right\}$, we obtain

$$
\xi \underline{\beta} \wedge T=\lim _{k \rightarrow \infty} \sum_{I}(-1)^{\rho(I, C I)} S_{I}\left(T_{C I} * \rho_{k}\right) d x
$$

so we can conclude the assertion in virtue of the Banach-Steinhaus theorem.
 current $\xi^{*} T$ determined by the equation

$$
<\underline{\beta}, \xi^{*} T>=\int \xi \underline{\beta} \wedge T
$$

is called the reciprocal image of T under the map ξ.
We note that if $\xi^{*} T$ exists for every $T \epsilon \stackrel{D}{D}^{\prime}\left(M^{\prime}\right)$, then $\xi \beta$ is an odd ($N-p$)-form. This follows from the fact that a distribution on Ω which admits the multiplicative product with every distribution on Ω must belong to $\mathcal{E}(\Omega)[1, \mathrm{p} .166]$.

Now, let us consider a special case in which M^{\prime} is a submanifold M_{0} of M as in the preceding section. Let $j: M_{0} \rightarrow M$ be the injection, which is a C^{∞} map. Then we can show

Theorem 2. Given $T \in \stackrel{\not D^{\prime}}{ }(M), 0 \leqq p \leqq m$, the reciprocal image $j^{*} T$ exists if and only if the section $T \mid M_{0}$ exists. And if this is the case, we have $j^{*} T=$ $T \mid M_{0}$.

Proof. We shall continue to use the notations as before. For any $\alpha \in \stackrel{\not D}{D}(M)$ and $\beta \in \notin \stackrel{m-\phi}{\mathscr{D}}\left(M_{0}\right)$ with support $\subset \subset U_{\kappa}$, it is easy to verify the relation:

$$
\int \underline{\beta} \wedge j^{*} \alpha=\int_{\tilde{ण}_{\kappa}} \underline{\beta}_{\tilde{U}_{\kappa}} \wedge\left(j^{*} \alpha\right){\tilde{\theta}_{\kappa}}=\int_{\tilde{V}_{k}}\left(\delta(x) d x \wedge \underline{\tilde{v}_{k}}\right) \wedge \alpha \tilde{V}_{k},
$$

which implies that

$$
(j \underline{\beta}) \tilde{\nu}_{\kappa}=\delta(x) d x \wedge \hat{\beta}_{\tilde{\omega}} .
$$

Suppose $j^{*} T$ exist, then, since the exterior product $(j \beta) \tilde{\gamma}_{\kappa} \wedge T_{\tilde{V}_{k}}$ exists for any $\underline{\beta}$, it follows that $\left(\delta(x) d x \wedge d y_{J}\right) \wedge T_{\boldsymbol{V}_{\kappa}}$ must exist for any J with $|J|=$ $m-p$. Putting $T_{\tilde{\vartheta}_{\kappa}}=\sum_{I, K} T_{I, K}(x, y) d x_{I} \wedge d y_{K},|I|+|K|=p$, we can write

$$
\begin{aligned}
& \left(\delta(x) d x \wedge d y_{J}\right) \wedge T_{\tilde{\nabla}_{\kappa}} \\
& \quad=\lim _{\lambda \rightarrow+0} \sum_{I, K} \delta(x+\lambda u) T_{I, K}(x, y) d(x+\lambda u) \wedge d(y+\lambda v)_{J} \wedge d x_{I} \wedge d y_{K} \\
& \quad=\lim _{\lambda \rightarrow+0} \sum(-1)^{\rho(C L, L)} \lambda^{\prime L} \delta(x+\lambda u) T_{I, K}(x, y) d x_{C L} \wedge d u_{L} \wedge d(y+\lambda v)_{J} \wedge d x_{I} \wedge d y_{K}
\end{aligned}
$$

