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Recently, in his paper [37], F. Norguet has developed the theory of con-
volution of currents by introducing the two types of convolution through the
notion of the direct image of a differentiable mapping f of an oriented mani-
fold into another, and has shown a number of formulae about these convolu-
tions and their mutual relation. The theory involves in virtue of the presence
of the mapping f a natural extension of the notion of convolution even when
applied to the distributions in R”, where we may specify the mapping f so as
to reach the usual notion of convolution. As for the extent of its applica-
bility, however, the definition is more restrictive than usual as the theory is
not designed to deal with the currents with arbitrary supports.

On the other hand, the various approaches for defining the convolution
of distributions in R” have been discussed in our previous papers [2, 5, 67,
where we have shown the equivalence of the definitions resulting from these
different approaches, and made a detailed study on &’-convolution which plays
an important role in discussing the convolution of tempered distributions.

The purpose of the present paper is to generalize by the modification of
Norguet’s ideas the notion of convolution of distributions which, when applied
to the distributions, will lead to the same results as established in our papers
cited above. In this paper a distribution will be understood to be a current
of degree 0.

As we shall confine ourselves with the considerations of currents defined
in R”, we can speak of a summable current as a generalization of a summable
distribution. This allows us to introduce the notion of convolution of cur-
rents in the reminiscence of the notion for distributions. In Section 1 we
shall define the two kinds of convolution which are adjoint to each other and
discuss the equivalent conditions for the existence of these convolutions. In
Section 2 some fundamental properties of these convolutions will be discussed.
Section 3 will be devoted to the characterization of convolution maps, which
is a generalization of the result of [67] established in the case where distribu-
tions are concerned. Finally, in Section 4, we shall consider two kinds of
Fourier transform which are adjoint to each other in a certain sense, and
show the exchange formulae, an analogue to the formula obtained in [1],
which asserts that the Fourier transform of the &’-convolution of two tem-
pered distributions is the multiplicative product of the respective Fourier
transforms.
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§1. The definition of convolutions for currents

Let R” be an n-dimensional Euclidean space. Let us denote by & the
space of all C*-forms with compact supports in R”, equipped with the usual

»

topology, and by D, 0<p<n, the subspace of p-formse D. We denote by
b n—p

D" and &’ the strong duals of & and D respectively. &’ is the space of cur-

b4
rents in R” and &’ the space of homogeneous currents of degree p (of dimen-
sion n-p) in R”. In what follows a distribution is understood to be a current

b
of degree 0. A current S ¢ Q' is considered to be a form whose coefficients
are distributions in R”, that is, we can write for p>0

0
S= ZS[dx[, S[G @/,
I

where Y means that the summation is performed only over strictly increas-
ing multi-indices I= {iy, is, .-, ipy, 1<i:<i2< .. <i,<n, and we have
written

dxr=dxi Ndxi, \---Ndx;,

The same notation will be used even for p=0 with the understanding that
dx[———‘ 1
Let &;: be the space of currents whose coefficients are summable dis-

tributions. _Gf)gl will be defined in an obvious fashion.

Modifying the idea of F. Norguet [ 3], we shall introduce two kinds of
convolution for currents. In what follows we assume that S and T are two
homogeneous currents of degree p and ¢ respectively.

Drrinrrion 1 (the convolution of the 1st kind). S and T are called to be
x,-composable 1 f the condition

2n—b—q

2n
(*1) SHNT(HNI x4+ y) € (Dy1)s Jforevery e D
1s satisfied. Then, in virtue of the closed graph theorem, the map ¢—

2n—0-4q 2n
SONT(HYNAY(x+ y) of D into (Di1).,, is continuous. The condition (x1)
allows us to define the convolution of the lst kind Sx, T as follows:

< ST, > = (—DO“PMSSS@«)A TO) APz + 1),

in other words, (—1)" P Sx, T) s defined as the direct image of the current
S(x)N\ T(y) on R} x Ry under the map f: (x, y)— x+ y of R*x R into R".

Let | J| stand for the number of the components of J. We shall intro-
duce the following notations: if |J| >0, ¢ 7 ; is a number which is 0 unless
{J1, Jo} and J are derangements of the same |J| distinct integers lying be-
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tween 1'and n, in which case € 7, 7. 18 the sign of the permutation {,’;}. If
|J| =0, we shall agree that ¢/, ; =1.

