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Recently, in his paper [3], F. Norguet has developed the theory of con-
volution of currents by introducing the two types of convolution through the
notion of the direct image of a differentiable mapping / of an oriented mani-
fold into another, and has shown a number of formulae about these convolu-
tions and their mutual relation. The theory involves in virtue of the presence
of the mapping / a natural extension of the notion of convolution even when
applied to the distributions in Rn, where we may specify the mapping / so as
to reach the usual notion of convolution. As for the extent of its applica-
bility, however, the definition is more restrictive than usual as the theory is
not designed to deal with the currents with arbitrary supports.

On the other hand, the various approaches for defining the convolution
of distributions in Rn have been discussed in our previous papers [Ί2, 5, 6],
where we have shown the equivalence of the definitions resulting from these
different approaches, and made a detailed study on ^'-convolution which plays
an important role in discussing the convolution of tempered distributions.

The purpose of the present paper is to generalize by the modification of
Norguet's ideas the notion of convolution of distributions which, when applied
to the distributions, will lead to the same results as established in our papers
cited above. In this paper a distribution will be understood to be a current
of degree 0.

As we shall confine ourselves with the considerations of currents defined
in Rn, we can speak of a summable current as a generalization of a summable
distribution. This allows us to introduce the notion of convolution of cur-
rents in the reminiscence of the notion for distributions. In Section 1 we
shall define the two kinds of convolution which are adjoint to each other and
discuss the equivalent conditions for the existence of these convolutions. In
Section 2 some fundamental properties of these convolutions will be discussed.
Section 3 will be devoted to the characterization of convolution maps, which
is a generalization of the result of \Jδ~] established in the case where distribu-
tions are concerned. Finally, in Section 4, we shall consider two kinds of
Fourier transform which are adjoint to each other in a certain sense, and
show the exchange formulae, an analogue to the formula obtained in [1Γ\,
which asserts that the Fourier transform of the ^'-convolution of two tem-
pered distributions is the multiplicative product of the respective Fourier
transforms.
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§1. The definition of convolutions for currents

Let Rn be an ^-dimensional Euclidean space. Let us denote by 2) the
space of all C"-forms with compact supports in Rn, equipped with the usual

P

topology, and by 2), 0<^/><^, the subspace of p-forms c 2). We denote by
P n-P

2)' and 2X the strong duals of 2) and 2) respectively. 2)' is the space of cur-
P

rents in Rn and 2)' the space of homogeneous currents of degree p (of dimen-
sion n-p) in Rn. In what follows a distribution is understood to be a current

P

of degree 0. A current S e 2X is considered to be a form whose coefficients
are distributions in Rn, that is, we can write f o r p > 0

S=ΣSidχl9 Sj6Q)\
I

where Σ means that the summation is performed only over strictly increas-
ing multi-indices 1= {iu i2, •••, ip}, l<J ιΊ<i2< <ΐ/><ίrc, and we have
written

dxi — dxi1 A dxi2 Λ Λ dxip.

The same notation will be used even for p = 0 with the understanding that
dxi=l.

Let Q>'Lι be the space of currents whose coefficients are summable dis-
P

tributions. Q>'L\ will be defined in an obvious fashion.
Modifying the idea of F. Norguet [S~], we shall introduce two kinds of

convolution for currents. In what follows we assume that S and T are two
homogeneous currents of degree p and q respectively.

DEFINITION 1 (the convolution of the 1st kind). S and T are called to be
*ι-composable if the condition

(*x) S(x)ΛT(y)Λ<Kχ + y)e(&)'Li)x,y for every φ e"~ώ *

is satisfied. Then, in virtue of the closed graph theorem, the map φ->
2n-P-Q 2n

S(x)Λ T(γ)Λφ(χ-\- γ) of 2) into (©ίO*,? ^s continuous. The condition (*i)
allows us to define the convolution of the 1st kind S*λT as follows:

