On Fixations and Reciprocal Images of Currents

Mitsuyuki Itano

(Received September 20, 1967)

Let \mathcal{Q} be a non-empty open subset of an *N*-dimensional Euclidean space \mathbb{R}^N . The investigations have been made in our previous paper [1] about the multiplication between distributions defined on \mathcal{Q} . The multiplicative product of *S*, $T \in \mathcal{D}'(\mathcal{Q})$ is the section of $S(x) \otimes T(x-y)$ for y=0, if it exists, which will be denoted by $S \cdot T$ instead of $S \bigcirc T$ throughout this paper. $S \cdot T$ will then be in a certain sense the section of $S(x) \otimes T(y)$ for x = y. In this paper a distribution is understood as a current of degree 0 and of even kind.

Our main purpose of this paper is to introduce the notion of the section of a current on a submanifold so as to make it possible to generalize the multiplicative product of distributions to the exterior product of currents. We consider here two kinds of sections; one in a narrow sense, and the other in a wider sense. Accordingly we may discuss the exterior product of currents in either sense. Owing to these notions we can give an approach to define a reciprocal image of a current under a C^{∞} map. Of course, a C^{∞} map need not admit a reciprocal image of every current. A detailed discussion thereof confined to distributions was given in [2], where we introduced the concept of "admissible map". The section of a current on a submanifold $M_0 \subset M$ will be, as we shall see in this paper, the reciprocal image of the current under the injection $j: M_0 \to M$. This leads us to the study of Stokes' formula for currents, an attempt to generalize the formula $\int_a^b S'(x) dx =$ S(b) - S(a), where S is a one-dimensional distribution with values at a and b.

In what follows we shall call a current of even kind simply a current whenever no confusion may occur, however, we shall underline the letter denoting a current of odd kind. We note that a current on $\mathcal{Q} \subset \mathbb{R}^N$ is a form whose coefficients are distributions on \mathcal{Q} .

The presentation of the material is arranged as follows: In Section 1 we shall introduce the notion of the section of a current defined on $\mathcal{Q} \subset \mathbb{R}^N$ and show that it is invariant under diffeomorphisms. In Section 2 we shall study the section of a current on a submanifold $M_0 \subset M$ and the exterior product between currents of any kind. We shall consider, in Section 3, the reciprocal image of a given current $T \in \overset{p}{\mathcal{D}'}(M)$, which we define as follows: Let N' and N be the dimensions of manifolds M' and M respectively. For a C^{∞} map ξ of M' into M, the direct image $\xi\beta$ of every β of $\overset{N'-p}{\mathcal{D}}(M')$ is an odd (N-p)-current.

If the exterior product $\xi \underline{\beta} \wedge T$ exists for every $\underline{\beta}$, we can show that the linear map $\underline{\beta} \rightarrow \int \xi \underline{\beta} \wedge T$ is continuous, then the current $\xi^* T$ determined by the equation $\langle \underline{\beta}, \xi^* T \rangle = \int \xi \underline{\beta} \wedge T$ is called the reciprocal image of T under the map ξ . The same is true of odd currents, if the map ξ is oriented. Taking ξ for the injection j of a submanifold M_0 into M, we show that $j^* T$ exists if and only if the section $T \mid M_0$ of T on M_0 exists, and that if this is the case, $j^* T = T \mid M_0$. Stokes' formula is shown. In Section 4 we show that the trace map on a submanifold M_0 coincides with the fixation to M_0 for a space of currents with certain conditions. The final section is devoted to some considerations about an admissible map, which is defined as the map admitting a reciprocal image of every current, and the section closes with some statements refining the results of [2].

1. The section of a current defined on an open subset of R^N

Let \mathcal{Q} be a non-empty open subset of $\mathbb{R}^N = \mathbb{R}^n \times \mathbb{R}^m$. A point of $\mathbb{R}^n_x \times \mathbb{R}^m_y$ will be denoted by (x, y), where $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_m)$. Let

$$\mathcal{Q}_{x_0} = \{ y; (x_0, y) \in \mathcal{Q} \}$$

where we suppose $\mathcal{Q}_{x_0} \neq \emptyset$. We shall often use the symbol T(x, y) for a distribution $T \in \mathcal{D}'(\mathcal{Q})$.

If there exists a distribution $S \in \mathcal{D}'(\mathcal{Q}_{x_0})$ such that

(*)
$$\lim_{\lambda \to +0} T(x_0 + \lambda x, y) = S(y) \qquad (= \mathbf{1}_x \otimes S(y) \text{ more precisely}),$$

namely

$$\lim_{\lambda \to +0} < T, \ \frac{1}{\lambda^n} \phi\left(\frac{x-x_0}{\lambda}\right) \psi(y) > = < S, \ \psi > \int \phi(x) dx$$

for any $\phi \in \mathcal{D}(\mathbb{R}^n)$, $\psi \in \mathcal{D}(\mathcal{Q}_{x_0})$, then according to S. Lojasiewicz [3, p. 15] we shall say that $x = x_0$ can be fixed in T(x, y) and that S is the section of T for $x = x_0$ with notation $T(x_0, y)$.

Recently R. Shiraishi has shown in [6, p. 91] that the condition (*) is equivalent to

$$\lim_{k \to \infty} \langle T(x, y), \rho_k(x - x_0) \rangle = S(y)$$

for every restricted δ -sequence $\{\rho_k\}$ in $\mathcal{D}(\mathbb{R}^n)$, that is, every sequence of nonnegative functions $\rho_k \in \mathcal{D}(\mathbb{R}^n)$ with the following conditions:

- (i) Supp ρ_k converges to $\{0\}$ as $k \to \infty$.
- (ii) $\int \rho_k(x) dx$ converges to 1 as $k \to \infty$.

(iii)
$$\int |x|^{|p|} |D^{b} \rho_{k}(x)| dx \leq K_{p}$$
, a constant independent of k.

We note that a sequence $\{\rho_k\}$ satisfying the conditions (i) and (ii), is called a δ -sequence. For simplicity we assume $x_0=0$.

Consider a diffeomorphism

$$\mathbf{x}: \begin{cases} x' = \boldsymbol{\xi}(x, \boldsymbol{y}), & \boldsymbol{\xi} = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n) \\ y' = \boldsymbol{\eta}(x, \boldsymbol{y}), & \boldsymbol{\eta} = (\boldsymbol{\eta}_1, \dots, \boldsymbol{\eta}_m) \end{cases}$$

of Ω onto an open subset $\Omega' \subset \mathbb{R}^n_{x'} \times \mathbb{R}^m_{y'}$, which refers x = 0 in Ω to x' = 0 in Ω' . The Jacobian of the map x will be denoted by J_x . For any $T \in \mathcal{D}'(\Omega)$ and $S \in \mathcal{D}'(\Omega_0)$ we define $T' \in \mathcal{D}'(\Omega')$ and $S' \in \mathcal{D}(\Omega'_0)$ as follows:

$$\langle T'(x', y'), \phi(x', y') \rangle$$

= $\langle T(x, y), |J_x(x, y)| \phi(\xi(x, y), \eta(x, y)) \rangle, \qquad \phi \in \mathcal{D}(\mathcal{Q}')$

and

$$\langle S'(y'), \psi(y') \rangle = \langle S(y), |J_{\eta_0}|\psi(\eta_0(y)) \rangle, \qquad \psi \in \mathcal{D}(\mathcal{Q}'_0),$$

where $\eta_0(y) = \eta(0, y)$ is the diffeomorphism of Ω_0 onto Ω'_0 . We shall first show the following

LEMMA 1. Let $T \in \mathcal{D}'(\mathcal{Q})$ and let k be a real number. If there exists a distribution $S \in \mathcal{D}'(\mathcal{Q}_0)$ such that

$$\lim_{\lambda \to +0} \lambda^k T(\lambda x, y) = S(y),$$

then $\lim_{\lambda \to +0} \lambda^k T'(\lambda x', y')$ exists and is equal to S'(y').