We put (—1)*7¢D = ¢ {137 where CI is the complementary set of
indices, and

(=L CDECD KL CLED  fop K — I\ ] such that

€r5,8= |K|=|1I|+|J|—n,

L 0, otherwise.

Then the x-operation is defined by

‘*dsz(—l)p(l’c”dxcl and *“1dx1=(—1)”(01’1)dxc1.

Owing to L. Schwartz [9 ], we shall say that a distribution K(x, y) € Qo),’,, y
is partially summable with respect to y if K(x, y)e€ (E()D’Ll)y(é);), that is,
<K(x, %), ¢(x)> € Q))/Ll for every ¢ ¢ D. The integral SK(x, y)dy is defined
by the relation

<K, pdy, s> = | <K, ), 60> dy

for every ¢ ¢ D.

Prorosition 1. S and T are x-composable when and only when each
2 €1, kST (x— ), |K|=p+g—n, is partially summable with respect to
17

y. Lf this is the case, we can write

ST = ;(glzj € 111 SN T~ Ndy)dx.
Proor. From the relations
SONT(DNAFx+ y) =2 ST, (bexlx+ YdxANdy;Nd(x+ y)ex
= (=L (=1 e e @K SU)T (pex(x+ y)dx Ndy,

where K=INJ, |K|=p+q—n, dx=dx;\-- Ndx, and dy=dy;A..-Ady, it

follows by a change of variables that the condition (*,) is tantamount to say-

ing that each ) ¢ ;;xS/(y)T;(x— y) is partially summable with respect to
7

y. If this is the case, then

SSS(x)/\ T(HNAP(x+ y)={(— 1)(”“’)"8;(SIZ]EL/,KSI@) T,(x —y)dy>dxx Nocxdxcr

— (— 171 - —
= (=107 < 2[5 SN TS e = Dy ), 6>
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Consequently if S and T are *;-composable, we can write

st = 2(( 5 € 1nxSUNT (v~ p)dy)dcx.

Thus the proof is complete.

Remark 1. We can also write

S T= ;(S;jE LJ,KSI(x— y)T](_’y)dy>de

Remark 2. If the convolution S;+T'; exists for every I and J in a usual
sense [ 5, 107, it is clear from our definition that S+; T is well defined, and we
can also write

S« T = Z (S]* T])*—l(*dXI/\*dx])
1,7

as a consequence of the relations

*"1(*dx1/\*dx/) = *_1((- l)P(I’Cal(I’C])dch/\ dxc])

— (_ l)p(f,Cf)+p(ﬁCl)+p(K,CI,C])de

= € I,J,deK7
where K=INnJand |K|=|I|+|J|—n.
Remark 8. When p+g<n, S+ T is well defined and equals 0.

Next we shall define the convolution of the 2nd kind for currents. For
any current S=,S/dx;, we put *S=Y S;(xdx;) and *'S=3 S,(x'dx)),
_ 7 1 1
where S; denotes the complex conjugate of S;.

DEeriniTION 2 (the convolution of the 2nd kind). S and T are called to be
xg-composable 1 f xS and *T are x;-composable. Then we shall define the con-
volution of the 2nd kind S+, T as follows:

S#y T = #~H(xS)#1(x T)).

Prorosition 2. S and T are =*,-composable when and only when
IZ]} € £;8/ (T (x— y) forevery K with |K|=p+q=n s partially summable

with respect to y. Then we have

suT=3(1 3 ST (s— pdy)da,

where I+ J=K denotes that K=IUJ and INJ=0.
Proor. Since *S=X(—1yY"DSdxc; and *T= Y (—1)PYDT,dxc,, it
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follows from Prop. 1 that *S, *T are *;-composable if and only if each
D(—=1y PO e oror cx SN T (x—y), |K|=p+gq, is partially summable
5y

with respect to y. And we have

(xS)#(xT) = §<S1 /]V_“:K(_l)p(l,cnw(f,c]) € CI’C]’CKS"I(Q,) T/(x— y)dy)dxcx-
Using the relation

1\ CI+pC T C ) +pCK L CKD _ K
(-1 Jore €crcrck= €11

we can infer that S, T are s,-composable if and only if each
IZ} € £,8,(y)T ,(x— y) is partially summable with respect to y. It follows then

that

Sx, T = %(S Z_K € f,,S,(y)T,(x—y)dy)de,

I+J=

which completes the proof.
We can also define S+, T by the equivalent relation

Sy T = w((x718)%, (71 T)).