<S*,T, φ> =(-iyn-p

in other words, ( — l){n~p)q(S*ιT) is defined as the direct image of the current
S(x)Λ T(y) on Rn

x x Rn

y under the map f:(χ, y)->χ+ yof Rn

x x Rn

y into Rn.
Let | / | stand for the number of the components of /. We shall intro-

duce the following notations: if | / | >0, e J

Jλ Jz is a number which is 0 unless
{Λ, Λ} and / are derangements of the same | / | distinct integers lying be-
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tween l'and n, in which case e j ϊ > 7 , is the sign of the permutation {///J. If
I J\ = 0, we shall agree that e J

Jx / 2 = 1.
We put ( —l) 0 ( / ' c / ) r= e ί,̂ 2/'""n}, where C7 is the complementary set of

indices, and

s 0, otherwise.

Then the ^-operation is defined by

*dxI=(-iy(I'CI)dχa and

0

2Owing to L. Schwartz [9], we shall say that a distribution i£O, j) e

is partially summable with respect to y if K(x, y) e (U)'Lι)y(U)f

x), that is,

<K(Λ;, J), ^(Λ;)> 6 2)̂ 1 for every φ e 2). The integral (#(*, j)dy is defined

by the relation

x, yX φ(x)>dy

for every φ c 2).

PROPOSITION 1. S and T are *ι-composable when and only when each
Σ c i,j,κSj(y)Tj(x— y\ \K\=p + q — n, is partially summable with respect to

y. If this is the case, we can write

Σ € u,κSI{y)Tj{x — y)dyjdxκ.

PROOF. From the relations

S(x)ΛT(y)Λφ(x+ y) = ΣSi(x)Tj(y)φcκ(x+ y)dxjAdy7Ad(x+ y)cκ

where K= IΓ\J, \K\=p + q—n, dx = dxiΛ- Λdxn and dy=dyιΛ Λdyn, it
follows by a change of variables that the condition (*x) is tantamount to say-
ing that each Σ e i,j,κSi(y)Tj(x— y) is partially summable with respect to

y. If this is the case, then

I>J

Σ Zu.KSίyϊTAx- y)dy)dxκ,
I> J /
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Consequently if S and T are *i-composable, we can write

S*ιT=

Thus the proof is complete.

REMARK 1. We can also write

S*iT=Σ(\Σei,/,κSI(x-y)TJ(γ)dy)dxκ.
K \J I > J s

REMARK 2. If the convolution Si* T> exists for every / and / in a usual
sense [5, 10], it is clear from our definition that S*XT is well defined, and we
can also write

S*tT = Σ(SI*TJ)*-\*dxI/\*dxj)
I.J

as a consequence of the relations

= € i,j,κdxκ,

where K=IΓ\J and \K\ = \I\ + \J\-n.

REMARK 3. When p + q< n, S*ι T is well defined and equals 0.

Next we shall define the convolution of the 2nd kind for currents. For

any current S=ΣSidχi, we put *S=ΣSi(*dxi) and *-1S=ΣSi(*~1dχi),

where 5/ denotes the complex conjugate of 57.

DEFINITION 2 (the convolution of the 2nd kind). 5 and T are called to be
*2-composable if *S and *Γ are *ι-composable. Then we shall define the con-
volution of the 2nd kind S*2 T as follows:

PROPOSITION 2. S and T are *2~composable when and only when
Σ £ *jS/(y)Tj(x — y) for every K with \K\ =p + q<,n is partially summable

with respect to γ. Then we have

S* 2 Γ=Σ( .Σ ef.j
K \ J1A- J — K.

where I+J=K denotes that K= I\j J and IΓ\J=0.