We can conclude from these equalities that

$$
\lim _{\lambda \rightarrow+0} \lambda^{|I|} \delta(x+\lambda u) T_{I, K}(x, y)
$$

exists for every $T_{I, K}$, and in addition if $|I|>0$, the limit is 0 . Indeed, choose $J=C K$ for any K with $|K|=p$, then it is easy to see that the assertion is true of $|K|=p$, and
$\lim _{\lambda \rightarrow+0} \sum_{|K| \leqq p-1}(-1)^{\rho(C L, L)} \lambda^{|L|} \delta(x+\lambda u) T_{I, K}(x, y) d x_{C L} \wedge d u_{L} \wedge d(y+\lambda v)_{J} \wedge d x_{I} \wedge d y_{K}$
exists. Then a similar argument can be applied to obtain the results for the case $|K|=p-1$ when $p \geqq 1$. The repeated use of this procedure will lead
us to the conclusion. It then follows from Lemma 2 that the section $T_{\tilde{V}_{\kappa}} \mid \tilde{U}_{\kappa}$ exists.

Conversely, let us assume that the section $T \mid M_{0}$ exists. This implies that if we write $T_{\nabla_{k}}=\sum_{I, K} T_{I, K}(x, y) d x_{I} \wedge d y_{K}$, then $\lim _{\lambda \rightarrow+0} \lambda^{[I]} T_{I, K}(\lambda x, y)$ exists for every $T_{I, K}$ and equals 0 for $|I|>0$. Putting $\lim _{\lambda \rightarrow+0} T_{I, K}(\lambda x, y)=S_{K}(y)$ for $|I|=0$, we obtain $\left(T \mid M_{0}\right){\tilde{\tilde{v}_{\kappa}}}=\sum_{K} S_{K}(y) d y_{K}$. From these facts together with Lemma 2 it will be easily verified that we obtain with $\beta_{\theta_{\kappa}}=\sum{ }_{J} \underline{\beta}_{J}(y) d y_{J}$

$$
\begin{aligned}
& (j \underline{\beta}) \tilde{\vartheta}_{\kappa} \wedge T_{\tilde{V}_{\kappa}} \\
& =\lim _{\lambda \rightarrow+0} \Sigma(-1)^{\rho(C L, L)} \lambda^{\prime L I} \delta(x+\lambda u) \beta_{J}(y+\lambda v) \wedge \\
& \quad \wedge T_{I, K}(x, y) \wedge d x_{C L} \wedge d u_{L} \wedge d(y+\lambda v)_{J} \wedge d x_{I} \wedge d y_{K} \\
& =\sum_{J} \delta(x) d x \wedge \beta_{J}(y) S_{C J}(y) d y_{J} \wedge d y_{C J}
\end{aligned}
$$

and

$$
\int(j \underline{\beta}) \tilde{\vartheta}_{\kappa} \wedge T_{\tilde{\vartheta}_{\kappa}}=\int \underline{\beta_{\tilde{\sigma}}} \wedge\left(T \mid M_{0}\right) \tilde{\theta}_{\kappa}
$$

which implies that $j^{*} T=T \mid M_{0}$. Thus the proof is complete.
If ξ is an oriented C^{∞} map of M^{\prime} into M, we can define in a similar way the reciprocal image $\xi^{*} \underline{T} \in \underline{D}^{\prime}\left(M^{\prime}\right)$ for an odd current $\underline{T} \epsilon \underline{D}^{\prime}(M)$ under the map ξ. In particular, when ξ is an oriented injection j of a submanifold M_{0} into M, Theorem 2, as we see easily, also remains true of the oriented injection j and the odd current \underline{T}.

As an application we can show Stokes' formula for a current of any kind. Before going to a general discussion, we consider the integral $\int_{a}^{b} S^{\prime}(x) d x$, where S is a distribution on the real line. If the values $S(a), S(b)$ exist, the integral is defined to be $S(b)-S(a)$. Now we shall consider it in more detail: Let h be the characteristic function of the interval $[a, b]$. Then $h^{\prime}=\delta_{a}-\delta_{b}$. It is known [1, p. 162] that the following conditions for a distribution S are equivalent:
(1) The values $S(a), S(b)$ exist.
(2) The multiplicative product $h^{\prime} S$ exists.
(3) The multiplicative product $h S^{\prime}$ exists.
(4) The multiplicative products $h S$ and $h S^{\prime}$ exist.