PROOF. It is sufficient to show that

$$\lim_{\lambda \to +0} <\lambda^{k} T'(\lambda x', y'), \phi_{1}(x')\phi_{2}(y') > = \int \phi_{1}(x')dx'$$

for any $\phi_1 \in \mathcal{D}(\mathbb{R}^n)$ and $\phi_2 \in \mathcal{D}(\mathcal{Q}'_0)$.

Since J_x does not vanish and $\xi(0, y) \equiv 0$, we must have $\frac{d\xi}{dx} \frac{d\eta}{dy}\Big|_{x=0} \neq 0$, where $\frac{d\xi}{dx}$ and $\frac{d\eta}{dy}$ stand for the Jacobians $\frac{\partial(\xi_1, \dots, \xi_n)}{\partial(x_1, \dots, x_n)}$ and $\frac{\partial(\eta_1, \dots, \eta_m)}{\partial(y_1, \dots, y_m)}$ respectively. For any given compact set $K \subset \mathcal{Q}_0$, $\frac{d\xi}{dx}$ does not vanish for $y \in K$ and for sufficiently small |x|. We can therefore find positive constants c, c_1 and ε satisfying the condition:

(i)
$$c |x| \leq |\xi(x, y)| \leq c_1 |x|, (x, y) \in B_{\varepsilon} \times K \subset \mathcal{Q},$$

where B_{ε} stands for the ball in \mathbb{R}^n with center 0 and radius ε . Now we have for sufficiently small λ

$$\langle \lambda^{k} T'(\lambda x', y'), \phi_{1}(x')\phi_{2}(y') \rangle = \langle \lambda^{k} T'(x', y'), \frac{1}{\lambda^{n}} \phi_{1}\left(\frac{x'}{\lambda}\right) \phi_{2}(y') \rangle$$

$$= \langle \lambda^{k} T(x, y), \frac{1}{\lambda^{n}} | J_{\chi}(x, y) | \phi_{1}\left(\frac{\xi(x, y)}{\lambda}\right) \phi_{2}(\eta(x, y)) \rangle$$

$$= \langle \lambda^{k} | J_{\chi}(\lambda x, y) | T(\lambda x, y), \phi_{1}\left(\frac{\xi(\lambda x, y)}{\lambda}\right) \phi_{2}(\eta(\lambda x, y)) \rangle .$$

If we put $\psi_{\lambda} = \phi_1 \left(\frac{\xi(\lambda x, y)}{\lambda}\right) \phi_2(\eta(\lambda x, y))$, then $\{\psi_{\lambda}\}$ will be uniformly bounded in $\mathcal{D}(\mathbb{R}^n \times \mathcal{Q}_0)$ for sufficiently small λ . Indeed, let K' be any compact subset of \mathcal{Q}'_0 such that

(ii)
$$\eta_0^{-1}(K') \subset K^0 \subset K$$

We choose a positive constant δ so that

(iii)
$$\boldsymbol{\chi}^{-1}(\boldsymbol{B}_{\delta} \times \boldsymbol{K}') \subset \boldsymbol{B}_{\varepsilon} \times \boldsymbol{K}.$$

Let $\phi_1 \in \mathcal{D}_{B_a}$, a > 0, and $\phi_2 \in \mathcal{D}_{K'}$. It then follows from these properties (i), (ii) and (iii) that $\operatorname{supp} \phi_{\lambda}(x, y)$, $0 < \lambda \leq \frac{\delta}{a}$, must be contained in a fixed compact set. In view of the fact that $\xi(0, y) \equiv 0$, we see that $|D_y^p \xi_j(x, y)| = O(|x|)$ uniformly for $y \in K$ as $|x| \to 0$ and so $|D_y^p \xi_j(\lambda x, y)| = O(\lambda |x|)$, whence the set $\{D_x^p D_y^q \phi_{\lambda}\}_{\lambda}$ is uniformly bounded for $0 < \lambda \leq \frac{\delta}{a}$. Therefore $\{\phi_{\lambda}\}_{0 < \lambda \leq -\frac{\delta}{a}}$ is bounded in $\mathcal{D}(R^n) \times \mathcal{D}(\mathcal{Q}_0)$.

Thus we have

$$\begin{split} \lim_{\lambda \to +0} &< \lambda^{k} | J_{\chi}(\lambda x, y) | T(\lambda x, y), \psi_{\lambda}(x, y) > \\ &= < | J_{\chi}(0, y) | S(y), \phi_{2}(\eta(0, y)) \Big[\phi_{1} \Big(\sum_{j} \frac{\partial \xi}{\partial x_{j}}(0, y) x_{j} \Big) dx > \end{split}$$

and

$$\int \phi_1 \left(\sum_j \frac{\partial \xi}{\partial x_j}(0, y) x_j \right) dx = \int \phi_1(x') \frac{1}{|\Delta(y)|} dx',$$

where $\Delta(y)$ is the Jacobian of the map $x \to x' = \sum_j \frac{\partial \xi}{\partial x_j} (0, y) x_j$.

Since $\xi_i(0, y) \equiv 0$ as already remarked, we obtain

$$J_{\chi}(0, y) = J_{\eta_0}(y)\Delta(y).$$

Thus we have

$$\begin{split} \lim_{\lambda \to +0} <\lambda^k T'(\lambda x', y'), \, \phi_1(x')\phi_2(y') > &= \int \phi_1(x')dx \\ &= \int \phi_1(x')dx', \end{split}$$

which completes the proof.

Let δ be the Dirac measure concentrated at origin and let $\phi \in \mathcal{D}(\mathbb{R}^n)$ with $\phi \ge 0$ and $\int \phi dx = 1$. We put $\phi_{\lambda}(x) = \frac{1}{\lambda^n} \phi\left(\frac{x}{\lambda}\right)$. For our purpose later on we shall show

LEMMA 2. For any real number k, the condition

$$\lim_{\lambda \to +0} \lambda^k T(\lambda x, y) = S(y)$$

is equivalent to

$$\lim_{\lambda \to +0} \lambda^k \delta(x + \lambda u) T(x, y) = \delta_x \otimes S(y)$$

or

$$\lim_{\lambda \to +0} \lambda^k \check{\phi}_{\lambda}(x) T(x, y) = \delta_x \otimes S(y).$$

PROOF. It is clear that the last two conditions are equivalent. Now, suppose that $\lim_{\lambda \to +0} \lambda^k T(\lambda x, y)$ exists and equals S(y). If $\psi_1(x) \in \mathcal{D}(\mathbb{R}^n)$ and $\psi_2(y) \in \mathcal{D}(\mathcal{Q}_0)$, then since we can write for sufficiently small λ

$$\langle \lambda^k \check{\phi}_{\lambda}(x) T(x, y), \psi_1(x)\psi_2(y) \rangle = \langle \lambda^k T(x, y), \check{\phi}_{\lambda}(x)\psi_1(x)\psi_2(y) \rangle$$
$$= \langle \lambda^k T(\lambda x, y), \check{\phi}(x)\psi_1(0)\psi_2(y) \rangle + \langle \lambda^k T(\lambda x, y), \check{\phi}(x)(\psi_1(\lambda x) - \psi_1(0))\psi_2(y) \rangle,$$

it follows that

$$\begin{split} \lim_{\lambda \to +0} &< \lambda^k \check{\phi}_{\lambda}(x) T(x, y), \, \psi_1(x) \psi_2(y) > = < \mathbf{1}_x \otimes S(y), \, \check{\phi}(x) \psi_1(0) \psi_2(y) > \\ &= \psi_1(0) < S(y), \, \psi_2(y) >. \end{split}$$

This implies that the limit $\lim_{\lambda \to +0} \lambda^k \check{\phi}_{\lambda}(x) T(x, y)$ exists and equals $\delta_x \otimes S(y)$.