Remark 4. If S;+T; exists for every I and J in a sense described before,
then Sx, T is well defined, and we can write

S*2T= Z(S}* Tj)de/\ dx].
17
Remark 5. When p+¢>n, S and T are always *;-composable and S*,T
equals 0.

Prorosition 3. Each of the following conditions is equivalent to (+,).

o n 2n—0—-q
1) SA(T*,0) € Dja for every ¢e D ;
2n q

(i) (S, HATe€ é)’y for every o€ Qg_ ;

where T=73 T;dx; and S=YSidx;.
Moreover, in any case the following relations hold:

<SuT, ¢>=<S8, Txip>
=(_1)(n—ﬁ)(n—q)< T, §*1¢>‘

Proor. Let S=2S/dx; and T=},T,;dx;. As shown in Prop. 1, the
condition (%) is equivalent to the conditions

0 0
1Z/: € 1,7, xS (NT (x— ) € DYD]), for every K=1INJ.

n—=0—
(x1)=(i): Putting ¢=2 dcxdxcx 62 D q, we have
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. 0
<2 € kSINT(x— ), pcx(x)dx>=3 € 1, ; g ST xpck) € D
Since the relations (—1)P&-CE+oLCD ¢ € ;g =1 hold, it follows that

;(—l)p(K’CK)[’Z} € 17,xS(Tyeex)dx= ;1}35101961/\ € s.cx,cl{ Trxgeg)dcr
=3 SdxN(Tx1¢)crdxcy
= SA(Te1g) € Dy,
(1)=>(*,): Choose ¢=dcxdxck 62715%, K=1INnJ. By (i) we have

SA( T*1¢) = (—l)P(K’CK)<IZ/' € 1,7, &SI (NT (x— ), pcx(x)dx>dyec Di,

0 ]
which shows that } ¢ ; ;¢ S{(N T (x— y) € DY(D}]:),, as desired.
17
The implications (*;)=(ii)= (*;) can be proved in the same way as in
the case (x;)=({1)=(x).

2n—b—q
Finally, suppose S and T are *;-composable. For every ¢ ¢ & we have

<SaT, $> =< ;S I € xS T (e = Dy dxk, per(¥dxer>

~ ;(—1)“““812]6 10,k SH Treder)da

=<S, T*1¢>
Similarly
<S*1T3 ¢> = <—1>(”7p)(”_‘”< T, g*l¢>'

Thus the proof is complete.

As a consequence of the preceding proposition and the definition 2 we
have

Prorosition 4. A mecessary and sufficient condition for S=,T to exist is
that one of the following equivalent conditions holds:

n q

(1) SA(T#,0) ¢ é)/Ll for every ¢c _é— ;

n—b-q

(i) (S*,¢9)ATe€ .,Cf)gx for every ¢e D .
Then we can write
< S0, T, ¢> =< S, Trop>
=(—1)"< T, Sxapp>.
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Proor. We first note that *W Axa= WA« for any W e D and acD.
From Prop. 8 together with Def. 2, it follows that the condition for Sx,7T to
exist is equivalent to the following condition

-b-q
’

(xS)A(Cx T)x,(x9)) € é)’p for every ¢c D

which is also equivalent to the condition

n—b—q

SA(T*qu)Eé),’Ll for every ¢e D,
since CSNA(x T)x1(x¢)) =% S A*( Tx20)= S A( T28).
Consequently

<S8, T, > = <5 H((+S)x1(xT)), >
= <(&S)#i(xT), ¢ >
= <=8, (x T)ri(x4) >
=<8, = H(x T)x(x0)) >
=<8, Trpp>.

Similarly we can show that S, T exists if and only if the condition (ii) holds
and then

<S#p Ty ¢>=(—1""< T, Sxppp>.

Thus the proof is complete.

Now we shall consider the simultaneous convolutions of three currents.
Let U be a homogeneous current of degree r.

