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Introduction

It is by now a classical result that linear boundary value problems for
a second order elliptic linear partial differential equation with sufficiently
smooth coefficients are uniquely solvable if boundary conditions and the
boundary itself are sufficiently regular. While discussions for equations with
non-smooth coefficients have been tried by many people, not much investiga-
tions of boundary value problems for non-smooth boundary have been made
except for the Dirichlet problem.

As to the Dirichlet problem for the Laplace equation Ju = 0, there is the
method of Perron-Brelot (see [3], [7], etc.), which is also applied to more
general equations (see e.g. [1], [4], [13]). For boundary value problems
other than the Dirichlet problem, there appears the notion of normal deriva-
tives, which is originally defined only with respect to a smooth boundary.
Therefore, as long as we try to consider problems like Neumann problem and
the third boundary value problem with respect to a non-smooth boundary, it
is necessary to generalize the notion of normal derivatives in some way. This
has been done by L. Doob [11] with respect to the Martin boundary, by C.
Constantinescu and A. Cornea [7] with respect to the Kuramochi boundary
and by the author [20] with respect to a general resolutive ideal boundary.
In these works, linear boundary value problems involving normal derivatives
are treated for the Laplace equation, i.e., for harmonic functions. In the pre-
sent treatise, we apply the techniques developed in these works to the equa-
tion Δu — qu = 0 (g^>0) and consider general linear boundary value problems
with respect to a general ideal boundary.

We shall take a locally Euclidean space as the base space on which the
equation is considered. It may be possible, however, to extend our theory to
more general elliptic partial differential equations considered on a C"-manifold
(cf. [12], [15], [16]). In fact, a locally Euclidean space is a special kind of
C~-manifold and our theory may suggest how it is extended to a theory on a
C~-manifold. Also, we can justify the restriction to the equation Ju — qu = 0
by noting that this is the canonical form of self-adjoint equations (cf. [12],

This paper consists of the following six chapters:
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Chapter I. ^/-harmonic structures. In this chapter, we first give known
properties of the solutions of the equation Δu — qu — Q (called ^-harmonic func-
tions) and remark that the sheaf of ^-harmonic functions forms a harmonic
space in the sense of M. Brelot \JΓ\. Then we investigate the properties of
corresponding superharmonic functions (called g-superharmonic functions).

Chapter II. Green functions. Existence of the Green function for the
equation Ju — qu = 0 (called the 9-Green function) is proved in this chapter
and the dependence of the q-Green function on q is studied.

Chapter III. Dirichlet problems. In this chapter, we discuss the Dirichlet
problem for Ju — qu = 0 with respect to an ideal boundary in the method of
Perron-Brelot. We shall be particularly concerned with resolutivity of
boundary functions for different ^s.

Chapter IV. Normal derivatives. Definitions of "normal derivatives"
on an ideal boundary, which are generalizations of those in [11], [7J and
[[20], are given. Then normal derivatives of g-harmonic functions are studied
and properties that will be used in the next chapter are established.

Chapter V. Boundary value problems. This chapter contains the main
results of this paper. In the first half, a general boundary value problem is
formulated and a uniqueness theorem and an existence theorem are proved.
In the second half, the properties of solutions, in particular the dependence of
solutions on boundary conditions and on q, are discussed in various forms.

Chapter VI. Green functions for general mixed problems. This title
means the fundamental solutions (for Ju — qu = 0) which satisfy general homo-
geneous boundary conditions. Construction of such a Green function is an
application of the existence theorem in the previous chapter. Expression of
solutions of the problem in terms of such Green functions is also given.

Throughout these chapters, we use only standard methods in potential
theory; in particular an elementary theory of Hubert spaces is the main tool
in the proof of the existence theorem in Chapter V.

CHAPTER I ^/-harmonic Structures.

§1.1. Preliminaries

Throughout this paper, let X be a connected d-dimensional (d 2>2) locally
Euclidean space, i.e., a connected rf-dimensional manifold for which each coor-
dinate transformation is a rigid motion (isometry). Thus, for any x e X,
there exists a relatively compact neighborhood V of x with a coordinate
system by which V is mapped onto an open ball {| y\ <r} in the d-dimensional
Euclidean space Rd and x is mapped to γ=0. In this case the coordinate
system can be extended to an open set containing the closure V of V and the
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boundary dV of V corresponds to the sphere {| y| =r}. The radius r does not
depend on the choice of a coordinate system. Thus any such V will be called
a ball with center at x and of radius r.

We may regard the space X as a space of type <8; without points at in-
finity in the sense of Brelot-Choquet [_GΓ\. In this connection, we can trans-
late the whole theory in this paper to that on a Riemann surface, by making
obvious modifications in the terminology (see Q22], [Ί23], C24] for treatments
of the equation Δu — qu = 0 on a Riemann surface).

On a locally Euclidean space X, the Laplacian Δ is defined coordinate-free.
We consider the differential equation

(1.1) Ju-qu = 0

on X, where q is a non-negative locally Holder continuous function on X.

REMARK. The condition that q is locally Holder continuous is assumed
only to obtain the local properties of the solutions of (1.1) stated in this
chapter and the existence of local fundamental solutions. No explicit us2 of
this condition will be made in the subsequent discussion. Therefore, this
condition can be replaced by any other which guarantees these local properties.

Throughout this paper, every function is assumed to be extended real
valued. Let Y be any open subset of X. A locally summable function u on
Y is called a weak solution of (1.1) on Y if it satisfies (1.1) in the distribution
sense, i.e., for any C°°-function (infinitely differentiable function) / having a

compact support in F, we have \{(Δf)u — qfu}dx = 0, where dx denotes the

Lebesgue measure on Y. The following proposition is well-known (see, e.g.,
[2], pp. 138-139 or [14]):

PROPOSITION 1.1. Any weak solution of (1.1) is almost everywhere equal to
a C2-function (twice continuously differentiable function) on Y which satisfies
(1.1) in the ordinary sense.

We shall call a function q-harmonic on Y if it is a C2-function satisfying
(1.1) on Y. If <7 = 0, then ^-harmonic functions are ordinary harmonic func-
tions.

§1.2. Local properties of g-harmonic functions

The following properties of ^-harmonic functions are well-known:

PROPOSITION 1.2. (Minimum principle I) (See, e.g., [2], [9].) Let Y be a
domain in X and v be a C2-function on Y.

(i) IfΔv<^Qon Y and v assumes minimum in F, then v is constant.
(ii) //Δv — qv<^0 and qφO on Y, then v can not assume negative mini-

mum in Y.
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From this proposition, the following form of minimum principle follows
(cf. [13]):

PROPOSITION 1.3. (Minimum principle II) Let Y be a relatively compact
domain in X.

(i) If v is a C2-function satisfying Jv — qv<^0 on Y, then \unx^yv(x)^>0

for all ycdY implies v;>0 on Y.

(ii) Let qι^q2 on Y and in be qrharmonic on Y (ϊ = l, 2). // \imx^yuι(χ)

^ 0 and\imx^y[uι(x)-u2(χ)J^>0 for all ye dY, then 11x^1112 on Y.

PROPOSITION 1.4. (Dirichlet solution for balls) (See, e.g., [9], Chap. IV,
[14], [21].) Let V be any ball in X and let g be any continuous function on d V.
Then there exists a unique continuous function Hyv on V such that Hq

g

v — g on
dV and Hq

g

>v is q-harmonic on V. Furthermore, g^>0 implies Hg

v^>0 on V.

If 2 = 0, then we omit the superscript q in Hg

>v, By (ii) of Proposition
1.3, we have

PROPOSITION 1.5. (Cf. [14], [18].) If qι<iq2 on V and g^>0 on dV, then
Hq

g-
V^ HQ

g-
v. In particular Hyv £Hv

g.

PROPOSITION 1.6. (See [14].) Let V be a ball with center at % and of radius

r (>0). //g 2>0 on dV, then

where Q = supycvq(y).

PROPOSITION 1.7. (Harnack's inequality) (See [13], [14], [22]; also cf. [18].)
Let Y be a domain in X and Z be a compact set contained in Y. Let xQa Y be

given. Then there exists a constant M=M(Y, Z, x0, q)^>l such that u(x)<,

Mu(xo) for any non-negative q-harmonic function u on Y and for all x c Z.

From this proposition the following principle follows (see [13], [14],
[22]):

PROPOSITION 1.8. (Harnack's principle) Let Y be a domain in X. If {un}
is a monotone increasing sequence of q-harmonic functions on Y and if {un(x)}
is bounded (above) for some x e F, then lim^^ un = supun defines a q-harmonic
function on Y. Furthermore the convergence is locally uniform in Y.

§1.3. g-superharmonic functions

By Propositions 1.4 and 1.8, we see that the sheaf of g-harmonic functions
satisfies the axioms of harmonic spaces introduced by M. Brelot (see [1], [4 ] ;
also [13], [18]). Hence we can define such notions as g-superharmonic func-
tions and ^-potentials.



Boundary Value Problems for the Equation Δu — qu=0 with respect to an Ideal Boundary 89

By Proposition 1.4, any ball is a regular open set; we have the ^-harmonic
measure ωq

x

>v on d V with respect to x e V satisfying

for any (finite) continuous function g on d V.
A ^-superharmonic function υ on an open set Y is then defined as a func-

tion satisfying the following conditions:
(i) v(x)> — oo at each x e Y; v^ + co on any component of Y;
(ii) v is lower semi-continuous on F;
(iii) For any ball V such that VC F,

^> \ vdωx'
v for all x a V.

In condition (iii), we may restrict V to those which belong to a family
forming a base of open sets in Y. Thus we see that ςr-superharmonicity is a
local property.

As for comparison of g-superharmonicity for different q, we have the
following immediately from the definition and Proposition 1.5:

PROPOSITION 1.9. // qλ <i q2, then any non-negative q-superharmonic func-
tion is q2-superharmonic and any non-positive q2-superharmonic function is qλ-
suzerkavmcnic. In particular, the CGKiiard function v(x) = l is q-super-
harmonic for any q.

The following properties of ^-superharmonic functions are consequences
of the general theory on harmonic spaces (cf. [1], [4], [13] and [18]).

PROPOSITION 1.10. (i) // vu v2 are q-superharmonic on Y and if λu λ2

are positive numbers, then ^^1 + 2̂̂ 2 and min(z;i, v2) are q-superharmonic on Y.
(ii) // {vt}t is an upper directed family of q-superharmonic (resp. q-

harmonic) functions on a domain Y, then sup,?;, is either = + 00 or q-super-
harmonic (resp. q-harmonic) on Y.

PROPOSITION 1.11. (Minimum principles) (i) If v is a non-negative q-
superharmonic function on a domain Y and if v(x)=0 at some point x e F,
then v=0 on Y.

(ii) If v is a q-superharmonic function on an open set Y and if

v(x)^>0, i.e., for any ε>0 there exists a compact set Z in Y such that v(x)> — ε
on Y—Z, then v^>0 on Y. In particular, if Y is relatively compact and
\imx^y v(x) 2> 0 for all γ e d Y, then v^>0 on Y.

PROPOSITION 1.12. Let v be a q-superharmonic function on an open set Y

and let V be a ball such that VC Y> Then u(x)= \vdωx'
v is q-harmonic on V

and
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on Y-V

is q-superharmonic on Y.

PROPOSITION 1.13. (Perron) Let 09 be a family of q-superharmonic func-
tions on an open set Y satisfying the following two conditions:

(i) 09 is a non-empty, lower directed family and is locally uniformly
bounded below

(ii) // v e 09, then vv e 09 for any ball V such that VC Y, where vv is the
function defined in the previous proposition.

Then inf 09 is q-harmonic on Y.

From this proposition, we see that any non-negative gr-superharmonic
function ί o n l has the greatest ^-harmonic minorant on X, which is also the
largest among the functions w such that w<=v on X and — w is g-super-
harmonic on X. A non-negative g-superharmonic function on X whose grea-
test gr-harmonic minorant is zero is called a q-potential. As a corollary to
Proposition 1.9, we have

PROPOSITION 1.14. // qi<,q2, then any qi-potential is a q2-potential.

Hereafter, if ^ = 0 on I , then we shall omit the index q in the termi-
nology and notation.

§1.4. Local fundamental solutions

Let V be a ball in X. It is known (cf., e.g., [14], [17], [21]; also [12])
that there exists a (symmetric) fundamental solution F9(x, y) of the equation
(1.1) on V, i.e., a function on Vx V such that Fq(x, y)=Fq(y, x) for any x,
y€V and Fq

y(x)=FQ(x, y) is locally summable on V, continuous on V— {y} and
satisfies

(1.2) Δr y—qVy = — CdOy

in the distribution sense for any ye V, where δy is the Dirac measure at the
point y and cd is the constant equal to 2π if d = 2, to (d — 2)x the surface area
of the unit sphere in Rd, if d^>3. In case # = 0, a fundamental solution is
given by F(x, y)= —\og\x — y\ if d=2 and F{x, y)= \x — y\2~d if <i^3. It is
known ([17], [21]; cf. [12]) that

(1.3) Fq(x, y)-F(x, y) = O(\x-y\λ+2-d\

where Λ = 0 if d=2, λ>0 if d^3.

PROPOSITION 1.15. // Fq(x, y) is a fundamental solution of (1.1) on V, then
Fq

y(x) = Fq(x, y) is q-superharmonic on V, provided that we define Fq(x, x)= + oo
for each x e V.
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PROOF. By (1.2) and Proposition 1.1, Fβ is ^-harmonic on V—{y). By
(1.3), Umx-+yF$(x)= + oo, so that F§ is lower semi-continuous at x = y. Then
it is obvious that Fy is ^-superharmonic on V.

COROLLARY. If JU is a positive Radon measure on V whose support is com-
pact in F, then the function

is q-superharmonic on V. Furthermore, AFμ—qF^= — cdβ in the distribution
sense on V.

The proof of this corollary is quite analogous to its proof in the special
case <7 = 0, which is classical (cf. [3], [7] or [25]).

§1.5. Characterization of g-superharmonic functions

It is well-known that a superharmonic function s is locally summable and
As <; 0 in the distribution sense and conversely any locally summable function
5 such that As <^ 0 in the distribution sense is equal to a superharmonic func-
tion almost everywhere (cf. e.g., [3] and [25]). We shall show similar results
for g-superharmonic functions. First we prove:

LEMMA 1.1. Any q-superharmonic function is locally summable.

PROOF. Let i b e a g-superharmonic function on a domain Y and let

Yι = {χ e Y; v is summable on a neighborhood of x}.

Obviously Y\ is an open set. Let x0 e Y— Yι and let V be a ball with center
at xo such that VC Y> Let r be the radius of V and let V± be the concentric
ball of radius r/2. Since v is bounded below on F, there exists a constant
c |>0 such that w=v-\-c is non-negative on V. w is again ^-superharmonic
(Proposition 1.9). Take any x 6 V\ and let Wt be the ball with center at x
and of radius t with 0 < ί <Ξr/2. Let Q= supcr(y). Then, by Proposition 1.6,

y€V

we have

Since w is ^-superharmonic, \wdωq

x'
Wt^w(x). Hence

On the other hand, ωft is a constant ( = l/c'd) times the surface element of d Wt.
Hence
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u<y)dy = c ^

rl2

Since Wr,2 is a neighborhood of x0 and since x0 6 Y—Yi, \ v(γ)dγ = +°°.

Hence \ w(γ)dγ= + °o which implies w(x)= + oo by the above inequality.

Since x is arbitrary, w(x)= + oo on Vu so that v(x)= + co on Vx. Therefore
Y—Yι is also open and Ϊ ΞΞ + OO on Y—Yχ. Since v^ + oo by definition, we
must have Y= Yι. Hence v is locally summable.

Given a Borel function / defined on a neighborhood of a point x0 e X, let
(lfίr

f(χo) (resp. 7<7/Oo)) be the surface mean (resp. the volume mean) of / with
respect to the ball Vr with center at x0 and of radius r (cf. [3]). In fact, we
can write

\dωv

x: and

LEMMA 1.2. If v is a q-superharmonic function on a ball V with center at
xo ζ X, then

lim (lflr

v(xo) = v(xo) and lim /)r

v(x0) = v(x0).

PROOF. The second assertion immediately follows from the first. Since

v is lower semi-continuous, we see that \imr^o

()fLr

v(xo)^v(xo). On the other

hand, if v^>0 on V, then Proposition 1.6 implies that

where Q = sxπpx(:vq(χ). Hence \imr^o

(lflr

v(xo)<;v(xo). Since v, in general, is
bounded below near x0, this conclusion holds for any v.

By Lemma 1.1, any ^-superharmonic function υ can be regarded as a dis-
tribution. We shall show that Jv — qv^O in the distribution sense. In case
v is a C2-ΐunction, this is well-known (cf. [13]); in fact we have the following
lemma as an easy consequence of Proposition 1.3:

LEMMA 1.3. If υ is a C2-function on a domain Y, then it is q-superharmo-
nic on Y if and only if Δυ — qv <J 0 on Y (in the ordinary sense, hence in the
distribution sense as well).