Conversely, suppose that $\lim_{\lambda \to +0} \lambda^k \check{\phi}_{\lambda}(x) T(x, y)$ exists and equals $\delta_x \otimes S(y)$. If we take $\psi_1(x) \in \mathcal{D}(\mathbb{R}^n)$ to be 1 near the origin, then we have for any $\psi_2(y) \in \mathcal{D}(\Omega_0)$

$$\begin{split} \lim_{\lambda \to +0} &<\lambda^k T(\lambda x, \ y), \ \phi(x)\psi_2(y) > = \lim_{\lambda \to +0} <\lambda^k T(x, \ y), \ \phi_\lambda(x)\psi_2(y) > \\ &= \lim_{\lambda \to +0} <\lambda^k \phi_\lambda T(x, \ y), \ \psi_1(x)\psi_2(y) > \\ &= <\delta_x \otimes S(y), \ \psi_1(x)\psi_2(y) > \\ &= < S(y), \ \psi_2(y) >, \end{split}$$

which completes the proof.

Now, let $\stackrel{p}{T}$, $0 \leq p \leq N$, be a *p*-current defined on $\mathcal{Q} \subset \mathbb{R}^N = \mathbb{R}_x^n \times \mathbb{R}_y^m$, which is understood as a form with distributional coefficients:

$$\check{T}(x, y) = \sum_{I,K} T_{I,K} dx_I \wedge dy_K, \qquad T_{I,K} \in \mathcal{D}'(\mathcal{Q}),$$

where $I = \{i_1, ..., i_s\}$ and $K = \{k_1, ..., k_t\}$ with s+t=p are strictly increasing multi-indices between 1 and n and between 1 and m respectively and

$$dx_{I} \wedge dy_{K} = dx_{i_{1}} \wedge \dots \wedge dx_{i_{s}} \wedge dy_{k_{1}} \wedge \dots \wedge dy_{k_{s}}.$$

Furthermore we shall write $T_K = T_{I,K}$ for |K| = p. We have for any positive real number λ

$$\tilde{T}(\lambda x, y) = \sum_{I,K} \lambda^{|I|} T_{I,K}(\lambda x, y) dx_I \wedge dy_K,$$

where |I| stands for the number of the components of I.

DEFINITION 1. Let $\stackrel{p}{T}$ be a *p*-current on $\mathcal{Q} \subset \mathbb{R}^n \times \mathbb{R}^m$. If the limit $\lim_{\lambda \to +0} T(\lambda x, y)$ exists and does not depend on *x*, then we say that x=0 can be fixed in T(x, y) and that the limit is the section of *T* for x=0 with notation T(0, y).

This definition means that the distributional limits

$$\lim_{\lambda \to +0} T_{I,K}(\lambda x, y) = T_K(0, y) \quad \text{for} \quad |I| = 0,$$
$$\lim_{\lambda \to +0} \lambda^s T_{I,K}(\lambda x, y) = 0 \quad \text{for} \quad |I| = s > 0$$

exist and

$$\overset{P}{T}(\mathbf{0}, y) = \sum_{K} T_{K}(\mathbf{0}, y) dy_{K}.$$

If T happens to be a distribution on Ω , that is, p=0, then the definition gives rise to that of the section of T for x=0.

When every $T_{I,K}$ has the section for x=0, then T has clearly the section T(0, y). If this is the case, we shall call T(0, y) the section of T in a narrow sense for x=0.

Let Ω , Ω' and $\alpha = (\xi, \eta)$ be the same as before. Then the direct image $\alpha T = \tilde{T}$ is represented by

$$\sum_{J,L} \tilde{T}'_{J,L}(x', y') dx'_J \wedge dy'_L, \quad \text{where} \quad \tilde{T}'_{J,L} = \sum_{I,K} T'_{I,K}(x', y') \frac{\partial(x_I, y_K)}{\partial(x'_J, y'_L)}$$

 \tilde{T} is also the reciprocal image of T for the inverse map z^{-1} . Let S be a current on Ω_0 and let $y' = \eta_0(y) = \eta(0, y)$. In a similar way the direct image

 $\eta_0 S = \tilde{S}$ is represented by

$$\sum_{L} \tilde{S}'_{L}(y') dy'_{L}$$
, where $\tilde{S}'_{L}(y') = \sum_{K} S'_{K}(y') \frac{\partial \eta_{0K}^{-1}}{\partial y'_{L}}$.

THEOREM 1. If a current $\overset{p}{T}$ on $\mathcal{Q} \subset R_x^n \times R_y^m$ has the section $\overset{p}{S}$ for x=0, then the direct image $x \overset{p}{T} = \overset{\tilde{p}}{T}$ also has the section $\eta_0 \overset{p}{S} = \overset{\tilde{p}}{S}$ for x'=0.

PROOF. Let $S = \sum_{K} S_{K}(y) dy_{K}$, $S_{K}(y) = \lim_{\lambda \to +0} T_{I,K}(\lambda x, y)$ for |I| = 0. By Lemma 1 $\lim_{\lambda \to +0} T'_{I,K}(\lambda x', y')$ exists for |I| = 0 and equals S'_{K} and $\lim_{\lambda \to +0} \lambda^{|I|} \times T'_{I,K}(\lambda x', y') = 0$ for |I| > 0. Put $a_{I,K,J,L}(x',y') = \frac{\partial(x_{I}, y_{K})}{\partial(x'_{J}, y'_{L})}$. Since $\xi(0, y) \equiv 0$, it follows that

$$|a_{I,K,J,L}(\lambda x', y')| = egin{cases} O(\lambda^{|I|-|J|}) & ext{ for } |I| > |J| \ O(1) & ext{ for } |I| \leq |J| \end{cases}$$

as $\lambda \rightarrow +0$. Thus we have

$$\lim_{\lambda \to +0} \lambda^{|J|} \tilde{T}'_{J,L}(\lambda x', y') = \begin{cases} \sum_{|I|=0,K} T'_{J,K}(0, y') \frac{\partial y_K}{\partial y'_L} \Big|_{x'=0} & \text{for} \quad |J|=0\\ 0 & \text{for} \quad |J|>0 \end{cases}$$

and again by Lemma 1 we have

$$\begin{split} \lim_{\lambda \to +0} \tilde{T}(\lambda x', \ y') &= \sum_{L} \Big(\sum_{|I|=0, \ K} T'_{I,K}(0, \ y') \frac{\partial \ y_{K}}{\partial \ y'_{L}} \Big|_{x'=0} \Big) dy'_{L} \\ &= \sum_{L} \sum_{K} S'_{K}(y') \frac{\partial \ \eta_{0} \frac{1}{K}}{\partial \ y'_{L}} dy'_{L} \\ &= \sum_{L} \tilde{S}'_{L}(y') dy'_{L} = \tilde{S}(y'), \end{split}$$

which completes the proof.

For a current T on Ω , we shall define the section T(0, y) to be the sum of the sections of the homogeneous components of T whenever they exist.

2. The section of a current on a submanifold

Let M be a manifold of dimension N. In what follows we always understand a manifold to be a differentiable manifold denumerable at infinity [4]. Let $\mathcal{D}(M)$ stand for the space of even C^{∞} forms on M with compact support, equipped with the usual topology, and $\overset{p}{\mathcal{D}}(M)$ the subspace of p-forms $\in \mathcal{D}(M)$. $\underline{\mathcal{D}}(M)$ is the space of odd C^{∞} forms with compact support. The spaces $\underline{\mathcal{D}}'(M)$, $\overset{p}{\mathcal{D}}'(M)$, $\underline{\mathcal{D}}'(M)$ and $\overset{p}{\underline{\mathcal{D}}}'(M)$ are defined as the strong duals of $\underline{\mathcal{D}}(M)$, $\overset{N-p}{\underline{\mathcal{D}}}(M)$,

 $\mathcal{D}(M)$ and $\overset{N-p}{\mathcal{D}}(M)$ respectively. We shall denote by $\mathscr{E}(M)$ the space of even C^{∞} forms with the usual topology and by $\underline{\mathscr{E}}'(M)$ the strong dual of $\mathscr{E}(M)$, which consists of the odd currents $\epsilon \underline{\mathscr{D}}'(M)$ with compact support. The same is true of $\underline{\mathscr{E}}(M)$ and $\mathfrak{E}'(M)$.