Let us assume that any one of these equivalent conditions is satisfied for S. Then $(h S)^{\prime}=h^{\prime} S+h S^{\prime}$. Consequently we have

$$
\int h S^{\prime} d x=-\int h^{\prime} S d x=\int\left(S(b) \delta_{b}-S(a) \delta_{a}\right) d x=S(b)-S(a)
$$

Therefore if we understand in general the integral $\int_{a}^{b} T(x) d x$ of a distribu-
tion T to be $\int h T d x$ when the multiplicative product $h T$ exists, we obtain

$$
\int_{a}^{b} S^{\prime}(x) d x=S(b)-S(a)
$$

under the assumption made above.
Let Ω be a domain in the manifold M. We assume that Ω is a domain with regular boundary, that is, the boundary $b \Omega$ is a closed ($N-1$)-dimensional manifold and we can find for each point $a \in b \Omega$ its coordinate neighbourhood V with coordinates $x, y_{1}, \ldots, y_{N-1}$ such that $V \cap \bar{\Omega}$ is the set of all points $b \in V$ with $x(b) \leqq 0$. We can assign to each point a of $b \Omega$ a tangent vector at a in M entering into $C \Omega$, so that $b \Omega$ is transversally oriented in a familiar way. Thus the injection $b \Omega \rightarrow M$ is oriented. We note that if M is orientable, then so is $b \Omega$.

Let T be an odd ($N-1$)-current defined on M. Let I_{Ω} denote the characteristic function of Ω. If $I_{\Omega} \wedge T$ exists with compact support, we define

$$
\int_{\Omega} \underline{T}=\int I_{\Omega} \wedge T
$$

where the right side has a meaning since $I_{\Omega} \wedge \underline{T} \epsilon \delta^{\prime}(M)$. Before going to the statement of Stokes' formula for an odd current, we show a proposition needed later on.

Proposition 1. If $T \mid b \Omega$ exists in a narrow sense, then the exterior products $I_{\Omega} \wedge T, I_{\Omega} \wedge d T$ and $d I_{\Omega} \wedge T$ in a narrow sense exist and we have

$$
d\left(I_{\Omega} \wedge \underline{T}\right)=d I_{\Omega} \wedge \underline{T}+I_{\Omega} \wedge d \underline{T} .
$$

Proof. It is enough to show the assertions in a neighbourhood of each point $a \in b \Omega$. Let V be taken as before and put $U=\{b \in V ; x(b)=0\}$. We can write $T_{\mathscr{\nu}}$ in the form:

$$
T_{\tilde{v}}=T_{0}(x, y) d y+\sum_{j} T_{j}(x, y) d x \wedge d y_{1} \wedge \ldots \wedge \widehat{d y_{j}} \wedge \ldots \wedge d y_{N-1}
$$

where the circumflex indicates omission. The assumption that $T \mid b \Omega$ exists in a narrow sense means that the section $T_{k}(0, y), 0 \leqq k \leqq N-1$, exists. Consequently the multiplicative product $\delta(x) T_{k}(x, y)$ exists and equals $\delta(x) T_{k}(0, y)$. Let $Y(x)$ be the Heaviside function. Then we have $\left(I_{\Omega}\right)_{\tilde{V}}=Y(-x) \otimes 1_{y}$ in \tilde{V}. Since

