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Let 2 be a non-empty open subset of an N-dimensional Euclidean space
RY. The investigations have been made in our previous paper [ 1] about the
multiplication between distributions defined on 2. The multiplicative product
of S, T e D'(2) is the section of S(x)QT(x— y) for y=0, if it exists, which
will be denoted by S-T instead of SO T throughout this paper. S-7T will then
be in a certain sense the section of S(x)® T(y) for x=1y. In this paper a dis-
tribution is understood as a current of degree 0 and of even kind.

Our main purpose of this paper is to introduce the notion of the section
of a current on a submanifold so as to make it possible to generalize the
multiplicative product of distributions to the exterior product of ‘currents.
We consider here two kinds of sections; one in a narrow sense, and the other
in a wider sense. Accordingly we may discuss the exterior product of cur-
rents in either sense. Owing to these notions we can give an approach to
define a reciprocal image of a current under a €~ map. Of course, a C* map
need not admit a reciprocal image of every current. A detailed discussion
thereof confined to distributions was given in [27], where we introduced the
concept of “admissible map”. The section of a current on a submanifold
M, M will be, as we shall see in this paper, the reciprocal image of the cur-
rent under the injection j: My— M. This leads us to the study of Stokes’

b
formula for currents, an attempt to generalize the formula S S'(x)dx =

S(b) — S(a), where S is a one-dimensional distribution with values at «
and b.

In what follows we shall call a current of even kind simply a current
whenever no confusion may occur, however, we shall underline the letter de-
noting a current of odd kind. We note that a current on 2 CR” is a form
whose coefficients are distributions on 2.

The presentation of the material is arranged as follows: In Section 1
we shall introduce the notion of the section of a current defined on 2 C R" and
show that it is invariant under diffeomorphisms. In Section 2 we shall study
the section of a current on a submanifold M, C M and the exterior product
between currents of any kind. We shall consider, in Section 3, the reciprocal

4
image of a given current T € O'(M), which we define as follows: Let N’ and
N be the dimensions of manifolds M’ and M respectively. For a C* map & of

N’
M’ into M, the direct image £3 of every 3 of Qgi(JM ") is an odd (N— p)-current.
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If the exterior product £8 A T exists for every 3, we can show that the linear

map 38— SS@/\ T is continuous, then the current ¢* T determined by the equa-

tion <B, &¥T>= Sé@ AT is called the reciprocal image of 7 under the map &.

The same is true of odd currents, if the map ¢ is oriented. Taking & for the
injection j of a submanifold M, into M, we show that j*T exists if and only
if the section T'| M, of T on M, exists, and that if this is the case, j*T'=T| M,.
Stokes’ formula is shown. In Section 4 we show that the trace map on a
submanifold M, coincides with the fixation to M, for a space of currents with
certain conditions. The final section is devoted to some considerations about
an admissible map, which is defined as the map admitting a reciprocal image
of every current, and the section closes with some statements refining the
results of [2].

1. The section of a current defined on an open subset of R"

Let 2 be a non-empty open subset of RY=R"x R™. A point of R?x R™
will be denoted by (x, y), where x=(xy, ---, x,) and y=(y1, ---, yn). Let

-onz {y> (an )’) € Q},

where we suppose 2. +®. We shall often use the symbol T(x, y) for a dis-
tribution T € D'(2).
If there exists a distribution S € D'(2,,) such that

(*) )}nno T(xo+2x,y) = S(y) (=1.S(y) more precisely),

namely

lim <7, L (575 )p(p)> = <5, 0> Bz

Ao 40 ar A

for any ¢ € D(R"), ¢ € D(2,,), then according to S. Lojasiewicz [3, p. 15] we
shall say that x=x, can be fixed in T(x, y) and that S is the section of 7 for
x=x, with notation T(x,, y).

Recently R. Shiraishi has shown in [6, p. 917] that the condition (x) is
equivalent to

Um < T(x, ), 0u(x—20)> = S(y)

for every restricted d-sequence {0,} in D(R"), that is, every sequence of non-
negative functions 0, € D(R"™) with the following conditions:

(i) Suppo, converges to {0} as k—> co.

(ii) Spk(x)dx converges to 1 as k— oo.
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(iii) Slx! "' D*o(x)| dx < K,, a constant independent of %.

