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Introduction

It is by now a classical result that linear boundary value problems for
a second order elliptic linear partial differential equation with sufficiently
smooth coefficients are uniquely solvable if boundary conditions and the
boundary itself are sufficiently regular. While discussions for equations with
non-smooth coefficients have been tried by many people, not much investiga-
tions of boundary value problems for non-smooth boundary have been made
except for the Dirichlet problem.

As to the Dirichlet problem for the Laplace equation 4u=0, there is the
method of Perron-Brelot (see [37], [ 7], etc.), which is also applied to more
general equations (see e.g. [17], [4], [183]). For boundary value problems
other than the Dirichlet problem, there appears the notion of normal deriva-
tives, which is originally defined only with respect to a smooth boundary.
Therefore, as long as we try to consider problems like Neumann problem and
the third boundary value problem with respect to a non-smooth boundary, it
is necessary to generalize the notion of normal derivatives in some way. This
has been done by L. Doob [117] with respect to the Martin boundary, by C.
Constantinescu and A. Cornea [7] with respect to the Kuramochi boundary
and by the author [207] with respect to a general resolutive ideal boundary.
In these works, linear boundary value problems involving normal derivatives
are treated for the Laplace equation, i.e., for harmonic functions. In the pre-
sent treatise, we apply the techniques developed in these works to the equa-
tion du —qu=0 (4 =0) and consider general linear boundary value problems
with respect to a general ideal boundary.

We shall take a locally Euclidean space as the base space on which the
equation is considered. It may be possible, however, to extend our theory to
more general elliptic partial differential equations considered on a C~-manifold
(ef. [12], [157], [16]). In fact, a locally Euclidean space is a special kind of
C~-manifold and our theory may suggest how it is extended to a theory on a
C~-manifold. Also, we can justify the restriction to the equation 4u—qu=0
by noting that this is the canonical form of self-adjoint equations (cf. [127],
[14]).

This paper consists of the following six chapters:
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Chapter 1. g-harmonic structures. In this chapter, we first give known
properties of the solutions of the equation 4u —qu=0 (called g-harmonic func-
tions) and remark that the sheaf of g-harmonic functions forms a harmonic
space in the sense of M. Brelot [4]. Then we investigate the properties of
corresponding superharmoniec functions (called g-superharmonic functions).

Chapter II. Green functions. Existence of the Green function for the
equation Ju—qu=0 (called the ¢-Green function) is proved in this chapter
and the dependence of the ¢-Green function on ¢ is studied.

Chapter III. Dirichlet problems. In this chapter, we discuss the Dirichlet
problem for 4du—qu=0 with respect to an ideal boundary in the method of
Perron-Brelot. We shall be particularly concerned with resolutivity of
boundary functions for different ¢’s.

Chapter IV. Normal derivatives. Definitions of “normal derivatives”
on an ideal boundary, which are generalizations of those in [117, [7] and
[207, are given. Then normal derivatives of g-harmonic functions are studied
and properties that will be used in the next chapter are established.

Chapter V. Boundary value problems. This chapter contains the main
results of this paper. In the first half, a general boundary value problem is
formulated and a uniqueness theorem and an existence theorem are proved.
In the second half, the properties of solutions, in particular the dependence of
solutions on boundary conditions and on ¢, are discussed in various forms.

Chapter VI. Green functions for general mixed problems. This title
means the fundamental solutions (for 4u —qu=0) which satisfy general homo-
geneous boundary conditions. Construction of such a Green function is an
application of the existence theorem in the previous chapter. Expression of
solutions of the problem in terms of such Green functions is also given.

Throughout these chapters, we use only standard methods in potential
theory; in particular an elementary theory of Hilbert spaces is the main tool
in the proof of the existence theorem in Chapter V.

CHAPTER 1 g-harmonic Structures.

§1.1. Preliminaries

Throughout this paper, let X be a connected d-dimensional (d = 2) locally
Euclidean space, i.e., a connected d-dimensional manifold for which each coor-
dinate transformation is a rigid motion (isometry). Thus, for any x € X,
there exists a relatively compact neighborhood 7 of x with a coordinate
system by which 7 is mapped onto an open ball {| y| <r} in the d-dimensional
Euclidean space R? and x is mapped to y=0. In this case the coordinate
system can be extended to an open set containing the closure 7 of ¥ and the
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boundary 0¥ of ¥V corresponds to the sphere {| y|=r}. The radius r does not
depend on the choice of a coordinate system. Thus any such 7 will be called
a ball with center at » and of radius r.

We may regard the space X as a space of type &; without points at in-
finity in the sense of Brelot-Choquet [6]. In this connection, we can trans-
late the whole theory in this paper to that on a Riemann surface, by making
obvious modifications in the terminology (see [227], (237, [24] for treatments
of the equation 4u—qu=0 on a Riemann surface).

On a locally Euclidean space X, the Laplacian 4 is defined coordinate-free.
We consider the differential equation

(1.1 du—qu =20
on X, where g is a non-negative locally Holder continuous function on X.

Remark. The condition that ¢ is locally Hélder continuous is assumed
only to obtain the local properties of the solutions of (1.1) stated in this
chapter and the existence of local fundamental solutions. No explicit us2 of
this condition will be made in the subsequent discussion. Therefore, this
condition can be replaced by any other which guarantees these local properties.