Let $\{\kappa\}$ be a complete family of coordinate systems in M, where κ is a homeomorphism of an open set $V_{\kappa} \subset M$ onto an open set $\tilde{V}_{\kappa} \subset R^{N}$, and the map

$$\kappa\kappa'^{-1} \colon \kappa'(V_{\kappa} \cap V_{\kappa'}) \to \kappa(V_{\kappa} \cap V_{\kappa'})$$

is a diffeomorphism for any κ , κ' . Let $T \in \mathcal{D}'(M)$. To every κ there is associated a current $T_{\tilde{P}_{\kappa}}$ on \tilde{V}_{κ} such that $T_{\tilde{P}_{\kappa}} = \kappa \kappa'^{-1} T_{\tilde{P}_{\kappa'}}$ in $\kappa(V_{\kappa} \cap V_{\kappa'})$ and we can identify T with such a system as $\{T_{\tilde{P}_{\kappa}}\}$. Similar considerations hold true of an odd current \underline{T} . We consider a distribution on M as an even 0-current on M, or, what is the same, an element of $\hat{\mathcal{D}}'(M)$.

Let M_0 be a submanifold of dimension m < N. Then to every $a \in M_0$ there is associated a coordinate system $\kappa = \{x_1, \dots, x_n, y_1, \dots, y_m\}, n+m=N$, which is valid on an open neighbourhood V_{κ} of a point a in M such that $x_1(a) = \dots$ $= x_n(a) = y_1(a) = \dots = y_m(a) = 0$ and such that the restriction κ_0 of κ to

$$U_{\kappa} = V_{\kappa} \cap M_0 = \{b \in V_{\kappa}; x_1(b) = \dots = x_n(b) = 0\}$$

forms a coordinate system in M_0 . We have $\tilde{V}_{\kappa} = \{(x_1(b), \dots, x_n(b), y_1(b), \dots, y_m(b)); b \in V_{\kappa}\}$, and $\tilde{U}_{\kappa} = \{(y_1(b), \dots, y_m(b)); b \in U_{\kappa}\}$.

If every $T_{\mathcal{P}_{\kappa}}$ has the section $S_{\mathcal{O}_{\kappa}}$ on \tilde{U}_{κ} , there exists a unique current $S \in \mathcal{D}'(M_0)$ determined by the system $\{S_{\mathcal{O}_{\kappa}}\}$. This is an immediate consequence of Theorem 1. The consideration holds also true of the section in a narrow sense. If T is of degree p, then so is S. Then we can introduce

DEFINITION 2. Let $T \in \mathcal{D}'(M)$. If $T_{\tilde{F}_{\kappa}}$ has the section (resp. in a narrow sense) on \tilde{U}_{κ} for every V_{κ} , the uniquely determined current $S \in \mathcal{D}'(M_0)$ is called the *section* of T (resp. in a narrow sense) on the submanifold M_0 and denoted by $T \mid M_0$.

As an application of the notion of the section of a current we can deal with an exterior product of two homogeneous currents $\overset{p}{S}, \overset{q}{T} \in \mathcal{D}'(M)$. Owing to the principle of localization, it suffices to define an exterior product in a coordinate neighbourhood V of every $a \in M$. Let $\overset{p}{S_F}$ and $\overset{q}{T_F}$ be written in the form

$$\overset{p}{S}_{ec{p}} = \sum_{I} S_{I}(x) dx_{I}, \quad \overset{q}{T}_{ec{p}} = \sum_{K} T_{K}(x) dx_{K}, \quad S_{I}, T_{K} \in \overset{o}{\mathcal{D}}'(\widetilde{V}).$$

We shall consider the current

$$\int_{P}^{p} \otimes \tilde{T}_{\tilde{P}} = \sum_{I,K} S_{I}(x) T_{K}(z) dx_{I} \wedge dz_{K} \quad \text{in} \quad \tilde{V} \times \tilde{V},$$

where $S_I(x)T_K(z)$ denotes the multiplicative products [2, p. 78].

If $S_{\vec{P}} \otimes T_{\vec{P}}$ has the section to the diagonal $\Delta_{\vec{P}}$ of $\tilde{V} \times \tilde{V}$ for every V, then the system of the sections $\{(S_{\vec{P}} \otimes T_{\vec{P}}) | \Delta_{\vec{P}}\}$ defines the current W on Δ , the diagonal of $M \times M$. The map $j: M \ni a \to (a, a) \in \Delta$ is a diffeomorphism. The reciprocal image j^*W will be termed the exterior product of S and T with notation $S \wedge T$, a (p+q)-current.

From this definition it follows that

(1) If $S \wedge T$ exists, then so does $T \wedge S$ and we have $S \wedge T = (-1)^{pq}(T \wedge S)$.

(2) If $S \wedge T$ exists, then so do $(\alpha S) \wedge T$, $S \wedge (\alpha T)$ for every $\alpha \in C^{\infty}(M)$, and we have $\alpha(S \wedge T) = (\alpha S) \wedge T = S \wedge (\alpha T)$. If S and T are distributions on M, the definition is tantamount to that of the multiplicative product $S \cdot T$ given in [1, p. 165].

When $S_I T_K$ exists for every *I*, *K* and *V*, it is clear from our definition that the exterior product $S \wedge T$ is well defined, and we can write

$$(S \wedge T) \tilde{r} = \sum_{I,K} S_I(x) T_K(x) dx_I \wedge dx_K.$$

If this is the case, we shall say that the exterior product of S and T exists in a narrow sense.

We know that on an oriented manifold every odd current is associated with an even current in a natural way. On the other hand, every coordinate neighbourhood V_{κ} is supposed to be oriented according to the natural ordering of coordinates in κ . To every odd current <u>S</u> there is associated a system of currents $S_{V_{\kappa}}$ such that

$$\underline{S} \tilde{\boldsymbol{v}}_{\kappa} = \sum_{I} S_{I}(x) dx_{I},$$

but with the rules of transformations:

$$S_{\mathcal{P}_{\kappa'}}(x') = \frac{J_{\kappa\kappa'^{-1}}}{|J_{\kappa\kappa'^{-1}}|} \sum_{I \in J} \underline{S}'_{I}(x') \frac{\partial x_{I}}{\partial x'_{J}} dx'_{J} \quad \text{in} \quad \kappa'(V_{\kappa} \cap V_{\kappa'}).$$

This observation leads us to the definition of the exterior products between currents of any kind. For example, let us consider two currents Sand T on M. If $W_{\kappa} = \underline{S}_{P_{\kappa}} \wedge T_{P_{\kappa}}$ exists for every κ , we can see that $\{W_{\kappa}\}$ uniquely determines an odd current \underline{W} , a fact which is verified straight forward. Then we call \underline{W} the exterior product $\underline{S} \wedge T$ of \underline{S} and T. The parity of the exterior product obeys to the usual law for the exterior multiplication when one of the factors is a C^{∞} form.

Now we turn to the consideration about the section of an odd current $\underline{T} \in \underline{\mathcal{D}}'(M)$ on a submanifold M_0 , where the injection $j: M_0 \to M$ is supposed to be oriented. We shall continue to use the notations as before. The map j assigns to the canonical orientation of U_{κ} a fixed orientation of V_{κ} in each point of U_{κ} , which may or may not coincide with the canonical orientation of V_{κ} and accordingly we define $\varepsilon(p)$, $p \in U_{\kappa}$, to be 1 or -1. Taking this into account, if the section $S_{\mathcal{O}_{\kappa}}$ of $T_{\mathcal{O}_{\kappa}}$ for x=0 exists for every κ , we can conclude

that $\{\varepsilon S_{\tilde{U}_{\kappa}}\}$ uniquely determines an odd current \underline{S} on M_0 , which we shall call the section of \underline{T} on M_0 and denote it by $\underline{T} | M_0$.