Suppose that S, T, U satisfy the condition:

3n—b—q-r

SOATDIAUD Az + y+2) € Dy, forevery ¢

—p—q-r

n—p
Then we can show that the map ¢— S(x) A T() A U(2) Ad(x+ y+z) of3 D

3n
into (¥71),,,,. is continuous, which leads us to define the simultaneous convolu-
tton of the 1st kind Sx, T+, U by the relations

< S T, U, > = (—1)<"—P><u+f>*<"—q>fggg5(x>/\ TO)A UG AG(a+ y+2)

=< Z(ggljzl{ €15,5,05(x— y—2z) Tj(y)UK(z)dydz>de, >,

where we have put ¢ ;g ;=(—1)LCDHPLCDHpE CRTp(L.CLCLCR) if [ — [N\ ]
NK such that |L|=|I|+|J|+|K|—2n, and ¢ ;;x =0, otherwise.
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'PROPOSITION 5. Suppose Sx; T+ U and S+, T are defined. Then S+, T and
U are *;-composable and

S*lT*1U= (S*1T>*1U.
Proor. Put W=, Wydxy=S+T. Then, using the equalities
M

€17k L= €17 M€ MK,L for M=INJ

we obtain

MZKE m g, L Wulx—2)Ug(z) = MZKE M,K,L<SIZ]€ nm Si(x— y—2z) T/(y)dy>UK(Z)
={,3_€rrniSia—y=DT,(NUdy € DuDL).

Consequently we can conclude that (S, T)+, U exists and that S Tx U
=(S#;T)*;U. Thus the proof is complete.

As to the simultaneous convolution of the 2nd kind, we can define Sx, T+, U
by the relation

S#y T4 U = *_1((*5)*1(* T )*1(x U)),
whenever the right hand side exists in the preceding sense.

Prorosition 6. Let W be any current of degree r with compact support.
(i) If ST exists, then (Sx;T)x W, Sx\(T*: W) and (S, W)+, T exist, and
we have
(S, TYs \ W= Sx(T*, W)
= (— 10" (Su, W )w, T
and

- n—b—
< ST, ¢>= (S, T, H)0)  for every de D .

(i1) If S*,T exists, then (Sx;T)*x: W, Sxo( T+ W) and (Sx, W )x, T exist, and
we can write

(S*z T)*zWZ S*z( T*z W) = (—1)47(5*2 W)*g T,

and
. n—bp—
<S4T, > = (S Teg)(0)  for every ge D .
« n—p—
Proor. (i): Let S, T be *;-composable. Since W+,¢ 62 D q, it follows
from Prop. 3 that
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3n

. o « o 7 —p—
SA(T+(Wx,18)= SA(T* W) *,6) ¢ D;+  for every de D

a-r

3n—b—-a—r
Therefore S and T+ W are *;-composable and we have for any gec¢ D

(S Ty W, ¢>=<SuT, Weip>
=<, (T*IW)V*1¢>
:<S*1(T*1W): B>

Consequently, (S, T)* W= S+ (T+, W). Similarly we can show that S« W, T
are *;-composable and the (S, T)s, W=(— 1) 9D0=7")(Ss, W)+, T.

If U= U;dx;¢€ D’ and b= bcrdxcr cn@, we can write
<U, $>= (Ux:$)(0).

In fact, this follows from the following relations
<U, 9> = D=1 {Unapper@)d

= S(=1y"(Urrder)(0),
(U18)(0) = Z(Ur*ger)(0)x*(xdxA*xdxcr)
= S(=1y"(Urrger)(0).
Now putting U= S+, T, we have then

< S T, ¢> = (S*, T*16)(0)

as was required.

(i1): In view of the definition of the convolution of the 2nd kind, (i)
together with Prop. 4 will lead us to the conclusions of the case (ii), and so
we shall omit the proof.

§2. Properties of convolutions

This section will be devoted to the further investigation of the properties
of convolutions defined in the preceding section. As before, we assume that
S and T are homogeneous currents of degree p and ¢ respectively.

Prorostrion 7. (i) If S has a compact support, then S+, T and S+, T exist.

(il) If Sx. T exists, then Sx, T is a homogeneous current of degree p+q—n.
This means that the dimension of S+ T is equal to the sum of dimensions of S
and T.

(iii) If S*;T exists, then S, T is a homogeneous current of degree p+q.