We note that a sequence {0,} satisfying the conditions (i) and (ii), is called a
d-sequence. For simplicity we assume x,=0.
Consider a diffeomorphism

{ xlzg(x;y)a 5:(‘51, Tty Sn)
xX.
y=9x, ), 7= s Im)

of £ onto an open subset 2 C R% x R7, which refers x=0in £ to x'=0 in 2"
The Jacobian of the map x will be denoted by Jx. For any T e D'(2) and
S e D'(2,) we define T' € D'(2) and S’ € D(L;) as follows:

<TGy, ¢y yD)>
=< T, y), |12, DIHE, p), 7(x, 1)>, %€ D(L)
and
Sy, p(yH)> = <S(3), |1y | 9(n(3)) >, ¥ € D(Ly),

where 7o(y)=7(0, y) is the diffeomorphism of 2, onto 2;. We shall first show
the following

Lemma 1. Let T e D'(2) and let k be a real number. If there exists a
distribution S € D'(2,) such that

lim 2* T(%, y) = S(y),
A= +0
then }im AFT'(Ax’, y') exists and is equal to S'(y).
~+0

Proor. 1t is sufficient to show that
lim <TG, 3, B Wly)> = <S4y > i’

for any ¢, € D(R") and ¢, € D(L)).

Since Jx does not vanish and £(0, y)=0, we must have dfé —gli 0,
y‘x=0

de dy . 0(&1, -5 &n) 01y -5 Um)

where = and =* stand for the Jacobians —>b 1> and M it dm)

dx dy a(xln ) xn) a(yla Tty ym)

respectively. For any given compact set K 2, gi does not vanish for

y € K and for sufficiently small |x|. We can therefore find positive constants
¢, c; and ¢ satisfying the condition:

¢y clx| =60, pI=cilxl, (v, y)€B.xKC L,
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where B, stands for the ball in R” with center 0 and radius e. Now we have
for sufficiently small 2

SBTO, 3, By )> = BT, 3 b5 Jply)>
= <TG, ), 35 s DIA(E5 2D Yty )>

= < |, PITG, ), 3 E2 (G, 3)>.

If we put ¢x=¢1(5(lx, ) )¢2(77(/1x, ¥)), then {¢,} will be uniformly bounded in

D(R" x ) for sufficiently small 2. Indeed, let K’ be any compact subset of 2
such that

(ii) 7, (K)CK°CK.
We choose a positive constant ¢ so that

(iii) x (B;x KYCB:x K.
Let ¢, ¢ Ds,, a>0‘, and ¢, € Dg.. It then follows from these properties (i),
(ii) and (iii) that supp¢(x, ¥), 0</z_g%, must be contained in a fixed com-

pact set. In view of the fact that £(0, y)=0, we see that | D2¢;(x, y)| =0(|x|)
uniformly for ye K as |x|—0 and so | D?¢,(Ax, y)| =0(Z| x|), whence the set

{D2Di¢,}, is uniformly bounded for 0</1g-z_. Therefore {¢,} ;<1< .2 is bound-
ed in D(R™) x D(Lo).
Thus we have

= <150, DS, a0, )i T35 0, ) )d>

and
[ 2 g O e = o) g e,

where A(y) is the Jacobian of the mapx — x'= 3] j%(o, ¥)xj.
i
Since £,(0, y)=0 as already remarked, we obtain
J0, ) = J, (NA(y).

Thus we have
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lim <HTG, ¥, B Hly)> = < SO, 112, ) > [ ia)d

= <SG, ly)> (a0,

which completes the proof.
Let 0 be the Dirac measure concentrated at origin and let ¢ € D(R™) with
X

$—=0 and S¢dx=1. We put ¢\(x)= -},,—¢<~—~

= > For our purpose later on we

shall show
Lemma 2. For any real number k, the condition

lim FTQx, y)= S(y)
—+0

18 equivalent to
{im 2%0(x+2u)T(x, v)=0.RS(y)
—+0

or
lim 2*@,(x) T(x, y) = 6. S(¥).
A 40

Proor. It is clear that the last two conditions are equivalent. Now,
suppose that %im/l’“T(/Ix, y) exists and equals S(y). If ¢i(x)e D(R") and
—+0

¢ y) € D(Lo), then since we can write for sufficiently small 1

LAG() T, 9), Pr(a)pe( 3) > = < T (%, y), Ga(2)pr(2)pa ) >

= <PTQx, 3), HWi O3> + <V T, 3), Ha)$r(2%) — G O)pa(3) >,
it follows that
lim <2 T(x, ), pu(aWpo()> = <LRS(), HWu(O)al3)>
= (0 <S(y), () >.

This implies that the limit }11’1{10 G () T(, y) exists and equals 0.QS(y).

Conversely, suppose that Xlir+110/‘t’z<5k(x)T (%, y) exists and equals 0. S(y).