The same is true of the section in a narrow sense.

3. Sections and reciprocal images

Consider a C^{∞} map ξ of a manifold M' of N'-dimension into a manifold M of dimension N. The reciprocal image $\xi^*\alpha$, $\alpha \in \mathcal{D}(M)$, belongs to $\mathcal{E}(M')$. Then the integral

$$\int \beta \wedge \xi^* \alpha$$
, where $\beta \in \overset{N'-p}{\mathcal{Q}}(M')$,

defines a continuous linear form on $\overset{p}{\mathcal{D}}(M)$, and in turn an odd current $\underline{\mathfrak{F}}\underline{\beta}$ of degree N-p which is called the direct image of $\underline{\mathfrak{F}}\underline{\beta}$.

Now consider a current $T \in \overset{p}{\mathcal{D}'}(M)$. If $\underline{\beta}\underline{\beta} \wedge T$ exists for every $\underline{\beta} \overset{N'}{\underline{\phi}} \overset{p'}{\underline{\phi}'}(M')$, the linear map

$$\underline{\beta} \rightarrow \int \underline{\xi} \underline{\beta} \wedge T$$

will be continuous. Indeed, it is enough to show the assertion when M', M are open subsets Ω' , Ω of Euclidean spaces of dimension N' and of dimension N. In this case we may write $\xi \underline{\beta}$ and T in the following forms:

$$\begin{split} \xi \underline{\beta} &= \sum_{I} S_{I}(x) dx_{I}, \qquad S_{I} \epsilon \, \widehat{\mathcal{E}}'(\mathcal{Q}), \\ T &= \sum_{K} T_{K}(x) dx_{K}, \quad T_{K} \epsilon \, \widehat{\mathcal{D}}'(\mathcal{Q}), \end{split}$$

and therefore

$$\xi \underline{\beta} \wedge T = \big(\sum_{l} (-1)^{\rho(I,CI)} S_{I}(x) T_{CI}(x) \big) dx,$$

where $(-1)^{\rho(I,K)}$ denotes the signature of the permutation $\{I, K\}$ of $\{1, 2, ..., N\}$, and we used the notation $\sum_{I} (-1)^{\rho(I,CI)} S_{I}(x) T_{CI}(x)$ for the abbreviation of $\lim_{\lambda \to +0} \sum_{I} (-1)^{\rho(I,CI)} S_{I}(x) T_{CI}(x+\lambda u)$. By making use of a restricted δ -sequence $\{\rho_k\}$, we obtain

$$\xi \underline{\beta} \wedge T = \lim_{k \to \infty} \sum_{I} (-1)^{\rho(I,CI)} S_{I}(T_{CI} * \rho_{k}) dx,$$

so we can conclude the assertion in virtue of the Banach-Steinhaus theorem.

DEFINITION 3. Given $T \in \mathcal{D}'(M)$, if $\xi \beta \wedge T$ exists for every $\beta \in \mathcal{D}'(M')$, the current $\xi^* T$ determined by the equation

$$<\!\underline{\beta},\ \underline{\xi}^*T\!> = \int\!\underline{\xi}\underline{\beta}\wedge T$$

is called the *reciprocal image* of T under the map ξ .

We note that if ξ^*T exists for every $T \in \hat{\mathcal{D}}'(M')$, then $\xi\beta$ is an odd (N-p)-form. This follows from the fact that a distribution on \mathcal{Q} which admits the multiplicative product with every distribution on \mathcal{Q} must belong to $\mathfrak{E}(\mathcal{Q})$ [1, p. 166].

Now, let us consider a special case in which M' is a submanifold M_0 of M as in the preceding section. Let $j: M_0 \to M$ be the injection, which is a C^{∞} map. Then we can show

THEOREM 2. Given $T \in \mathcal{D}'(M)$, $0 \leq p \leq m$, the reciprocal image j^*T exists if and only if the section $T \mid M_0$ exists. And if this is the case, we have $j^*T = T \mid M_0$.

PROOF. We shall continue to use the notations as before. For any $\alpha \in \overset{p}{\mathcal{D}}(M)$ and $\beta \in \overset{m-e}{\mathcal{D}}(M_0)$ with support $\subset \subset U_*$, it is easy to verify the relation:

$$\int \underline{\beta} \wedge j^* \alpha = \int_{\widetilde{U}_{\kappa}} \underline{\beta}_{\widetilde{U}_{\kappa}} \wedge (j^* \alpha)_{\widetilde{U}_{\kappa}} = \int_{\widetilde{P}_{\kappa}} (\delta(x) dx \wedge \underline{\beta}_{\widetilde{P}_{\kappa}}) \wedge \alpha_{\widetilde{P}_{\kappa}},$$

which implies that

$$(j\beta)_{\widetilde{\nu}_{\kappa}} = \delta(x) dx \wedge \beta_{\widetilde{\nu}_{\kappa}}.$$

Suppose j^*T exist, then, since the exterior product $(j\beta)_{\vec{P}_{\kappa}} \wedge T_{\vec{P}_{\kappa}}$ exists for any β , it follows that $(\delta(x)dx \wedge dy_I) \wedge T_{\vec{P}_{\kappa}}$ must exist for any J with |J| = m - p. Putting $T_{\vec{P}_{\kappa}} = \sum_{I,K} T_{I,K}(x, y)dx_I \wedge dy_K$, |I| + |K| = p, we can write

$$\begin{split} &(\delta(x)dx \wedge dy_{I}) \wedge T_{\breve{P}_{\kappa}} \\ &= \lim_{\lambda \to +0} \sum_{I,K} \delta(x+\lambda u) T_{I,K}(x, y) d(x+\lambda u) \wedge d(y+\lambda v)_{I} \wedge dx_{I} \wedge dy_{K} \\ &= \lim_{\lambda \to +0} \sum_{I,K} (-1)^{\rho(CL,L)} \lambda^{+L+} \delta(x+\lambda u) T_{I,K}(x, y) dx_{CL} \wedge du_{L} \wedge d(y+\lambda v)_{I} \wedge dx_{I} \wedge dy_{K}. \end{split}$$

We can conclude from these equalities that

$$\lim_{\lambda\to+0}\lambda^{|I|}\delta(x+\lambda u)T_{I,K}(x, y)$$

exists for every $T_{I,K}$, and in addition if |I| > 0, the limit is 0. Indeed, choose J=CK for any K with |K|=p, then it is easy to see that the assertion is true of |K|=p, and

$$\lim_{\lambda \to +0} \sum_{|K| \leq p-1} (-1)^{\rho(CL,L)} \lambda^{|L|} \delta(x+\lambda u) T_{I,K}(x, y) dx_{CL} \wedge du_L \wedge d(y+\lambda v)_J \wedge dx_I \wedge dy_K$$

exists. Then a similar argument can be applied to obtain the results for the case |K| = p-1 when $p \ge 1$. The repeated use of this procedure will lead

us to the conclusion. It then follows from Lemma 2 that the section $T_{\tilde{\mathcal{V}}_{\kappa}}|\tilde{U}_{\kappa}$ exists.