Using this lemma, we prove

THEOREM 1.1. If v is a q-superharmonic function on a domain Γ, then
Δv — qυ<§ on Y in the distribution sense.
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PROOF. Let V be any ball such that VC Y and r be its radius. Let Vλ be
the concentric ball of radius r/2. Since v is bounded below on V, there exists
a constant c > 0 such that v + Hq

c'
v^>0 on V (cf. Propositions 1.4 and 1.11).

Since Hq

c'
v is ^-harmonic on V, we may assume that υ is non-negative on V.

Let {/„} be a (^-sequence of non-negative C~-functions on Rd such that S(fn)
C {\χ\ <r/(2n)}, where S(fn) denotes the support of fn. Then the convolu-
tion (v*fn)(x) makes sense for x e Vι and is a C-function on Vλ. Further-
more, υ*fn->v (τι—>-oo) weakly as distributions.

Since q is uniformly continuous on F, given ε>0 there exists n0 such that

x — x <r/(2n0) and x, x'cV imply \q(x)-q(xr)1 <ε. Let
q(y) for x e Vι. Also, for each z c Rd such that | z \ <r/(2no\ let qz(x) = q(x — z)
for x e Vι. Then qε and r̂2 are non-negative Holder continuous on Vi, qz^qε
and 0<,q£(x) — q(x)<e for all x c Γi.

Let JF be any open ball such that W<Z Vx. By Propo3ition 1.5, we have

v(x -z) dωq/'w(x) ^ [v(x -z) dωQj'w(x)

for any z with \z\<r/(2n0) and yeW. Obviously, dωq

y"
w(x)=dωyw-z'κx'\

where x' = x — z and W—z={w — z; w a W}C V. Therefore, υ being g-super-
harmonic,

\)v{x-z)dω]^{x)^\)v{xf)

Hence, for n I> n0,

Therefore, v*fn is ^-superharmonic on V\. By Lemma 1.3,

on Vu i.e., for any C"-function g such that g^O and S(g)C Vu

Now, letting π, -^ oo5 we have

Hence

= \ΓJg-q£gJvdxJr\(q€-q)gvdx
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Since \ vdx is finite and ε is arbitrary, we have \(Λg—qg)vdx<,0, i.e.,

Jv — qv<;0 on V\ in the distribution sense.

As a converse, we have

THEOREM 1.2. If υ is a locally summable function such that Δv — qv <^0 in
the distribution sense on a domain F, then there exists a q-superharmonic func-
tion w on Y such that v = w almost everywhere. If, in addition ]4r

v(x)^v(x)
(r —• 0) for any x e F, then v itself is q-superharmonic on Y.

PROOF. Let V and V\ be as in the 'previous proof. The distribution
— (l/cd)(dv — qv) is non-negative, so that it can be regarded as a Radon
measure on F. Let μ be its restriction on Vι. Let Fy

1(x)=Fq(x, y) be a local

fundamental solution of Ju — qu — 0 on V and consider F%\x) — \Fq

y{x)dβ{y).

By the corollary to Proposition 1.15, Fq

μ is g'-superharmonic on V and ΔFq — qFq

μ

= —cdβ = Jv — qv on Vλ. Hence, by Proposition 1.1, there exists a ^-harmonic
function u on V\ such that v — Fq = u almost everywhere on V\. Let w=u + Fq

on Vι. Then w is g-superharmonic and w — υ almost everywhere on V\. Since
F is covered by such balls Fi, we conclude the first assertion of the theorem.
Now the second assertion follows from Lemma 1.2.

CHAPTER II Green functions.

§2.1. Definition and uniqueness

A ^-Green function for X is an extended real valued function G9

y(x) =
GQ(x, y) on Xx X such that for each y£X

(i) Gy is a ^-potential on X;
(ii) JGy — qGy= —cdδy in the distribution sense.
By condition (i), G9(x, y)!>0. Condition (ii) is equivalent to say that Gq

y

is ^-harmonic on X—{y} and Gq

y — F^ is ^-harmonic on any ball V such that
yeV, where F$ is a local fundamental solution of Δu — qu = 0 on V.

LEMMA 2.1. The q-Green function is uniquely determined by conditions (i)
and (ii) for each y. Furthermore, if there is a positive q-potential w on X such
that it is q-harmonic on X— {y}, then the function Gq satisfying (i) and (ii)
exists and w=λGq for some λ>0.

PROOF. Let Vi (i = l, 2) satisfy (i) and (ii), i.e., each Vi is a ^-potential and
Jvi — qvt= — cdδy in the distribution sense. It follows that v\ and v2 are q-
harmonic on X—{y} and d(v1 — v2) — q(vi — v2) = 0 in the distribution sense.
Hence there exists a g-harmonic function u on X such that v1 = v2 + u on
X—{y} (Proposition 1.1). By Lemma 1.2, vι = υ2Λ-u everywhere on X. Since
vi, v2 are both ^-potentials, it follows that u = 0, i.e., vι = v2.
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If w is a positive ^-potential on X which is ^-harmonic on X— {y}, then
ju= — (l/cd)(Aw — qw) is a positive Radon measure (Theorem 1.1) and is sup-
ported by the point set {γ}. Hence jU = λδy for some λ>0. Then G$ = w/λ
satisfies (i) and (ii).

§2.2. Existence of the g-Green function

If q = 0, then it is a classical result that the existence of the Green func-
tion for X is equivalent to the existence of a non-constant positive super-
harmonic function. We shall call X a Green space if it has the Green func-
tion. There are non-compact locally Euclidean spaces which are not Green
spaces. If q Φ 0, then we shall see that the q-Green function always exists
(even if X is compact). For its proof, we rely on local existence theorems
which are known. We may, for example, start with the following result (cf.
[15]; also [21], [22]):

If Y is a relatively compact domain in X such that dY consists of a finite
number of closed C°°-hypersurfaces, then there exists the ^-Green function
G9

y'
Y(χ)=Gq>Y(x, γ) for Y. Furthermore, it has the following properties:

(a) For each j e Γ, Gq

y

>Y vanishes on dY (i.e., it can be continuously ex-
tended on Γwith vanishing values on dY);

(b) For each j e F, the inner normal derivative dGyY/dn exists and is
non-negative at every point on dY.

(c) Gq>Y(x, γ) = GQ>Y(γ, x) for any *, γ€ Y.

Now we prove the existence theorem on X using this result. The method
of the following proof is due to L. Myrberg [23].

THEOREM 2.1. Suppose qφO on X. Then the q-Green function for X
exists.

PROOF. Let {Xn} be an exhaustion of X such that each dXn consists of a
finite number of closed C°°-hypersurfaces. By Green's formula, we have

Hence

(2.1) -A-f q(x)G«>x"(x)dx<l.
cd )x/ -

The minimum principle (Proposition 1.3) implies that {G*tXn}n is monotone
increasing. If q(x)φθ o n l , then (2.1) implies that uo(x) = \imGq

y

>Xn(x) is

finite at some x e X. Since each GyXn is g-superharmonic on Xn and ^r-harmo-
nic on Xn— { y}, u0 is ^-superharmonic on X and ^-harmonic on X— {γ}. It is
easy to see that u0 satisfies condition (ii) for the g-Green function. In fact,
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for each n, there exists a ^-harmonic function un on Xn such that uo = GQ

y'
Xn

-\-un (un]>0). If v is a gr-harmonic minorant of u0, then Gq

y

>Xn^υ — un on Xn,
so that t; <; un. Since z^->0, v <Ξ0. Therefore w0 is a ^-potential, i.e., u0 satis-
fies also condition (i). Hence uo = Gq

y(x).

COROLLARY, (i) G%x, y) = Gq(y, x) for any x, j d .

(ii) (l/cd)\q(x)GQ

y(x)dx ^ 1 for any yaX.

PROOF, (i) follows from the property (c) for Gq>γ and (ii) follows from
(2.1) in the above proof.

REMARK. In the proof of the above theorem, we used the existence of
Gq>γ(x, j), which is rather a strong assumption. We give here an alternative
proof which requires only the existence of local fundamental solutions: Let
ye Xbe fixed and let Fq{x) be a local fundamental solution of (1.1) on a ball
V with center at y. Let r be the radius of V and let V be the concentric ball
of radius r/2. As in the proof of Theorem 1.1, we may assume that Fq

y^>0
on V by adding a suitable positive ^-harmonic function. We consider the
family

ί ^r-superharmonic, ^ 0 on I and there exists a g-super-1
%y=\u\ \.

[ harmonic function wu on V such that u = Fq

y + wu on V— { y} J

We first show that Uy is non-empty.
Let V" be the ball concentric with Fand of radius r"'<r/2 such that qφO

on X— V". Since q Φ 0 on X by assumption, it is possible to find such V". Let

vι — inf{i;; </-superharmonic, ^ 0 o n l , ^ l o n V"}.

By a general theory of harmonic spaces (see [1J, [_4Γ\, [1SJ), the regulariza-
tion ϋi of vι is ^-superharmonic on X and ί>i = l on V". Hence ί;i>0 on X— V".
Also, we see that vλ is ^-harmonic on X— V". Since qφO on X— V\ 1 is not
^-harmonic. Hence vλ < 1 on X-V". Next let u1 = Hq

vf
/. Then σ =

inf[ί)1(Λ:)-ui(Λ:)]>0. Put λ = (l/σ)mγ>F$(x). Then >̂ >0 and we see that
xQV" xCBV"

the function

f o r Λ C F / ;

u(x)= I mίiFq(x) + λUl(x\ λv,(x)J for x e F - Γ/r

AVI(Λ ) for i d - F

is ^-superharmonic, ^ O o n X Also u — F$ is g-superharmonic on V. Hence
u aUy and Uy is non-empty.

Now let uQ(x) = inf {u(x)\ u a Uy} (x c X) and w(x) = inf {«;„(#); u e ί/y}
(x e Γ). Obviously αo^O. We apply Proposition 1.13 to the class Uy con-
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sidered on the domain X—{y} and we see that u0 is ^-harmonic on X—{y}.
On the other hand, Fq is bounded on dVi for any ball Vι such that y£Y\ and
ViCV. Hence {wu; u e Uy} is uniformly bounded below on Vx. Therefore,
again by Proposition 1.13, we see that w is ^-harmonic on V. Since uo = Fq-\-w
on F, UQ is ^-superharmonic on X. If v is any ^-harmonic minorant of u0,
then UQ — ve Uy. Hence uo — v^>uo or v<=0. Hence u0 is a ^-potential and it
follows that uo = Gy (Lemma 2.1).

§2.3. ^-potentials

In this section, if ^ = 0, then we suppose that X is a Green space.
Let β be a positive Radon measure on X. Then we see that Gq

μ(χ)=

Gq(x, y)dβ(y) is either ΞΞ + OO or a ^-superharmonic function on X (Proposi-

tion 1.10, (ii)). If it is not = + oo5 then we call it a G^-potential (of μ). As

is the case of classical Green potentials (the case q = 0), we can show that any

^-harmonic minorant of a G^-potential is non-positive (cf. [3] and [7]), so

that a G^-potential is a ^-potential. This fact can be seen also by a general

theory by R.- M. Herve (C13], Chap. III). By the corollary to Proposition

1.15, JGg

μ—qGQ

μ= — cdju as distributions. Thus we have the following Riesz

decomposition theorem for g-superharmonic functions (cf. [SJ):

THEORFM 2.2. If u is a non-negative q-superharmonic function, then u(x)
= Gg

μ(x)+u0(x), where β — —(l/cd)(Au — qu)(&s distributions) and u0 is the
greatest q-harmonic minorant of u.

§2.4. Dependence on q

THEOREM 2.3. // qι<,q2 on X, then Gq

y

ι^Gq

y

2 for any yd X. (In case qi = 0,
we assume that X is a Green space.)

PROOF. Let u(x)=Gq

y>(x)-GQ

yKχ) for xφy and let u(y)=\imr^o74
r

u(y).
Since

in the distribution sense, u is gr2-superharmonic by Theorem 1.2. Since — u <;
Gq

y

2 and Gq

y

2 is a ^-potential, we have — z^<;0 or u^>0. Hence G

THEOREM 2.4. (Resolvent equation) //91^92, then



98 Fumi-Yuki MAEDA

for %Φ y. (If gi = O, then we assume that X is a Green space.)

PROOF. In the distribution sense, we have

Hence there exists a 91-superharmonic function a such that u = G9

y

1 — Gq

y

2 on
X— iy) (Theorem 1.2). By the above theorem, we have u ;>0. Since u < ^ ! ,
u is a 91-potential. Hence it follows from Theorem 2.2 that for xφy

Since Gq\ / = 1, 2, are symmetric, we have the theorem.

COROLLARY 1. If qn increases to q, then Gq

y

n decreases to G9

y for each γ e X.

PROOF. By Theorem 2.3, {Gq

y

n} is a decreasing sequence. By the above
theorem, for x Φ y

A \[_q{z)-qn{z)-}GHz)G%z)dz.

Since \iq{z)~qn(z)JGQ

x

n(z) decreases to 0 for all zφx, we have the assertion.

COROLLARY 2. For any qx and q2,

\GqKx)-Gq

yKx)\^~\\qi(z)-q2(z)\GqXz)Gy

!Kz)dz {xφ y).

PROOF. Let q= max(ςfi, q2). By the above theorems,

and

C d

Hence
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Now we suppose that X is a Green space and consider the class

I q locally Holder continuous, ^ O o n l , 1

[Gx(z)q(z)dz <oo for some x e X j *

Since q is continuous, \Gx(z)q(z)dz<°o for some x c X implies the same for

all x e X. The class Qo contains non-zero functions in fact any non-negative
C^-function with compact support in X belongs to Qo. We easily see that if
qu qi 6 Qo, then λxqι + λ2q2 (λu λ2^>0\ max(qu q2\ min(^i, q2) and \qι — q2\ be-
long tO Qo.

THEOREM 2.5. Let q, g*, qn e Qo (τι = l, 2, ••)• If qn^q^ for all n and if

qn(z)^»q(z) (rc->°o) for every z 6 X9 then Gq

y

n(x)-+Gq

y(x) (Λ->OO) /or am/ Λ;, J

PROOF. Fix x, y(xφ y). Let V be a ball with center at y such that
x ξ V and let () = sup<7*O) + l. Given ε>0, there exists a neighborhood W of

j such that WC V and

(2.2) - M G,(z)G,(

Let M= sup GvC-z:). Then 0<M<oo. Since qn<q* a Qo and qn(z)->q(z\ the

Lebesgue convergence theorem implies

Hence there exists n0 such that n^>n0 implies

(2-3)

By Theorem 2.3 and Corollary 2 to Theorem 2.4, we have

By (2.2),

-G%x) I ^ — \ I ? (z)- ?«(«) I Gy(z)Gx(z)dz.
Cd

1 ^ ' - ' - Λ -'-^r* '-^ ' ^-i ^ 0 ί" Gy(z)Gx(z)dz< ε

JW Cd Jw *

If n ;> ^o, then (2.3) implies

χ-W

^--[\q(z)-qn(z)\Gx(z)dz
cd
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Hence \Gq

y«(x)-Gq

y(χ)\ <ε for n^n0, i.e., Gq

y-(x) ^ Gq

y(x) as n-+oo.

COROLLARY. // qλ c Qo and qn decreases to q, then Gq

y

n increases to Gq

y for
each y£ X.

REMARK. The condition qx c Qo in the above corollary can be weakened to

Gq

x(z)iqi(z)-q(z)Jdz<oo (cf. Corollary 1 to Theorem 2.4).

CHAPTER III Dirichlet Problems.

§3.1. Perron-Brelot's method

Hereafter we shall always assume that X is non-compact. Let X be an
arbitrary compactification of JL, i.e., a compact Hausdorff space such that
there exists a homeomorphism r of X into X such that r(X) is dense in X. We
identify τ(X) with X and let Γ=X—X. In this way, we consider an ideal
boundary Γ of X and discuss the Dirichlet problem for the equation Ju — qu = 0
with respect to this boundary. We shall apply Perron-Brelot's method.

Let φ be an extended real valued function on Γ. We define

( v; g-superharmonic, bounded below on X, |

I lim x^ξ v(x) ^ φ(ξ) for all ζ e Γ J

and

where oo means the function which is equal to + °° everywhere on X. We
further define

and ; υ e

for each x f. X. Then, by Propositions 1.10, 1.11, 1.12 and 1.13, we have (cf.
D-Ί [8] also [4] for a general theory)

LEMMA 3.1. (i) H* (resp. Hq) is either ~ + oo or = — co or q-harmonic on
X.

(ii) Hq^Hq

φ.

LEMMA 3.2. //qλ<Lq2 and <?:>0, then H9

φ^H** and Hq^Hq

φκ

PROOF. By Proposition 1.9, d ^ C d £ 2 and {vcd9/; v^>0}^{vcdl2.', v^O}.
Hence we have the lemma.