PROOF. Since *5=S(-iy ( / ' c / ) 5/d* C / and *T=Σι(,-Vyu CJ)TJdxCj, it
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follows from Prop. 1 that *S, *Γ are *i-composable if and only if each
Σ(-iy(r'cn+pUCJ)€citcjtcκSI(y)TJ(x-'y)9 \K\=p + q, is partially summable

with respect to y And we have

(*5> 1 (*Γ)=Σ
K

Σ

Using the relation

— rκCI,CJ,CK — W ,

we can infer that 5, T are *2-composable if and only if each
Σ c f.jSjiy) Tj(χ — y) is partially summable with respect to y. It follows then

that

S 2 Γ=Σ( Σ c ^
ϋ" \ JI \ J — K

which completes the proof.
We can also define S*2T by the equivalent relation

REMARK 4. If 5/* Tj exists for every I and / in a sense described before,
then S*2 T is well defined, and we can write

S*2T = Σ(S/*Tj)dxiΛdxj.

REMARK 5. Whenp + q>n, 5 and Tare always *2-composable and 5*2Γ
equals 0.

PROPOSITION 3. Each of the following conditions is equivalent to (*i).

(i) 5Λ( f*λφ) 6 2)£i for every φ t'ζb *;

(ii) (5*^)Λ T e Q)'Li for every φ in~Q) *;

where f= Σ fjdxj and S=Σ Sidxi.
Moreover, in any case the following relations hold:

PROOF. Let S=ΣiSIdxI and T=YxTJdxJ. As shown in Prop. 1, the
condition (*i) is equivalent to the conditions

Σe i.j.KS^Tjix-y)^^), for every K=IίλJ.

2n-P~Q

(*i)=»(i): Putting φ=ΣΦcκdxCκ e ® , we have
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< Σ e utκS^y)Tj{x-y\ φcκ(x)dx > = Σ^ I.J.M fj*φcκ) € &Li.

Since the relations (-iytx>cκ)+Pv,cn 6 7 / ̂  e LCK>Cτ=l hold, it follows that

κ)Σ € TJ κSI(ϊJ*φcκ)dx=ΣΣSidxIΛ ζ j,cκ,ci(Tj*φcκ)dxCi
I,J K I,J

2n-P-Q

: Choose φ = φcκdxCκ 6 © ,K=IΓΛJ. By (i) we have

SΛ(.T*ιφ) = (-iγ(-κ cκϊ<Σie j^^S^Tjix-y), φcκ(x)dx>dyζQ)'Lι,

0 0

which shows that Σ c i,j,κSj(y)T'j(χ— y) e Q)f

x{Q)'Lι)y, as desired.

The implications ( * 1 ) = Φ ( Π ) = » ( * 1 ) can be proved in the same way as in
the case (*i)=Ki)=K*i).

2n-P-Q

Finally, suppose S and T are πc^composable. For every φ e Q) we have

<S*iΓ, φ> = < Σ \ Σ C ί,/,κSι(y)Tj(x— y)dy dxκ, Φcκ(x)dxCκ>
K JI > J

= Σ(-iy(K CK)[ΣeuκSI(T7*
K JI,J

Similarly

Thus the proof is complete.
As a consequence of the preceding proposition and the definition 2 we

have

PROPOSITION 4. A necessary and sufficient condition for S*2T to exist is
that one of the following equivalent conditions holds:

(i) SΛ(f*2φ)cQ)'Li for every 0c*~2)~*;

(ii) (S*2φ)ΛTeζb'Li for every φen~Q)\

Then we can write

= ( - ! ) " < Z\ S*2φ>.
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r n — r

PROOF. We first note that *ίFΛ*α = W/\a for any W "€ 2)' and ae Q).
From Prop. 3 together with Def. 2, it follows that the condition for S*2T to
exist is equivalent to the following condition

(*S)Λ((* Γ)*iW)) e S)£i for every 0 c *2) *

which is also equivalent to the condition

5Λ( Γ*20) e 2)£i for every 0 e*~2) *

since (*5)Λ((* ί)*i(*0))=*SΛ*(Γ*20)=SΛ(

Consequently

Γ, 0> = <*-1((*5>1(^Γ)), φ>

Similarly we can show that S*2T exists if and only if the condition (ii) holds
and then

< 5 * 2 Γ , ^ > = ( - 1 ) ^ < Γ , S*2φ>.

Thus the proof is complete.
Now we shall consider the simultaneous convolutions of three currents.