(iv) If S T exists, then T+, S exists and
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S#; T = (—1)r=Dr=D Ty, S,
(V) If S*,T exists, then T+*,S exists and
S*2T= (—l)pq T*zs

Proor. (i), (ii) and (iii) are obvious from the definitions of convolutions.
(iv) and (v) are valid from the following relations

Se1T = (—1)®PU(S(x)A T(»))
= (=1 Pf((—= D" T(y) A S(x))

= (—1)m-Pa+ps+nt(-0b Ty G
= (= 1) D-O Ty, S,
Sty T = =1 ((+8)*1(+ T))
= (— 1) Y(xT)*1(x5))
=(=1)?Tx,S
as was required.
Let us denote by ¢ Dirac’s distribution at the origin and by J Dirac’s

n-current, then 0=0dx. We then obtain

0%,S=S5x0=2S5 and 0%pS= S%0=S.

We now introduce the following linear operators in &’. For any
S=2S;dx;, we put

i(S)= ; € hinceySrdxinc iy
and

ek(S) = ;S[dxk/\dx[,

where k=1, 2,..., n.
We can write

ikS': S*l(*é‘dxk) and 8kS= 6dxk*zS.
In fact, 6dxk*zS= ZSIdxk/\dxlz ekS and
I

Sk (x0dxy) = 2 Spx(x"dagAx"Ixdxy)
7
= ;(— 1)‘0(01’1)51*((19001/\ dxk)

— ;( _ 1)p(CI,I)+p(CI,k,Ir\C{k})Sldxmc{k)

Il

; € hrnctySrdxincn
Z;ikS.
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These considerations together with Prop. 6 with W replaced by *0dx,
or 0dx; (k=1, 2, ..., n) yield the following

Prorosirion 8. (i) If S, T exists, then Sxi,T does exist and coincide
with i,(S* T), where k=1, 2, ..., n.

(ii) If S=,T exists, then e,S+;T does exist and coincide with e (Sx,T),
where k=1, 2, ..., n.

Now we shall consider the differential operator d and the adjoint differ-
ential operator ?. We know that dS and 0.5 are defined by

<bS, p>=<S, dp>, dS=wbS and 0S=x"'d*wS,

where the linear operator w (resp. w*) associates to S the current (—1)*S
(resp.(—1)"-*S). Then

dS=NduA2S = 57¢, 05
7 0x, & Oxp
and
05 =—%:i, 95
% 0xp
where LI > 05, dx;. Indeed, we can write
0x, T 0xp
08 =s"tdswS = "1 eka(*?ﬂé)
k 0xp
oy , 0(wS)
= R (0dmn= 72 ))

;("f odxy)* <Qg‘£2>

= (=1 iy 08 4 (odny)
PRUER

=T
Prorosition 9. (i) Assume that S+, T exists. Then 0S+, T, S*,0T exist
and
) 0(S*, T) = 0S8+ w* T = S»07T.
(ii) Assume that S+, T exists. Then dS+;T, S,d T exist and
&) d(S*;T)= dS+ T =wS*,dT.

Proor. Under the assumptions it follows from Prop. 8 that S+, T and
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S+ 0T (resp. dS*, T and S*,dT) exist. Then the formulae (1) and (2) result
from the equalities

oSk T)= — zkika%(s*lz’) - Zk}S*1<ikg—j;>= S40T,

B(Sw1 T) = (— 1)r=P0-05(T 4, ) = (— )" P-(T+,5)

= (0S)*(w*T)
and
d(SvT) = Texs—(SnT) = ;(ekaxk) T = dS#;T,

d(S*; T) = (—1)"d(T*,8) =(—1)*U(d T*,S) = wS*3d T.
Thus the proof is complete.

Prorosition 10. (i) Assume that Sx. T and (e;S)«.T, k=1, 2, ..., n,
exist. Then (dS)«, T, Sx;dT exist and

d(S#,T)=(dS)*1(w*T)+ S+ dT.

(i1) Assume that ST and (i,S)*.T, k=1, 2, ..., n, exist. Then (0S)*.T,
S0 T exist and

B(SkaT) = (08 %3 T+ wS)*:0 T.
Proor. (i): Let ¢ Ezanp)mq?l Since e, (S)*, T exists for every k, we have
(i, ASGDATHAH + 3) € (D),
whence
(dxn 6?%)/\ T()AH G+ y) € Dy,
Thus we obtain

(dSCNA T(HAGx+ y) € Dy,

which means that (dS)+, T exists.
Next it follows from our assumption that for every &

SGAT(DAd(x+ P Ad(x+ ) € Dy,
and
(dxy ASE)A T(D AR+ 3) € D1,

whence
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2n
SEYN(@y AN T(D)NG(x+ 3) € (D), .
We can therefore conclude in the same way as before that Sx,(dT) exists.
We note that if UEnQ—)l’Lx, then dU € Qn)’Lx and gdU=0. This follows as a

consequence of the relations

SdU=1im< AU, ay> = (=1 Hm < U, day> =0,

koo koo

where {a;} is a sequence of multiplicators. Now the following equality is
valid.