If we take ¢1(x) € D(R”) to be 1 near the origin, then we have for any ¢.(y) €
D(Lo)

lim < PTQx, y), () ) > =lim < (x, y), ()0 3)>
= Xlirpo <V T(x, y), pr(2)po( ) >
= <0:QS(y), P1(x)h= ) >
= <S(y)s 90>,
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which completes the proof.

P
Now, let T, 0=p <N, be a p-current defined on 2CR"=Rzx R?, which
is understood as a form with distributional coefficients:

b
T(x, _’y) = Z[,KTI,deI/\ dyK, T[»K € @/(.Q),

where I={iy, ---, is} and K={k;, ---, &} with s4¢=p are strictly increasing
multi-indices between 1 and » and between 1 and m respectively and

de/\dyK == dx,-l/\~-~/\dx,-s/\dykl/\~--/\dykl.

Furthermore we shall write Tx =T, x for |K|=p. We have for any positive
real number 1

b

TQx, )= L&A Trx(Ax, y)dxNdyg,
where | I| stands for the number of the components of I.

b
DeriniTion 1. Let 7 be a p-current on QCR"xR”. If the limit

lim T(Ax, y) exists and does not depend on x, then we say that x=0 can be
Ao+ 0

fixed in 7(«x, y) and that the limit is the section of T for x=0 with notation
T, y).

This definition means that the distributional limits

lim T, x(A%, )= Tx(0, y)  for |1|=0,
—~+0
}imist,K(/Ix, _’y)'—“() for Ill=b>0
—+0

exist and
p
T, y)= 2k Tk(0, y)dyk.

If T happens to be a distribution on £, that is, p=0, then the definition gives
rise to that of the section of T for x=0.

When every T; x has the section for x=0, then T has clearly the section
T(0, y). If this is the case, we shall call 7(0, y) the section of 7 in a narrow
sense for x=0.

Let 2, 2" and x=(¢, ) be the same as before. Then the direct image

xT=17T is represented by

0(xr, yx)
("7, y1)

27 Th (&' yNdxy ANdyy, where Ty =21 xThe(x, ¥

T is also the reciprocal image of T for the inverse map x™!. Let S be a cur-
rent on £, and let y'=7(»)=7(0, ). In a similar way the direct image
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70S= S is represented by

S S -1
2151(y)dy;, where Si(y'):ZKS}((y’)aa?(ij.

L

Tuaeorem 1. If a cu'rrent T on 2 CR:x R7? has the section S for x=0,
then the direct image xT T also has the section 7705 S for x'=0.

Proor. Let S=XxSk(dyx, Sx(y)=limT,x(x, y for |1]=0. By

Lemma 1 lim T} ,(Ax', ') exists for |I|=0 and equals S; and }iml"‘x
A= +0 —+0

12 ’ 4 N — a ) 3 J—
T} x(x'y y)=0 for | 1] >0. Put azg. s i(x ,y)—%ﬁfh 9;3 Since &0, y)=0,
it follows that
o@'"' =171y for |1 >1J]
larx,7,0(Ax", y)| = {
0Q) for |I1<)J|

as 1— +0. Thus we have

I

0
— S III:L_: TI K(O ,) iK} for IJI:

L tx’=0

Pml”’j’ Qs ¥
’ ( 0 for [J[>0

and again by Lemma 1 we have

e A ; N7 /
}iIPOT(lx s Y )— ZL(IIIZ:‘(‘),KTI’K(O, Y ) ay/ )d.yL

L 'x'=0

= L Tk Sk(y’ >0’7°K dy;

= 2. Si(yNdy, = Sy,

which completes the proof.
For a current 7 on £, we shall define the section 7(0, y) to be the sum
of the sections of the homogeneous components of 7 whenever they exist.

2. The section of a current on a submanifold

Let M be a manifold of dimension N. In what follows we always under-
stand a manifold to be a differentiable manifold denumerable at infinity [47].
Let (M) stand for the space of even C~ forms on M with compact support,

b
equipped with the usual topology, and D(M) the subspace of p-forms € D(M).
D(M) is the space of odd €~ forms with compact support. The spaces D'(M),

Sﬁ’(M), D'(M) and é’(M) are defined as the strong duals of D(M), IEQ_SP(M),
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D(M) and N@p(M ) respectively. We shall denote by &(M) the space of even
C= forms with the usual topology and by &(M) the strong dual of &(M),
which consists of the odd currents € @'(M) with compact support. The same
is true of &(M) and &'(M).