Conversely, let us assume that the section $T | M_0$ exists. This implies that if we write $T_{F_{\kappa}} = \sum_{I,K} T_{I,K}(x, y) dx_I \wedge dy_K$, then $\lim_{\lambda \to +0} \lambda^{|I|} T_{I,K}(\lambda x, y)$ exists for every $T_{I,K}$ and equals 0 for |I| > 0. Putting $\lim_{\lambda \to +0} T_{I,K}(\lambda x, y) = S_K(y)$ for |I| = 0, we obtain $(T | M_0)_{\mathcal{O}_{\kappa}} = \sum_K S_K(y) dy_K$. From these facts together with Lemma 2 it will be easily verified that we obtain with $\underline{\beta}_{\mathcal{O}_{\kappa}} = \sum_I \underline{\beta}_I(y) dy_I$

$$(j\underline{\beta})r_{\kappa} \wedge Tr_{\kappa}$$

$$= \lim_{\lambda \to +0} \sum (-1)^{\rho(CL,L)} \lambda^{1L_{1}} \delta(x + \lambda u) \beta_{J}(y + \lambda v) \wedge \lambda^{T}_{I,K}(x, y) \wedge dx_{CL} \wedge du_{L} \wedge d(y + \lambda v)_{J} \wedge dx_{I} \wedge dy_{K}$$

$$= \sum J \delta(x) dx \wedge \beta_{J}(y) S_{CJ}(y) dy_{J} \wedge dy_{CJ}$$

and

$$\int (j\underline{\beta}) \vec{r}_{\kappa} \wedge T \vec{r}_{\kappa} = \int \underline{\beta} \underline{v}_{\kappa} \wedge (T \mid M_0) \underline{v}_{\kappa},$$

which implies that $j^*T = T | M_0$. Thus the proof is complete.

If ξ is an oriented C^{∞} map of M' into M, we can define in a similar way the reciprocal image $\xi^* \underline{T} \in \overset{p}{\underline{\mathcal{D}}'}(M')$ for an odd current $\underline{T} \in \overset{p}{\underline{\mathcal{D}}'}(M)$ under the map ξ . In particular, when ξ is an oriented injection j of a submanifold M_0 into M, Theorem 2, as we see easily, also remains true of the oriented injection j and the odd current \underline{T} .

As an application we can show Stokes' formula for a current of any kind. Before going to a general discussion, we consider the integral $\int_a^b S'(x)dx$, where S is a distribution on the real line. If the values S(a), S(b) exist, the integral is defined to be S(b)-S(a). Now we shall consider it in more detail: Let h be the characteristic function of the interval [a, b]. Then $h' = \delta_a - \delta_b$. It is known [1, p. 162] that the following conditions for a distribution S are equivalent:

- (1) The values S(a), S(b) exist.
- (2) The multiplicative product h'S exists.
- (3) The multiplicative product hS' exists.
- (4) The multiplicative products hS and hS' exist.

Let us assume that any one of these equivalent conditions is satisfied for S. Then (hS)'=h'S+hS'. Consequently we have

$$\int hS'dx = -\int h'Sdx = \int (S(b)\delta_b - S(a)\delta_a)dx = S(b) - S(a).$$

Therefore if we understand in general the integral $\int_a^b T(x) dx$ of a distribu-

tion T to be $\int hTdx$ when the multiplicative product hT exists, we obtain

$$\int_{a}^{b} S'(x) dx = S(b) - S(a)$$

under the assumption made above.

Let \mathcal{Q} be a domain in the manifold M. We assume that \mathcal{Q} is a domain with regular boundary, that is, the boundary $b\mathcal{Q}$ is a closed (N-1)-dimensional manifold and we can find for each point $a \in b\mathcal{Q}$ its coordinate neighbourhood V with coordinates x, y_1, \dots, y_{N-1} such that $V \cap \overline{\mathcal{Q}}$ is the set of all points $b \in V$ with $x(b) \leq 0$. We can assign to each point a of $b\mathcal{Q}$ a tangent vector at a in M entering into $C\mathcal{Q}$, so that $b\mathcal{Q}$ is transversally oriented in a familiar way. Thus the injection $b\mathcal{Q} \to M$ is oriented. We note that if M is orientable, then so is $b\mathcal{Q}$.

Let \underline{T} be an odd (N-1)-current defined on M. Let $I_{\mathcal{Q}}$ denote the characteristic function of \mathcal{Q} . If $I_{\mathcal{Q}} \wedge T$ exists with compact support, we define

$$\int_{\mathscr{Q}} \underline{T} = \int I_{\mathscr{Q}} \wedge \underline{T},$$

where the right side has a meaning since $I_{\mathcal{Q}} \wedge \underline{T} \in \mathfrak{E}'(M)$. Before going to the statement of Stokes' formula for an odd current, we show a proposition needed later on.

PROPOSITION 1. If $\underline{T} | b\Omega$ exists in a narrow sense, then the exterior products $I_{\Omega} \wedge T$, $I_{\Omega} \wedge dT$ and $dI_{\Omega} \wedge T$ in a narrow sense exist and we have

$$d(I_{\mathcal{Q}} \wedge T) = dI_{\mathcal{Q}} \wedge T + I_{\mathcal{Q}} \wedge dT.$$

PROOF. It is enough to show the assertions in a neighbourhood of each point $a \in b\mathcal{Q}$. Let V be taken as before and put $U = \{b \in V; x(b)=0\}$. We can write $T_{\overline{V}}$ in the form:

$$T_{\vec{p}} = T_0(x, y)dy + \sum_j T_j(x, y)dx \wedge dy_1 \wedge \dots \wedge dy_j \wedge \dots \wedge dy_{N-1},$$

where the circumflex indicates omission. The assumption that $\underline{T} | b\mathcal{Q}$ exists in a narrow sense means that the section $T_k(0, y)$, $0 \leq k \leq N-1$, exists. Consequently the multiplicative product $\delta(x)T_k(x, y)$ exists and equals $\delta(x)T_k(0, y)$. Let Y(x) be the Heaviside function. Then we have $(I_{\mathcal{Q}})_{\mathcal{V}} = Y(-x) \otimes 1_y$ in $\tilde{\mathcal{V}}$. Since

$$\frac{\partial}{\partial x} (Y(-x) \otimes \mathbf{1}_y) = -\delta(x) \otimes \mathbf{1}_y,$$
$$\frac{\partial}{\partial y_j} (Y(-x) \otimes \mathbf{1}_y) = 0, \qquad j = 1, 2, ..., N-1,$$

we can conclude that the multiplicative products $(I_{g})_{\vec{P}} T_{k}(x, y)$, $(I_{g})_{\vec{P}} \frac{\partial T_{k}}{\partial x}$ and $(I_{g})_{\vec{P}} \frac{\partial T_{k}}{\partial y_{j}}$ exist for k=0, 1, ..., N-1, j=1, 2, ..., N-1 [1, p. 168]. This implies that $(I_{g})_{\vec{P}} \wedge \underline{T}_{\vec{P}}$ and $(I_{g})_{\vec{P}} \wedge d\underline{T}_{\vec{P}}$ exist in a narrow sense and we have

$$d((I_{\mathcal{Q}})_{\mathcal{V}} \wedge \underline{T}_{\mathcal{V}}) = d(I_{\mathcal{Q}})_{\mathcal{V}} \wedge \underline{T}_{\mathcal{V}} + (I_{\mathcal{Q}})_{\mathcal{V}} \wedge d\underline{T}_{\mathcal{V}},$$

which completes the proof.

THEOREM 3 (Stokes' formula). Let $\Omega \subset M$ be a domain with regular boundary and let \underline{T} be an odd (N-1)-current on M such that $\operatorname{supp} \underline{T} \cap \overline{\Omega}$ is compact. If \underline{T} has the section $\underline{T} | b\Omega$ in a narrow sense, then

$$\int_{\mathcal{Q}} d\underline{T} = \int_{b\mathcal{Q}} j^* \underline{T},$$

where j is the oriented injection of $b\Omega$ into M.