Let U be a homogeneous current of degree r.
Suppose that S, T, U satisfy the condition:

S(x)ΛT(y)ΛU(z)Λφ(χ + γ+*)e(Q)'Li)Xιyιlg for every φ e" *2) '.

Then we can show that the map φ-> S(x)Λ T(y)Λ U(z)Λφ(χ +y+z) of" Q*

into (S£>fLι)χ,y,z is continuous, which leads us to define the simultaneous convolu-
tion of the 1st kind 5* iΓ*1ί/by the relations

Σ £ I,J,K,LSI(X— y—z)Tj(y)Uκ(z)dydz)dxL, Φ>,
L \JJl,J,K J

where we have put c u>K,L = {-l)p{I'CI)+pU'CJ)+p{K'CK)+pa'CI'CLCK) if L = IίλJ

Γ\K such that \L\ = |/ | + |/ | + \K\ -2n, and c 7,7,*,i = 0, otherwise.
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PROPOSITION 5. Suppose S*ιT*ιU and S*χT are defined. Then S*χT and
U are *ι-composable and

PROOF. Put W= Σ WMdxM = S*χ T. Then, using the equalities
M

£ I.J.K.L = e IJ,M £ U,K,L for M=lΓ\J

we obtain

£ M>K,LΊPM(X — Z)UK(Z)= Σ * M,K,L[ \Σ G I,J,M SI(X— y— z)Tj(y)dy)Uκ(z)
M,K M,K \)l,J J J J

= \ Σ ^i,j,κ,LSI(x-y-z)
JI > J > K

Consequently we can conclude that (S*ιT)*ιU exists and that S*ιT*ιU
=(S*ιT)*ιU. Thus the proof is complete.

As to the simultaneous convolution of the 2nd kind, we can define S*2T*2U
by the relation

S*2T*2U= *-1((*S) i(*Γ)*i(*EO),

whenever the right hand side exists in the preceding sense.

PROPOSITION 6. Let W he any current of degree r with compact support.
(i) // S*λT exists, then (5*iΓ)*iίΓ, 5*i(Γ*iϊΓ) and (S*λW)*ιT exist, and

we have

and

<S*1T,φ> = (S*1 Γ*i0)(O) for every φ e *Q) \

(ii) If S*2 T exists, then (S*2 Γ)*2 W, 5*2( Γ*2 W) and (5* 2 JF> 2 Γ e^isί,
can write

(5*2 r)*2 r -

/or

v 2n-P-Q

PROOF, (i): Let 5, T be ^-composable. Since W*xφ e 2) , it follows
from Prop. 3 that
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v n 3n-P-Q-r

SΛ(T*1(Wr*1φ))=SΛ((T*1W) *^)cQ)'Li for every φe 2) .
Zn-P-Q-r

Therefore 5 and T*XWare *i-composable and we have for any φe Q)

= <S*1(T*ιW
r),φ>.

Consequently, (S*ιT)*1W=S*i(T*1TP). Similarly we can show that S*iϊF, T
are *i-composable and the (S*1T)*1W=(-l)(n-q)(n-rXS*1W)*1T.

r n — r

If U= Σ Ujdxie 2)' and 0= ΣΦcidxci G 2), we can write

In fact, this follows from the following relations

Now putting ί/=5*iΓ, we have then

as was required.
(ii): In view of the definition of the convolution of the 2nd kind, (i)

together with Prop. 4 will lead us to the conclusions of the case (ii), and so
we shall omit the proof.

§2. Properties of convolutions

This section will be devoted to the further investigation of the properties
of convolutions defined in the preceding section. As before, we assume that
S and T are homogeneous currents of degree p and q respectively.

PROPOSITION 7. (i) // 5 has a compact support, then 5*i T and 5*2 T exist.
(ii) If S*χT exists, then S*χT is a homogeneous current of degree p + q — n.

This means that the dimension of S*χT is equal to the sum of dimensions of S
and T.