Throughout this paper, every function is assumed to be extended real
valued. Let Y be any open subset of X. A locally summable function » on
Y is called a weak solution of (1.1) on Y if it satisfies (1.1) in the distribution
sense, i.e., for any C~-function (infinitely differentiable function) f having a

compact support in Y, we have S{(Af Ju—qfu}dx=0, where dx denotes the

Lebesgue measure on Y. The following proposition is well-known (see, e.g.,
[2], pp. 138-139 or [14)):

ProrosiTion 1.1, Any weak solution of (1.1) is almost everywhere equal to
a C%-function (twice continuously differentiable function) on Y which satisfies
(1.1) in the ordinary sense.

We shall call a function g-harmonic on Y if it is a C*-function satisfying
(1.1)on Y. If ¢g=0, then g-harmonic functions are ordinary harmonic func-
tions.

§1.2. Local properties of g-harmonic functions
The following properties of g-harmonic functions are well-known:

Prorosrrion 1.2. (Minimum principle I) (See, e.g., [27], [9].) Let Y be a
domain in X and v be a C*function on Y.

(1) If dv<0on Y and v assumes minimum in Y, then v is constant.

(i) If dv—qv<0and g=+0 on Y, then v can mot assume megative mini-
mum in Y.
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From this proposition, the following form of minimum principle follows

(cf. [187):

ProrosiTion 1.3. (Minimum principle II) Let Y be a relatively compact
domain in X.

(i) If v is a C*function satisfying dv—quv<_0 on Y, then lim,.,v(x)=0
for all yc oY tvmplies v—=0on Y.

(i) Let g1=gq; on Y and u; be q;-harmonic on Y (i=1,2). Iflim, . u,(x)
=0 and lim,_, [ uy(x)—uxx)]=0 for all y€dY, then u,=>u,on Y.

Prorosition 1.4. (Dirichlet solution for balls) (See, e.g., [9], Chap. IV,
[147],[21].) Let V be any ball in X and let g be any continuous function on V.
Then there exists a unique continuous function H%V on V such that HyV =g on
oV and H%V is g-harmonic on V. Furthermore, g=0 implies HyY =0 on V.

If g=0, then we omit the superscript ¢ in A2V, By (ii) of Proposition
1.3, we have

Proposrrron 1.5. (Cf. [147],[187].) If gi<q: on V and g=0 on oV, then
H}»V =HV. In particular HYV < HJ.

ProrosrTion 1.6. (See [147).) Let V be a ball with center at x and of radius
r(>0). If g=0o0n oV, then

HY(x)< e 9HL(x),
where Q=sup,cv q(y).

Prorosrrion 1.7. (Harnack’s inequality) (See [137, [147],[227; also cf. [187].)
Let Y be a domain tn X and Z be o compact set contained tn Y. Let xo¢ Y be
giwven. Then there exists a constant M= MY, Z, xo, g) =1 such that u(x)=
Mu(x,) for any non-negative g-harmonic function v on Y and for all x ¢ Z.

From this proposition the following principle follows (see [137], [147],
[227):

Prorosrrion 1.8. (Harnack’s principle) Let Y be a domain in X. If {u,}
18 a monotone increasing sequence of q-harmonic functionson Y and if {u,(x)}
18 bounded (above) for some x € Y, then lim,_. u,=supu, defines a g-harmonic
Sunction on Y. Furthermore the convergence ts locally uniform in Y.

§1.8. g-superharmonic functions

By Propositions 1.4 and 1.8, we see that the sheaf of g-harmonlc functions
satisfies the axioms of harmonic spaces introduced by M. Brelot (see [17,[47;
also [137, [187]). Hence we can define such notions as g-superharmonic func-
tions and g-potentials.
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By Proposition 1.4, any ball is a regular open set; we have the g-harmonic
measure o'V on 8V with respect to x € V satisfying

HyV(x)= Sgdwg"’

for any (finite) continuous function g on 97.

A g-superharmonic function v on an open set Y is then defined as a func-
tion satisfying the following conditions:

(i)  wv(x)>—oo at each x € Y; v3£ + oo on any component of Y;

(i) v is lower semi-continuous on Y;

(iii) For any ball ¥ such that VY,

v(x)ggvdwg"’ forall xc V.

In condition (iii), we may restrict 7 to those which belong to a family
forming a base of open sets in Y. Thus we see that g-superharmonicity is a
local property.

As for comparison of g-superharmonicity for different ¢, we have the
following immediately from the definition and Proposition 1.5:

ProrosiTion 1.9.  If g1 = q2, then any non-negative q,-superharmonic func-
tion is q.-superharmonic and any non-positive g.-superharmonic function s q.-
sugerkarmenic. In gerticular, the constant function v(x)=1 1is g-super-
harmonic for any q.

The following properties of g-superharmonic functions are consequences
of the general theory on harmonic spaces (cf. [17], [4], [18] and [187).

Prorosirion 1.10. (i) If vy, vy are g-superharmonic on Y and if L, A
are positive numbers, then 2,vi+ A.v, and min (v, vy) are g-superharmonic on Y.

(i) If {v.}. is an upper directed family of g-superharmonic (resp. g-
harmonic) functions on a domain Y, then sup,v, is either =+ co or g-super-
harmonic (resp. g-harmonic) on Y.

Proposrrion 1.11. (Minimum principles) (i) If v is a non-negative g¢-
superharmonic function on a domain Y and if v(x)=0 at some point x € Y,
then v=0 on Y.