PROOF. From Proposition 1 we have

$$d(I_{\mathcal{Q}} \wedge \underline{T}) = dI_{\mathcal{Q}} \wedge \underline{T} + I_{\mathcal{Q}} \wedge d\underline{T}.$$

Consequently we have

$$\int_{\mathcal{Q}} d\underline{T} = \int I_{\mathcal{Q}} \wedge d\underline{T} = -\int dI_{\mathcal{Q}} \wedge \underline{T}.$$

Hence it remains to show that $-\int dI_{\mathcal{Q}} \wedge \underline{T} = \int_{b\mathcal{Q}} j^* \underline{T}$. To do so, it is enough to show that

$$-\int \phi \cdot (dI_{\mathcal{Q}} \wedge \underline{T}) = \int_{b\mathcal{Q}} (j^* \phi)(j^* \underline{T}), \qquad \phi \in \hat{\mathcal{D}}(V)$$

in a neighbourhood V of each point $a \in b\Omega$. Let V be taken as before. Then we can see from the proof of Theorem 2 that

$$-\phi \cdot (dI_{\mathcal{Q}} \wedge \underline{T})_{\mathcal{V}} = \phi(0, \ y)\delta(x)dx \wedge \underline{T}_{\mathcal{V}} = \phi(0, \ y)\delta(x)dx \wedge (j^*\underline{T})_{\mathcal{V}}$$

and then

$$\int \phi \cdot (dI_{\mathcal{Q}} \wedge \underline{T}) = \int_{\vec{v}} \phi(0, y) \delta(x) dx \wedge (j^* \underline{T})_{\vec{v}}$$
$$= \int_{\vec{v}} \phi(0, y) (j^* T)_{\vec{v}} = \int_{b\mathcal{Q}} (j^* \phi) (j^* \underline{T}),$$

which completes the proof.

REMARK. When M is oriented, the boundary $b\mathcal{Q}$ can be oriented as indicated before. We can prove in a like manner that Stokes' formula is also valid for an even current T.

It may happen that $\underline{T} | b\mathcal{Q}$ exists in a wider sense but not $I_{\mathcal{Q}} \wedge d\underline{T}$. Indeed, put $\mathcal{Q} = \{(x, y) \in \mathbb{R}^2; x < 0\}$. Let $\alpha, \beta \in \hat{\mathcal{Q}}(\mathbb{R})$ be equal to 1 in a 0-neighbourhood and $\underline{T} = \alpha(x)\beta(y)y\frac{d}{dx}(\log|\log|x||)dx$. $\log|\log|x||$ has no value at 0 and $\frac{d}{dx}(\log|\log|x||)$ no mass at 0 [3, p. 23] and therefore $Y(-x) \cdot \frac{d}{dx}(\log|\log|x||)$ does not exist. Then it is easy to verify that $\underline{T} | b\mathcal{Q} = 0$ but $I_{\mathcal{Q}} \wedge d\underline{T}$ does not exist. Similarly the existence of $I_{\mathcal{Q}} \wedge d\underline{T}$ does not imply the existence of $\underline{T} | b\mathcal{Q}$. Let \mathcal{Q} be the same as above. If we put $\underline{T} = d(f(x)g(y))$ with f(x) = $g(x) = \log(\min\{1, |x|\})$, then $d\underline{T} = 0$. Since $\underline{T} = \frac{1}{x} \log |y| dx + \frac{1}{y} \log |x| dy$ in a 0-neighbourhood it follows that $T | b\mathcal{Q}$ does not exist even in a wider sense.

4. Fixations and trace maps

Let M be a manifold of dimension N and M_0 a submanifold of dimension m of M. Let j be the injection $M_0 \to M$. We shall first define the trace map. To do so, let $\mathcal{H}(M) \subset \mathring{\mathcal{D}}'(M)$ be a locally convex space with topology finer than that of $\mathcal{D}'(M)$ and assume that $\mathcal{H}(M) \cap \overset{p}{\overset{p}{\in}}(M)$ is dense in $\mathcal{H}(M)$. If the map of $\mathcal{H}(M) \cap \overset{p}{\overset{p}{\in}}(M)$ into $\overset{p}{\mathcal{D}'}(M_0)$ which transforms $\alpha \in \mathcal{H}(M) \cap \overset{p}{\overset{p}{\otimes}}(M)$ into the restriction of α to M_0 can be continuously extended from $\mathcal{H}(M)$ into $\overset{p}{\overset{D'}}(M_0)$, then the extended map is called a trace map on M_0 , and the current $\epsilon \overset{p}{\overset{D'}}(M_0)$ which corresponds to $T \in \mathcal{H}(M)$ will be called the trace of T and denoted by $T \mid [M_0]$.

PROPOSITION 2. Let $\mathcal{H}(M)$ be a barrelled space. If the section $T \mid M_0$ on M_0 exists for every $T \in \mathcal{H}(M)$, then the trace $T \mid [M_0]$ exists for every $T \in \mathcal{H}(M)$ and $T \mid [M_0] = T \mid M_0$.

PROOF. We shall continue to employ the same notations as used in the preceding sections. For each point $a \in M_0$ we may assume that there exists a neighbourhood V of a such that

$$egin{aligned} & ilde{V} = \{(x,\ y);\ |\ x\ | < \delta,\ |\ y| < \delta\}, \ & ilde{U} = \{y;\ |\ y| < \delta\}, \ & U = V \cap M_0 \end{aligned}$$

for some constant $\delta > 0$. Put $T_{\ell} = \sum_{I,K} T_{I,K}(x,y) dx_I \wedge dy_K$ and let $\{\rho_k\}$ be a restricted δ -sequence with $\sup \rho_k \in B_\delta \in \mathbb{R}^n$. Since $T \mid M_0$ exists, the limit

$$\lim_{k\to\infty} \langle T_{I,K}(x,y),\rho_k(x)\rangle = S_K(y) \,\epsilon \, \hat{\mathcal{D}}'(\tilde{U}), \quad |K| = p,$$

exists for |I| = 0. The linear map

$$\mathscr{H}(M) \ni T \to \langle T_{I,K}(x, y), \rho_k(x) \rangle \in \mathscr{D}'(\tilde{U}), \qquad |K| = p,$$

is clearly continuous. Since $\mathscr{H}(M)$ is barrelled, the map $\mathscr{H}(M) \ni T \to S_K(y) \in \hat{\mathscr{D}}'(\tilde{U})$ will be continuous by the Banach-Steinhaus theorem. Thus the map

 $\mathscr{H}(M) \ni T \to T \mid M_0 = \sum_K S_K(\gamma) d \gamma_K \epsilon \mathcal{D}'(\tilde{U})$

is continuous. Especially if $T = \alpha \in \mathcal{H}(M) \cap \mathcal{E}(M)$ then $\alpha(x, y) | \tilde{U} = \alpha(x, y) | [\tilde{U}]$. Consequently the trace $T | [M_0]$ exists and equals $T | M_0$, which completes the proof.

Owing to Theorem 2, we can also restate that if j^*T exists for every $T \in \mathcal{H}(M)$, the map $T \to j^*T \in \mathcal{D}'(M_0)$ is continuous.

In a similar way we can show

PROPOSITION 3. Let S be a q-current on M. If $S \wedge T$ exists for every pcurrent T of a barrelled space $\mathcal{H}(M)$, then the map $\mathcal{H}(M) \ni T \to S \wedge T \in \mathcal{D}^{p+q}(M)$ is continuous.

Propositions 2 and 3 hold also true of odd currents with necessary modifications.

Now, we assume that $M = R^{n+m}$.

PROPOSITION 4. Let T be a distribution on \mathbb{R}^{n+m} . If $(T * \rho_k) | M_0$ converges in $\hat{\mathcal{D}}'(M_0)$ for any δ -sequence $\{\rho_k\}$, then the section $T | M_0$ exists and $T | M_0 = \lim (T * \rho_k) | M_0$.