LEMMA 3.3. If Hq (resp. Hq) is finite, then there exists a non-negative q-

superharmonic function v on X such that Hq

φ~\-εv c όq

φ (resp. Hq

φ — εve Sq

φ) for all

ε > 0 .
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The proof of this lemma is; analogous to the case q = 0 (cf. Hilfssatz 3.1
of [7J). If X is a Green space and q e (20, then we have the following stronger
form for bounded functions:

LEMMA 3.4. Suppose X is a Green space and q c Qo. If φ is bounded^ then
there exists a non-negative superharmonic function s on X such that Hq + εs e cJj
for alle>0.

PROOF. First, wejprove that, for any compact set Z in X and for any
<?>0, there exists u e c3q

φ such that u <LH£ + d on Z. For any % e Z, let Vx be
a ball with center at x and let Vx be the concentric ball of radius one half of
that of Vx. By Proposition 1.7, there exists MX^>1 such that u(y)^Mxu(x)
for any non-negative ^-jiarmonic function u on Vx and for any y e V'x. Given
£>0, there exists υx e όq

φ such that vx(x)<H$(χ) + δ/Mx. Let ux = (vx)Vχ in the
notation in Proposition 1.12. Then uxeόq

φ and ux(x)<,υx(x)<H%(x) + d/Mx.
Since ux — H$ is non-negative ^-harmonic on Vx, ux(y)—H%(y)<;Mx(ux(x)—
Rg

φ(χ))<δ for any ye Vx. Since Z is compact, there exist a finite number of
points xu •••, xn e Z such that \Jn

i = ιVXι^)Z. Let ^^minίz/^^ •••, uXn). Then
M e d j and u<,ϊlq

φ + d on Z.

Now, fix a point ΛJ0 e X and let / = \G(>o, y)q(y)dy Since / is finite by

assumption, there exists a sequence {Zn} of compact sets on X such that
#o 6 Zw and

for ea,ch τι. Let \φ\<>M. Then l ί f J I ^ M By the above result, there exists
un a Sq

φ such that un<,Mon Xand un<iI[% + \/eln on Zw for each n. Let vn =
un — Hq

φ. Then vΛ is non-negative gr-superharmonic on Xand vn<.2M. Let

Then d(vn+pn)=Jvn — qvn<;0 in the distribution sense. Hence, by Theorem
1.2 and Lemma 1.2, *;„+/>„ is superharmonic on X. We have

—\ , y)q(y)dy

Also vn(xQ)<Ll/2n, since ^ ^ , Hence vn(^o)+i3»(^o)<C(l/crfX2Af+/) + l ]
x(l/2w). Therefore, 5=Σί=i(^n+ jp«) defines a superharmonic function on X
Obviously, sΞ>0. For any ε>0, choose m such that l/m<ε. Then

1 m _ 1 w Λ m

±- Σ(vn+Pn)^Hl+ -A- Σ »» = — Σ «».
71 w = l 771 « = l 771 « = l
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Sinόe (l/m)Σn=ιun e d j , we conclude that Hq

φ + es e d9

φ.

§3.2. g-resolutive functions

In case Hq

φ = Hq

φ and it is ^-harmonic, we say that φ is q-resolutive (with
respect to X) and we denote the common function by H9. This may be called
the g-Dirichlet solution of φ (with respect to X).

We can easily show the following properties, which are well-known in
case q = 0 (see [Ύ]; also [1] and [4]] for a general theory):

PROPOSITION 3.1. (i) // φi, φ2 are q-resolutive functions on Γ and if λι, λ2

are real numbers, then λι<pi + λ2φ2, max(^i, φ2) and min(^i, φ2) are q-resolutive
and

(Here, in λι<pι + λ2φ2, & convention 0 oo = oo 0 = — oo + oo = + oo — oo = o is in
force.)

£ti*χ(φi,φ2) = the least q-harmonic majorant o/max(J3"J l 5 Hq

ψ2),

Hq

min{(Pl!(P2) = the greatest q-harmonic minorant ofmin(H$l9 ZΓJ2).

(ii) If φ^>0, then HQ

φ^>0; if φ is bounded, then Hq

φ is bounded and \Hq\

(iii) // {φn} is a monotone sequence of q-resolutive functions such that
{Hq

φn(x)} is bounded for some x e X, then φ—lirΐin^^ψn is q-resolutive and
Hq

φ(x)=\imn^Hq

φn(x) for all x e X.

PROPOSITION 3.2. A constant function is always q-resolutive.

PROOF. Let ^(?) = 1. Since 1 e d j , Hq^l. It follows that B% belongs
to d j . Therefore Bq

φ^Hq

φ, so that φ(ξ) = l is ?-resolutive. By (i) of the
previous proposition, we conclude that any constant function is ^-resolutive.

REMARK. The function H\ does not depend on the compactification, that
is, this function is an invariant of the pair (X, q).

LEMMA 3.5. If φ is a non-negative q-resolutive function and if λ^>0, then
min (φ, λ) is q-resolutive and

Hmιn(φ,x) = the greatest q-harmonic minorant of min(Hq

φ, λ).

PROOF. By Propositions 3.2 and 3.1, (i), min(#>, λ) is ^r-resolutive. Let u
be the greatest ^-harmonic minorant of min(iJ£, λ). Since λ^O, we easily
see that u^>Hq

min(φ>x). On the other hand, u<λ implies u<,HL Hence
u <Ξmin(ϋΓ*, Hi). Therefore, by Proposition 3.1, (i), we have u<,Hq

min(φ)λy
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§3.3. g-resolutive compactification

We shall say that I is a q-resolutive compactification, if any φ e C(Γ)
( = the space of all finite continuous functions on Γ) is g-resolutive. In this
case, the mapping φ c C(Γ)->Hq

φ(x) is a non-negative linear functional on C(Γ)
for each x c X (Proposition 3.1, (i) and r(ii)). Hence there exists a non-
negative Radon measure ωq

x on Γ such that

φdω9

x = H&x)

for all φ c C(Γ). If q = 0, then ωx=ω°x is the ordinary harmonic measure on Γ
with respect to x. By Proposition 3.1, (ii), we see that ωq

x(Γ)<zl.

LEMMA 3.6. Let Xbe a q-resolutive compactification.
(i) For any extended real valued function φ on Γ,

for any x e X.

(ii) lf\φdω% (resp.\ φdωq

x) is finite for some x e X, then the function

x->\ φdωq

x (resp. \ φdωq

x) is q-harmonic on X.

We can prove this lemma in a way similar to the proof of Hilfssatz 8.3
of [7] and by using Proposition 1.10, (ii). (Also, cf. [1J and PΓ|.)

COROLLARY, (i) Any q-resolutive function is ω%-summable for any x e X.
(ii) For any x, x' e X, ωq

x and ωq

x are equivalent measures and a function
is ωq

x-summable if and only if it is ωq

x -summable.

Thus we shall use the terminology "α^-summable" or "ω^-a.e." instead of
"^-summable for some x c X" or "^-almost everywhere for some x".

The following lemma is a generalization of Satz 8.3 of [T]:

LEMMA 3.7. (i) Given qλ and q2, let X be qλ- and q2-resolutive. If φ is a
bounded function on Γ, then there exists a function φ such that it is qι- and q2-

resolutive and \φdωq

x

ί = Hlί{x) for all x e X (i = l, 2).

(ii) If X is a q-resolutive compactification, then any ωq-summable func-
tion is equal to a q-resolutive function ωq-a.e.

PROOF, (i) First, let φ be lower semicontinuous. For a fixed point
xo c X, there exists a sequence {φn} in C(Γ) such that φn^φ for each n and
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φndωq

x\/\φ dft>ίj (71^00) for ΐ = 1,2. Let 0w = max(>i, • ••, φn).

exists and ψ is qx- and 92-resolutive by Proposition 3.1, (iii). For each ί = l, 2,
C C C Γ

we have \φn dω9

x* <; \φndω^ ^ \ φdωp for all * e X, so t h a t # $ < # ) < ] \ ^dα>;* for

all x e X and \φdωq

xi = \φdωq

x\. Since 0 < ^ , it follows t h a t \φdωq

x

i = Hq

Φ

i(x) for

all x e X and 0 = #> ωQi-a,.e. (i = l, 2).

Next, suppose φ is any bounded function. Choose a sequence {<^} of

bounded lower semi-continuous functions such t h a t φn^φ for each n and

φndωq

x\\\φdωq

x\{i = l,2). For each rc, there exists a ^1- and ^2-resolutive

function φn such t h a t \φndωq

x

ί = Hφι

n(x) for all x e l and ψn — Φn ω^-a.e. (i = l, 2).

Let </ίw = min(0i 5 ••-, 0»). Then lim(/!w = 0 exists and 0 is </i- and ̂ 2-resolutive

by Proposition 3.1, (iii). As above, we see t h a t H^ix)^ \φdωq

x

ι for all x e X

and \φdωq

x\ = \ <pdωx\ (ί = l, 2). Since 0 ^ ^ α)^-a.e. (ι = l , 2), it follows t h a t

dω^ = Hq^{x) for all i d and φ = φ ω^-a.e. (£ = 1, 2).

(ii) If we put q\ — q2 — q in (i), then we see that any bounded α^-measur-

able function φ is equal to a ^-resolutive function φ ω^-a.e. and Hq

φ(x)= \<pdωQ

x.

If ^ is any ω^-summable function, then apply the above result to functions

^ w = max(min(^, n\ —n). Then we can easily complete the proof using Pro-

position 3.1.

§3.4. Comparison of g-resolutivity

Let X be an arbitrary compactification and let Γ = X— X.

LEMMA 3.8. If qit^q2 and ^ ^ 0 , then the greatest q2-harmonic minorant

of Bl1 is equal to E%\ provided that H^ is finite.

PROOF. By Lemma 3.2, H*,12> E%\ Let u be the greatest 92-harmonic

minorant of HI1. Then u^>Hq

φ

2. By Lemma 3.3, there exists a non-negative

^i-superharmonic function v on X such that Eq

φ

x — eυ c όq

φ

ι for all ε>0. By

Proposition 1.9, v is ^-superharmonic. Since u ̂  E%\ we see that u — evc όq

φ

2

for all ε>0. Hence u-ev^Eq

φ

2 for all ε>0, so that u<,Eq

φ\ Therefore,

u = Eq

φκ

LEMMA 3.9. Let qx ^ q2 (q2 Φ 0).

(i) / / <p is bounded below and Eq

φ

ι is finite, then

Eq

φKx) = UlKx)-
C d
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(ii) If φ is bounded above and Hq

φ

ι is finite, then

- - I f —
Cd )

PROOF. First, let ψ Ξ> 0. By the previous lemma and Theorem 2.2, we
have

C d

In particular, this equality holds for φ=M (const. >0). By Proposition 3.2,
Mis gr-resolutive and it follows that Hq

φ+M = Hq

φ-\-Hq

M for any q. Therefore,
if φ is bounded below, then, by considering φ + M for some ikf>0 such that
<p + M^>0, we obtain the required result, (ii) follows immediately from (i) by
considering —ψ.

THEOREM 3.1. Let qλ <J q2 (qi Φ 0).

(i) Any qι-resolutive function on Γ is q2-resolutive.
(ii) If φ is a qι-resolutive function, then

(3.1) HWx) = m<χ)-

in particular, if φ is non-negative, then the greatest q2-harmonic minorant of
Hq

φ

ι is equal to HI2.

PROOF. If φ is a bounded gi-resolutive function on Γ, then Lemma 3.9
implies that φ is 92-resolutive and the equality (3.1) holds. If φ is ^i-resolu-
tive and non-negative, then consider #>w = min (#>, n). By Lemma 3.5, each ψn

is ^i-resolutive, and hence ^2-resolutive. Since Hq

φ

2

n^HQ

φ

ι

n^Hq

φ

ι and φn/*φ,
Proposition 3.1, (iii) implies that φ is ^2-resolutive and the equality (3.1) fol-
lows from the corresponding equalities for φn. Finally, if φ is an arbitrary
^i-resolutive function, then consider φ+ = ma,x(φ, 0) and φ~— — min(^, 0).
Since φ = φ+ — φ~, the above results and Proposition 3.1, (i) imply the theorem.

COROLLARY 1. // #i<^2, then any qι-resolutive compactification is q2-
resolutive; in particular, any resolutive compactification is q-resolutive for any

q

COROLLARY 2. If qλ < q2 and if X is a qι-resolutive compactification, then
ωQ2 is absolutely continuous with respect to ωQl and any qy-measurable set (or
function) is q2-measurable.
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COROLLARY 3. Let Xbe a resolutive compactificatίon of X and let x0 e X
be fixed. For each y c X, there exists a bounded non-negative ω-measurable
function xy such that dωq

y — xq

ydωXςs.

PROOF. The existence of a non-negative function xq

y satisfying the above
relation follows from the previous corollary and the corollary to Lemma 3.6.
Harnack's inequality (Proposition 1.7) implies the boundedness of xq.

The converse of the above theorem or Corollary 1 is not generally true.
For example, we can construct q on a Green space such that Hq = 0. Then
any bounded function on any compactification is ^-resolutive. On the other
hand, there are non-resolutive compactifications of X (see [7]).

However, we have the following:

LEMMA 3.10. Let qι<,q2 and suppose

(3.2)

(In case gi = 0, we assume that X is a Green space.) Then, for any bounded
function φ on Γ,

m<*) = B9Λχ) + - -
Cd

and

PROOF. Let u, = F«« (resp. =Hp\ i = l, 2. By Lemma 3.9,

2 ( ) i ( )

C d

Hence

— \G9l(χ,
Cd J

Cd

By condition (3.2), Fubini's theorem and Theorem 2.4, this is equal to

[G«<x, y)[_q2(y)-q1(y)']ui(y)dy

Cd
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Hence we have the lemma.

THEOREM 3.2. Let qλ <J q2 and suppose that condition (3.2) in the above
lemma is satisfied; in case ^i = 0, we assume that X is a Green space.

(i) Any bounded q2-resolutive function on Γ is qι-resolutive; any q2-
resolutive function φ such that \ H9

φ

2 \ is dominated by a qι-harmonic function
is qι-resolutive.

(ii) If φ is a qι-resolutive function on Γ, then

Hl^x)-H%Kχ) = —
C d

so that if φ is non-negative, then the least qι-harmonic majorant of H%2 is equal
to Eq

ψ\

The proof of this theorem is similar to that of Theorem 3.1, using Lemma
3.10 in place of Lemma 3.9.

COROLLARY 1. Under the same assumptions as in the above theorem, any
q2-resolutive compactification is qι-resolutive (and vice versa).

REMARK. If qι = 0 and q2 — q^ then condition (3.2) is reduced to the condi-
tion q c Qo. Thus we have

COROLLARY 2. If q £ Qo, then a q-resolutive compactification is resolutive.

LEMMA 3.11. Let q\<q2 and let X be a qι-resolutive compactification.
Then, for any non-negative bounded function φ, the greatest q2-harmonic
minorant of

(resp. hQι{x) =
j

is equal to

^«2(^)= \ φ dωp (resp. hQ2(x) =

If, in addition, condition (3.2) is satisfied and X is a Green space in case qι = 0,
then the least qλ-harmonic majorant of hq2 (resp./^2) is equal to hQl (resp.A*1)-

PROOF. This lemma immediately follows from Lemmas 3.7, 3.9 and 3.10.

THEOREM 3.3. Let qi<^q2 and suppose that condition (3.2) is satisfied; in
case q = 0, assume that X is a Green space. If X is a qι-resolutive compactifica-
tion, then ωp and ωp are equivalent measures for any % e X. In particular,
if X is a Green space, X is a resolutive compactification and q c Qo, then ωq

x is
equivalent to ωx.

PROOF. Let φ be a non-negative bounded function on Γ. By the above
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lemma, we see that \φdωq

x

1 = 0 if and only if \φdωp = θ. It follows that ωp

and ωp are equivalent to each other.
From this lemma, it follows that, if q e (20, then %^>0 α)-a.e. on Γ.

§3.5. Dependence of H$ on q

THEOREM 3.4. Let qn increase to q as n-+oo.
(i) // φ is bounded below and Hq

φ

λ is finite, then Hq

φ

n(x) tends to Hq

φ(x) for
each x 6 X;

(ii) If φ is bounded above and Hq

φ

ι is finite, then Hq

φ

n(x) tends to ϊlq

φ{x) for
each x e X;

(iii) // φ is qι-resolutive, then Hq

φ

n(x) tends to Hq

φ(x) for each x e X.

PROOF. First let φ be non-negative, un = Hq

φ

n (resp. —H%n, —Hq

φ

n) and
u = H% (resp. = H% =Hq

φ). Then, by Lemma 3.9, (i) (resp. Lemma 3.9, (ii), Theo-
rem 3.1, (ii)), we have

un(x)—u(x) = \G9(x, γ)[_q(γ)-qn(γ)Ίun(γ)dγ.
Cd J

Since m(x) is finite, {un} is monotone decreasing and q — qn decreases to 0 as
72,->oo3 we see that un tends to u. Now it is easy to show the theorem in
case φ is not necessarily non-negative (cf. proofs of Lemma 3.9 and Theorem
3.1).