(ii) If v is a g-superharmonic function on an open set Y and if lim, v,
v(x) =0, i.e., for any >0 there exists a compact set Z in Y such that v(x)> —e
on Y—Z, then v=0 on Y. In particular, if Y is relatively compact and
lim,_,v(x)=0 for all y€ oY, then v=0o0n Y.

ProrosiTion 1.12.  Let v be a g-superharmonic function on an open set Y
and let V be a ball such that VCY. Then u(x)zgvdwg"’ 18 g-harmonic on V

and
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v on Y-V
vy —
u on V

18 g-superharmonic on Y.

ProrosiTion 1.13. (Perron) Let OV be a family of g-superharmonic func-
tions on an open set Y satisfying the following two conditions:

1) D is a non-empty, lower directed family and is locally uniformly
bounded below ;

(1) Ifve D, then vy € W for any ball V such that VC Y, where vy is the
Sunction defined in the previous proposition.

Then inf Y is g-harmonic on Y.

From this proposition, we see that any non-negative g¢-superharmonic
function v on X has the greatest g-harmonic minorant on X, which is also the
largest among the functions w such that w="v on X and —w is g-super-
harmonic on X. A non-negative g-superharmonic function on X whose grea-
test g-harmonic minorant is zero is called a g-potential. As a corollary to
Proposition 1.9, we have

Prorosition 1.14.  If g1 = g3, then any q:-potential is a g.-potential.

Hereafter, if g=0 on X, then we shall omit the index ¢ in the termi-
nology and notation.

§1.4. Local fundamental solutions

Let 7 be a ball in X. It is known (cf., e.g., [14], [177], [21]; also [127)
that there exists a (symmetric) fundamental solution F%(x, y) of the equation
(1.1) on 7, ie., a function on V' x V such that F/(x, y)=F(y, x) for any x,
y€ V and Fi(x)=F%x, y) is locally summable on V, continuous on —{y} and
satisfies ‘

(1.2) AF§—qF§ = —c0,

in the distribution sense for any y ¢ 7, where 0, is the Dirac measure at the
point y and ¢, is the constant equal to 27 if d=2, to (d—2)x the surface area
of the unit sphere in R’ if d>8. In case ¢=0, a fundamental solution is
given by F(x, y)=—log|x— y| if d=2 and F(x, y)=|x—y|*?if d=3. Ttis
known ([177, [217; cf. [127]) that

(13) Fq(x, y)_—F(xs y) :0<lx_yl)“+2>d)>
where 1=0 if d=2, 2>0 if 4>3.

ProrosiTion 1.15.  If FU(x, y) is a fundamental solution of (1.1) on V, then
Fi(x)=F(x, y) 18 g-superharmonic on V, provided that we define F(x, x)= + oo
for each x € V.
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" Proor. By (1.2) and Proposition 1.1, Fy is g-harmonic on V'—{y}. By
(1.3), lim,_., F{(x)= + oo, so that F is lower semi-continuous at x=1y. Then
it is obvious that FJ is g-superharmonic on 7.

CoroLLARY. If 4 is a positive Radon measure on V whose support is com-
pact in V, then the function

Fi) = | Fi() ducy)
18 g-superharmonic on V. Furthermore, AF]—qF!= —c,u in the distribution

sense on V.

The proof of this corollary is quite analogous to its proof in the special
case ¢=0, which is classical (cf. [3], [7] or [25]).

§1.5. Characterization of g-superharmonic functions

It is well-known that a superharmonic function s is locally summable and
4s<<0 in the distribution sense and conversely any locally summable function
s such that 4s =<0 in the distribution sense is equal to a superharmonic func-
tion almost everywhere (cf. e.g., [3]and [25]). We shall show similar results
for ¢g-superharmonic functions. First we prove:

Lemma 1.1.  Any g-superharmonic function s locally summable.
Proor. Let v be a g-superharmonic function on a domain ¥ and let
Yi={x € Y; v is summable on a neighborhood of x}.

Obviously Y; is an open set. Let x,€ Y—Y; and let 7 be a ball with center

at x, such that VCY. Let r be the radius of 7 and let 7, be the concentric

ball of radius r/2. Since v is bounded below on 7, there exists a constant

¢ =0 such that w=v+c is non-negative on V. w is again ¢g-superharmonic

(Proposition 1.9). Take any x € V; and let 7, be the ball with center at x

and of radius ¢ with 0<¢<r/2. Let Q= s%) g(y). Then, by Proposition 1.6,
y

we have
S wdolt < e!? Swdwg'w‘.
Since w is g-superharmonic, Swdwg’wt <w(x). Hence
Swdu)ff‘ < e Qu(x).

On the other hand, w7 is a constant (=1/c}) times the surface element of 0.
Hence
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SW w(y)dy= cé(%)dS;m(Sw da)?")td’ldt

rl2

d rl2 _
< c;@) w<x>§ 11678 4.
0

Since W, is a neighborhood of x, and since xo€ ¥Y— Y1, SW v(y)dy= +oo.

r/
Hence SW w(y)d y= + oo, which implies w(x)= + oo by the above inequality.

rl2

Since «x is arbitrary, w(x)=-+ oo on ¥, so that v(x)=+ on V;. Therefore
Y—Y; is also open and v=+0c0 on Y—Y;. Since v3= + oo by definition, we
must have Y=Y;. Hence v is locally summable.