(=D (SN T A dp(x+ )
= d(S(X)N TP Az + )—(dS(x)AT(Y) Ad(x+ )
—(=D(S()NAT() Ap(x+ ).
Since S(x) A T(y)Ad(x+ y) € (Z@I’Lx)x,y, so by the above remark
Sd(S(x)/\ T(DAG(x+ 7)) = 0.
Hence it follows that
(=P ST, dp> = —(=1)" P71 dS: T, ¢>
—(— PPN L S T, >
Consequently
d(S*.T)= dS+w* T+ S*dT,

which completes the proof of (i).

To prove (ii), we put S=%S and T=xT. Since *i,(S)=(—1)""ex(5), it
follows from our assumptions that S+, 7, ex(S)*, T, k=1,2, ..., n, exist. In
virtue of (i), dS+; T, Sx,d T exist and

In view of the relation 0=x*"'dsw, a simple caluculation shows that 0Sx*,T,
S#,0 T exist and

0(S*, T)=0S*, T+ wS*,0T.
This is what we wished to show.

Remark 6. Even if ST, dS* T and S*dT exist, Sx; T=dS+w* T+ S«,dT
does not hold in general. Actually, in the case n=3, we take S=dx; A dx,



160 Risai SHIRAISHI

x 0
T= g(x)dx,, where g=g * h(xr, %9, £)dt, 0<h € D. Then S+, T=0, dS+w*T

—0, but S+, dT=— Shdx 0.

Finally we shall show the following

Prorosition 11. (i) Let r,, r; be mon-negative integersn such that
ri+re=3n—p—q. Then the convolution S+, T exists 1f and only if the follow-
ing condition is satisfied.

() (SDA(Tryp)c L for every ¢eD,yeD,

where zl denotes the space of all the summable forms of degree n. Then we
have

< S0 T, Gryp> = (_1)(n—q)(n—r1)g(s*l¢)/\( Ty,

(ii) Let ri,r; be mon-negative integers <n such that ri+r;=n—p—gq.
Then the convolutions Sx,T exists 1f and only if the following condition is
satisfied.

(S*2) A(Trgyr) € 21 for every o€ @l, € B,

Then we have
< ST, Grgp> = (—1)4’13(5*2¢)A(T*2w).

Proor. (i) We first note that, for any given ri, r; such that r,+r,=
3n—p—gq, the condition (*) is equivalent to the condition

(S*1¢)/\(T*11/r)EQ”)21 for every ¢€@,¢E@,

as seen from the procedure given in the proof of Prop. 2 of our paper [5, p.
257

Assume that S and T are *;-composable. Then S#¢ and T becomes *;-
composable in view of Prop. 6, and therefore by Prop. 3, () will be satisfied
as desired.

To show the converse, we put ri=n—p-+s and r;=n—p+s: Then
sits=n,p=5=0,9=s5,=0,and sy =n—qor s;=n—p. If s;>n—p, then
in view of Prop. 3, the condition (x) implies that S*,( T+y/) exists, and so, by

11

Prop. 7, Sxi( T*n/r) exists for k=1, 2, ..., n, and we have for every ¢’ erQ)

(St YA i Trypr) = (S5, YA (T i) € Do,

Thus we have only to show the case where s;=n—p, so that r;=n and
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ro=2n—p—q. Since S*1¢= 2 (S;*p1)dx; for any g=¢idx € Qn), it is clear that
(*) can be written in the form

(= 1P S ) Fryder € L

and in turn

S 1)CD S, Fe oy € Dy,

which implies

2n—b—4q

SA(Txy) € @’Ll for every «re

Consequently it follows from Prop. 3 that the condition (*) holds. More-
over we can write

§<S*1¢>A< Tap) = < (S Ty yr>
= (— 1)L S, T, Gy >

as was asserted.
For (ii), the proof will be carried out in the same way as in the case (i),
so we omit the proof thereof. This completes the proof.