THEOREM 3.5. If φ is a bounded function on Γ\ then, for any qx and q2,

where \\(p\\ = su])ξQΓ\φ(ξ)\ and <jr* = 9

PROOF. By Lemma 3.9 and Proposition 3.1, (ii), we have

'Xx, y){q*{y)-qίy)}Hq

φ<y)dy\

(*, y){q*(y)-qi(y)}dy
(s d

for Ϊ = 1, 2. Hence

C d

= m\\G<χx, y)\qi(y)-q2(y)\dy.
Cd
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REMARK. The integrals in the above proof are finite, since

(cf. the corollary, (ii), to Theorem 2.1). Thus it also follows that \H%1(x) —

THEOREM 3.6. Let qn-^q (n-+°o\ qn^q* (rc = 1, 2, •••) and suppose

Gq(x, γ)q*(y)dγ< oo, Then, for any bounded function φ on Γ,

Hq

ψ«{x)^Hq

φ(x) and Hq

φ*(x)-+Hq

φ(x) (n-><*>).

PROOF. By the previous theorem,

™«'" 'Xx, y)\qn(y)-q(y)\dγ

\X, y)\qn(y)-q{y)\dy.

Since \qn(y) — q(y)\ ^?*(y) a n d \Gq(χ, y)q*(y)dy<oo by assumption, the Le-

besgue convergence theorem implies that

\x, γ)\qn(y)-q(y)\dy^0 (n-^oo).

Hence Hq

φ

n{x)->Hq

φ{x) (71-^00). By considering — φ, we also have Hq

φ

n(x)

COROLLARY 1. If qn decreases to q and \Gq(x, y)qi(y)dy<oo, then

Hq

φ"(x)->Hq

φ(x) and Hq

φ-(x)^Hq

φ(x) (n^oo)

for any bounded function ψ on Γ.

COROLLARY 2. If qn £ Qo (n = l, 2, ••) and qn decreases to 0, then Hq

φ

n(x)—>

Hφ(x) for any bounded resolutive function φ.

REMARK. In Theorem 3.4 and in the above two corollaries, the con-
vergence is locally uniform on X by Dini's theorem.

Appendix. We can define a topology in Qo by a family of metrics

l ^ Z / Z compact

dz(qu 92) = S U P \ G(x, y) | qi(y)-q2\y) I dy.
xCZ J

By the topology defined by {dz}, Qo is a metrizable space. Let C(X) be the
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space of continuous functions on X with the compact convergence topology
and let RB\Γ) be the space of all bounded resolutive functions on Γ with the
sup topology. Then Theorem 3.5 implies that the mapping (φ, q)->Hq

φ is con-
tinuous from RB(Γ)y. Qo into C[X). (Also, we see that the mapping q-+Gq(χ, y)
is continuous on Qo for any xφ γ; cf. Theorems 2.4 and 2.5.)

Let us say that X is a space of bounded type if q(x) = l belongs to (20, i.e.,

if \G(x, γ) dy<°° for some (hence all) x e X. Any bounded domain in Rd is

of bounded type. Let Qb = {q € Qo; q is bounded} and let \\qι — ^ 2 | |=sup \qι(y)
y€X

— q2(y)\. Then it is easy to see that if Xis of bounded type, then, for each
compact set Z, there exists Mz>0 such that

dz(qu q2)<^Mz\\q1-q2\\ for all qu q2 6 Qb.

Thus, if X is of bounded type, then the mapping (<p, q) —> H% is continuous
from RB(Γ)xQb into C(X), where the topology in Qb is given by the metric

CHAPTER IV Normal Derivatives.

In what follows, we shall always assume that X is a Green space.

§4.1. The spaces 2) and 2).

Let 2) be the set of all locally summable functions g on X (with respect
to dx) such that in each ball V in X, dg/dx{, ί = l, •, d9 in the distribution
sense are identified with square summable functions (on V) and such that

Γ d

D\Lg~] — \ Σ (dg/dxi)2dx < oo, Remark that this integral is determined
) X i = 1

coordinate-free. 2) is obviously a linear space. If gu g2 6 ©, then their

mutual Dirichlet integral D[gu g2~}=\ {ΣUi(dgi/dxi)(dg2/dxϊ)}dx is de-
J Xfined. We denote by || || the corresponding norm, i.e.,

The space © coincides with the space BL(X) in [10] in case X is a domain
in Rd. Thus dg/dxi in the ordinary sense exists almost everywhere in a ball
V and coincides with the one in the distribution sense ([10], [25]). Also,
BLD-functions on X(see [ 5 ] ; Dirichletsche Funktionen in [7]) belong to 2).

Let HD be the set of all harmonic functions on X belonging to 2). It is
also the space of all BLD-harmonic functions.

Next, we consider the subspace 2) of 2) consisting of all g c 2) such that
Δg in the distribution sense is identified with a (signed) Radon measure on
X. It can be seen from Theorem 1.2 and a general theory in [10] that g 6 2)
belongs to 2) if and only if g=u+p a.e. on X, where u c HD and p is a differ-
ence of two Green potentials belonging to 2) (cf. Doob [11], §11).
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We shall also consider the class 2) of^functions g on X for each of which
there exist a compact set Z in X and ^ 6 ® such that g— g on X — Z.

§4.2. Definitions of normal derivatives

We consider a resolutive compactification X of X and define normal deriva-
tives with respect to the ideal boundary Γ = X— X, for functions in 2) in
general.

For any subset A of Γ, let

CD(A) = {φ e C(Γ); HφcHD,φ = Q on Γ-Λ}.

C£>(Λ) is a linear subspace of CCΓ). In case A is a Borel set, by a measure on
A, we shall mean the restriction of a signed Radon measure on Γ to A.

^DEFINITION 1. Let A be a Borel set on Γ and v be a measure on Λ. Given
g c 2), we say that v is α normal derivative of g on A in the weak sense, or g
has a normal derivative v on A in the weak sense, if the following condition is
satisfied:

For any φ c CD(Λ\ \ \ Hφ \ d \ Jg\< oo and

(4.1) [Hφd(Jg) + D[_Hφ, gΊ=-\φdv.

REMARK. This definition includes the definition given by Constantinescu-
Cornea (C7], P 218) as a special case.

Next, we consider the case where a normal derivative of g c 2) on A in
the weak sense is absolutely continuous with respect to the harmonic measure
ωx. In this case we fix x0 e X and find an ω-measurable function γ on A such
that dv = γdωXQ (γ is determined only ω-a.e. for each v). We shall again call γ
a normal derivative of g on A in the weak sense (and with respect to x0).

If we define normal derivatives as functions, then it is possible to make
the following somewhat stronger definition, which is more suitable for our
purpose: Let A be an ^-measurable subset of Γ and let

RBD(A) = {φ\ bounded resolutive, Hφ e HD, φ = 0 ω-a.e. on Γ — A}.

DEFINITION 2. (Cf. definitions in [11] and [20].) Let γ be an ω-measur-
able function on^an ^-measurable set A C ΐ > We say that γ is a normal de-
rivative of g e 2) on A, or g has a normal derivative γ on A, if the following
condition is satisfied:

For any φ c RBD(Λ), yH9\d\Jg\<™,

(4.1)' \Hφd{Δg) + D[_Hψ, gj= -
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Since RBD(A) C CD(A\ any normal derivative is that in the weak sense.

LEMMA 4.1. Let gu g2 c 2) and gι = g2 a.e. outside a compact set in X. If

ψ c RBD(Π and if [\Hφ\d\Jgi\<oo, then [\Hφ\d\Jg2\<°° and

PROOF. Let / be a C°-function with compact support in X such that / = 1

on a compact set outside of which gλ = g2 a.e. Since \ \fHφ \ d \ Jg{ | < oo for

*' = 1, 2, {\Hφ\d\Jgl\<c>o implies {\Hφ\d\Jg2\ <oo. Since fHφ is a (T-func-

tion with compact support, we have

By this lemma, we can extend j he definition of normal derivatives to
functions in 2): For g c 2), let g e Q) be equal to £ outside a compact set in
X If g has a normal derivative γ (resp. in the weak sense) on Λ, then we
define γ as a normal derivative of £ on A (resp. in the weak sense).

The following properties are immediate consequences ofj he definitions:
(a) Let Λι C Λ2 and if γ is a normal derivative of g e Q) on Λ2 (resp. in

the weak sense), then the restriction of γ to Aλ is a normal derivative of g on
Λi (resp. in the weak sense). _

(b) If γ{ is a normal derivative of gy 6 2) on Λ (resp. in the weak sense)
for each i = l, 2, and if Λ;, i = l, 2, are real numbers, then λιTι-\-λ2γ2 is a normal
derivative of λιgι + λ2g2 on Λ (resp. in the weak sense). (Cf. the convention
considered in Proposition 3.1, (i).) ^

(c) If γ is a normal derivative of g e 2) on A (resp. in the weak sense)
and if 7-1 = 7- ω-a.e. on A, then π is also a normal derivative of g on A (resp. in
the weak sense).

EXAMPLE 1. Let X be a bounded domain in Rd such that its relative
boundary Γ in Rd consists of a finite number of smooth closed hypersurfaces.
Let dS be the surface element on Γ. If g is a C2-function on X such that g
and its first order partial derivatives are continuous on X=X\jΓ, then
Green's formula implies that the measure (dg/dn)dS is a normal derivative
of g on Γ in the weak sense, where dg/dn is the ordinary inner normal
derivative on Γ. Since the harmonic measure is expressed as dωXo =
(dGxJdn)dS, we see that (dg/dn)/(dGxJdn) is a function valued normal de-
rivative of g on Γ in the weak sense (cf. [11J). We can show that this is
also a normal derivative of g on Γ in the sense given in Definition 2.
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REMARK. In general, it can be seen that a normal derivative on Γ in the
weak sense is also a normal derivative on Γ in the sense of Definition 2 if Γ
is the Kuramochi boundary.

EXAMPLE 2. For any Green space X and any resolutive compactification
X, the Green function Gy has a normal derivative cdxy on Γ (see [20], Proposi-
tion 1). More generally, we shall show (Proposition 4.4) that Gq

y has a normal
derivative cdx

q

y on Γ for each ye X. (See Corollary 3 to Theorem 3.1 for the
function xy).

§4.3. Royden decomposition

We now consider the set D of all BLD-f unctions on X. It is a subspace
of ©, so that D[_gu g2~] and D[_g] make sense for gu g29 ge D. If ge D and
||g || = 05 then g=const. q.p., where "q.p." means "quasi-partout" or "except
for a polar set" (see [3]). We know ([3], [10], [7])

PROPOSITION 4.1. The quotient space of D (resp. HD) with respect to the
equivalence relation \\gι — g2\\=0 is a Hilbert space with respect to the inner
product D[_gu g2~].

Since every geD is Lebesgue measurable, the integral \q(χ)g\χ)dx

makes sense. We consider the spaces

D' = {geD;

HQ

D = {u 6 Dq; u is g-harmonic on X}.

For g u g2, gzΌ\ let

I>9Lg,gl and

Obviously, if qι<,q2, then DQ2CDq' and Dq*\ig~]<LDq*[_g~] for any geDqκ

LEMMA 4.2. If qφQ, then \\ \\q is a norm in Dq and Dq is a Hilbert space
with respect to the inner product Dq[_gu g2^, provided that we identify two
functions which are equal q.p. on X.

PROOF. Obviously, || \\q is a semi-norm on Dq. If ||g ||β = 0, then

and \qg2dx = 0. It follows that g = 0 q.p. on X, since qφO. Thus || \\q is a

norm on Dq. Dq[gu g 2J is the corresponding inner product. Hence it is
enough to show that Dq is complete with respect to the norm || \\q. Suppose

{gn} is a Cauchy sequence in Dq. Since \q(gm— gn)2dχ->0 (n, 7n->oo)? there
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exists a subsequence {gnk} such that {gnk(χ)\ is convergent almost everywhere
on the set,{^ 6 X; q(x)>0}. Since D is complete and \\gn— gm\\~^0 (n, m->°o\
there exists g£ D such that \\gn— gll-^0 (n-> oo), By choosing a subsequence
again if necessary, we may assume that {gnk} converges to g q.p. on X (cf.
[5], [7] or [19]). Then we easily see that gc Dq and \\gnk-g\\q-+0 (&-> oo),
which implies \\gn— g\\q-*0 (ra->oo). Hence Dq is complete.

Let CQ be the set of all infinitely differentiate functions with compact
support on X Obviously, CQCD9> In case q = 0, Do is the set of g€ D for
which there exists a sequence {/„} of functions in CQ such that \\fn— g\\^0
and/w-># q.p. (n -• oo), If 9^0 , then let DQ be the closure of CQ in Dq with
respect to the norm || ||β. Thus if g0 e Dq

0, then there exist fn e CQ, n = l,2, ,
such that \\fn — go\\q^O. An argument similar to the proof of the above
lemma implies that there exists a subsequence {fnk} which converges to go,
q.p. on X. Therefore we have

LEMMA 4.3. Dq

0CD0.

It is known ([5], [7]) that

PROPOSITION 4.2. HD and Do are orthogonal to each other, i.e., D\Jι, fJ = O
for any h c HD and f c Do. Any function ge D is uniquely decomposed into
g=h+f with he HD and fe Do (Royden decomposition).

Similarly we have (cf. [24], Theorem 3 for a special case)

LEMMA 4.4. For any qφQ, Hp is complete with respect to the norm || \\q

and is orthogonal to the space Dq

0, i.e., Dq[_u, /H = 0 for any u c Hg and f c Dq

0.

Any function geDq is uniquely decomposed into g=u + g0 with u c Hq

D and
q

0.Dq

0

PROOF. Let B&={gζ Dq; g=u q.p. for some ucH£}. It is enough to
show that &ϊ) is the orthogonal complement of Q in Dq. If / e CQ and u c H^
then Green's formula implies

Conversely, suppose gc Dq satisfies Dq[g,/] = 0 for all/e Q. Since D[_g,/]

= — \fd(Δg) in the distribution sense, it follows that \fd(Jg—qg) = 0 for all

fa Q, or Jg—qg=0 in the distribution sense. Therefore, by Proposition 1.1,
g is equal to a ^-harmonic function almost everywhere (hence q.p.) on X
Hence g e βg.

§4.4. Properties of functions in Dq

Let us recall that for any g0 c DQ there exists a potential p such that
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\go\<^p (see [T], Hilfssatz 7.7 and [Ί9IL Lemma 4). By Proposition 1.14, p
is also a ^-potential. Thus we have

LEMMA 4.5. For any g0 e Dq

0, there exists a q-potential p such that \ g01 <,p
on X.

Using this lemma, we have

LEMMA 4.6. If v is a q-superharmonic function on X and v e Dq, then v
has a q-harmonic minorant. Furthermore, if v = u + g is the decomposition
into a q-harmonic function u and a q-potential g, then u a H& and g e Dq

0, so
that Dq\jΓ\<LDq[υΓ\ and Dq\^gJ<^Dq[_vJ. In particular, any q-potential which
belongs to Dq belongs to Dq

0.

PROOF. Let v = u\ + gγ be the decomposition into uieHg and gxeDl
(Proposition 4.2 and Lemma 4.4). By the previous lemma, there exists a q-
potential p such that | gλ | <p. Since v is g-superharmonic, so is gx. Hence
it follows that gι is a ^-potential. Hence uχ = u and g\ — g and the lemma is
proved.

LEMMA 4.7. Let uu u2 e Ή.%. Then the least q-harmonic majorant v of
max(ui, u2) and the greatest q-harmonic minorant w of min(&i, u2) both belong
to Hg and

£«[>] + Dq[_ui\ ^ Z O ] l J

PROOF. It is easy to see that max(^i, u2), min(^i, u2)eDq and
Z)ΐmax(i*i, u2)J + Dq[_mm(uu u2)J = Dq[_u1~l +Dq[u2J (cf. Satz 7.3 in [7]).
Since — max(wi, u2) and min(^i, u2) are ^-superharmonic, v and w belong to
Hf) by the previous lemma and Dq[^v2^Dq[meix(uu u2)~] and Dq[_w~}<,
Dq[mm(u u)~]

LEMMA 4.8. (i) // une HD, n = l, 2, ..., D{^unJ-+0 and un(x0)-^0 (for a
fixed xo e X), then un-+0 locally uniformly on X.

(ii) // q Φ 0, un e H&, n — 1, 2, .., and Dq[_unJ -> 0, then un-^0 locally uni-
formly on X.

PROOF, (i) is well-known (see [3J, p. 11 and [ΊΓ], Lemma 2 and n° 21).

(ii) Let {unj} be any subsequence of {un}. Since Dq[_unj}-*Q> \q(unj)
2dx

->0 (y->oo). Hence there exists a subsequence {πj} of {πj} such that Mn/-*0
(y->oo) almost everywhere on {x e X; q(x)>0}. Each —\un^\ is ςr-super-
harmonic, so that superharmonic (Proposition 1.9). Let \un^\ =hj—pj, where
hj is harmonic and pj is a potential, for each j . By the previous lemma,
# M ? D\Lpί\ ^ D\L I ^^ I ] ίS ^ΐ^»jH -^ 0 (/-•oo), Since joy e Do, there exists a
subsequence {/?yfe} such that/λ^-^0 q.p. (see [7], Hilfssatz 7.8). Then hJk-+0
almost everywhere on {x e X; q(x)>0}. Thus (i) implies that hJk-+0 locally
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uniformly on X Since \un. \<hu, un- -•O locally uniformly on X. Thus
H ~~ Jk Jk

we have seen that any subsequence of {un} contains another subsequence
which converges to 0 locally uniformly. It then follows that {un} itself con-
verges to 0 locally uniformly on X

§4.5. The space R%(Γ)

Given a resolutive compactification X and an to-measurable subset A of
Γ = X-X, let

{ ^-resolutive function on Γ such that ]

Hq

φ c Hq

D and <p = 0 ωq-a.e. on Γ-Λ J

We shall study the properties of the space RD(Γ) in this section.