Let {£} be a complete family of coordinate systems in M, where £ is a
homeomorphism of an open set ¥, C M onto an open set ¥, C R", and the map

k&L KV NV )—>e(V NV )

is a diffeomorphism for any «, £. Let T e @' (M). To every « there is as-
sociated a current Ty on ¥, such that Tp =«&'"'Tp_ in £(V.NV,) and we
can identify 7' with such a system as {T» }. Similar considerations hold
true of an odd current 7. We consider a distribuction on M as an even 0-
current on M, or, what is the same, an element of Q'(M).

Let M, be a submanifold of dimension m<N. Then to every a € M, there
is associated a coordinate system £t={xy, ---, s, ¥, -, ¥u}, n+m=N, which
is valid on an open neighbourhood 7, of a point ¢ in M such that x,(a)=...
=x,(a)= yi(a)=--.= ya(a)=0 and such that the restriction £, of £ to

U.=V."My={beV,; x:(b)=-.-=x,(b)=0}

forms a coordinate system in M,. We have V,={(x:1(b), ---, x.(b), 7(b), ---,
u(0); b€ V.Y, and T ={(5(8), -, yu(®)); b € U}

If every T», has the section Sp, on U,, there exists a unique current
S € D'(M,) determined by the system {Sy }. This is an immediate consequence
of Theorem 1. The consideration holds also true of the section in a narrow
sense. If T is of degree p, then so is S. Then we can introduce

DeriniTion 2. Let Te€ ©D'(M). If Tp_ has the section (resp. in a narrow
sense) on U, for every V,, the uniquely determined current Se @'(M,) is
called the section of T (resp. in a narrow sense) on the submanifold M, and
denoted by T|M,.

As an application of the notion of the section of a current we can deal

4
with an exterior product of two homogeneous currents S, Te D'(M). Owing
to the principle of localization, it suffices to define an exterior product in a

)4
coordinate neighbourhood V of every a € M. Let Sy and Zq’v be written in
the form

b q 9 ~
Sy =3,S(x)dx;, Tr=xTx(x)dxg, S;,Txe D).
We shall consider the current
b . ~ .
Sy Ty = Y1 xSi(x) Tx()dx;Adzx  in VxV,

where S;(x)Tk(z) denotes the multiplicative products [ 2, p. 78]
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It §V® f‘y has the section to the diagonal 4y of V'x ¥ for every V, then
the system of the sections {(Sp@Q T»)|4r} defines the current W on 4, the
diagonal of Mx M. The map j: M3 a—(a,a)€ 4 is a diffeomorphism. The
reciprocal image j* W will be termed the exterior product of S and T with
notation SA T, a (p+¢g)-current.

From this definition it follows that

(1) If SAT exists, then so does TA S and we have SA T=(—1?(TAS).

(2) If SAT exists, then so do (@S)A T, SA(aT) for every a e C°(M),
and we have a(SAT)=(a@S)AT=SA(aT). If S and T are distributions on
M, the definition is tantamount to that of the multiplicative product S-T
given in [1, p. 1657].

When S;Tx exists for every I, K and V, it is clear from our definition
that the exterior product SA T is well defined, and we can write

SATYY =21 xSi(2)Tg(x)dxN\Ndxg.

If this is the case, we shall say that the exterior product of S and T
exists in a narrow sense.

We know that on an oriented manifold every odd current is associated
with an even current in a natural way. On the other hand, every coordinate
neighbourhood 7, is supposed to be oriented according to the natural ordering
of coordinates in k. To every odd current S there is associated a system of
currents Sy, such that

Sy, = 221S1(x)dx;,

but with the rules of transformations:

’ kw1 o0 / : ’
Sp_A(x") = |§7-1| iU girdvy i RNV

This observation leads us to the definition of the exterior products be-
tween currents of any kind. For example, let us consider two currents S
and T on M. If W,=Sy A Ty, exists for every £, we can see that {#W,} uni-
quely determines an odd current W, a fact which is verified straight forward.
Then we call I the exterior product SAT of S and T. The parity of the
exterior product obeys to the usual law for the exterior multiplication when
one of the factors is a €~ form.

Now we turn to the consideration about the section of an odd current
T ¢ D'(M) on a submanifold M,, where the injection j: M,—~ M is supposed to
be oriented. We shall continue to use the notations as before. The map j
assigns to the canonical orientation of U, a fixed orientation of ¥, in each
point of U,, which may or may not coincide with the canonical orientation of
V. and accordingly we define ¢(p), pe U,, to be 1 or —1. Taking this into
account, if the section Sy, of Ty, for x=0 exists for every &, we can conclude
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that {¢Sg,} uniquely determines an odd current S on M,, which we shall call
the section of T on M, and denote it by T'| M,.
The same is true of the section in a narrow sense.