Given a Borel function f defined on a neighborhood of a point x, € X, let
0ft7(x0) (resp. A7(x0)) be the surface mean (resp. the volume mean) of f with
respect to the ball 7, with center at x, and of radius r (cf. [3]). In fact, we
can write
d

Td

(o) = gfda)}’; and A(xo) = 'S:%}(xo)t‘i‘ldt.

Lemma 1.2, If v is a g-superharmonic function on a ball V with center at
Xg € X, then

m7(x0) = v(xe) and 1imA7(x0) =v(x0).
7=0 7—0

Proor. The second assertion immediately follows from the first. Since
v is lower semi-continuous, we see that lim,_,/;(x¢) =v(x,). On the other

hand, if v=0 on 7, then Proposition 1.6 implies that
ey = e [odogy < er o)

where Q=sup.cvg(x). Hence lim,_o7}(xo) <v(xo). Since v, in general, is
bounded below near x,, this conclusion holds for any v.

By Lemma 1.1, any ¢-superharmonic function » can be regarded as a dis-
tribution. We shall show that 4v—q¢v <0 in the distribution sense. In case
v is a C*function, this is well-known (cf. [137); in fact we have the following
lemma as an easy consequence of Proposition 1.3:

Levma 1.3, If v is a C*-function on a domain Y, then it is q-superharmo-
nic on Y 1f and only if 4v—qv =0 on Y (in the ordinary sense, hence in the
distribution sense as well).

Using this lemma, we prove

Tueorem 1.1, If v s a g-superharmonic function on a domain Y, then
dv—quv=0 on Y in the distribution sense.
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Proor. Let 7 be any ball such that ¥ C Y and r be its radius. Let ¥, be
the concentric ball of radius /2. Since v is bounded below on 7, there exists
a constant ¢>0 such that »+ H?"V >0 on ¥ (cf. Propositions 1.4 and 1.11).
Since H¢V is g-harmonic on ¥, we may assume that v is non-negative on V.
Let {f.} be a 0-sequence of non-negative C*-functions on R such that S(fn)
C{|x|<r/(2n)}, where S(f,) denotes the support of f,. Then the convolu-
tion (vf,)(x) makes sense for x € ¥, and is a C -function on 7;. Further-
more, vf, —>v (n—>co) weakly as distributions.

Since ¢ is uniformly continuous on V, given >0 there exists n, such that
|x—x'| <r/(2n,) and x, x'cV imply |g{x)—q{x")' <e. Let q(x)=5uD ,-2,<r 21,
q(y) for x € V1. Also, for each z ¢ R such that |z| <r/(2n,), let ¢.(x)=q(x —2)
for x € V1. Then ¢, and ¢. are non-negative Hélder continuous on V', ¢. < g¢.
and 0 <q.(x)—qg(x)<e for all x ¢ V.

Let W be any open ball such that #C V,. By Proposition 1.5, we have

Sv(x —z)dwjE " (x) = Sv(x —z)dwi”"{x)

for any z with [z|<r/(2n,) and y¢ W. Obviously, do*"{x)=dw?" *{x"),
where x'=x—z and W—z={w—z;wc W} V. Therefore, v being g-super-
harmonic,

fote = 2wt (o = foladog () = o(y—2)
Hence, for n =n,,

s doge ) = oy —2)f s = @ef ).
Therefore, vsf, is g.-superharmonic on 7;. By Lemma 1.3,

A(U’:ifn>_q1s(7]*fn> =0

on Vi, i.e., for any C*-function g such that g==0 and S{g)C V3,
[Fdg (=g Twef) (w)dw =0,
Now, letting n — oo, we have

g0 —g)g () Tu(e)dw 0.

Hence

S[Ag—qg:lvdx = S[Ag—qgg]vdx-i— S(qg—q)gvdx

gaggvdx.
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Since gv vdx is finite and ¢ i arbitrary, we have S(Ag-—gg)v dx <0, ie.,

dv—qv =0 on V in the distribution sense.
As a converse, we have

Traeorem 1.2.  If v is a locally summable function such that 4v—qv=0 in
the distribution sense on a domain Y, then there exists a g-superharmonic func-
tion w on Y such that v=w almost everywhere. If, in addition A7(x)— v(x)
(r—0) for any x € Y, then v itself is g-superharmonic on Y.

Proor. Let V and V7, be as in the ‘previous proof. The distribution
—(1/c4)(dv—qv) is non-negative, so that it can be regarded as a Radon
measure on Y. Let « be its restriction on 7,. Let Fyj(x)=F%x, y) be a local

fundamental solution of 4u—gu=0 on /' and consider F,‘{(x)ng;’(x)dﬂ( ¥).

By the corollary to Proposition 1.15, F} is g-superharmonic on 7 and 4F!—qF}
= —cqut=4dv—qv on V;. Hence, by Proposition 1.1, there exists a g-harmonic
function u on 7; such that v —F?=u almost everywhere on 7;. Let w=u+F/
on V1. Then wis g-superharmonic and w=v almost everywhere on 7;. Since
Y is covered by such balls 7;, we conclude the first assertion of the theorem.
Now the second assertion follows from Lemma 1.2.

CHAPTER II Green functions.

§2.1. Definition and uniqueness

A ¢-Green function for X is an extended real valued function Gj(x)=
G%x, y) on Xx X such that for each y¢ X

(i) GYis a g-potential on X;

(i) 4G5—qGj= —c.0, in the distribution sense.