LEMMA 4.9. // <pu φ2 c RD(Γ\ then ms,x(φu φ2) and min(^i, φ2) both belong

to Rq

D(Γ) and

PROOF. This is an immediate consequence of Proposition 3.1, (i) and
Lemma 4.7.

By this lemma, we see that if φ c Rq

D(Γ), then \φ\ c RQ

D(Γ) and that

LEMMA 4.10. If φ c Rj~>(Γ) and φ^>0, then min(#>, λ) c R^iΓ) for any non-
negative constant λ and Dq\iHq

τnϊΏ{φ>X)~]<,Dq[_Hq

φ}.

PROOF. By Lemma 3.3, min(^, λ) is g-resolutive. Since H% e D, υ —

min(ff;, A)cDand D W ^ f l [ f f ; ] . Since 0<,v<,H% ^qv2dx^q(Hq

φfdχ<

oo. Therefore, v a Dq and Dq\jj^\^Dq[_H%}. Now, Lemma 4.6, together with
Lemma 3.3, implies that Hq

min(φ>λ) e Hq

D and DqlHq

min(φ

LEMMA 4.11. Let φ c Rg(Γ) and φn — max(min(^, n\ —n), n = l, 2,
Then

PROOF. By virtue of Lemma 4.9, it is enough to show the case φ^>0.
Then <̂  = min(>, n). Let vn = Hq

φ — min(Hq

φ, n). As in the proof of the previ-
ous lemma, we see that Dq[_Hq

φ — Hl^]<,Dq[_Vn]. On the other hand, since

H% e HI, we have D\jυn~]-+Q and {q(vn)
2dx^0, i.e., DqivnJ->0 (n^oo). Hence

we have the lemma.

For different </'s, we have

PROPOSITION 4.3. Let qλ <Ξ q2 and suppose (3.2) is satisfied. Then R£2(Γ) C
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and D^[_Hq

φ^<,Dq>[Hq

φ^ for all φ c RgKΠ- In particular, if q e <20,
then Rg(Γ)CRD(Π and DίHφJ<,Dq[_Hq

φJfor all φ e Rg(Γ).

PROOF. If φ e RΪ>2(Γ) is bounded, then Theorem 3.2 implies that φ is qx-
resolutive and Hq

φ

ι is the least 91-harmonic minorant of Hq

φ

2. Hence, using
Lemma 4.6, we see that φ e Rfr(Γ) and Dq^Hq

φ^^Dq^Hq

φ^^Dq^HpJ If
φ a R£2(Γ) is not bounded, then we consider <̂  = max(min(>, n\ —n). Then
φn e Rί2(Γ) and Dq2[_Hq

φιι — Hq

φ

2

nJ->0 (n, m->oo) by the previous lemma. Thus
the above result for bounded φ implies Dq*[_Hpn-Hq

φ]J<Dq2[_Hq

Ψι-Hqβ-+0
(n, 7Π->CXD). By Lemmas 4.4 and 4.8, H%\ tends to u e H^1 locally uniformly
on Xand also in the norm || | |^. It follows from Proposition 3.1, (iii) that
u = Hq

φκ Hence φ c JR^(Γ) and Lemma 4.11 and the above results imply

§4.6. Normal derivatives of g-Green functions

First, we show

LEMMA 4.12. For a sufficiently large λ0, the set Vx—{xc X; Gq

y(x)~^>λ} is
compact in X for all λ^>λ0 and gκ = min(Gq, λ) belongs to Dq

0 (yc X: fixed).
Furthermore, βx— ~(^gχ — qg\) is a measure supported by Vx and vaguely con-
verges to cdδy as Λ—• 00.

PROOF. Since Gq^Gy and {x c X; Gy(x)^>λ} is compact for sufficiently
large λ, Vx is compact for such λ. Also, as in the case of q = 0, we can show
that gx c Dq. (For example, we may use the method in the proof of Hilfssatz
7.5 and Satz 7.2 in [7].) Since g λ is a ^-potential, it belongs to Dq

0 by Lemma
4.6.

For a n y / c Co, ydjux= -γjf-qf)gλdχ-+-γjf-qf)Gq

ydχ = cdf(y) as

λ->005 since JGy — qGy= — cdδy. It follows that βx-^cdδy vaguely as λ->oo.

By this lemma, we see that Gye2) for any ycX. Now we have

PROPOSITION 4.4. For any resolutive compactification X, Gy has a normal
derivative cdx

q on Γ = X—Xfor each ye X.

PROOF. For any ψ e RBD(Γ), D[Hφ, g\] = 0 by the above lemma, together

with Lemma 4.3 and Proposition 4.2, and \Hφd{Agx)— — \Hφdjux+\qHφgxdx.
J J J

r r

As Λ—•oo, \Hφdβx-^ — cdHφ{y) by the above lemma. Also we have \qHφgxdx —•
j j

qHψG
q

ydχ. Hence, using Theorem 3.1, we have
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HφG
q

ydx = -cdH&y) (

Since the left hand side is independent of λ by Lemma 4.1, we have

so that cdx
q

y is a normal derivative of GJ.

§4.7. Uniqueness of normal derivatives

In [20], a resolutive compactification X was called regular if CD(Γ) is
dense in C(Γ) with respect to the uniform convergence topology. For ex-
amples of regular compactifications, see

REMARK. By Stone's theorem, we see t h a t X is regular if and only if
CD(Γ) separates points of Γ.

LEMMA 4.13. If X is a regular compactification, then CD(Λ) is dense in
CQ(A\ where Co(Λ)={φ c C(Γ); φ = 0 on Γ — A} with the uniform convergence
topology.

PROOF. Given φ e C0(Λ), φ^>0 and ε>0, there exists φλ e CD(Γ) such that
\<p — <Pi\ <ε/2 on Γ, since Xis regular. Let ^* = m a x ( ^ - ε / 2 , 0). Then φ* e
CD(Γ) by Lemma 4.9 and φ* = 0 on Γ — A, i.e., φ* e CD(A). It is easy to see that
\φ — φ*\ <ε on Γ. If φ € C0(A) is not necessarily non-negative, then consider

φ+ and φ~ and we find φ* e CD(A) such that \φ — φ* \ <ε.

PROPOSITION 4.5. If X is a regular compactification and A is a^ relatively
open subset of Γ', then a normal derivative of a given function ge Q) on A (in
the weak sense or not) is uniquely determined as a measure and ω-a.e. as a
function.

PROOF. Let v\ and v2 be two (measure valued) normal derivatives of g on

A in the weak sense. Then, for any φ e CD(A\ we have \φdv\ = \φdvi. From

the above lemma, it follows that this equality holds for any φ c C0(A). Since
A is open in 7", it follows that vλ = v2 on A. The rest of the proposition now
easily follows.

§4.8. Normal derivatives of iϊp-functions

Now we shall study normal derivatives of functions in Hg. Ifut H£,
then Ju = qu and u € 2). Thus the left hand side of (4.1)' in Definition 2 for
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g= u is reduced to Dq[_Hφ, ύ~\, provided that Hφ e Dq. Let

RBDU) = {<P * RD(A)1 <P is bounded}

for any ̂ -measurable set A on Γ. Then we have

LEMMA 4.14. Let q and qλ satisfy \\q{x) — qx{x)\dx<oo. Then Rq

BD(Γ)

and Dq[_u, Hq

φ] = Dq[_u, Hq

φ^for any u c Hg and for any φ c Rq

BD(Γ).

PROOF. Let ^0 = niin(^, qλ). Then \( j-^o)^<°° and \(qi — qo)dχ<oo.

It follows that \GQ*(X, γTq(y)-qo(γ)]d γ<oo and \GQ*(X, y)[_qι(y)- qo(γ)Jdγ

<co. Hence, by Theorems 3.1 and 3.2, we see that ^-resolutivity, 91-resolu-
tivity and ^0-resolutivity all coincide. By Proposition 4.3, we see that Rq

BD(Γ)
CR%9D(Π and RyD(Γ)CRB

ΰD(Π' Let φ c R9

β°D(Γ) and φ^O. Theorem 3.1 im-
plies that Hq

φ

Q = Hq

φ+p with a bounded ^-potential p. Since Z?β[JϊJ°] =

Dq°[Hq

φ°J+{(q-qoXHq

φ°)
2dx<oo, Lemma 4.6 implies φ c Rq

BD(Γ) and D9[_u, HjJ

= Dq[u, Hq

φ°J for any u c Hg. Similarly, we see that φ c Rq

B

ι

D(Γ). By Theo-
rem 3.2, Hq

φ° = Hq

φi+p1 with a bounded ^-potential pλ. Since Hq^ c Dq>CDq°,

/?! c DJ° (Lemma 4.6). Since pλ is bounded and \(q — qo)dx<°o? we see that

pi e Dq. By Proposition 1.14, px is a ^-potential. Hence pλ e Dq

0 by Lemma
4.6. Therefore Dq[_u, Hq

φ^ = DqΓu, Hq

φ^ for any u c Hg. Thus we have seen
that if φeRq

B°D(Γ) and φ^O, then φ e Rq

BD(Γ\ φ c Rqj}D(Γ) and Dq\Ίι, Hq

φJ =
Dq[_u, Hq

φ

ιJ for any u a Hg. By considering φ+ and φ~ in general, we can easily
complete the proof.

THEOREM 4.1. Suppose

(4.2) [q(x)dx <oo.

Let u e HQ, A be an ω-measurable subset of Γ and γ be an ω-measurable function
on A. Then γ is a normal derivative of u on A if and only if, for any
φ 6 RBD(A) (=Λ|Z)(yί))5 φγ is ω-summable on A and

(4.3) D*[_H*,u3=-[ φγdωXQ.
J ΛΛ

PROOF. By the above lemma, RBD(A) = Rq

BD(A) and Dq[_Hφ, u~] = Dq[_Hq

φ, if]
for all φ e RBD(Γ). Therefore, as remarked at the beginning of this section,
the left hand side of (4.1)' in Definition 2 is reduced to ΐ>q{H%, u~\ and the
theorem is proved.

REMARK. (4.2) implies q c Qo, so that "ω-a.e." and "α^-a.e." mean the same
(Theorem 3.3) in this case.
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COROLLARY. Let q satisfy (4.2). If γ is a normal derivative of u e HD
 o n

A, then (4.3) holds for any φ e R^A) such that \ \γφ\ dωXQ < oo.
J A

PROOF. Let φ £ RUA) be such that \ \γφ\dω<&o. Then φn e Rq

BD(A\
JΛ

where <^ = max(min(<p, n\ —n\ n = l,2, ... Hence by the above theorem,

Ώq\_Hq

φ , υΓ\ = — \ φnχ d(ύx^ n = 1, 2, .
n J A

By Lemma 4.11, Dq[_Hq

φn, α]-> Dq[_Hq

φ, υΓ\ as τι->oo. On the other hand, since

\ \φγ\dωXQ<.oo and φn-+φ ^-a.e., the Lebesgue convergence theorem implies
J A

\ φnγdωXQ -> \ φγdωXQ (n -+ oo). Hence (4.3) holds for φ.
J A J A

REMARK 1. We shall show in the next chapter (Lemma 5.1) that any

function in RD(Γ) is co-square summable. Hence the condition that \\φγ\dω

< oo for all φ c R£(A)(CRD(A)) is satisfied if γ is ω-square summable on A.

REMARK 2. Even when q does not satisfy (4.2), we may formally define a
"g-normal derivative" of u e Hg on an α^-measurable subset A on Γ as an ωq-
measurable function γ on A such that (4.3) holds for all φ e R%D(A) (or for all
φ c Rg(A)). With this definition, it is possible to obtain a theory analogous to
that given in the next two chapters, replacing normal derivatives by ^-normal
derivatives.

CHAPTER V Boundary Value Problems.

Throughout this and the next chapters let X be a resolutive compactifica-
tion of X and let Γ = X— X. We also fix x0 c X and denote ω = ωXQ. Moreover
we assume that the condition

(4.2) \q(x)dx< °o

is satisfied (cf. Remark 2 at the end of the previous chapter).

§5.1. Problem setting

We now formulate a general boundary value problem, which includes the
Neumann problem, the third boundary value problem and the mixed problem.

Suppose an α)-measurable subset A of Γ and an ω-measurable non-negative
function β on A are given. We shall call the pair [Λ, β~] a boundary condition.
As boundary data, we consider two 60-measurable functions r on Γ — A and γ
on A. With such boundary condition and data, we set
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Problem P[Λ, β; r, γ; qj: To find u = Hq

φ e Hq

Ό with φ e Rg(Γ) such that

(i) φ = v ίo-a.e. on Γ — Λ,

(ii) u has a normal derivative βφ + γ on Λ.

REMARK 1. The above problem includes the following as special cases:
(a) The case ω(Λ) = 0. In this case the problem is regarded as the

Dirichlet problem. Since we assumed that Xis resolutive (hence ^r-resolutive),
the existence and the uniqueness of the problem in this case are trivial.

(b) The case ω(Γ — Λ) = 0 and β=0 ω-a.e. on A. In this case condition (i)
is not in force and condition (ii) is reduced to

(ii)' u has a normal derivative γ on A.

Thus in this case the problem is regarded as the Neumann problem. By
Theorem 4.1, condition (ii)' is rewritten as

DqlHl u~] = - [φγdω for all φ c RBD(Γ).

Hence, if ^ = 0, then it is necessary that \γdω = 0.

(c) The case ω(Γ — A) = 0 and β^O ω-a.e. on A. The problem in this case
may be regarded as the third boundary value problem.

(d) The case ω(Λ)>0, ω(Γ — A)>0 and /9 = 0 ω-a.e. on A. The problem in
this case is regarded as the mixed problem.

REMARK 2. We can formulate similar problems with respect to normal
derivatives in the weak sense. For example, as a Neumann problem, we may
consider a problem to find u e H& having a given signed measure v on Γ as a
normal derivative in the weak sense. In fact, Constantinescu-Cornea [Ί~}
treated this form of problem for ^ = 0 with respect to the Kuramochi
boundary. However, we shall restrict ourselves to normal derivatives given
in Definition 2 in treating a general form of problem on a general ideal
boundary.

From the formulation of the problem, we immediately see the following:

PROPOSITION 5.1. The problem PHΛ, 0; r, γ; qj is linear in τ and γ, i.e., if
Ui is a solution of P[]Λ, β; r, , ji\ qjfor each i = l, 2 and if λu λ2 are real num-
bers, then λιuι + λ2u2 is a solution of P[Λ, β; λ1rι + λ2t2, λϊγι + λ2γ2; q~] (cf. the con-
vention given in Proposition 3.1, (i)).

§5.2. Uniqueness of solutions

THEOREM 5.1. If the problem V[_A, β',t,γ\q~^\ has a solution of the form
u = Hq

Φ with φ c RD(Γ), then it is uniquely determined (up to an additive con-



122 Fumi-Yuki MAEDA

stant in case q = 0, ω(Γ — A)=O and β=0 ω-a.e. on Γ).

PROOF. Let Ui — E%0 ι = l, 2, be two solutions of the problem. Since
0i = 02 = r ω-a.e. on Γ —Λ, φι — ψ2£RΪ)(Λ). Let φn = max(min(ψι — ψ2, n\ —n).
Then φn e RBD(Λ). Hence, by condition (ii) of the problem and by Theorem
4.1, we have

(5.1) D'tm-112, mj=-\ {(βΦi+r)-(β</>2+r)}<Pndω
J Λ

By Lemma 4.11, we have 0<,Dq[uι-u2Ί = \imn^ooD
Q[_u1-u2, H9

φJ<,0. There-
fore, uι — u2 if qφO and uχ = u2-\-const, if r̂ = 0. In the latter case, if ω(Γ — Λ)
>0, then 0i = 02 = r ω-a.e. on Γ — A implies uι = u2\ if β^O ω-a.e., then (5,1)
implies that φ\ — φ2 ω-a.e. on the set {ξ a A; /?(£)>0}, since Φι = φ2 + c ω-a.e. on
/" implies φn — Φ\ — φ2 ω-a.e. for rcί>|c|. It then follows that uι = u2 in this
case, too.

§5.3. More properties of the space RZ(Γ)

In addition to those given in §4.5, we shall need the following properties
of R&(Γ) to obtain the existence theorem for our problem. In this and the
next section, the assumption (4.2) can be weakened to the assumption q e <20.