PROOF. It is sufficient to show the assertion near any point $a \in M_0$. By a linear coordinate transformation, we may assume that a is the origin and that M_0 is defined in a neighbourhood of 0 by a system of equations:

$$\begin{cases} x_i = f_i(v_1, \dots, v_m), & i = 1, 2, \dots, n, \\ y_j = v_j, & j = 1, 2, \dots, m, \end{cases}$$

in a neighbourhood of v=0, where f_i is a C^{∞} function with $f_i(0)=0$. Consider the coordinate transformation:

$$\begin{cases} x_i = f_i(v_1, \dots, v_m) + u_i, & i = 1, 2, \dots, n, \\ y_j = v_j, & j = 1, 2, \dots, m, \end{cases}$$

where (u, v) remains in a neighbourhood of (0, 0). Let $\sigma_k(u)$ and $\tau_l(v)$ be any δ -sequences. Then $\rho_{k,l}(x, y) = \sigma_k(x)\tau_l(y)$ is also a δ -sequence and we have

$$(T * \rho_{k,l}) | M_0 = \langle T(x', y'), \rho_{k,l}(x - x', y - y') \rangle_{x',y'} | M_0$$

= $\langle T(x', y'), \sigma_k(f(v) - x')\tau_l(v - y') \rangle_{x',y'}$
= $\langle T'(u', v'), \sigma_k(f(v) - f(v') - u')\tau_l(v - v') \rangle_{u',v'}$.

Then, for any $\phi(v)dv \in \overset{m}{\mathcal{D}}(R^m)$ with support in a 0-neighbourhood, we can write

$$< (T * \rho_{k,l}) | M_0, \phi(v) >_v$$

$$= < T'(u', v'), \quad \int \sigma_k (f(v) - f(v') - u') \tau_l(v - v') \phi(v) dv >_{u',v'}$$

$$= < T'(u', v'), \quad \int \sigma_k (f(v + v') - f(v') - u') \tau_l(v) \phi(v + v') dv >_{u',v'}$$

Consequently we obtain

$$\lim_{k, l \to \infty} <(T * \rho_{k,l}) | M_0, \phi(v) >_v = \lim_{k \to \infty} < T'(u', v), \sigma_k(-u')\phi(v) >_{u',v},$$

which implies that $\lim_{k\to\infty} \langle T'(u', v), \sigma_k(-u') \rangle_{u'}$ exists for every (restricted) δ -sequence σ_k , and that $T | M_0$ exists near the origin and

$$\lim_{k, l \to \infty} < (T * \rho_{k,l}) | M_0, \phi(v) >_v = < T | M_0, \phi(v) >_v,$$

which completes the proof.

COROLLARY. Let $\mathcal{H}(M) \subset \hat{\mathcal{D}}'(\mathbb{R}^{n+m})$ have the approximation property by reguralization. If the trace exists for every $T \in \mathcal{H}(M)$, then the section exists also for every $T \in \mathcal{H}(M)$ and both coincide.

5. Admissible maps

Let M and M_1 be manifolds with dimensions N and N_1 respectively. Let ξ be a C^{∞} map of M into M_1 .

DEFINITION 4. ξ is called *admissible* if ξ^*T exists for every $T \in \mathring{\mathcal{D}}'(M_1)$.

As remarked in Section 3, the definition is equivalent to asserting that the direct image $\xi \phi$ is a C^{∞} form for every $\phi \in \overset{N}{\underline{\mathcal{D}}}(M)$, or that the map $\overset{N}{\underline{\mathcal{D}}}(M_1) \ni \alpha$ $\rightarrow \xi^* \alpha \in \overset{\mathbb{E}}{\otimes}(M)$ can be continuously extended from $\overset{\mathbb{D}}{\underline{\mathcal{D}}}'(M_1)$ into $\overset{\mathbb{D}}{\underline{\mathcal{D}}}'(M)$.

First we remark that if ξ is admissible, then we can conclude that the reciprocal image $\xi^* T$ of any $T \in \overset{p}{\mathcal{D}'}(M_1)$ exists, or, what is the same, the direct image $\xi \phi$ of any $\phi \in \overset{N-\phi}{\mathcal{D}}(M)$ is a C^{∞} form. Indeed, it is sufficient to show the assertion when M and M_1 are open subsets \mathcal{Q} and \mathcal{Q}' in Euclidean spaces respectively. Put $T = \sum_K T_K dx'_K$, |K| = p, where T_K is a distribution on \mathcal{Q}' . By assumption, $\xi^* T_K$ exists for every K. Now we have

$$egin{aligned} &< \underline{\phi}, \ \sum_K (\xi^* \, T_K) \xi^* (dx'_K) > = \sum_K < \underline{\phi} \wedge \xi^* (dx'_K), \ \xi^* \, T_K > \ &= \sum_K < \underline{\xi} \underline{\phi} \wedge dx'_K, \ T_K > \ &= < \underline{\xi} \underline{\phi}, \ \sum_K T_K dx'_K >, \end{aligned}$$

which shows that $\xi^* T$ exists and equals $\sum_K (\xi^* T_K) \xi^* (dx'_K)$.

From these considerations we see that ξ is admissible if and only if the following condition (C) [5, p. 377] is satisfied:

(C) The image of every odd current with compact support which is defined by a C^{∞} form is also a C^{∞} form.

If ξ is an admissible map of M into M_1 , then we must have $N \ge N_1$. Many of the results established in [2, p. 67-p. 85] can be generalized for currents. We shall state here some of them without proofs, because we can show them by the same procedure as therein made.

PROPOSITION 5. Let ξ be an admissible map of M into M_1 and η an admissible map of M into M_2 of dimension N_2 . Suppose that $N=N_1+N_2$. Then the multiplicative product $(\xi^*S)(\eta^*T)$ exists for every $S \in \hat{\mathcal{D}}'(M_1)$ and $T \in \hat{\mathcal{D}}'(M_2)$ if and only if the map $\chi = (\xi, \eta)$ of M into $M_1 \times M_2$ is locally diffeomorphic.

PROPOSITION 6. If ξ is a C^{∞} map of M onto M_1 with no critical point, then the reciprocal map ξ^* of $\hat{\mathcal{D}}'(M_1)$ into $\hat{\mathcal{D}}'(M)$ is a monomorphism for every pwith $0 \leq p \leq N_1$.

PROPOSITION 7. Let ξ be an admissible map of M into M_1 , where we assume M_1 to be connected. Then the following conditions are equivalent to each other:

- (1) $\xi^*(\hat{\mathcal{D}}'(M_1)) = \hat{\mathcal{D}}'(M)$ for some p with $0 \leq p \leq N_1$.
- (2) $\xi^*(\hat{\mathcal{D}}'(M_1)) = \hat{\mathcal{D}}'(M)$ for every p with $0 \leq p \leq N_1$.
- (3) $\xi^*(\overset{p}{\mathfrak{E}'}(M_1)) = \overset{p}{\mathfrak{E}'}(M)$ for some p with $0 \leq p \leq N_1$.
- (4) $\xi^*(\overset{p}{\otimes'}(M_1)) = \overset{p}{\otimes'}(M)$ for every p with $0 \leq p \leq N_1$.
- (5) The map ξ is a diffeomorphism of M onto M_1 .

The analogues of Propositions 6 and 7 remain valid for an oriented map and for odd currents.

References

- [1] M. Itano, On the theory of the multiplicative products of distributions, this Journal, 30 (1966), 151-181.
- [2] ——— and A. Jôichi, On C^{∞} maps which admit transposed image of every distribution, this Journal, **31** (1967), 75-88.
- [3] S. Lojasiewicz, Sur la fixation des variables dans une distribution, Studia Math., 17 (1958), 1-64.
- [4] G. de Rham, Variétés différentiables, Paris, Hermann (1955).
- [5] L. Schwartz, Théorie des distributions, Paris, Hermann (1966).
- [6] R. Shiraishi, On the value of distributions at a point and the multiplicative products, this Journal, **31** (1967), 89-104.

Faculty of General Education, Hiroshima University