By condition (i), G/(x, y)=0. Condition (ii) is equivalent to say that G¢
is g-harmonic on X—{y} and Gj—F} is g-harmonic on any ball 7 such that
y € V, where Fy is a local fundamental solution of 4u—qgu=0on V.

Lemma 2.1.  The g-Green function is uniquely determined by conditions (i)
and (ii) for each y. Furthermore, if there is a positive g-potential w on X such
that it is g-harmonic on X—{y}, then the function G5 satisfying (i) and (ii)
exists and w=2G% for some 1> 0.

Proor. Let v; (i=1, 2) satisfy (i) and (ii), i.e., each v; is a g-potential and
dv;—qv,= —cq40, in the distribution sense. It follows that v; and v, are g-
harmonic on X—{y} and 4(v;—v:)—q(vi—v,)=0 in the distribution sense.
Hence there exists a ¢-harmonic function z on X such that v;=v;+u on
X—{y} (Proposition 1.1). By Lemma 1.2, v;=v,+ u everywhere on X. Since
v1, vz are both ¢-potentials, it follows that «=0, i.e., vi=v,.
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If w is a positive ¢g-potential on X which is g-harmonic on X—{y}, then
u=—(1/cq)(dw—qw) is a positive Radon measure (Theorem 1.1) and is sup-
ported by the point set {y}. Hence x=210, for some 21>0. Then Gi=w/2
satisfies (i) and (ii).

§2.2. Existence of the g-Green function

If g=0, then it is a classical result that the existence of the Green func-
tion for X is equivalent to the existence of a non-constant positive super-
harmonic function. We shall call X a Green space if it has the Green func-
tion. There are non-compact locally Euclidean spaces which are not Green
spaces. If g=~0, then we shall see that the ¢-Green function always exists
(even if X is compact). For its proof, we rely on local existence theorems
which are known. We may, for example, start with the following result (cf.
[15]; also [217], [ 227)):

If Y is a relatively compact domain in X such that 0Y consists of a finite
number of closed C=-hypersurfaces, then there exists the ¢-Green function
G4V (x)=G""(x, y) for Y. Furthermore, it has the following properties:

(a) For each ye¢ Y, G9Y vanishes on 0Y (i.e., it can be continuously ex-
tended on Y with vanishing values on 0Y);

(b) For each ye¢ Y, the inner normal derivative 0G?¥/0n exists and is
non-negative at every point on 9Y.

(€) G*"(x, y)=G""(y, x) for any «x, y€ Y.

Now we prove the existence theorem on X using this result. The method
of the following proof is due to L. Myrberg [ 237].

Tueorem 2.1.  Suppose ¢=+0 on X. Then the g-Green function for X
exists.

Proor. Let {X,} be an exhaustion of X such that each 90X, consists of a
finite number of closed C~-hypersurfaces. By Green’s formula, we have

= on

0GLXn .
0= ds = cd—g g()Gy X (x)dx  (ye€ X,).
2X, X,
Hence

2.1) ig ()63 Xn(x)dx = 1.

Cd JXy,
The minimum principle (Proposition 1.3) implies that {G2'*~}, is monotone
increasing. If ¢(x)#0 on X, then (2.1) implies that wu¢(x)=1limG?*(x) is

n—o

finite at some x € X. Since each G2'*» is g-superharmonic on X, and ¢g-harmo-
nic on X,,— {y}, uo is g-superharmonic on X and g-harmonic on X—{y}. Itis
easy to see that u, satisfies condition (ii) for the ¢-Green function. In fact,
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for each n, there exists a g-harmonic function u, on X, such that uo,=G2*»
+u, (u,=0). If v is a g-harmonic minorant of u,, then G#'*»=v—u, on X,,
so that v < u,. Since u,—0, v=0. Therefore u,isa g-potential, i.e., u, satis-
fies also condition (i). Hence uo=G%(x).

Cororrary. (i) G'(x, =G4y, x) for any x, yc X.
(ii) (l/cd)gq(x)Gg(x)dx <1 for any ye X.

Proor. (i) follows from the property (c¢) for G and (ii) follows from
(2.1) in the above proof.

Remark. In the proof of the above theorem, we used the existence of
G*Y(x, y), which is rather a strong assumption. We give here an alternative
proof which requires only the existence of local fundamental solutions: Let
v € X be fixed and let F(x) be a local fundamental solution of (1.1) on a ball
V with center at y. Let r be the radius of 7" and let 7" be the concentric ball
of radius r/2. As in the proof of Theorem 1.1, we may assume that F{=>0
on V" by adding a suitable positive g-harmonic function. We consider the
family

g-superharmonic, =0 on X and there exists a g-super-
Uy=1<u; .
’ harmonic function w, on ¥ such that u=F{+w, on V' — { y}
We first show that 7/, is non-empty.
Let 7" be the ball concentric with 7" and of radius r"<r/2 such that ¢=0
on X—¥". Since g0 on X by assumption, it is possible to find such 7. Let

vy = inf{v; g¢-superharmonic, =0 on X, >1on 7/7"}.