In case q = 0, we also consider the space

RD1 = {φ 6 RD(Γ);

The following lemma was obtained by Doob [11] in case q = 0:

LEMMA 5.1. There exists a constant Mq>0 such that

(5.2) [

for all φ 6 Rί{Γ) in case qφQ; for all φ € RDΛ in case q = 0. In particular,
Rg(Γ)CL2(ω)foranyq.

PROOF. We prove the case q φ 0. First consider φ c R&(Γ) which is non-
negative and bounded. Let u = Hq

φ and consider the measure β=(l/cd)Δu2

associated with the superharmonic function — u2. Then

(5.3) [dju = -A
) ccd

— { l ] { q }
Cd J Cd
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It then'follows that the potential Coexists (i.e., ^ c o ) ? so that u2=h—Gμ with
a harmonic function h. By Lemma 3.4, there exists a positive superharmonic
function s such that u + εs e όq

φ for all ε>0. By_the same method as in the
proof of Lemma 2 of [20], we see that h + εs e όφ*. Hence h^>Rφ2. On the

G \ 2 r _

φdωg

x) <;\φ2dωx<^Hφ2(χ) (Lemma 3.5). Since h is the
least harmonic majorant of u2, it follows that h<.Hφ2. Hence h=Hφ2 or
U2 = Hφ2— Gμ.

Now we prove that there exists Mq>0 such that (5.2) holds for all
φ e RD(Γ) which are bounded non-negative. Suppose this is not true. Then
there would exist a sequence {φn} of bounded non-negative functions in Rg(Γ)
such that [φ2dω = l and Dq\_Hq

φ ]<1/2W, n = l, 2, .... Let un = Hq

φ and βn =

(l/cd)J(un)
2. Then, by (5.3), cdyjun = 2Dq[_unJ<l/2n~\ Hence Σn^βn defines

a measure with finite total mass. It follows that Gμn tends to zero almost
everywhere on X. Since un-+0 locally uniformly on X by Lemma 4.8 and
ul = HΨn2 — Gμn, it follows that {Bφj} converges to 0 a.e. on X, and hence locally
uniformly on X (cf. Proposition 1.7). This contradicts the assumption that

Hφ 2(xo)^> \φ2

ndω—l. Therefore, there exists Mq>0 such that (5.2) holds for

all φ 6 RD(Γ) which are bounded non-negative. Then we see from Lemmas 4.9
and 4.10 that (5.2) holds for all φ e

The above proof is a modification of the proof for q = 0 given in [11] and
[20].

Let A be an ^-measurable subset of Γ and let r be an ^-measurable func-
tion on Γ — Λ. We define

Rg(A; r) = {φ c Jf^(Γ); φ = r ω-a.e. on Γ-Λ}.

Obviously, Λ&(Λ; 0) = Λ|,(^) and if ω(Γ-Λ)=0, then /?^(yί; r)=Rq

D(Γ) for any
r. We shall denote HRA; r )= {ίfj; ^ c KJ(^; r)}, Hg(A)=Hg(Λ;0) arid HD>1 =

LEMMA 5.2. In case qφO or in case q = 0 and ω(Γ — A)>0, H^(A; r) is
complete with respect to the norm || \\g, if it is non-empty. In particular, H£(A)
is a Hilbert space in this case. In case q = 0 and ω(Γ — A)=0, HDΛ is a Hilbert
space with respect to D\^uu u2j.

PROOF. First suppose qφO. Let un = Hq

Ψn c Hg(A; r), ψn e R%(Λ; r) and

let {un} be a Cauchy sequence with respect to || \\q. By Lemma 4.4, there

exists u e Hg such that \\un— u\\Q-^0. On the other hand, Lemma 5.1 implies

that {<pn} is a Cauchy sequence in L2(ω\ so that there exists φ e L\ώ) such

(φn — φ)2dω-^0 (n -> oo). Then Proposition 1.7 implies that \{φn — φ)2dωx

->0 for any % e Ŷ. By Lemma 3.7, (ii), we may assume that φ is resolutive
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(hence </-resolutive). Thus, for each x c X, we have

K 2
(,n _,/ΛΛ/Λ?&x)- un(x)\2 = I ψpn-φ)dω

It then follows from Lemma 4.8, (ii) that u = H$. Hence φ e Rq

D(Γ). We can
choose a subsequence {φnj} of {φn} such that φUj tends to φ ω-a.e. on Γ. Since
<pnj = τ ω-a.e. on Γ — Λ, φ = r ω-a.e. on Γ — Λ. Hence φ a RQ

D(Λ\ r), so that
u€H£(Λ;τ).

Quite similarly, we can show that HDΛ is complete (cf. [20]]).
Finally suppose q = 0 and ω(Γ—Λ)>0. It is easy to see that if \\ui — u2\\ = 0

for uu u2 c HD(Λ; r) then ui=u2. Let un = Hφn a HD(Λ; r) with ^ e RD(Λ; r)
and suppose {un} is a Cauchy sequence with respect to || ||. Let cn = un(χo)
for each n. Then un — cn e HDΛ for each n. Since fl^.i is complete, there exists
u* € HDΛ such that un — cn-+u* in HD>1. Let u* = Hφ* with ^* e R^i. By

Lemma 5.1, \(φn — cn — φ*)2dω^»0. Since φn = r ω-a.e. on Γ — Λ, we have

(r— cn — φ*)2dω-+0. Therefore, ψ^ — τ-^c (const.) α)-a.e. on Γ — Λ. Hence

u = u* — cς HD(Λ; r) and \\un— zx||—>0.

LEMMA 5.3. Let Λ be an ω-measurable subset of Γ such that ω(Γ—Λ)yO.
Then there exists a constant Λf >0 such that

(5.2)'

for all φ c RD(Λ).

PROOF. By Lemma 5.1, we have \(φ — Hφ(x0))2dω^MD\^Hφ'2 for all φ c

RD(Γ). Hence it is enough to show that there exists Mi>0 such that
\Hφ(x0)\2<;MιD[^HφJ for all φ c RD(A). Suppose the contrary. Then there
would exist φn e RD(A), n = l, 2, ..., such that HΨn(x0) = l for all n and D\^Hφ^\
->0(/ι->oo). By Lemma 4.8, HΨn tends to constant 1, while the previous
lemma implies that it tends to constant 0, a contradiction.

§5.4. Condition (B)g for a boundary condition

We shall consider the following condition:

βφ2dω<oo for all φ c Rq

D(Λ)

for a boundary condition [_A β~].
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If tyi<ί?2, then (B)9l implies (B)Q2 (Proposition 4.3). If β is bounded (ω-
essentially) on A, then (B) = (B)0 (hence (B)q for any q) is satisfied by virtue
of Lemma 5.1.

LEMMA 5.4. Let [_A, βj be a boundary condition satisfying (B)^ and sup-

pose \ βdω>0. Then there exists a constant Mq(β)>0 such that
J A

)(5.4

for all φ c RQ

Ό(Λ) in case q ^ 0 or in case q = 0 and ω(Γ — Λ)>0; for all φ c. RD

in case q = 0 and ω(Γ — Λ) = 0.

PROOF. Let qφO or q = 0 and ω(Γ — A)>0 (resp. q = 0 and ω(Γ — A) = 0).
Suppose there is no Mq(β)>0 satisfying (5.4) for all φ c. Rη

D(Λ) (resp. c RD 0.

Then we would find φncR^(Λ) (resp. c RD i) such that \ βφ'ndω = \ and
J Λ

Dq[_Hq

φJ<l/2n,n = l,2, ... L e t ^ ί = | ^ i | + + | ^ M | for each n. Then φ* c

R£)(Λ) (resp. c RD(Γ)) and \ β(φt)2dωl>n. Using Lemma 4.9, we see t h a t

DΨH^-H^J^O (n, m->oa). Furthermore, in case q = 0, O<,H<r:;(xo)

by Lemmas 5.1 and 5.3. Therefore {Hφ*(xo)} is convergent in this case.
Hence, by Lemma 5.2, there exists φ* c R&(Λ) (resp. c RD(Γ)) such that
DQ[Hq

φ* — Hq

φ^-^0 (rc—•oo). Since ^,t is monotone increasing, Lemmas 5.1
and 5.3 imply that φ*= \imn^^φt ίo-a.e. on Γ (resp. we may assume that φ* =

^ f). By assumption, \ βφ*2dω< oo, while n < \ β{φn¥dω<=\ βφ*2dω
) A ~ J Λ J Λ

for all /z, which is a contradiction.

LEMMA 5.5. Let \_A, βj be a boundary condition satisfying (B)Q and suppose

βdωyO. If we define an inner product (uu u2

Λβ,q on H^(Λ) by

for uι = Hq

Ψι, ψi c Rp\ΛΛ, ι = l, 2, then H^(A) is a Hubert space with respect to
this inner product.

PROOF. If qΦ0 or if g = 0 and ω{Γ — A)>0, then the above lemma asserts
that || \\g and the norm corresponding to (, ) β t Q are equivalent norms. Hence
Hp(A) is a Hubert space with respect to (, )/3,q by Lemma 5.2.

Next let ^ = 0 and ω(Γ-A) = 0. Since [ βdω>0, (u, u)β = 0 implies u = 0.
J A

If {un} is a Cauchy sequence in HD(A) with respect to (,)#, i.e., (un—um un—um)rJ
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-•0 (n9 m->oo\ then D[_un— Mm]-*0 and \ β(φn — φm)2dω->0 (n> m->oo)? where
J Λ

un = HΨn, φn e RD(Λ\ 7i = l, 2, . . . By Lemma 5.2, there exists u = Hφ, φ a RDΛ

such that D[_un — &]—•() (rc->oo). On the other hand, the previous lemma

implies that \ β{{φn — cn)—(φm — cm)}2dω->0 (n, TTC->OO) where cn=\φndω
JΛ J

(τι = l, 2, . . ) . It follows that {cn} is convergent. Let c ^ l i n v ^ c v By the

previous lemma again, \ β(φn — cn — φ)2dω->0, so that \ β{<ρw — (^ + c)}2dίθ->0.
J A JΛ

Hence (un — (u + c), ίί«-(iί + c))^-*0. Therefore flz)(Λ) is complete with respect
to the norm induced by (, ) β .

§5.5. The existence theorem

Let QΛ, βj be a boundary condition satisfying (B)q. We shall denote by
^ the norm induced by (, ) β . q on Hg(Λ\ i.e.,

for U = H%Q H£(A). Now, for functions r and γ given on Γ — A and on A res-
pectively, we consider the following conditions, which depend on [A, β~] and

(Ύ)q: \ βφ\dω<oo for some φλ c RD(Λ; r).
JΛ

(T)q: For any ψ a RBD(A\ cpγ is ω-summable and there exists a constant
K7>0 such that

Γ f

\ φγdω <,Ky\\Hl\\β q' JΛ

for all φ e RBΌ{A).

REMARK, (a) If r satisfies condition (T)β, then \ βφ2dω<oo for any
J Λ

φ e Rί)(A; r) by virtue of condition (B)^.
(b) r = 0 satisfies (Ύ)q because of (B)β.
(c) If β is bounded on Λ> then any r on Γ — A for which JR̂  ( ί̂; r) is non-

empty satisfies (T\. (Cf. the similar remark for (B)q in the previous section;
also cf. Doob [11].)

(d) If P[Λ, β; r, r; ?H has a solution u = H% then, by Theorem 4.1,

2)β[M, ffίU+ ( (βψ + γ)φdω = 0 for all ^ c Λ5Z?(^). It follows that

\ γφdω ^
)A
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for all φ e RBD(Λ). Thus condition (Γ% is a necessary condition for P[Λ, β;
r, r; q~] to have a solution, under conditions (S)q and (Ύ)q (cf. (a) above).

(e) By virtue of Lemma 5.4, condition (Γ% can be replaced by the follow-
ing (under condition (B)9):

(τyq: For any φ e RBD(A\ φγ is ω-summable and there exists a constant
^ > 0 such that

i JΛ

for all φ e RBD(A) in case qφQ or in case 9 = 0 and ω(Γ — Λ)>0; for all <ρ e RDΛ

in case ^ = 0 and ω(Γ — Λ)=0. In addition \ 7-^ = 0 in case q = 0, ω(Γ — Λ)=0

and β = 0 α)-a.e.

Thus, under condition (B)9, (Γ)tf can be stated in a form independent of β.

(f) In case ^ = 0, ω(Γ — Λ)=0 and j5=0 ω-a.e., (Γ% implies W ^ ^ O , since

^?=1 belongs to RBD(T). Cf. Remark 1, (b) in §5.1.

(g) If γ is ίo-square summable on A (and in addition \γdω = 0 in the case

of (f)), then it satisfies (Γ% by Lemma 5.1. Cf. [11] and [20].
Now we have the following existence theorem for the problem P[Λ, β; r,

r; qJ
THEOREM 5.2. (The existence theorem) Let [Λ, /9] be a boundary condition

satisfying (B)q and let v and γ be ω-measurable functions on Γ — Λ and A res-
pectively satisfying conditions (Ύ)q and (Γ%. Then the problem P[Λ, β; r, γ q~]
has a solution u — HI with φ e RD(Γ).

This theorem for g = 0 includes the existence theorems in Doob [11] (for
the Martin boundary) and in Maeda [20] cf. the above remark, (c) and (g).

§5.6. A proof of the existence theorem

(I) The Neumann problem for g = 0, i.e., PQΓ, 0; 0, γ 0].

For each u = Hφ with φ e RD,IΓ\RBD(Γ), let

l(u) = — \φγdω.

By condition (Γ), I is a continuous linear form on HD,\Γ\HBD^ where HBD —

{Hφ; φ c RBD(Γ)}. By Lemma 4.11, we see that HD,IΓ\HBD is dense in the
Hubert space HDΛ. Therefore there exists uo = Hψe HΌΛ such that

for all u 6 HD>ιΓ\HBD, i.e.,
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D[_Hφ, uoj = - \φγdω

for all φ c RD,IΓ\RBD(Γ). Since \γdω = O by assumption, this equality holds

for all φ e RBD(Γ). Hence γ is a normal derivative of u0 on Γ by Theorem 4.1,
so that u0 is a solution of P[T, 0; 0, γ; 0].

(II) Dirίchlet principle: ΐ[_Λ, 0; r, 0; g] m£fc ω(Γ — Λ)>0.
For this problem, condition (T% is reduced to Rg(Λ; τ)Φ0 (see Remark,

(c) in the previous section). Then H&(Λ r) is a non-empty convex set and is
complete by Lemma 5.2. Therefore, there exists uo = Hl c H^(Λ; r) such that

For any φ c Rg(Λ) and for any real number λ, uo + λHl c Hg(Λ; r). Hence
^ I k o l l , for alU, i.e.,

for all λ. It follows that Dq[_u0, H^^O. Therefore u0 has a normal deriva-
tive zero on Λ, and hence it is a solution of P[IΛ, 0; r, 0; q~].

(Ill) General case: V[_Λ, β\ r, γ; gr], excluding the cases (I) and (II).
Since r satisfies (T)^ with respect to [Λ, 0], there exists a solution uλ — H%x

of the problem P[Λ, 0; r, 0; g] (the case (II); if α)(Γ-^) = 05 then Mχ = 0). We
consider the linear mapping

Ku)= -

defined for u = Hq

φ c Hq

BD(Λ) ={HQ

φ; φcRBD(Λ)}. By conditions (B), and (T),,
we see that

Γ < Y ( βψ\dcύ)([ βφ2dω)
' \JΛ / \JΛ /

and by condition (Γ)q, we have

for all φ c. RBD(Λ). Hence I is a continuous linear form on HβD(A) with the
norm || H^. By Lemma 4.11, we see that H^D(Λ) is dense in the Hubert space
Hi)(Λ) (Lemma 5.5). Hence there exists u2 = Hί2 c H^(Λ) such that

for all u c Hq

BD(Λ\ i.e.,
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for all φ e RBΌ(Λ). Therefore, by Theorem 4.1, uQ — m + u2 has a normal deriva-
tive βψo+γ on Λ, where φo=φι + φ2. Obviously 0 o = r α)-a.e. on Γ — Λ. Hence
u0 is a solution of ¥[_A, β; r, γ; q~].

§5.7. General properties of solutions

In this and the next sections, we shall always assume that, for a given
problem P[Λ, β; r, γ; qj, [_Λ, β~] satisfies (B)q9 r satisfies (T)q and \γ\ satisfies
(T)q (cf. Lemma 5.6 below). Also we exclude the case g = 0, ω(Γ — Λ)=0 and
/9=0 6ί)-a.e.. Thus the problem has a unique solution.

First we remark

LEMMA 5.6. If \ϊ\ satisfies (Γ% with respect to [_Λ, β~], then γ+, γ~ and γ
also satisfy (Γ% and if u — H% is the solution of PCΛ β r, 7- q] in this case,
then

(5.5) (u9H'φ)βtq=-[ γφdω
J Λ

holds for all φ e Rg(Λ).