(iii) // 5*2 T exists, then S*2 T is a homogeneous current of degree p + q.
(iv) // 5*i T exists, then Γ*i5 exists and
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(v) // S*2 T exists, then T*2S exists and

s*2τ=(-iγqτ*2s.
PROOF, (i), (ii) and (iii) are obvious from the definitions of convolutions.

(iv) and (v) are valid from the following relations

= (-l)C

S*2T=*-1((*S)*1(*T))

as was required.

Let us denote by d Dirac's distribution at the origin and by δ Dirac's
n

n-current, then δ = δdx. We then obtain

ff*iS=5*iff=5 and δ*2S= S*2δ= 5.

We now introduce the following linear operators in 2)'. For any
S=ΣSidχj, we put

ik(S)= Σ € l,ir\c{k}Sidxi

and

Σ l,ir\c{k}Sidxir\c{k}

where k = l, 2,..., 71.

We can wr i te

ίkS = S*ι(*δdxk) and

In fact, δdxk*2S=ΣSidχkΛdxI=ekS and
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These considerations together with Prop. 6 with W replaced by *δdxk

or δdxk (A = l, 2, •••, n) yield the following

PROPOSITION8. (i) // S*λT exists, then S*ιίkT does exist and coincide
with ik(S*ιT), where £ = 1, 2, • ••, n.

(ii) If S*2T exists, then ekS*2T does exist and coincide with e&(5*2Γ),
where ifc = l, 2, •-, n.

Now we shall consider the differential operator d and the adjoint differ-
ential operator 9. We know that dS and dS are defined by

> = <S, dφ>, dS=wbS and dS=*~1d*wS,

where the linear operator w (resp. w*) associates to 5 the current ( — ΐ)pS
(resp.(-l)Λ-*5). Then

dS = Σι dxk Λ ^ — = Σ ek 7s—

and

where .— = Σ ~~—dxi. Indeed, we can write
d x k jdxk

dχk

'))

= Σ ( * δdxk)*λ (->—^

k OXk

PROPOSITION 9. (i) Assume that 5*iΓ esciste. T/̂ e7̂  95*iΓ5 5*X9Γ exi

(1) 9(5*! Γ) = 95*iw;* Γ = 5*χ9 Γ.

(ii) Assume that S*2T exists. Then dS*2T, S*2dT exist and

(2) d(S*2T) = dS*2T = wS*2dT.

PROOF. Under the assumptions it follows from Prop. 8 that 95*iΓand
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S*tdT (resp. dS*2T and S*2dT) exist. Then the formulae (1) and (2) result
from the equalities

and

d(S*2T) = Σ et^-(S*2T) = Σ(ekP-)*2T= dS*2T,

d(s*2τ) = (-iyqd(τ*2s) = (~iyq(dτ*2s) = ws*2dτ.

Thus the proof is complete.

PROPOSITION 10. (i) Assume that S*ιT and (ekS)*ιT, A; = 1, 25 ? n,
exist. Then (dS)*χT, S*ιdT exist and

d(S*1 T) = (dS)*!(w* T)+ 5*i dT.

(ii) Assume that S*2T and (ikS)*2T, 4 = 1, 2, ••-, n> exist. Then (dS)*2T,
S*2dT exist and

2n-P-Q-l

PROOF, (i): Let φ c Q) . Since ek(S)*ιT exists for every &, we have

(dxkΛS(x))Λ T(γ)Λφ(x+y) € (©£0^,

whence

fdxkAd—JA T(y)Aφ(x+ y) e φ)f

L')x,r

Thus we obtain

(dS(χ))A T(γ)Aφ(χ + y) e (U)r

Li)x>y,

which means that (dS)*χT exists.
Next it follows from our assumption that for every k

S(x)A T(y)Ad(x+y)kAφ(x+γ) <

and

(dxkAS(x))A T(y)Aφ(x+y) e (ί

whence
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S(x)A(dykAT(γ))Aφ(x+y) e (&ίθx,r

We can therefore conclude in the same way as before that S*x(dT) exists.