By a general theory of harmonic spaces (see [17], [4], [18]), the regulariza-
tion #; of v; is g-superharmonic on X and #;=1o0n ¥". Hence v;>0 on X— 7"
Also, we see that v, is g-harmonic on X—7". Since ¢+0 on X— V", 1 is not
g-harmonic. Hence v; <1 on X—7V". Next let w;=H?". Then o=
i?lij”[@l(x)—ul(x)]>0. Put lz(l/d)xs,(%IV)”Fy"(x). Then A>0 and we see that

the function
[ Fi)tdu()  for xe v
w()= | Inf[FEx)+ 2uy(x), oy(x)]  for xe V'—V"
iv(x)  for xc X—V

is g-superharmonic, >0 on X. Also u— F} is g-superharmonic on V. Hence
uc U, and ¥, is non-empty.

Now let uo(x)=inf{u(x); ucU,} (x € X) and w(x)=inf{w.(x); u €U}
(x € V). Obviously u,=0. We apply Proposition 1.13 to the class %, con-
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sidered on the domain X—{y} and we see that u, is g-harmonic on X—{y}.
On the other hand, Fy is bounded on 8%, for any ball 7/, such that ye Y; and
ViCV. Hence {w,; u €} is uniformly bounded below on 7. Therefore,
again by Proposition 1.13, we see that w is g-harmonic on V. Since uo=Fy+w
on ¥, u, is g-superharmonic on X. If v is any g-harmonic minorant of u,,
then uo—v € ?, Hence up—v=u,or v=0. Hence u, is a g-potential and it
follows that u,=G?} (Lemma 2.1).

§2.8. G-potentials

In this section, if ¢=0, then we suppose that X is a Green space.
Let u# be a positive Radon measure on X. Then we see that Gix)=
qu(x, y)du(y) is either =+ oo or a g-superharmonic function on X (Proposi-

tion 1.10, (ii)). If it is not =+ oo, then we call it a G%potential (of x). As
is the case of classical Green potentials (the case ¢=0), we can show that any
g-harmonic minorant of a G’-potential is non-positive (ef. [3] and [7]), so
that a G’-potential is a g-potential. This fact can be seen also by a general
theory by R.- M. Hervé ([187], Chap. III). By the corollary to Proposition
1.15, 4Gi—qGl= —cqu as distributions. Thus we have the following Riesz
decomposition theorem for g-superharmonic functions (cf. [3]):

TueorrM 2.2.  If u is a non-negative g-superharmonic function, then u(x)
= GUx)+ uo(x), where n=—(1/cXdu—qu)(as distributions) and u, is the
greatest g-harmonic minorant of u.

§2.4. Dependence on q

Turorem 2.3. If g1 =g, on X, then G5: =G3* for anyy ¢ X. (In case ¢:=0,
we assume that X is a Green space.)

Proor. Let u(x)=G5(x)—G5x(x) for x vy and let u(y)=lim,_.,4;(y).
Since

du—qou = (q1—q2)G5' =0

in the distribution sense, u is ¢;-superharmonic by Theorem 1.2. Since —u <
G5* and G5? is a g,-potential, we have —u <0 or u —=0. Hence G} =>G%:.

Turorem 2.4. (Resolvent equation) If g1 = g3, then
63:(0)= 63:(x) = - [[ga()= @I (6 (2)d=

- ,cld_g [gx(2)— () 1631 (2)63x(2)d =
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Jor x = y. (If g;=0, then we assume that X is a Green space.)
Proor. In the distribution sense, we have
4G5 —65)—qi(G3 —63) = (q1— q2)65* = 0.

Hence there exists a g;-superharmonic function » such that u=Gj'—Gj* on
X—{y} (Theorem 1.2). By the above theorem, we have « —=0. Since u <G,
u is a g,-potential. Hence it follows from Theorem 2.2 that for x = y

G3(x) — Ga(x) = L [Lo:t— g 6368 ()

Since G%, i=1, 2, are symmetric, we have the theorem.
Cororrary 1. If g, increases to g, then G3» decreases to G4 for each ye€ X.

Proor. By Theorem 2.3, {Gi-} is a decreasing sequence. By the above
theorem, for x =+ y

0= G3n(x)— Gi(x) = i [Lo()—gua)I62()68)ds.

Since [ ¢(z)— g.(z)]Gi(z) decreases to 0 for all z=~x, we have the assertion.

CoroLLArY 2. For any q, and ¢,
1650 =63:(0)] = {192 63z (v ).
Proor. Let §=max(qi, g;). By the above theorems,

GI(x)—Gi(x) = —017 [Li) - a@I62)64)d

<1 ORI IO EEOrE

Cq
and
GE(x)— Gilx) = i [La) - e Icx63:2)d=
= {Li)- X6 (63
d
Hence

1651 (x)—G5(2) | = [65'(x) — G (x) ]+ [G5*(x) — GY(x)]

é?lj 3[2@@— q1(2)—q(2)J63(2)65(2)d =

- _—C:!-—d S | q1(2) — g2(2) | G2 (2)G5(2)d 2.
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Now we suppose that X is a Green space and consider the class

g; locally Holder continuous, =0 on X,
Qo=Qo(X) ={ gG,;(z)q(z)dz< o  for some x€ X (°

Since ¢ is continuous, SGx(Z)q(Z)dZ<°° for some x € X implies the same for

all x € X. The class Q) contains non-zero functions; in fact any non-negative
C'-function with compact support in X belongs to Q,. We easily see that if
q1, G2 € Oo, then llql-l-lz(Zz (11, 1220), max(ql, qz), min(ql, qZ) and lql—q2| be-
long to Q.