8. Sections and reciprocal images

Consider a C~ map £ of a manifold M of N’-dimension into a manifold

b )4
M of dimension N. The reciprocal image &*a, a ¢ D(M), belongs to &(M").
Then the integral

S[_)’/\é*cz, where @ED{Q_SI](M’),

J
defines a continuous linear form on (M), and in turn an odd current &3 of
degree N—p which is called the direct image of £5.

» .
Now consider a current 7€ O'(M). If 8N T exists for every 8 eN QP(M N,
the linear map

g fesnt

will be continuous. Indeed, it is enough to show the assertion when M’, M
are open subsets 2’, 2 of Euclidean spaces of dimension N’ and of dimension
N. In this case we may write £8 and T in the following forms:

8= YuSix)dxs,  Sre E(Q),
T= Yk Tr(x)dzx, TxeD(Q),
and therefore
EBNT = (Z:(= 1y DS(x) Ter(x))dx,

where (—1)*%) denotes the signature of the permutation {I, K} of {1, 2, ...,

N}, and we used the notation Y ;(—1)*“S;(x)Tc/(x) for the abbreviation

of )}im S (—=1yEEDS (x)Te(x+2u). By making use of a restricted d-sequence
—+0

{0}, we obtain
EBNT =lim 35 ,(— 1" DS (Terx04)dx,
koo
so we can conclude the assertion in virtue of the Banach-Steinhaus theorem.

J4 N’/ —
DeriniTioN 3. Given T € O'(M), if ¢8 N\ T exists for every 8 ¢ Q)p(M "), the
current £*T determined by the equation

<8, & T> =§55AT
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is called the reciprocal image of T under the map S

We note that if ¢*7 exists for every Te Q)’(M’), then &8 is an odd
(N—p)-form. This follows from the fact ‘that a distribution on £ which
admits the multiplicative product with every distribution on £ must belong
to &(2)[1, p. 166].

~ Now, let us consider a special case in which M’ is a submanifold M, of
M as in the preceding section. - Let j: My— M be the injection, which is a
C~ map. Then we can show

TueoreM 2. Given T € Q) (M), 0= p=m, the reciprocal image j*T exists
if and only 1f the section T| Mo exists. And if this is the case, we have j¥T=
T| M,.

Proor. We shall continue to use -the notations as before. For any

? m—
aeD(M)and B € QjMo) with support C C U,, it is easy to verify the relation:
[snjra=(, so.nGrarw, =, @CodxnsrIAar,

which implies that
(j@)v~=6(x)dx/\@gx.

Suppose j* T exist, then, since the exterior product (j8)» A Ty, exists for
any B, it follows that (6(x)dx Ady)A Ty, must exist for any J with |J|=
m—p. Putting Ty = 21 xTrx(x, y)dxiNdyk, |I| +|K|=p, we can write

O(x)dx ANdyD N Tr,
= lim ZLK6(x +lu) TI,K(x, y)d(x ‘l"llt)/\ d(y+/lv)//\ dx;/\ dyK
= llm Z( 1)P(CL L’/I‘L'd(x +/1u) T[ K(x, y)dxCL/\duL/\d(y+lv)//\ dx;/\ dyK

A—=+0
We can conclude from these equalities that

llml'“6(x +Au)Tr,k(x, y)

A—=40

exists for every T, and in addition if | I| >0, the limit is 0. Indeed, choose
J=CK for any K with |[K|=p, then it is easy to see that the assertion is
true of |K|=p, and

lim 3 (—1yCLD186(x +Au) Ty x(x, YdxcrNdug Nd(y+av);ANdxiNdyg

A->+0 [Klsp-1

exists. Then a similar argument can be applied to obtain the results for the
case |K|=p—1 when p=1. The repeated use of this procedure will lead
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us to the conclusion. It then follows from Lemma 2 that the section Ty, |U,
exists.