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(Y(-x) \otimes 1_{y}\right)=-\delta(x) \otimes 1_{y}, \\
& \frac{\partial}{\partial y_{j}}\left(Y(-x) \otimes 1_{y}\right)=0, \quad j=1,2, \ldots, N-1,
\end{aligned}
$$

we can conclude that the multiplicative products $\left(I_{\Omega}\right)_{\tilde{V}} T_{k}(x, y),\left(I_{\Omega}\right) \frac{\partial T_{k}}{\partial x}$ and $\left(I_{\Omega}\right) \frac{\partial T_{k}}{\partial y_{j}}$ exist for $k=0,1, \ldots, N-1, j=1,2, \ldots, N-1[1$, p. 168]. This implies that $\left(I_{\Omega}\right)_{\mathscr{V}} \wedge \underline{T}_{\tilde{V}}$ and $\left(I_{\Omega}\right)_{\tilde{V}} \wedge d \underline{T}_{\tilde{V}}$ exist in a narrow sense and we have

$$
d\left(\left(I_{\Omega}\right)_{\tilde{V}} \wedge \underline{T}_{\tilde{V}}\right)=d\left(I_{\Omega}\right)_{\tilde{V}} \wedge \underline{T}_{\tilde{V}}+\left(I_{\Omega}\right)_{\tilde{V}} \wedge d \underline{T} \underline{T}_{\tilde{V}}
$$

which completes the proof.
Theorem 3 (Stokes' formula). Let $\Omega \subset M$ be a domain with regular boundary and let \underline{T} be an odd ($N-1$)-current on M such that $\operatorname{supp} \underline{T} \cap \bar{\Omega}$ is compact. If \underline{T} has the section $T \mid b \Omega$ in a narrow sense, then

$$
\int_{\Omega} d \underline{T}=\int_{b \Omega} j^{*} \underline{T}
$$

where j is the oriented injection of $b \Omega$ into M.
Proof. From Proposition 1 we have

$$
d\left(I_{\Omega} \wedge \underline{T}\right)=d I_{\Omega} \wedge \underline{T}+I_{\Omega} \wedge d \underline{T}
$$

Consequently we have

$$
\int_{\Omega} d \underline{T}=\int I_{\Omega} \wedge d \underline{T}=-\int d I_{\Omega} \wedge T
$$

Hence it remains to show that $-\int d I_{\Omega} \wedge T=\int_{b \Omega} j^{*} T$. To do so, it is enough to show that

$$
-\int \phi \cdot\left(d I_{\Omega} \wedge \underline{T}\right)=\int_{b \Omega}\left(j^{*} \phi\right)\left(j^{*} \underline{T}\right), \quad \phi \epsilon \stackrel{\circ}{\mathscr{D}}(V)
$$

in a neighbourhood V of each point $a \in b \Omega$. Let V be taken as before. Then we can see from the proof of Theorem 2 that

$$
-\phi \cdot\left(d I_{\Omega} \wedge \underline{T}\right)_{\tilde{v}}=\phi(0, y) \delta(x) d x \wedge \underline{T}_{\tilde{V}}=\phi(0, y) \delta(x) d x \wedge\left(j^{*} \underline{T}\right)_{\tilde{U}}
$$

and then

$$
\begin{aligned}
-\int \phi \cdot\left(d I_{\Omega} \wedge \underline{T}\right) & =\int_{\tilde{V}} \phi(0, y) \delta(x) d x \wedge\left(j^{*} \underline{T}\right) \tilde{U} \\
& =\int_{\tilde{ण}} \phi(0, y)\left(j^{*} T\right)_{\tilde{U}}=\int_{b \Omega}\left(j^{*} \phi\right)\left(j^{*} \underline{T}\right)
\end{aligned}
$$

which completes the proof.
Remark. When M is oriented, the boundary $b \Omega$ can be oriented as indicated before. We can prove in a like manner that Stokes' formula is also valid for an even current T.