We note that if Ue"Q)'Li, then dUeώ'Li and [dU=0. This follows as a

consequence of the relations

[dU=lim<dU, ak> = (-ϊ)nlim<U, dak>=0,

where {ak} is a sequence of multiplicators. Now the following equality is
valid.

(-iy+°(S(x)Λ T(γ)Λdφ(x+y))

= d(S(x)Λ T(y)Λφ(x+ y))-(dS(x)Λ T(y)Λψ(x+yj)

- ( - l)p(S(x) ΛdT(y)Λφ(x+ y)).

2n~l

Since S(x)A T(γ)Aφ(χ + y) 6 ( Q)f

L^)x,y, so by the above remark

^d(S(x)AT(y)Aφ(χ+y)) = O.

Hence it follows that

< ) * I Γ , dφ> - -(-l^-f-^KdS*^, φ>

Consequently

d(S*1T)= dS*iw*T+S*idT,

which completes the proof of (i).
To prove (ii), we put S=*S and ?=*Γ. Since *ik(S)=(-ΐ)p-ιek(S)9 it

follows from our assumptions that S*IJΓ, ek(B)*ιT, A = l, 2, .., n, exist. In
virtue of (i), dS*ιT, S*idf exist and

In view of the relation 9 = *~1<i*w;, a simple caluculation shows that95*2T',
S*2dT exist and

d(S*2T) = dS*2T+wS*2dT.

This is what we wished to show.

REMARK 6. Even if S*iΓ, dS*i Γand 5*iJΓexist, S*1T=dS*1w*T+S*1dT
does not hold in general. Actually, in the case n = 3, we take S=dxλAdx2,
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T=g(x)dx2, where g = \ h(xu x2, t)dt, 0<h e ©. Then S*iΓ=0, dS*lW*T

= 0, but S*1dT=-[hdxφ0.

Finally we shall show the following

PROPOSITION 11. (i) Let ru r2 be non-negative integers <^n such that
rι + r2 = 3n—p — q. Then the convolution 5*iΓ exists if and only if the follow-
ing condition is satisfied.

(*) (S*i0)Λ( T*iψ) £ Li for every φeQ),ψeQ),

n

where Lx denotes the space of all the summable forms of degree n. Then we
have

(ii) Let ri, r2 be non-negative integers < r̂a such that
Then the convolutions S*2T exists if and only if the following condition is
satisfied.

(5*20)Λ( f *2ψ) 6 £i for every φ e 2), ψ e 2).

Then we have

PROOF, (i) We first note that, for any given ru r2 such that
Sn—p — q, the condition (*) is equivalent to the condition

(5*^)Λ( T*^) a 2)£i for every φeά),ψζQ),

as seen from the procedure given in the proof of Prop. 2 of our paper Q5, p.
25].

Assume that S and T are *i-composable. Then S*iφ and T becomes *i-
composable in view of Prop. 6, and therefore by Prop. 3, (*) will be satisfied
as desired.

To show the converse, we put rλ = n— p + sι and r2 = n—p + s2. Then
$ι + s2 = n, p^>si^>0, q^s21>0, and si^ n — q or s2^>n —p. If s2>n —p, then
in view of Prop. 3, the condition (*) implies that S*i(f*iψ) exists, and so, by

7-1 + 1

Prop. 7, S*ii'*( Γ*iψO exists for λ = l, 2, ..., Λ, and we have for every φ' e> ζb

Thus we have only to show the case where s2 = n—p, so that rχ — n and
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n

r2 = 2n—p — q. Since S*ιφ=Σ(SI*φι)dxIίor any φ = φχdx e 2), it is clear that
(*) can be written in the form

and in turn

which implies

5Λ( f*xψ) c 2)£i for every ψ e nQ) .

Consequently it follows from Prop. 3 that the condition (*) holds. More-
over we can write

as was asserted.
For (ii), the proof will be carried out in the same way as in the case (i),

so we omit the proof thereof. This completes the proof.

§3. The convolution maps

Let £ be the space of C "-functions defined in Rn, each of which is bounded
0

with its derivatives of every order. We denote by £ the closure of 2) in £.
n θ .