PROOF. The first assertions are obvious if we remark that φ e RBD(Λ)

implies | φ \ e RBD(Λ) (Lemma 4.9).
For any φ e RQ

D(Λ), let ^ = max(min(^7, n), —n). By condition (Γ% for
I γ I and condition (B)q, we see that

Since \γφn\ increases to |γφ\, it follows that \\γφ\dω<oo% Hence, by the

corollary to Theorem 4.1, we conclude that (5.5) holds for any φ e Rjr,(Λ).

THEOREM 5.3. // r^>0 ω-a.e. on Γ — Λ and r<^0 ω-a.e. on A, then the solu-
tion u of P[Λ, β; τ,γ; qj is non-negative.

PROOF. Let u = H% and let ψ+=max(0, 0). Since φ=r ^ 0 co-a.e. on Γ — A,
φ+ — φe R%(A). Hence, by the above lemma,

\ γφdω.
j A

Since r ^ O ^-a.e. on A and φ+>φ, we have \ γφ+dω< \ γφdω. Therefore
JΛ JΛ
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Hence

On the other hand, Dq[_Hq

φ-^\^Dq[_u] by Lemma 4.9. Also, [$ψ+2dω<\βφ2dω.

Hence \\Hq

ψ+\\β>q<,\\u\\β,q. I t then follows t h a t \\u-Hq

φ+\\β$q = Q or u = Hq

ψ+>0.

COROLLARY. Let uι be the solution of PQΛ, /?; r* , fr; <jϋ /o^ βαcfe i = l, 2.

^ r 2 ω-α.e. on Γ — Λ and ϊi<,r2 o)-a.e. on A, then ui^>u2.

THEOREM 5.4. Let u{ be the solution ofP[_A^ /?,-; r t , r*; q~] for each i = l, 2.
(a) > ί i ) 4 (b) βi ̂ /? 2 ω-α.β. o?ι ^ 2 J (c) Γi^r 2 α)-α.β. on Γ — Au (d) ri^Γ2 ω-α.e.

on A29 (e) r 2 ^ 0 β)-α.β. on Aλ — A2, (f) r i ^ O ω-α.e. on Γ—Aλ and (g) n ^ O ω-α.e.
on Au then uι^>u2.

PROOF. Let Ui = Hq

Ψι, i = l, 2 and let 0* = max(0i, 02) and 0* = min(0i, ψ2).
By (c), 0i ^ 02 ω-a.e. on Γ — ^1# By (f) and (g), 0i ^ 0 ω-a.e. (the previous theo-
rem). Hence, together with (e), we see that 0i^>02 ω-a.e. on Aι — A2. It
follows that 0* —0i = 02 —0* e RV(A2)CRD(AI). Therefore, by Lemma 5.6, we
have

(5.6) (Hi,#$ - u i ) 0 l f β = - \ n(Φ*-Φύdω
JΛ

and

(5.7) (M2, Hq

φ^

Now

(uu HU-Ul)βι,q = (uu Hq

ψ*-Uί)β2>q+

Since φx ;> 0 and 0* — φλ >̂ 0, condition (b) implies that the last term is non-
positive. Hence, by (5.6), we have

(5.6)' (uuHU-uύβ^-X n(Φ*-Φύdω.

Combining (5.6)' and (5.7) and using the relation φ* — φι = φ2 — φ*, we obtain

2 2,q^-\ (ri-r2)(Φ*-φi)dω.
J Λ 2

By condition (d), the right hand side is non-negative. Hence

Thus we have
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— 2{(uu Hq

φ* —

By virtue of Lemma 4.9 and the relation (ψ*)2 + (ψ*)2 = Ψl + Ψ2, we see that the
last expression is non-positive. Hence we have u\ = H%*^HlΦ = u2*

§5.8. Dependence of the solution on τ and γ

THEOREM 5.5. Let u be the solution of P[Λ, β; r, γ; q} and let M be a posi-
tive constant. If | r |<^M ω-a.e. on Γ — Λ and if \γ\<>Mβ ω-a.e. on A, then

PROOF. First let r ^ O and γ^O. Then ^ 0 by Theorem 5.3. Let
u = H% and φ1 = mm(<φ, M). By Lemma 4.10, φλ e R^Γ) and Z>*DffJJ < D ' M
By the assumption that τ<LM ω-a.e. on Γ — Λ, we see that φ — ψιζRg(Λ).
Therefore, Lemma 5.6 implies

Dqiu, u-mj = -

φ-ψι>0 everywhere on Γ and if φ(ζ)-φ1(ξ)>0, then 0(£)>M, so that β(ξ)φ(ξ)

> Mβ(ξ) ^ -r(f)• Hence Dq\jι,u- Hq

φJ <: 0. Hence

0 ^ Z)ΐα - HiJ ^ Dqtmj - j

If ? ^ 0 or if a>(Γ-Λ)>0, then it follows that u = Hq

Φi. If q = 0 and ω(Γ-Λ)
= 0, then it follows that either u = HΨl or u = c (const. >Λf). Suppose the

latter case occurs. Since \βdω>0 in this case, Lemma 5.6 implies

0 = D\jf\ =

a contradiction. Therefore u = H%λ in any case. By Proposition 3.1, (ii),
H%ι <; M. Hence u<M.

In the general case, we consider solutions uι and u2 of P[X /?; r+, —r~; Ĥ
and P[yi, β; r~; — r + ; jH respectively. Then u = ui — u2,0<,uι<,,
^ M. Hence I ^ I < M.

COROLLARY. Lei u be the solution of P[_Λ, β r, γ qj and let M be a non-
negative constant. If r<,M ω-a.e. on Γ — Λ and if r^>0 ω-a.e. on Ά, then

PROOF. Let m be the solution of P[Λ, β; rh, 0; qj. Then uλ<Mby the
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above*theorem, while u<.uι by Theorem 5.4 (or the corollary to Theorem 5.3).
Hence u<,M.

THEOREM 5.6. Let a boundary condition \_A^ β~] and q be given.
(i) There exists M>0 such that if u is the solution of P[Λ, β; 0, γ; qj,

then

Dq[υΓ\<>M[ γ2dω.
JΛ

(ii) Given a compact set Z in X, there exists Mz>0 such that if u is the
solution of PCΛj β 0, γ gG, then

\u(x)\2<Mz\ γ2dω
JΛ

for all x 6 Z.

PROOF, (i) First, we consider the case qφO or the case q = 0 and
ω(Γ-Λ)>0. Let u = H9

φ. By Lemmas 5.6, 5.1 and 5.3,

<] — \ γφdω
Λ JΛ

\ i / 2 / r _ \ i / 2

where Mdepends only on A and q. Hence Dq\^u^<,M\ γ2dω.
J Λ

Next, consider the case q = 0, ω(Γ — Λ) = 0 and β^O ω-a.e. In this case

(βψ + r)dω = 0, since 0 = 1 belongs to RBD(Λ). Let c = (\rdω)/(\βdω\ Then

β(φ-c)dω = 0. Let RD β={φeRD(Γ) \/fydft> = 0}. We shall show that there

exists M/9>0 such that \<p2dω<^MβD[_Hφ2 for all ^ e ΛD,^. By Lemma 5.1,

\Hφ(x0)\2}.

Therefore, it is enough to show that there exists ikf >0 such that \
MD[_Hφ~] for all φ e RD,β> Suppose this is not true. Then we would find
φn 6 Rυ,β, n = l, 2, •.., such that Hφn(x0) = l for each n and D[_Hφ^]-*Q (Λ->OO).

Since 1 — φn e RD>1 and \βφndω = 0, we have, using Lemma 5.4,

1 / 2 / Γ
( \ 2β(l-φn)

2dω
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a contradiction.
Now we have

<,{\γ2dω

It follows that

βdώ

(ii) By Proposition 1.7, there exists Kz>0, depending only on Z and q,
such that

for all x e Z. Hence

for all xe Z.

If qφO or if q = 0 and ω(Γ — Λ)>0, then Lemmas 5.1 and 5.3 imply

)9\jf\. Hence, by the above result, we see that

I u(x) 12 <;KlMqD
q[_u~] ^ K l M q M \ γ 2 d ω .

If r̂ —0, w(Γ — A) = 0 and /?^0 < -̂a.e., then consider φ — ceRD,β. Using
the result in (i), we have

γ2dω

2
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Hence

I u(x)12^2KUMβM+ —±—Λ[fdω

\\βdω)

for all x e Z.

THEOREM 5.7. Let ω(Γ — A)>0 and {τn} be a monotone sequence of ω-

measurable functions on Γ — A. Suppose all rΛ, n = l, 2, ••• and ro = limM_>ooΓw

satisfy (Ύ)qfor [Λ, # ] . Suppose furthermore there exist φn e R&(A; vn\ n = l,

2, ..., such that Dq[_Hq

φn — fl"Jm]->0 (rz5 m~•oo). T/ten ίΛe solution un of

P ^ 5 /9; rΛ, 0; (7] converges to the solution u0 of P[_A, |S; r0, 0; j ] locally uni-

formly on X and Dq[_un — uo~] -> 0 (n -> 00).

PROOF. We assume that {rw} is monotone increasing. Let un = Hln,

n = 0, 1, .... By the corollary to Theorem 5.3, {un} is monotone increasing

and un<,u0 for all n. Next let vn — Hq

Pn be the solution of PCΛ, 0; rW5 0; q~]

for each Λ = 0, 1, .... Then it is easy to see that Dq{_vn-υm~]^Dq[iHq

Ψn-Hq

φv^

-»0 (n, 7τι->oo), Also, again by the corollary to Theorem 5.3, {vn} is mono-

tone increasing and vn^v0. Since \β(ψ0 — ψι)2dω<oo and \β(p0 — βι)2dω<°o

by condition (T)q for r0 and ri, we have \β(φn — ΦmXPn~Pm)dω->0 (rc, ττι->oo).

Since φn — pn e R^A) for each rc, Lemma 5.6 implies

Dq[_Un — Um (un—Um) — (vn — Vmy]= —\β(Φn~Ψm)L(Ψn~Φm)~(Pn~PmX]dθ)

J

<Ξ \ /?(0« — Φm)(Pn — Pm)dθ).

Thus we have

i;« - i;w] - Dq[un - umj + ^β(ψn - φm)(pn - pm)dω.

Therefore

>O (il, TΠ ~> oo).

Hence {un} is a Cauchy sequence in H$.
Next let w^lim^oo^w and (/ί=lim^^(/»w. Then Proposition 3.1, (iii) implies

that δ = JΪ | . By Lemma 4.8, we see that ue Hg and Dq[un — ίΓ]-*0 (/ι->oo).
Obviously ψ^ro α)-a.e. on Γ—A. By Theorem 4.1,
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for all φ e RBD(A). Letting n -> oo, we obtain

Dq[u, Hq

φ~l = - [βφφdω

for all φ e RBD(Λ). Hence u is the solution of P[Λ, β; r0, 0; 9], i.e., ύ = u0.

COROLLARY. Let ω(Γ — Λ)>0 and let x be an ω-measurable function on
Γ—Λ satisfying (T)q. Let rw = max(min(r, n), —n) on Γ — Λ. Then the solu-
tion un of P[Λ, β; rΛ, 0; q~] converges to the solution u0 of P[Λ, /?; r, 0; qf| locally
uniformly and Dq[_un — uo~] -* 0 (n -> °°).

PROOF. First suppose rΞ>0. It is easy to verify that each rn satisfies
(T)q. Let UO = HΦQ and let ^w = min(0θ5 n) Then φne R£(Λ; rn) for each n
and Dq[_Hq

φn—Hq

Ψm]->ύ (n,m^>00) by Lemma 4.11. Hence our corollary
follows from the theorem. If r is arbitrary, then it is enough to consider r+

and

§5.9. Dependence of the solution on boundary condition

Theorem 5.4 gives one result on the dependence of the solution of our
problem on boundary condition [Λ, /?]. We shall give two more results in
this direction.

THEOREM 5.8. Let {An} be a monotone decreasing sequence of ω-measurable
subsets of Γ and let Λo = Γ\n=\Λn. In caseq = 0, we further assume that ω(Γ—Λι)
>0. Let 7*1 be an ω-measurable function on Λ\ such that \ jι \ satisfies (Γ% with
respect to [Λx, 0] and let γn be the restriction of n to Λn (n = 0,1, ...). Then the
solution un of PCA, 0; 0, γn; q~] converges to the solution u0 of P[y40, 0; 0, γo; q~]
locally uniformly on X and Όq\_un — uo~] —• 0 (n -> 00).

PROOF. Obviously, each γn satisfies (Γ% with respect to [_Λm OJ, n = 0, 1,
. Let Un — Ή.%^ τι = 0, 1, . First suppose r i ^ O on Λλ. By Theorems 5.3

and 5.4, {un} is a monotone decreasing sequence of non-negative functions.
Thus ψ = \ϊmψn and ϊί = \\mun exist and 2 = fΓJ by Proposition 3.1, (iii). Obvi-
ously 0 = 0 ω-a.e. on Γ — Ao. If n<m, then ψn^>ψm (ω-a.e.) and φm c Rg(Am)C
Rr)(Λn). Since n ^ 0 , we have, by Lemma 5.6,

Dq[_Un] = - \ nΦndω ^ - \ TiΦJω = Dqlum~}.
JΛn JΛm

It follows that {Dq\^un~_\} is convergent. Also we have

Dqiun, um} = - \ γiφmdω = - \ γiφmdω = DqiUm
JΛn JΛm

Hence
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J->0 (71, 771->°o).

Thus {un} is a Cauchy sequence in H£. It follows that u e £ΓJ, i.e., 0 e Rβ(Γ)
and that £*[>„-ϊΓ]-*0 (rc-*oo). Since Rg(A0)CRr)(^n) for any τι, Theorem
4.1 implies

D9[_un, Hφ~] = — \ γiψdω = — \ yλψdω
JΛn JΛX

for any φ e RBD(ΛQ) and for any n. Letting n -> oo? we obtain

for any φ c RBD(Λ0). Therefore u is a solution of P[A, 0; 0, 7Ό; g], i.e., ύ=u0.
If 7Ί is not necessarily non-positive, then we consider — γf and — γΐ and

obtain the required result.

THEOREM 5.9. Let A be an ω-measurable subset of Γ and let {βn} be a
monotone sequence (increasing or decreasing) of non-negative ω-measurable
functions on A such that QΛ, βn~] satisfies condition (B)q for each n = 0, 1, ,
where β0 = lim^oo βn. In case q = 0 and ω(Γ — A)=0, we further assume that βn^0
ω-a.e. for any n = 0, 1, . Let r be a function on Γ — A satisfying (T)g with
respect to all [_A, βnj, n = 0, 1, and γ be a function on A such that \ γ \ satisfies
(Γ)q with respect to [A, βoj. If un is the solution of P[Λ, βn; r, γ; q~] for each
n = 0, 1, ..., then un tends to u0 locally uniformly on X and Dq[un—u0J-+0 as

PROOF. Let un = Hψn, n = 0, 1, . First suppose r ^ O on Γ — A and r ^ O
on A. If /5W increases to β0 (resp. decreases to β0), then {αw} is a monotone
decreasing sequence (resp. monotone increasing sequence, dominated by u0)
of non-negative functions by Theorems 5.3 and 5.4. Hence ψ=limφn and ΐi =
lim un exist and u = /ΓJ. Obviously, ψ = r ω-a.e. on Γ — yi. Since ψn — ψm£ RD(Λ),

Lemma 5.6 implies

Ώq[_un — um unj= —

for any n,m. Hence

Let /9* = /9o (resp. =βλ) and φ* = φ1 (resp. =φ). Then \βHΦn-βmΦ

a.e.). By conditions (B)q and (T)9, we see that / = { β*(ψ*)2dω<oo. Hence

_uH-umΊ<:\ β*φ*\ψn-ψm\dω
JΛ

l/2
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Now φn converges to ψ, \φn — φm\^\Φi — φ\ and \ β^(φι — φ)2dω<oo by
J Λ

Hence \ β*(φn — φm)2dω-+0(n9m-+oo). Therefore i ) ? [ ^ - ί ί J - > 0 (n, m-
J ΛΛ

i.e., {un} is a Cauchy sequence in Hg. It then follows that ueHg and
Dq[_un — u]-+Q (n-+oo). For any φ e RBD{Λ).

) Λ

By the above result, Dq\jιn, Hq

φ~]->Dq[u, Hq

φ~] (τι->oo). On the other hand,

since \β*(φ*)2dω<.°o, \β*φ2dω<°° by (B)q, 0<,βnφn<;β*φ* and βnφn-+βoψ,

the Lebesgue convergence theorem implies

βnφnφdω - * \ βoφφdω (n -> oo),

Therefore

for all <£> c RBD{Λ). Hence we have u = uQ by Theorem 4.1 and the present
theorem is proved in case r >̂ 0 and 7- <J 0.

In the general case, we consider problems PQΛ, βn;τ
+, — r";?H and

, jSΛ; r", — r + ; gH and obtain the theorem.