It may happen that $\underline{T} \mid b \Omega$ exists in a wider sense but not $I_{\Omega} \wedge d \underline{T}$. Indeed, put $\Omega=\left\{(x, y) \in R^{2} ; x<0\right\}$. Let $\alpha, \beta \in \mathscr{D}(R)$ be equal to 1 in a 0 -neighbourhood and $\underline{T}=\alpha(x) \beta(y) y \frac{d}{d x}(\log |\log | x| |) d x . \quad \log |\log | x| |$ has no value at 0 and $\frac{d}{d x}\left(\log |\log | x|\mid)\right.$ no mass at $0[3, \mathrm{p} .23]$ and therefore $Y(-x) \cdot \frac{d}{d x}(\log |\log | x|\mid)$ does not exist. Then it is easy to verify that $\underline{T} \mid b \Omega=0$ but $I_{\Omega} \wedge d \underline{T}$ does not exist. Similarly the existence of $I_{\Omega} \wedge d \underline{T}$ does not imply the existence of $\underline{T} \mid b \Omega$. Let Ω be the same as above. If we put $\underline{T}=d(f(x) g(y))$ with $f(x)=$ $g(x)=\log (\min \{1,|x|\})$, then $d \underline{T}=0$. Since $\underline{T}=\frac{1}{x} \log |y| d x+\frac{1}{y} \log |x| d y$ in a 0 -neighbourhood it follows that $\underline{T} \mid b \Omega$ does not exist even in a wider sense.

4. Fixations and trace maps

Let M be a manifold of dimension N and M_{0} a submanifold of dimension m of M. Let j be the injection $M_{0} \rightarrow M$. We shall first define the trace map. To do so, let $\mathscr{H}(M) \subset \mathscr{D}^{\prime}(M)$ be a locally convex space with topology finer than that of $D^{\prime}(M)$ and assume that $\mathscr{H}(M) \cap{ }^{\phi}(M)$ is dense in $\mathscr{H}(M)$. If the map of $\mathscr{H}(M) \cap \stackrel{p}{\delta}(M)$ into $\stackrel{p}{D^{\prime}}\left(M_{0}\right)$ which transforms $\alpha \in \mathscr{H}(M) \cap \stackrel{p}{\delta}(M)$ into the restriction of α to M_{0} can be continuously extended from $\mathscr{H}(M)$ into $\mathscr{D}^{\prime}\left(M_{0}\right)$, then the extended map is called a trace map on M_{0}, and the current $\epsilon \mathscr{D}_{D^{\prime}}\left(M_{0}\right)$ which corresponds to $T \in \mathscr{H}(M)$ will be called the trace of T and denoted by $T \mid\left[M_{0}\right]$.

Proposition 2. Let $\mathscr{H}(M)$ be a barrelled space. If the section $T \mid M_{0}$ on M_{0} exists for every $T \in \mathscr{H}(M)$, then the trace $T \mid\left[M_{0}\right]$ exists for every $T \in \mathscr{H}(M)$ and $T\left|\left[M_{0}\right]=T\right| M_{0}$.

Proof. We shall continue to employ the same notations as used in the preceding sections. For each point $a \in M_{0}$ we may assume that there exists a neighbourhood V of a such that

$$
\begin{aligned}
& \tilde{V}=\{(x, y) ;|x|<\delta, \quad|y|<\delta\}, \\
& \tilde{U}=\{y ;|y|<\delta\}, \quad U=V \cap M_{0}
\end{aligned}
$$

for some constant $\delta>0$. Put $T_{\tilde{V}}=\sum_{I, K} T_{I, K}(x, y) d x_{I} \wedge d y_{K}$ and let $\left\{\rho_{k}\right\}$ be a restricted δ-sequence with supp $\rho_{k} \subset B_{\delta} \subset R^{n}$. Since $T \mid M_{0}$ exists, the limit

$$
\lim _{k \rightarrow \infty}<T_{l, K}(x, y), \rho_{k}(x)>=S_{K}(y) \epsilon \stackrel{\circ}{D}^{\prime}(\tilde{U}), \quad|K|=p
$$