Conversely, let us assume that the section T|M, exists. This implies
that if we write Tp, =37, x T x(x, y)dx;Adyx, then Erflol"‘ T; x(Ax, y) exists

for every T;x and equals 0 for |I| >0. Putting )Lim T x(Ax, y)=Sk(y) for
+0

| I| =0, we obtain (T'| Mo)p,= 2k Sk(y)dyk. From these facts together with
Lemma 2 it will be easily verified that we obtain with 8p,=3],8;(y)dy;

(B N T,
=lim JJ(—1)PCLD Lg% +2u)B;(y+iv)A

A= +0

AT g(x, y)/\ dxCL/\duL/\d(y+/Iv)]/\ dxi/N\ dyK
= 2270(x)dx ANB;(9)Scs(Ndy;Ndycy

and
[, ATr, = (8o, ACTI M.,

which implies that j*7= T|M,. Thus the proof is complete.
If £ is an oriented C~ map of M into M, we can define in a similar way

the reciprocal image §*T ¢ é’(M’) for an odd current T € é’(M ) under the map
& In particular, when ¢ is an oriented injection j of a submanifold M, into
M, Theorem 2, as we see easily, also remains true of the oriented injection
j and the odd current 7.

As an application we can show Stokes’ formula for a current of any kind.

b
Before going to a general discussion, we consider the integral S S'(x)dx,

where S is a distribution on the real line. If the values S(e), S(b) exist, the
integral is defined to be S(b)— S(a). Now we shall consider it in more detail:
Let & be the characteristic function of the interval [a, 6]. Then A'=0,—05.
It is known [1, p. 1627 that the following conditions for a distribution S are
equivalent:

(1) The values S(a), S(b) exist.

(2) The multiplicative product 4'S exists.

(8) The multiplicative product A5’ exists.

(4) The multiplicative products £S and A4S’ exist.
Let us assume that any one of these equivalent conditions is satisfied for S.
Then (hSY=h'S+hS’. Consequently we have

ShS’dx = Sh’de - S(S(b)d,, — S(@)3.)dx = S(b)— S(a).

b
Therefore if we understand in general the integral S T(x)dx of a distribu-
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tion 7 to be Sh Tdx when the multiplicative product i T exists, we obtain

g" S(x)dx = S(b)— S(a)

under the assumption made above.

Let 2 be a domain in the manifold M. We assume that 2 is a domain
with regular boundary, that is, the boundary 52 is a closed (N—1)-dimensional
manifold and we can find for each point a € 82 its coordinate neighbourhood
V with coordinates x, yi, ---, yx_1 such that ¥ N\@ is the set of all points b ¢ ¥
with x(6)<<0. We can assign to each point a of 52 a tangent vector at ¢ in
M entering into C2, so that 52 is transversally oriented in a familiar way.
Thus the injection 62— M is oriented. We note that if M is orientable, then
80 is bQ.

Let T be an odd (N—1)-current defined on M. Let I, denote the charac-
teristic function of 2. If I, A T exists with compact support, we define

[, 7={wnrr,
2

where the right side has a meaning since I, AT € &(M). Before going to
the statement of Stokes’ formula for an odd current, we show a proposition
needed later on.

Prorosition 1. If T|bR2 exists in a narrow sense, then the exterior prod-
ucts IgpN\T, IoNdT and dIa N\ T in a narrow sense exist and we have

Proor. It is enough to show the assertions in a neighbourhood of each
point a € b2. Let V be taken as before and put U={b¢€ V; x(6)=0}. We can
write T7 in the form:

AN
Ty =To(x,)dy+ 2 Ti(x, y)dxNdyi/N---Ndyi/\---ANdyn-1,

where the circumflex indicates omission. The assumption that 7|52 exists
in a narrow sense means that the section 70, v), 0 <k < N—1, exists. Con-
sequently the multiplicative product d(x)T(x, y) exists and equals 0(x) Tx(0, ¥).
Let Y(x) be the Heaviside function. Then we have (Ip)r=Y(—x)®1, in V.
Since

2 (H-n®1) = a1,

2 (M-0®1,)=0, j=1,2, .., N—1,
Yi



186 Mitsuyuki ITano

we can conclude that the multiplicative products (ZLo)y Tw(x, ¥), (Ig)?% and

(L) 3? exist for k=0,1, ..., N—1, j=1,2 .., N—1 [1, p. 1687. This im-
7

plies that (Ip)p A Ty and (I)p A d Ty exist in a narrow sense and we have

d((Ir AN Tr) = d(I)p A Tr+ Iy NdTp,

which completes the proof.

Tureorem 3 (Stokes’ formula). Let 2 C M be a domain with regular bound-
ary and let T be an odd (N—1)-current on M such that supp TN\2 is compact.
If T has the section T|bR2 in a narrow sense, then

= x
Sadz bez] L

where j 18 the oriented injection of b2 into M.
Proor. From Proposition 1 we have

Consequently we have

S.@ AT = SIQ/\ AT = —gdlg/\l’.