§8. The convolution maps

Let & be the space of C*-functions defined in R”, each of which is bounded
with its derivatives of every order. We denote by & the closure of .,(3) in &.

. n 0 o
The strong dual of & is the space Dj:1. Let & be a A-normal space of dis-
tributions [ 6, p. 1777, that is, a normal space of distributions satisfying the

0 .
conditions: A is stable under the multiplication by any element of & and

0
linear endomorphism S—asS of & is unif_ormly continuous with respect to «
when « varies in any bounded subset of 2. We denote by & the space of all

the currents with coefficients in 906’ A continuous linear map u of & into &’
is referred to as a convolution map of the 1st kind (resp. of the 2nd kind), if
there exists a current 7 such that we can write u(S)= T*,S (resp. u(S)=S*,T)
for every S¢ J. We have shown in [6, p. 1787 that a continuous linear map

0 0

u of J into &’ is a convolution map if » is commutative with any translation
0

7, on D.

We are now ready to prove

Tuzorem 1. (1) A continuous linear map u of I into D' is a convolu-
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tion map of the 1st kind 1f and only if it is commutative with any translation
ti and with the operators iy, k=1, 2, ..., n, when u s restricted to D.

(ii) A continuous linear map v of K into D' is a convolution map of 2nd
kind if and only if it is commutative with any translation t, and with the
operators ey, k=1, 2, ..., n, when v 1s restricted to D.

Proor. The “only if” parts are evident. Now assume that v is com-
mutative with any translation r, and with the operator e,, k=1, 2, ..., n,

0
when v is restricted to @. v determines the linear maps v; of a’% into &’ such
that

0 0 0 0 0 0
’U(S)Z Z’I)](S)dxj, ngg, ‘U](S)E@/.

For every J, v; is continuous and commutative with any translation ¢, when
Q 0 o
v; is restricted to &. Since & is A-normal, it follows from the remark made

0 0
above that there exists a unique distribution 7'; such that »,(S)=S*T,. Put
T=>T;dx;. For any S=> S;dx; ¢ & we have
7 7

v(S)= ;dx;/\v(S) :IZ,dXIAU](S])dx]
= Z(S[* T])dxl/\dx]r: S*zT,
1.7

which completes the proof of (ii).

To prove the sufficiency in (i), we consider the map u/'(S)=x"1u(xS) for
every Sc K. Putting e, S=SAdx,=S*0dx,, k=1,2, ..., n, it is easy to see
that

eyu'(S)=u’'(e; S) for every Se 4.

In a similar way as in the proof of (ii), we can infer that there exists a unique
current U such that »'(S)=U=*,S. Putting T=xU, we have

u(S) = %u/(+"1S) = w(Us(x~15))
= #((x T T)xo(x1S) = T, S.

Thus the proof is complete.
As an immediate consequence of Theorem 1 we have

CoroLLARY. A continuous linear map w: D' — D' is commutative with
any translation t, and with the operators i, (resp. the operators e;), k=1,2, ...,
n, when u 18 restricted to D, if and only if there ewists a unique current T
with compact support such that u(S)= TS (resp. u(S)=S*,T).



On the Convolutions of Currents in R” 163

§4. The exchange formula for Fourier transformation

0 0
Let S, T be tempered distributions. If §, % are &’-composable, the

multiplicative product 9(§ )9(%) is defined and 9(§* 10‘)=9(§ )9(10‘), where
stands for the Fourier transform for distributions [1,7]. In the following
we shall extend this formula to the currents. To begin with, we shall define
the exterior product and &’-convolutions.

By a restricted 0-sequence we shall understand every sequence of non-

0
negative functions p, ¢ & with the following properties:
(i) ‘Supp 0, converges to {0} as k— oo}

(i1) gpk(x)dx converges to 1 as k— oo
(iii) S |x|'?"| D?oy(x)| dx < K,, a constant independent of .

We note that a sequence {p,} satisfying the conditions (i) and (ii) is called a
d-sequence. Let S, T e D'

If the sequence of the exterior product {SA(Tx;0.,)}, k=1, 2, ..., con-
verges to the current in &’ as k— oo, then the limit is called the exterior
product which will be denoted by SA 7. We can show that SA T exists if and
only if kim(S*zp,,)/\(T*zﬁk) or }zim(S*zpk)/\T exists in & for arbitrary re-

stricted d-sequences {o.} and {p,} and that in either case the limit equals
SAT. Indeed, this will follow from the same reasoning as in the proof of
Prop. 5in [7, p. 957].