§5.10. Dependence of the solution on q

Finally we investigate the dependence of the solution of our problem on

THEOREM 5.10. Let qι<^q2 and suppose [_Λ, β~} is given to satisfy (B)Ql;
in case gi = 0 and ω(Γ—A) = 0, suppose further that β^O ω-a.e. Let r (resp. γ)
be a non-negative (resp. non-positive) function on Γ — Λ (resp. on A) satisfying
(T)Ql (resp. (Γ)9 l) with respect to QΛ, βj. If U{ is the solution of PCΛ, β; τ,γ; qf]
for each i = l, 2 and if Uj are both bounded, then uι^>u2.

PROOF. By Proposition 4.3, R^(Γ)CRDKΠ- Hence [Λ, β~] satisfies also
(B)?2. Since u\ is bounded, r is (ω-essentially) bounded. Hence Lemma 4.14
implies that r satisfies (T)^2 and Lemma 4.14 and Proposition 4.3 imply that γ
satisfies (Γ%2. By Theorem 5.3, m are non-negative. Let Ui = H% ί = l, 2.
Since 0i = 02:=r ω-a.e. on Γ — Λ, φι — φ2 and 0* = max(0i — ψ2, 0) both belong to
RBD(Λ). Hence
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by Theorem 4.1. On the other hand, D^HlQ^D^Hp.-φJ by Lemma 4.9.
Therefore

(5.8) D"^Hl^^

By Lemma 4.14, we have

Since /aΓψi-̂ -ψ^SsO, u 2 ^ 0 and qi^q2, we have

Using Lemma 4.14 again, we have

= - ( 0902 + r) [0* -
JΛ

Hence, together with (5.8), we obtain

β(φι-φ2)[.Φ*-(Φi-φ2)'2dυ)+{ β[_φ*-(φι-φ2)Jdω
Λ JΛ

Therefore we have fl'Jj,_(ψ1_<&2) = 0. Thus, using Lemma 3.2, we obtain

Ul = Hq

ψ\ = E%\ + Hp, ^ H%\ ^ E%\ = u2.

The assumption that #( are bounded can be eliminated; we shall prove
this in the next chapter (§6.4). We also postpone to the next chapter the
discussion on the convergence of solutions according to a monotone conver-
gence of #'s.

CHAPTER VI Green Functions for General Mixed Problems.

§6.1. #-g-Green function

We consider an ω-measurable function a(ξ) on Γ such that 0 <: a <; 1 and
regard it as a boundary condition equivalent to []Λα, βaJ, where Λa — {ξ e Γ
a(ξ)>0} and βa(ξ) = l/a(ξ)-1 on Aa. The condition (B\ for [Λα, βa~] becomes
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(A),: [ (-—-ί)φ*dω<oo for all ψ e R&Aa\

In this chapter, we shall always assume that a satisfies (A)g for a given q.
In case q = 0, we also assume that a=£l a>-a.e. on Γ.

For each y e X, consider the non-negative bounded immeasurable func-
tion xqy on Γ satisfying dωq

y = xq

ydω (cf. Corollary 3 to Theorem 3.1). By
Theorems 5.1 and 5.2, there exists a unique solution Όq

a>y of the problem
P[_Λa, βa 0, — cd%y q~] for each y e X Here, we remark that — cdx

q

y is con-
sidered only on Λa and that it satisfies (Γ)q with respect to [_Aa, βaj, since it
is bounded (cf. Remark, (g) in §5.5). Let Ui>y = H^a>r Φq

ay is determined ω-
a.e. and belongs to R£(Aa).

The function

is called the a-q-Green function. This is the Green function for the boundary
condition α. In fact Φi>y can be regarded as the boundary value of Gq

a>y,
which vanishes ω-a.e. o n f - 4 and Proposition 4.4 implies

PROPOSITION 6.1. For each ye X, £ ^ Λαs & normal derivative $aΦ
q

a,y on

Aa.
In case a = 0 (i.e., the case of the Dirichlet problem), Aa = Γ, and hence

Uq

Oιy = O, i.e., Gly=G9y, for each ye X
The following lemma, which is an immediate consequence of the definition

of Uί>y, is fundamental in the subsequent discussions:

LEMMA 6.1. Let ycX. Then Uί>y satisfies

cdH%y) - D*lUl,y, Hq

φ-]

for all ψ e Rg(Aa)- Conversely, if u = Hq

h φ e Rg(Aa), satisfies

cdH
q

ψ(y) = Dq[_u, H%}

for all φ e RBD(Aa), then u = Uί>y.

PROOF. By the definition of Uq

a,y and Theorem 4.1, u = Uity (u = Hl) if
and only if

Dq[_u, Hq

φ~] = — \iβaφ—cdx
q

y)φdω

for all φ c RBD(Aa). Since xy is bounded, RBD(Aa) can be replaced by Rq

D(Aa)
by Lemma 4.11 (cf. Lemma 5.6). On the other hand

-\(βaφ-cdx
q

y)φdω= -
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Hence we have the lemma.

§6.2. Expression of the solution in terms of U%>x

THEOREM 6.1. Let x and γ be functions on Γ—Λa and on Aa respectively',
satisfying (1% and (Γ% with respect to [_Λa, /?«]. Then the solution uQ of

α, βa; r, r; ql is given by

(6.1) uo(χ) = Hl(x)--^D^:Uί>x,HU—^{ βaψΦi,xdω-±-[ γΦq

a>xdω
Cd Cd ) Λ ( χ Cd ) Λ a

for any ^ e l , where φ is any function in R^(Aa; r). In particular, uo = Hf[.Q

satisfies

(6.2) D'ZUiιX, uo3+[ βaφoΦί)Xdω+{ γΦq

a>xdω = 0
)Λa )Λa

for any x e X

REMARK. The right hand side of (6.1) does not depend on the choice of
φ e R£(Λa; r), by virtue of Lemma 6.1.

PROOF of the THEOREM. Since ΦίfXζRg(Λa), (6.2) is an immediate con-
sequence of the fact that u0 is the solution of P[^Λa, βa; r, γ; q~] and Lemma
5.6. On the other hand, φQ — φ£ Ri){Λa) for any φ e Rt){Aa\ r). Hence Lemma
6.1 implies

Hence, using (6.2), we obtain (6.1).

The converse of the last half of this theorem immediately follows from
(6.1) and (6.2):

COROLLARY. Let τ and γ be as in the above theorem. If φ0 e R})(Λa r) and
UQ = H$Q satisfies (6.2) for all x e X, then u0 is the solution of V\^Λa, βa; v,γ; q~}.

THEOREM 6.2. Let r and γ be as in the previous theorem. Suppose, for
each x e X, Gί)X has a normal derivative γx on Γ such that it coincides with
βΦq

a>x on Λa and γxr is ωsummable on Γ — Λa. Then the solution u0 of ¥\~_Λa, βa\
r? ϊ q~} is given by

τγxdω-\ γΦq

a>xdω\.
Γ-Λa JΛa )

PROOF. Since Gq

x has a normal derivative cdΆ on Γ* (Proposition 4.4),
UqafX has a normal derivative γx — cdx

q on Γ. By assumption, (γx — cdx
q

x)φ is
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co-summable on Γ for any φ e R^i^a r). Hence, by the corollary to Theorem
4.1,

D'ZUi,xy Hft = - \{γx~cdxΐ)φdω

Γ-Λn

γxrdω~ \ βaΦ
q

a,xφdω + cdH
g

ψ(x)

for any φ e R£(Λa; r). Then we obtain the theorem by virtue of (6.1) in the
previous theorem.

REMARK. If X is a regular compactification and if Λa is relatively open,
then a normal derivative γx of GitX, if it exists, is equal to βΦ%tX ω-a.e. on Aa

(cf. Propositions 6.1 and 4.5).

§6.3. Properties of IT*,,

THEOREM 6.3. UZιX(y)=Ui,y(x) and Gq

a(x, y) = Gi(y, x) for any x, yd X.

PROOF. By Lemma 6.1,

cdUltX(y) = D«lUl,y, Ul,χ-]

Hence UitX(y)= Uq

a>y(x). Then, by the corollary to Theorem 2.1, Gq

a(χ, y)
= Gί(y, x).

THEOREM 6.4. //a\<^a2 on Γ, then

0<Γ TJq <CTTq

for any x e X.

PROOF. By Theorem 5.3, Uq

a>x^>0 for any a. If α i ^ α 2 , then ΛaiCΛa2

and βai^>βa2 on ΛΛl. Hence, by Theorem 5.4, UiltX<Ui2tX.

THEOREM 6.5. Uq

a>x is a bounded function for each x c X.

PROOF. Fix ^, a and x and let U— UίtX. Let ^0 be a positive number
such that VQ= { γc X; G9

x(y)7>λ0} is compact and let g\= min(Gί, λ) for λ^>λ0.
We shall write g0 for gyQ. Let λι = supycvQU(y). Then 0^>ίi<oo. We con-
sider two functions v^=U+g0 and v1 = min(λ0-i-λu v). Both υ and vλ are q-
superharmonic, v = Gί>x on X— Vo and v = vχ on Vo. Let vι = uι + g*9 where uι

is ^-harmonic and g* is a ^-potential. Then it is easy to see that ui = H%l

with 0i = min(Ao + Ai, (P̂ ,*) (cf. Lemma 3.5). By Lemma 4.12, v e Dq, and it
follows that t x e Dq and ^ [ v J ^ 2 > 9 M (cf. Lemma 4.10). Therefore, Uι e Hg
i.e., 0i 6 Rq

D(Γ), and g * 6 Dg by Lemma 4.6. Now we compute
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Since Φq

a>x — ψι e Rg(Λa\ Lemma 6.1 implies

(6.3) Dq\JJ, U

Since y - ^ ^ O o n Vθ9 DQ[.go, v — v{] = Dq[_gλ, v — v{] for any λ^λ0. We have

goJ-Dqtgλ, g*J

Since g0 and g* are continuous ^-potentials, we can show, by using Lemma
4.12 (cf. the methods in the proofs of Hilfssatz 7.5 and Satz 7.2 of [7]), that

o(χ) and Dqigλ, g*3-+cdg*(x) as λ^oo. Hence

(6.4) D'Zgo, t;-i;i] =

By (6.3) and (6.4), we have

D'Zv, v-vίl^cAUW-uxίxH go(x)- g*(x)}

= cd{v(x) — vi(x)} =0.

Hence, Dq[v{]<,Dq[y~] implies

It follows that v — vλ. Since vx is bounded, so is v. Since 0<; U<,v, U is also
bounded.

COROLLARY. For any compact set Z in X, there exists a constant Kz>0
such that Ua,y^Kz for all yzZ.

PROOF. This follows from Proposition 1.7, Theorem 6.3 and the above
theorem.

The next theorem follows immediately from Theorems 5.8 and 5.9:

THEOREM 6.6. Let {an} he a monotone sequence of boundary conditions and
let α = limŵ ootfw. If q = Q, then we assume an^0 ω-a.e. for all n = 0, 1, ... In
each of the following two cases, Uqan>x tends to Uq

a>x locally uniformly on X and
DqlUintX- Uit J - * 0 (n->cπ)for any x 6 X;

(a) {<xn} is decreasing and each an is a characteristic function of a subset
ΛnofΓ.

(b) Aa ΞΞ^Λafor all n.
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§6.4. Dependence of Uq

a>x on q

THEOREM 6.7. Let q\^qi\ if qi = 0, then assume that a^l ω-a.e. Then

Uq

a)x :> V%\x and Gq

a\x :> Gl\x

for any x e X.

PROOF. By Lemma 3.2, we have %qi^>xx

2. Let v be the solution of
P[Λα,/?«; 0, -caxp qxj Theorems 5.3 and 5.4 imply 0<v^Uq

a]x. Thus,
by Theorem 6.5, v and Ul\x are both bounded. Hence Theorem 5.10 implies
Ulι,χ<Lv^9j& hence Uq

a

2

)X<, Uq

a)x. The inequality Gq

a\x<,Gq

a\x then follows from

Theorem 2.3.

Next we give an improvement of Theorem 5.10:

THEOREM 5.10'. Under the same assumptions as in Theorem 5.10, we have
uι^u2 even if uu u2 are not bounded.

PROOF. Let rw = min(t, n\ n = l, 2, ••• and let uc

n° be the solution of
P[yl, β\ xm 0; qi] for ί = l, 2. Then, by Theorem 5.5, uin are bounded. Hence
Theorem 5.10 implies u^^ui2^ for each n. On the other hand, the corollary
to Theorem 5.7 implies that {z4/}} tends to the solution v{ of PQΛ, β; r, 0; qϊ}
asn->oo for each ι = l, 2. Hence vι~^>v2.

Next let w{ be the solution of P[Λ, β;09γ; qϊ], i= 1, 2. Let a = 0onΓ — Λ

and α = 1/(1 +iff) on Λ. Then Λ = Λa and β=βa. Therefore, by Theorem 6.1,

we have

*,<*) = - - L f γΦi\xdω (£ = 1,2)

for all A; 6 X Since Φq

a)x ^ Φ^^ ω-a.e. by the above theorem and since γ <J 0,
we obtain wι(x)7>w2(χ) for all Λ; 6 X. Since m = Vi + Wi (i = l, 2), we have the
theorem.

THEOREM 6.8. Lei {< }̂ δe α monotone increasing (resp. decreasing) sequence
such that qn-^q (n-*oo). If qλ = 0 (resp. ^ = 0), then we assume that aφ\ ω-
a.e. on Γ. Then Uq

ay decreases (resp. increases) to Uq

a>x and D[_Uq

a^x— Uq

a>x~]->0
(n -> oo) for any x e X.

PROOF. Fix x e X and let φn = Φq

a^x, Un= Ul»x. By Theorem 6.7, {ψn} and
{Un} are monotone decreasing (resp. increasing) and are uniformly bounded
by Theorem 6.5. Hence ψQ = \\mn^ψn and Mo = limn_>ee£/n exist and ψo = O ω-a.e.
on Γ — Λa. Using Lemma 3.2, Proposition 3.1 and Theorem 3.6, we have

I Un-Hq

ψQ I = \Hlι-Hl: I + \Hq

ψ«-Hq

Ψo\
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as n->oo. Hence uo = H?,.Q.

If qn<,qm then Dq»\iUm~]<1D
q™\ΊJm~l. Hence, using Lemmas 6.1 and 3.2,

we obtain

= cdUn(x)+cdUm(x)-2cdHHx)- [βa(Φϊ

-Φm(x) -> 0 (n,m-+ °o).

Therefore, {Un} is a Cauchy sequence in D. Since Un->u0, it follows that
uoeD and Ώ\JJn — ^o]-*O (τι->oo) (cf. [5] or [19], Lemma 2). Hence ψQ e

On the other hand, by Lemmas 6.1 and 4.14, we have

= D[_UH, Hq

φ-]+γnUnH
q

φdx + ψaφΦndω

for any φ e RBD(Λa). Since {Un} and {φn} are uniformly bounded, \q(x)dx

<oo (resp. \qι(χ)dx<oo)5 0<;φn<;φ* and \βa(φ*)2dω<oo5 where 0* = φx (resp.

= φo\ the Lebesgue convergence theorem and the above result, together with
Theorem 3.6, imply

cdHl(x) = D\^uo, H^-

= Dq[uo, Hq

φ~]+\βaφΨodω

for all φ e RBD(ΛO). Then, by virtue of Lemma 6.1, uo=Uί>x and the theorem
is completely proved.

Combining this theorem with Corollary 1 to Theorem 2.4 and the corollary
to Theorem 2.5, we obtain

COROLLARY. Under the same assumptions as in the above theorem on {qn}
and q,
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G&(y)-*Gi,x(y) (n-*oo)

for each x, ye X{xφ y).

Finally we give

THEOREM 6.9. Let {qn} be a monotone increasing (resp. decreasing) sequence
such that qn-*q (n —• oo). Let [_Λ> β~] be a boundary condition satisfying (B)9l,
(resp. (B)q), τ be a bounded function on Γ — A satisfying (T)β l (resp. (T)β) and
γ be a function on A such that \γ\ satisfies (T)Ql (resp. (Γ%). Then the solution
un of P[Λ, β; r, γ qn~] converges to the solution u of P[Λ, β; r, γ qj.

PROOF. Let a = 0 on Γ—A and α = l/(l + /9) on A, Choose φ e Rg(A; r)
which is bounded. By Theorem 6.1,

Cd JΛ

for all x e X. By Theorem 3.6, Hq

φ"(x)-+Hq

ψ(x) (n->oo) for each x e X. By
Lemma 4.14, we have

i^ Hφ~}+\qnUi*xHφdx.

By the previous theorem, we see that D[_Uq

a^ Hφ}-^D[_Uq

a>x, Hφ~]. Also, as in

the proof of the previous theorem, we have \qnUίyHφdx->\qUί>xHφdx.

Hence, using Lemma 4.14 again, we have

Finally, since Φ^x-^Φί)X by the previous theorem, conditions (B)βl and (Ύ)Qi

(resp. (B)β and (Ύ)q) imply

and condition (T)Ql (resp. (Γ%) implies

(n -• oo). Hence, un(χ) tends to

q

a>xdω-M γΦq

a,xdω,
C )

M i t 9 i 2 [ φ>
Cd Cd JΛ Cd )Λ

which is equal to u(x) by Theorem 6.1. Therefore, un(x)-+u(x) for each x e X.
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