The strong dual of £ is the space 2)£i. Let 96 be a £-normal space of dis-
tributions [6, p. 177], that is, a normal space of distributions satisfying the

0

conditions: 96 is stable under the multiplication by any element of £ and
0

linear endomorphism S-^aS of 96 is uniformly continuous with respect to a
when a varies in any bounded subset of Js. We denote by 96 the space of all

o
the currents with coefficients in 96. A continuous linear map u of 91 into Q>f

is referred to as a convolution map of the 1st kind (resp. of the 2nd kind), if
there exists a current T such that we can write u(S)= Γ*X5 (resp. u(S)= S*2 T)
for every S c 9t. We have shown in [6, p. 178J that a continuous linear map

0 . °
u of 91 into 2)' is a convolution map if u is commutative with any translation

0

th on 2).
We are now ready to prove

THEOREM 1. (i) A continuous linear map u of 96 into 2)' is a convolu-
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tion map of the 1st kind if and only if it is commutative with any translation
τh and with the operators ik, & = 1, 2, •••, n, when u is restricted to 2).

(ii) A continuous linear map v of 96 into 2X is a convolution map of 2nd
kind if and only if it is commutative with any translation τh and with the
operators ek, & = 1, 2, •••, n, when v is restricted to 2).

PROOF. The "only if" parts are evident. Now assume t h a t v is com-
mutative with any translation τh and with the operator eh k = l, 2, ••-, n,

0 0

when v is restricted to 2). v determines the linear maps vj of 96 into 2)' such
that

0 0 0 0 0 0

<S) = Σv/(S)dx7, Se96, vj(S) e Q)\

For every /, vj is continuous and commutative with any translation xh when
0 0

vj is restricted to 2). Since 9t is ^-normal, it follows from the remark made
0 0

above that there exists a unique distribution Tj such that v7(S) = S* Tj. PutT=ΣTjdx7. For any S= ΣSidx^M we have

v(S)= ΣdxiΛv(S)=
1 I > J

= Σ (Si* T^dxrA dxj = S*2 T,
IJ

which completes the proof of (ii).
To prove the sufficiency in (i), we consider the map u'(S) = *~ιu(*S) for

every S c dί. Putting e'kS= SΛdxk = S*2δdxk, A = l, 2, .., n, it is easy to see
that

e'hu'(S)= u'(e'k S) for every S a 96.

In a similar way as in the proof of (ii), we can infer that there exists a unique
current U such that uXS)= U*2S. Putting T=*U, we have

u(S) = *α/(*"1S) = ^(U^i^S))

Thus the proof is complete.
As an immediate consequence of Theorem 1 we have

COROLLARY. A continuous linear map u: Q); -> 2)' is commutative with
any translation vh and with the operators ίk (resp. the operators ek\ A = l, 2, ...,
7i, when u is restricted to 2), if and only if there exists a unique current T
with compact support such that u(S)= Γ*iS (resp. u(S)=S*2T).



On the Convolutions of Currents in Rn 163

§4. The exchange formula for Fourier transformation

0 0 0 0

Let S, T be tempered distributions. If S, T are ^'-composable, the

multiplicative product 3 ( 5 ) 3 ( f ) is defined and 3(5*Γ) = 3(5)9 [(Γ), where 3
stands for the Fourier transform for distributions [1, 7j. In the following
we shall extend this formula to the currents. To begin with, we shall define
the exterior product and ^'-convolutions.

By a restricted δ-sequence we shall understand every sequence of non-
0

negative functions pk a 2) with the following properties:

(i) Supp Ok converges to {0} as h -» oo

(ii) \pk(x)dx converges to 1 as k-> <=o
ιpι I Dppk(x) I dx<,Kp, a constant independent of k.(iii) \ I x

We note that a sequence {pk} satisfying the conditions (i) and (ii) is called a
(^-sequence. Let 5, T e 2)'.