Hence it remains to show that — gdlg/\,T = gb j*¥T. To do so, it is enough to
2
show that

—lp@rAn={ o, D)

in a neighbourhood 7 of each point a € 62. Let V" be taken as before. Then
we can see from the proof of Theorem 2 that

—¢(dIg AN Ty = ¢(0, y)0(x)dx N\ Ty = (0, y)0(x)dx N(j*T)o
and then

Npdrny = 80, pacds AT

= {80, nGrm0 = _G*o*),
which completes the proof.

Remark. When M is oriented, the boundary 62 can be oriented as in-
dicated before. We can prove in a like manner that Stokes’ formula is also
valid for an even current 7.
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It may happen that 7|62 exists in a wider sense but not IoAd7. Indeed,
put 2={(x,7) € R?; x<0}. Let «, 8 € D(R) be equal to 1 in a 0-neighbourhood

and I=a(x)ﬂ(y)y%(logllog|xl Ndx. logl|log|x|| has no value at 0 and

él;(log]logix[!,) no mass at 0 [3, p. 237 and therefore Y(—x)-zld;(logllogu!!)

does not exist. Then it is easy to verify that 7'|62=0 but I,AdT does not
exist. Similarly the existence of I, AdT does not imply the existence of
T|b2. Let 2 be the same as above. If we put T=d(f(x)g(y)) with f(x)=

g(x) =log(min{l, | x|}), then dT=0. Since Iz%logl yldx+ %Tloglxldy in

a 0-neighbourhood it follows that T'|52 does not exist even in a wider sense.

4. Fixations and trace maps

Let M be a manifold of dimension N and M, a submanifold of dimension
m of M. Let j be the injection My— M. We shall first define the trace map.

To do so, let X (M )Cé’(M ) be a locally convex space with topology finer than
that of @'(M) and assume that H(M )f\é(M ) is dense in H(M). If the map
of (M )/\é(M ) into @p’(Mo) which transforms « € %(M)f\é(M ) into the re-
striction of @ to M, can be continuously extended from H(M) into Sf)'(Mo),

»
then the extended map is called a trace map on M,, and the current € D'(M,)
which corresponds to T € (M) will be called the trace of T and denoted by
T|[ Mo

Prorosrtion 2. Let H(M) be a barrelled space. If the section T| M, on M,
exists for every T € H(M), then the trace T|[ M,] exists for every T € H(M)
and TI [M()]: Tl M().

Proor. We shall continue to employ the same notations as used in the
preceding sections. For each point a € M, we may assume that there exists
a neighbourhood 7 of a such that

V={(, y; |z <0, | y| <0},
U={y; lyl<d}, U=VNnM,

for some constant 6 >0. Put Tp=3;xTsx(x,y)dx;\Ndyx and let {0,} be a
restricted d-sequence with supp 0, CBs CR". Since T|M, exists, the limit

lim < T x(x, yoa(x)> = Sx(3) € D@),  |K|=p,

exists for | I| =0. The linear map
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gC(M) 3T~ < TI,K<x5 y)a pk(x)> € @/(ﬁ)a lKl =P

is clearly continuous. Since H(M) is barrelled, the map H(M) 3 T— Sx(y)¢
&(0) will be continuous by the Banach-Steinhaus theorem. Thus the map

H(M)> T—>T|My= L rSk(y)dyx € D)

is continuous. Especially if T=a € X(M)NE(M) then a(x, y)|T=a(x, y)|[U].
Consequently the trace T'|[ M, ] exists and equals T'| M,, which completes the

proof.
Owing to Theorem 2, we can also restate that if j*7T exists for every

»
T € (M), the map T— j*T € O'(M,) is continuous.
In a similar way we can show

Prorosirion 3. Let S be a g-current on M. If SAT exists for every p-

current T of a barrelled space H (M), then the map H(M)> T—>SAT Ep@q’(M )
18 continuous.

Propositions 2 and 3 hold also true of odd currents with necessary modi-

fications.
Now, we assume that M= R"*".