Let us denote by & the space of rapidly decreasing C=-forms and by &’
its dual, that is, &’ is the space of all currents whose coefficients are tem-
pered distributions.

Let S, T ¢ & be homogeneous currents of degree p and ¢ respectively.
S, T are called to be *-'-composable if

2n—-p-4q

2n
S(HANT(PHAIx+ y) € (D)., for every ¢e€ & .
If this is the case, the closed graph theorem implies that the map ¢— S(x)A
n—p— n
T(y)A¢(x+ y) of ’ & ) into @21 is continuous. Then the & -convolution of
the 1st kind S+, T ¢ &' is defined as follows:
<SnT, 3> = (=1 P [N T A+ )

Similarly we can define the &'-conwvolution of the 2nd kind S+, T c¢'¥’ as
follows:

Sk, T = *’1((*5)*1(* T)),
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when':S and =T are =;-¢’-composable. Replacing @ and @’ by & and &’ re-
spectively we can show that the discussions given in the section 1 are also
valid in this situation.

Let SZ;S[dxjf &'. The Fourier tramsform of the 1st kind &(S) is

defined by
H(S) = ;‘9(51)"@51 €y,
where ¢ denotes a generic point of 5”, the dual of R”. Actually this is the

Fourier transform defined by R. Scarfiello [4]. Further we shall define the
Fourier transform of the 2nd kind JF,(S) as follows:

Io(S)=h(x1S) = ;9(51)6151-

Let K(x, y) be any kernel distribution belonging to (yg’)m. Then K is
called to be &’-composable if

2n

(*)” K(x, yp(x+y) € (@gl)w for every ¢e€ &,
and the #’-convolution K ¢ é/ of K is defined by

<K, 9> = {[KCz, e+ .
In our previous work [ 2, p. 549, we have discussed the various conditions

equivalent to (%)

Lemma 1. Let K be an &'-composable kernel distribution. Then we have
for every 0-sequence {0}

FEK)=1lim <TKE, é=n),  ou()dy>,

where lim means the distributional limit.

ko>

Proor. Putting K=9K, we have for any ¢dé ¢ &
< <K, £ ), o)y >, H(§)dE>,
= <K&, e, 0B dENdy >,
= <K&, 1), 0sE—DHEAENdy >,
By Parseval’s formula, it follows that
<K&, 1), 0sE—mHEAEN dy >,
= <K(x, y), pi(— »¢(x+ pdx ANdy>s,.
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Since pk('* ) tends to 1 in (&.),,, as k— oo,

Im<K(x, ), p(— De(a+ dxNdy>s,,

= <K, §()du>, =<K, §E)de>.
Consequently, FK = }eim < K(&, £—7), 0x(9)dy>,, which completes the proof.
y4
TaeoreMm 2. Let Se & and T ¢ 5;’.
G If S, T are *-&'-composable, then F,(SYNF(T) is defined and

FI(Sx1 T)=F(S)AF(D).
(i) If S*,T exists, Fo(S)NFT) 1s defined and Fo(Sx; T)=F(S)AF(T).

4
Proor. Let S=3.S;dx;e ¥ and T=),T;dx;¢€ .;’ be *-#’-composable.
Then we have

91(8*1 T) = ; Q{SIZJ € j,j,KSI(y)T](x— y)dy}*déK

If we put K(x, y) :IZ] €17,881(x)T;(y)€ (;”)x,y and apply Lemma 1, then for

every 0-sequence {0;}

IK = &5 <K(&, =), os(n)dn>,

= hmIZ] € ]’],KSIQE)( T]*pk)(é)'

ko> I,

Therefore we can conclude that F(S)AF(T) is defined and
F(SHNF(T) = 113212] S1@)(Tr+04)(€)derNxdE;

=lim X ¥ €1, xS1(6)X Tr00)(8)de

ko K I.]

= 91(5*1T)

as was asserted.
(ii) follows from (i) because of the following relations

Fo(S#2T) = F1((+718)x1(= 1 T)
=FHGISHANFGT)
= FA(S)AFAT).

This establishes the theorem.
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