If the sequence of the exterior product {SΛ(T*2Pk)}, k = l, 2, . . , con-
verges to the current in 2)' as &—•oo, then the limit is called the exterior
product which will be denoted by SAT. We can show that SAT exists if and
only if lim(S*2Pk)/\(T*2Pk) or \im(S*2Pk)/\ T exists in ©' for arbitrary re-

stricted ί-sequences {pk} and {pk} and that in either case the limit equals
SAT. Indeed, this will follow from the same reasoning as in the proof of
Prop. 5 in [7, p. 95].

Let us denote by Sf the space of rapidly decreasing C°°-forms and by $?
its dual, that is, &" is the space of all currents whose coefficients are tem-
pered distributions.

Let S, T e 9" be homogeneous currents of degree p and q respectively.
5, T are called to be *ι-<9"-composable if

S(x)AT(γ)Aφ(χ + y)e(ώ'Li)x>y for every 06 V .

If this is the case, the closed graph theorem implies that the map 0—• S(χ)A
2n-P~Q 2n

T(y)Aφ(χ + γ) of 9 into 2)£i is continuous. Then the tf'-convolution of
the 1st kind S*XTe 9" is defined as follows:

+ γ).

Similarly we can define the ^-convolution of the 2nd kind S*2Tέtf" as
follows:
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wherr*S and . T are n-^'-composable. Replacing Q) and 2)' by Sf and £/" re-
spectively we can show that the discussions given in the section 1 are also
valid in this situation.

Let S=ΣSidχi£ &". The Fourier transform of the 1st kind 3i(S) is

defined by

where ξ denotes a generic point of Ξ", the dual of Rn. Actually this is the
Fourier transform defined by R. Scarfiello [4]. Further we shall define the
Fourier transform of the 2nd kind 3-2(S) as follows:

o
Let K(x, y) be any kernel distribution belonging to (J/")x$y. Then K is

called to be &"-composable if

(*V K(x, y)φ(χ + y) 6 @)'Li)x,y for every φ e P,

* o
and the ^'-convolution K e y' of K is defined by

(x, y)φ(x+y).

In our previous work [2, p. 549], we have discussed the various conditions
equivalent to (*Xy.

LEMMA 1. Let K be an y'-composable kernel distribution. Then we have
for every δ-sequence {pk}

$, ξ—q\

where lim means the distributional limit.

PROOF. Putting K=d-K, we have for any φdξ c y

<<K(ξ, ξ-η), pk(η)dη>η, φ(ξ)dξ>(

- <K{ξ, ξ—η),

By ParsevaΓs formula, it follows that

<K(ξ, η\ pk(ξ-

= <K(x, y), pk{- y)φ(x+ y)dxΛdγ>Xiy.
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Since pk{— y) tends to 1 in {(βc)x>y as &-* oo?

\im<K(x, y\ pk(-y)φ(x + y)dxAdy>x>y

= <K, φ(x)dx>x =

Consequently, &K= lim <K(ξ, ξ—η\ pk(y)dτ/>η, which completes the proof.
k

THEOREM 2. Let S a 9" and T e Sff.

(i) // 5, T are x^y'-composable, then 3i(5)Λ9 [i(Γ) is defined and
*1Γ) = 31(5)Λ3i(Γ).
(ii) If 5*2Γ exists, 32(S)A3-2(T) is defined and 3 2 ( 5 * 2 Γ ) =

P q

PROOF. Let 5 = Σ 5/^/6 Sf1 and Γ = Σ Tjdxjd 5ff be *i-^/-composable.
Then we have

K U/,/ x- y)dy\*dξκ.

o
If we put X(Λ;5 y) = Σ £ i,j,κS/(χ)Tj(y) e (Sf')x>y and apply Lemma 1, then for

every (^-sequence {pk}

Therefore we can conclude that 9 I ( 5 ) Λ 3 I ( Γ ) is defined and

Σ

= lim Σ Σ e r./.κ§i(ξX Tj*pk)(ξ)^dξκ

k-~~ K I.J

= 91(s*1T)

as was asserted.
(ii) follows from (i) because of the following relations

This establishes the theorem.
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