Tueorem 2.5. Let q, ¢*, gn€ Qo (n=1,2, ...). If qg.<q* for all n and if
gn(2)— q(2) (n— o0) for every z € X, then Gi»(x)—>G5(x) (n—>o0) for any x, y
(x 7 ).

Proor. Fix x, y (¥~ y). Let ¥ be a ball with center at y such that
x ¢ V and let Q=sup¢*(z)+1. Given >0, there exists a neighborhood W of
Z€EV

y such that WV and

2.2) -61; S RIONOVE _2% .

Let M= S}{lp Gy(z). Then 0<M<co. Since ¢, <g¢* € Qo and ¢.(z)—>q(z), the
zEX-W

Lebesgue convergence theorem implies
1
9@ 0DI6Ldz0  (nreo),
Hence there exists n, such that n > n, implies

23) = (lg@ =001 64z < 55

By Theorem 2.3 and Corollary 2 to Theorem 2.4, we have
65— G5 | = | 19(2) = 9u(2) 6,206 d.
By (2.2),

C% SW [q(2)—qu(2)|Gy(2)G(2)dz < % g . G,(2)Gx(2)dz< % .

If n = n,, then (2.8) implies

LS 19(2)— gu(2) |G ()G (2)d =
X-w

Cd

= (19— 16:)dz <

Cd
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Hence |Gir(x)—G¥(x)| <e for n == no, ie., Gi(x)—>Gi(x) as n — oo.

Cororrary. If qi ¢ Qo and g, decreases to g, then Gy~ increases to G5 for
each yc X. ‘

Remark. The condition ¢; ¢ Qo in the above corollary can be weakened to

Scz(z)[ql(z)—q(z)jdz@o (cf. Corollary 1 to Theorem 2.4).

CHAPTER III Dirichlet Problems.

§3.1. Perron-Brelot’s method

Hereafter we shall always assume that X is non-compact. Let X be an
arbitrary compactification of X, i.e., a compact Hausdorff space such that
there exists a homeomorphism r of X into X such that «(X) is dense in X. We
identify «(X) with X and let /'=X—X. In this way, we consider an ideal
boundary /" of X and discuss the Dirichlet problem for the equation 4u —qu=0
with respect to this boundary. We shall apply Perron-Brelot’s method.

Let ¢ be an extended real valued function on I”. We define

- v; g-superharmonic, bounded below on X,

CJZ,Z . U {0}
lim, .o(x)=¢(&)  forall el

and

where o means the function which is equal to + oo everywhere on X. We
further define

AY(x)=inf{v(x); ve 32} and Hf(x)=sup{v(x); vec I}

for each » € X. Then, by Propositions 1.10, 1.11, 1.12 and 1.13, we have (cf.
[17], [8]; also [ 4] for a general theory)

Lemma 3.1, (i) H] (resp. HY) is either =+ > or =— oo or g-harmonic on
X.

(i) He <AL

Levma 3.2, If g1 <q; and ¢ =0, then H: = H}: and Hl+ = H:.

Proor. By Proposition 1.9, 3% € 3% and {ved%; v =01 O {vediz; v=0}.
Hence we have the lemma.

Lremma 3.3. If Hf (resp. HY) is finite, then there exists a mon-negative g-
superharmonic function v on X such that H2+cv ¢ 3¢ (resp. H:—ev € J%) for all
e>0.
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The proof of this lemma is analogous to the case ¢=0 (cf. Hilfssatz 3.1
of [77]). If X is a Green space and ¢ € Qo, then we have the following stronger
form for bounded functions:

Lemma 3.4. Suppose X is a Green space and g € Qo.  If ¢ is bounded, then
there exists a non-negative superharmonic function s on X such that H? +es € I
for all ¢>0.

Proor. First, we prove that, for any compact set Z in X and for any
0>0, there exists u € J% such that u <H!+06 on Z. For any x € Z, let' V, be
a ball with center at x and let 7 be the concentric ball of radius one half of
that of 7,. - By Proposition 1.7, there exists M,=1 such that u(y) < M,u(x)
for any non-negative g-harmonic function » on 7, and for any ye V;. Given
08>0, there exists v, € I} such that v.(x) <HH(x)+0/M,. Letu,=(v,)r,in the
notation in Proposition 1.12. Then u, € J2 and u.(x) <v.(x)<HXx)+0/M,.
Since u,—H} is non-negative g-harmonic on 7, u.(y)—HI(y) < M(u.(x)—
HY(x))<0 for any ye V;. Since Z is compact, there exist a finite number of
points xi, ---, x, € Z such that \ J7_,V; DZ Let u=min(u,, ---, u,). Then
ued?and u<<H!+06 on Z.

Now, fix a point x, € X and let J= gG(xo, y)g(y)dy. Since J is finite by

assumption, there exists a sequence {Z,} of compact sets on X such that
X0 € Zn and

1
[y, Con Dady< 5

for each n. Let |¢|<<M. Then |H]|<M. By the above result, there exists
u, € 3¢ such that u,<<Mon X and u, < A?+1/2" on Z, for each n. Let v,=

u,—Hj. Then v, is non-negative g-superharmonic on X and v, <<2M. Let
1
P == (60, gy ndy.

Then 4(v,+p,)=4v,—qv, <0 in the distribution sense. Hence, by Theorem
1.2 and Lemma 1.2, v, + p, is superharmonic on X. We have

P =22 6o, gy 6, pa(dy
Cd JX-2Z, ca2 zZ,

<Yemnl.
Cq 2

Also v,(x0)=<1/2", since xo€ Z,. Hence v,(x0)+pu(x0)<[(1/cs)2M~+J)+1]

»x(1/2"). Therefore, s=}.,_,(v,+p,) defines a superharmonic function on X.