exists for $|I|=0$. The linear map

$$
\mathscr{H}(M) \ni T \rightarrow<T_{I, K}(x, y), \quad \rho_{k}(x)>\in \mathscr{D}^{\prime}(\tilde{U}), \quad|K|=p,
$$

is clearly continuous. Since $\mathscr{H}(M)$ is barrelled, the map $\mathscr{H}(M) э T \rightarrow S_{K}(y) \subset$ $\mathscr{D}^{\prime}(\tilde{U})$ will be continuous by the Banach-Steinhaus theorem. Thus the map

$$
\mathscr{H}(M) \ni T \rightarrow T \mid M_{0}=\sum_{K} S_{K}(y) d y_{K} \in \mathscr{D}^{\prime}(\tilde{U})
$$

is continuous. Especially if $T=\alpha \in \mathscr{H}(M) \cap \delta(M)$ then $\alpha(x, y)|\tilde{U}=\alpha(x, y)|[\tilde{U}]$. Consequently the trace $T \mid\left[M_{0}\right]$ exists and equals $T \mid M_{0}$, which completes the proof.

Owing to Theorem 2, we can also restate that if $j^{*} T$ exists for every $T \in \mathscr{H}(M)$, the map $T \rightarrow j^{*} T \epsilon \mathscr{D}^{\prime}\left(M_{0}\right)$ is continuous.

In a similar way we can show
Proposition 3. Let S be a q-current on M. If $S \wedge T$ exists for every p current T of a barrelled space $\mathscr{H}(M)$, then the map $\mathscr{H}(M) \ni T \rightarrow S \wedge T \epsilon_{\mathscr{D}^{\prime+q}}(M)$ is continuous.

Propositions 2 and 3 hold also true of odd currents with necessary modifications.

Now, we assume that $M=R^{n+m}$.
 in $\mathscr{D}^{\prime}\left(M_{0}\right)$ for any δ-sequence $\left\{\rho_{k}\right\}$, then the section $T \mid M_{0}$ exists and $T \mid M_{0}=$ $\lim _{k \rightarrow \infty}\left(T * \rho_{k}\right) \mid M_{0}$.

Proof. It is sufficient to show the assertion near any point $a \in M_{0}$. By a linear coordinate transformation, we may assume that a is the origin and that M_{0} is defined in a neighbourhood of 0 by a system of equations:

$$
\begin{cases}x_{i}=f_{i}\left(v_{1}, \ldots, v_{m}\right), & i=1,2, \ldots, n \\ y_{j}=v_{j}, & j=1,2, \ldots, m\end{cases}
$$

in a neighbourhood of $v=0$, where f_{i} is a C^{∞} function with $f_{i}(0)=0$. Consider the coordinate transformation:

$$
\begin{cases}x_{i}=f_{i}\left(v_{1}, \ldots, v_{m}\right)+u_{i}, & i=1,2, \ldots, n \\ y_{j}=v_{j}, & j=1,2, \ldots, m\end{cases}
$$

where (u, v) remains in a neighbourhood of (0,0). Let $\sigma_{k}(u)$ and $\tau_{l}(v)$ be any δ-sequences. Then $\rho_{k, l}(x, y)=\sigma_{k}(x) \tau_{l}(y)$ is also a δ-sequence and we have

$$
\begin{aligned}
\left(T * \rho_{k, l}\right) \mid M_{0} & =<T\left(x^{\prime}, y^{\prime}\right), \rho_{k, l}\left(x-x^{\prime}, y-y^{\prime}\right)>_{x^{\prime}, y^{\prime}} \mid M_{0} \\
& =<T\left(x^{\prime}, y^{\prime}\right), \sigma_{k}\left(f(v)-x^{\prime}\right) \tau_{l}\left(v-y^{\prime}\right)>_{x^{\prime}, y^{\prime}} \\
& =<T^{\prime}\left(u^{\prime}, v^{\prime}\right), \sigma_{k}\left(f(v)-f\left(v^{\prime}\right)-u^{\prime}\right) \tau_{l}\left(v-v^{\prime}\right)>_{u^{\prime}, v^{\prime}}
\end{aligned}
$$