JProrosirion 4. Let T be a distribution on R*™™. If (T*0,)| My converges
in D' (M,) for any 5-sequence {0.}, then the section T|M, exists and T|M,=
lim(T* pk) I M().

f—roo

Proor. It is sufficient to show the assertion near any point a € M;. By
a linear coordinate transformation, we may assume that o is the origin and
that M, is defined in a neighbourhood of 0 by a system of equations:

{ xi:fi(vh"') Um)a L:]-a 2,"‘5 n,
Yi = Vj, j:1a2a"'>m:

in a neighbourhood of v=0, where f; is a C~ function with £;(0)=0. Consider
the coordinate transformation:

{ xi:fi(vb"‘y UM>+ui; i=1,2,-~, n,
Y = vj, j:1329"‘9m7

where (u, v) remains in a neighbourhood of (0, 0). Let 0x(u) and z,(v) be any
0-sequences. Then p; (x,y)=04(x)r,(y) is also a d-sequence and we have

(T*pk,l){MO =< T<x/a yl)a pk,l(x_ x,y y— y,)>x’,y’ l MO
= < T(x',y"), Gk(f(v)— x')z‘;(v—— Y)Y >y
=T, v), ol( f()—f(W) =1 )eillv—0) >4 0.
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Then, for any ¢(v)dve é(R'”) with support in a 0-neighbourhood, we can
write

<(T*0k,l) ] MO) ¢(v)>v

=< T, v), Sak( f)—f)—u ) (v—v)g(v)dv > o

— < T, ), So‘k( Fo+0)— )= uYei(0)b (o + 0 do > ur .

Consequently we obtain

lim <(T*0k,l)|M0> ¢(v)>v = ]im < T,(u/7 U): O-k(— u/)¢(v)>u’,v;

.2 ndad k
which implies that lim < T"(u’, v), 6,(—u")>, exists for every (restricted)
koo

0-sequence ¢, and that T'| M, exists near the origin and

klim <(T* Ok,l)IMO, ¢(U)>v = < TI MO; ¢(’U)>y,

y =00

which completes the proof.

CoroLLARY. Let H(M)CD(R"™) have the approximation property by
reguralization. If the trace exists for every T € H(M), then the section exists
also for every T € H(M) and both coincide.

5. Admissible maps

Let M and M; be manifolds with dimensions NV and N, respectively. Let
& be a C* map of M into M,.

DeriniTioN 4. ¢ is called admissible if &% T exists for every T ¢ @’(Ml).

As remarked in Section 3, the definition is equivalent to asserting that

N o
the direct image é¢ isa C* form for every ¢e D(M ),o or that the map DMy >
— &% € &(M) can be continuously extended from Q'(M,) into LD'(M).
First we remark that if ¢ is admissible, then we can conclude that the
»
reciprocal image £*T of any T ¢ O'(M,) exists, or, what is the same, the direct

image &¢ of any ¢ el@fM) is a €~ form. Indeed, it is sufficient to show the
assertion when M and M, are open subsets £ and £ in Euclidean spaces re-
spectively. Put 7=} Txdxk, |K|=p, where Tk is a distribution on £'.
By assumption, &* Tk exists for every K. Now we have

<@, Lg(E*Tr)E (dxg)> = ZK<Q/\5*(dxfr{); E¥ T >

= x<&pNdxj, Tg>
= <5Q3 ZKTde;{>>
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which shows that £* T exists and equals }; z(6* Tx)E*(dx k).
From these considerations we see that ¢ is admissible if and only if the
following condition (C) [5, p. 8777 is satisfied:

(C) The image of every odd current with compact support which 1s de-
fined by a C~ form is also a C* form.

If ¢ is an admissible map of M into M,, then we must have N_>N,. Many
of the results established in [ 2, p. 67-p. 857 can be generalized for currents.
We shall state here some of them without proofs, because we can show them
by the same procedure as therein made.

Prorostrion 5. Let & be an admissible map of M into M, and n an admis-
stble map of M into M, of dimension N,. Suppose that N=N,+N,. Then the
multiplicative product (6¥S)(7*T) exists for every S€ D'(M,) and T e D'(M,)
if and only i1f the map x=(&, 7) of M into M, x M, is locally diffeomorphic.

Prorosition 6. If & is a C™ map of M onto M; with no critical point, then
» »
the reciprocal map &% of D'(M,) into D'(M) is a.monomorphism for every p

with 0= p<N,.

PropositioN 7.  Let & be an admissible map of M into My, where we assume
M; to be connected. Then the following conditions are equivalent to each other:

(D 5*(é/(M1)) = SPD’(M) Sfor some p with 0 <p <N,.

2) 5*(21’2’(M1)) = QpD’(M ) for every p with 0 p<_N,.
» »

(8) &X(& (M) = &'(M) for some p with 0p=<N;.

» 4
(4) &8(&(My)=&'(M) for every p with 0<p < N..
(5) The map € is a diffeomorphism of M onto M;.

The analogues of Propositions 6 and 7 remain valid for an oriented map
and for odd currents.
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