Then, for any $\phi(v) d v \in \stackrel{m}{D}\left(R^{m}\right)$ with support in a 0 -neighbourhood, we can write

$$
\begin{aligned}
& <\left(T * \rho_{k, l}\right) \mid M_{0}, \phi(v)>_{v} \\
& \quad=<T^{\prime}\left(u^{\prime}, v^{\prime}\right), \int \sigma_{k}\left(f(v)-f\left(v^{\prime}\right)-u^{\prime}\right) \tau_{l}\left(v-v^{\prime}\right) \phi(v) d v>_{u^{\prime}, v^{\prime}} \\
& \quad=<T^{\prime}\left(u^{\prime}, v^{\prime}\right), \int \sigma_{k}\left(f\left(v+v^{\prime}\right)-f\left(v^{\prime}\right)-u^{\prime}\right) \tau_{l}(v) \phi\left(v+v^{\prime}\right) d v>_{u^{\prime}, v^{\prime}}
\end{aligned}
$$

Consequently we obtain

$$
\lim _{k, l \rightarrow \infty}<\left(T * \rho_{k, l}\right) \mid M_{0}, \phi(v)>_{v}=\lim _{k \rightarrow \infty}<T^{\prime}\left(u^{\prime}, v\right), \sigma_{k}\left(-u^{\prime}\right) \phi(v)>_{u^{\prime}, v},
$$

which implies that $\lim _{k \rightarrow \infty}<T^{\prime}\left(u^{\prime}, v\right), \sigma_{k}\left(-u^{\prime}\right)>_{u^{\prime}}$ exists for every (restricted) δ-sequence σ_{k}, and that $T \mid M_{0}$ exists near the origin and

$$
\lim _{k, l \rightarrow \infty}<\left(T * \rho_{k, l}\right)\left|M_{0}, \phi(v)>_{v}=<T\right| M_{0}, \phi(v)>_{v}
$$

which completes the proof.
Corollary. Let $\nVdash(M) \subset \mathscr{D}^{\prime}\left(R^{n+m}\right)$ have the approximation property by reguralization. If the trace exists for every $T \in \mathscr{H}(M)$, then the section exists also for every $T \in \mathscr{H}(M)$ and both coincide.

5. Admissible maps

Let M and M_{1} be manifolds with dimensions N and N_{1} respectively. Let ξ be a C^{∞} map of M into M_{1}.

Definition 4. ξ is called admissible if $\xi^{*} T$ exists for every $T \epsilon \mathscr{D}^{\prime}\left(M_{1}\right)$.
As remarked in Section 3, the definition is equivalent to asserting that
 $\rightarrow \xi^{*} \alpha \epsilon \AA^{\circ}(M)$ can be continuously extended from $\mathscr{D}^{\prime}\left(M_{1}\right)$ into $\mathscr{D}^{\prime}(M)$.

First we remark that if ξ is admissible, then we can conclude that the reciprocal image $\xi^{*} T$ of any $T \epsilon \mathscr{D}^{\prime}\left(M_{1}\right)$ exists, or, what is the same, the direct image $\xi \phi$ of any $\phi \in \epsilon^{N-D}(M)$ is a C^{∞} form. Indeed, it is sufficient to show the assertion when M and M_{1} are open subsets Ω and Ω^{\prime} in Euclidean spaces respectively. Put $T=\sum_{K} T_{K} d x_{K}^{\prime},|K|=p$, where T_{K} is a distribution on Ω^{\prime}. By assumption, $\xi^{*} T_{K}$ exists for every K. Now we have

$$
\begin{aligned}
<\phi, \sum_{K}\left(\xi^{*} T_{K}\right) \xi^{*}\left(d x_{K}^{\prime}\right)> & =\sum_{K}<\underline{\phi} \wedge \xi^{*}\left(d x_{K}^{\prime}\right), \xi^{*} T_{K}> \\
& =\sum_{K}<\xi \underline{\xi} \wedge d x_{K}^{\prime}, T_{K}> \\
& =<\xi \underline{\phi}, \sum_{K} T_{K} d x_{K}^{\prime}>,
\end{aligned}
$$

which shows that $\xi^{*} T$ exists and equals $\sum_{K}\left(\xi^{*} T_{K}\right) \xi^{*}\left(d x_{K}^{\prime}\right)$.
From these considerations we see that ξ is admissible if and only if the following condition (C) [5, p. 377] is satisfied:
(C) The image of every odd current with compact support which is defined by a C^{∞} form is also a C^{∞} form.

If ξ is an admissible map of M into M_{1}, then we must have $N \geqq N_{1}$. Many of the results established in [2, p. $67-$ p. 85$]$ can be generalized for currents. We shall state here some of them without proofs, because we can show them by the same procedure as therein made.

Proposition 5. Let ξ be an admissible map of M into M_{1} and η an admissible map of M into M_{2} of dimension N_{2}. Suppose that $N=N_{1}+N_{2}$. Then the multiplicative product $\left(\xi^{*} S\right)\left(\eta^{*} T\right)$ exists for every $S \epsilon \mathscr{D}^{\prime}\left(M_{1}\right)$ and $T \epsilon \mathscr{D}^{\prime}\left(M_{2}\right)$ if and only if the map $x=(\xi, \eta)$ of M into $M_{1} \times M_{2}$ is locally diffeomorphic.

Proposition 6. If ξ is a C^{∞} map of M onto M_{1} with no critical point, then the reciprocal map ξ^{*} of $\mathscr{D}^{\prime}\left(M_{1}\right)$ into $\mathscr{D}^{\prime}(M)$ is a monomorphism for every p with $0 \leqq p \leqq N_{1}$.

Proposition 7. Let ξ be an admissible map of M into M_{1}, where we assume M_{1} to be connected. Then the following conditions are equivalent to each other:
(1) $\quad \xi^{*}\left(\mathscr{D}^{\prime}\left(M_{1}\right)\right)=\stackrel{\downarrow}{D^{\prime}}(M)$ for some p with $0 \leqq p \leqq N_{1}$.
(2) $\xi^{*}\left(\stackrel{D}{D}^{\prime}\left(M_{1}\right)\right)=\stackrel{\not \mathscr{D}^{\prime}}{ }(M)$ for every p with $0 \leqq p \leqq N_{1}$.
(3) $\xi^{*}\left(\mathcal{E}^{p}\left(M_{1}\right)\right)=\mathcal{\delta}^{p}(M)$ for some p with $0 \leqq p \leqq N_{1}$.
(4) $\xi^{*}\left(\delta^{\prime} \delta^{\prime}\left(M_{1}\right)\right)=\mathcal{E}^{p}(M)$ for every p with $0 \leqq p \leqq N_{1}$.
(5) The map ξ is a diffeomorphism of M onto M_{1}.

The analogues of Propositions 6 and 7 remain valid for an oriented map and for odd currents.

References

[1] M. Itano, On the theory of the multiplicative products of distributions, this Journal, 30 (1966), 151-181.
[2] and A. Jôichi, On C^{∞} maps which admit transposed image of every distribution, this Journal, 31 (1967), 75-88.
[3] S. Lojasiewicz, Sur la fixation des variables dans une distribution, Studia Math., 17 (1958), 1-64.
[4] G. de Rham, Variétés différentiables, Paris, Hermann (1955).
[5] L. Schwartz, Théorie des distributions, Paris, Hermann (1966).
[6] R. Shiraishi, On the value of distributions at a point and the multiplicative products, this Journal, 31 (1967), 89-104.