Obviously, s==0. For any ¢>0, choose m such that 1/m<e. Then

Aytes=Hyt L S, tpo=mit 1 5o,= 1 5,
n=1 n=1

m n=1
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Since (1/m)™ ,u, € 32, we conclude that H!-+es € JL.

§3.2. g-resolutive functions

In case H!=H? and it is g-harmonic, we say that ¢ is g-resolutive (with
respect to X) and we denote the common function by H?. This may be called
the g-Dirichlet solution of ¢ (with respect to X).

We can easily show the following properties, which are well-known in
case ¢=0 (see [7]; also [1] and [4] for a general theory):

Prorosition 3.1. (i) If ¢1, p2 are g-resolutive functionson I and i.f Ay, A,
are real numbers, then 2,1+ 292, max (g1, ¢2) and min(e;, ¢z2) are g-resolutive
and

q — q q
H)ul(pﬁ—)»zqoz - llH(ol +12H¢2)

(Here, in ;91 + 4202, @ convention Q-co=o0.0=—oco+oo=-+oco—co=0 is in
force.)

Hi o0, =the least g-harmonic magjorant of max(Hj , Hj,),
Hl oo, 0,y =the greatest g-harmonic minorant of min(H; , Hj).

(i) If ¢=0, then H:>0; i f ¢ ts bounded, then H? is bounded and | H}|
= supeer | p(6)].

(iii) If {¢.} is a monotone sequence of g-resolutive functions such that
{H; (%)} is bounded for some x € X, then ¢=lim, .p, is g-resolutive and
HY(x)=lim,..H; (x) for all x € X.

ProrosiTion 3.2. A constant function is always g-resolutive.

Proor. Let ¢(&)=1. Since 1e¢ 3, H!<<1. It follows that A? belongs
to Ji. Therefore H{<H!, so that ¢(&§)=1 is g-resolutive. By (i) of the
previous proposition, we conclude that any constant function is g-resolutive.

Remark. The function H? does not depend on the compactification, that
is, this function is an invariant of the pair (X, ¢).

Lemma 3.5.  If ¢ is a non-negative g-resolutive function and if 220, then
min (g, 1) s g-resolutive and

HY o) = the greatest g-harmonic minorant of min(HY, 2).

Proor. By Propositions 3.2 and 3.1, (i), min(g, 1) is g-resolutive. Let u
be the greatest g-harmonic minorant of min(#HY, 2). Since 1>>0, we easily
see that u > H%.., . On the other hand, « <1 implies v <<H{. Hence
u =min(Hj, H{). Therefore, by Proposition 3.1, (i), we have u < HY,,, »,.
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§8.8. q-resolutive compactification

We shall say that X is a g-resolutive compactification, if any ¢ € C(I")
(=the space of all finite continuous functions on I") is g-resolutive. In this
case, the mapping ¢ € C(I")— H¥(x) is a non-negative linear functional on C(I")
for each x ¢ X (Proposition 8.1, (i) and (ii)). Hence there exists a non-
negative Radon measure o on /" such that

fpdot = i)

for all g € C(I"). If ¢=0, then w,=w} is the ordinary harmonic measure on 7/
with respect to x. By Proposition 3.1, (ii), we see that wi(/)<1.

Lemma 3.6.  Let X be a g-resolutive compactification.
(i) For any extended real valued function ¢ on I,

i) = | pdot < | pdot < i)

for any x € X.

(i) If gqodwi (resp.ggodwf,) 18 finite for some x € X, then the function

x—> S(pdwj’, (resp. S:pda)ﬁ‘,) 18 g-harmonic on X.
We can prove this lemma in a way similar to the proof of Hilfssatz 8.3
of [77] and by using Proposition 1.10, (ii). (Also, c¢f. [1] and [8].)

CororLLary. (i) Any g-resolutive function is wi-summable for any x € X.
(ii) For any x, x' € X, ol and w? are equivalent measures and a function
18 wi-summable i f and only 1 f it is w? -summable.

Thus we shall use the terminology “w?-summable” or “w?-a.e.” instead of
“wi-summable for some x € X or “wl-almost everywhere for some x”.
The following lemma is a generalization of Satz 8.3 of [7]:

Lemma 3.7. (i) Given ¢, and g, let X be g,- and gs-resolutive. If ¢ isa
bounded function on I', then there exists a function ¢ such that it is ¢,- and go-

resolutive and S(pdwil‘:H gi(x) for all x € X (i=1, 2).

(if) If X is a g-resolutive compactification, then any w-summable func-
tion s equal to a g-resolutive function w'-a.e.

Proor. (i) First, let ¢ be lower semicontinuous. For a fixed point
xo € X, there exists a sequence {¢,} in C(I") such that ¢, <<¢ for each »n and
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Sq;,, do%s /7 S(p do% (n—>co) for i=1,2. Let ¢,=max(¢y, .-, ¢,). Thenlimg,=¢
exists and ¢ is ¢;- and gz-resolutive by Proposition 3.1, (iii). For each i=1,2,
we have S(on doli << Sgbndwgl gg(pdwﬁf for all x € X, so that Hi{(x)< S pdol for

all x € X and Sgbdwig = S(pdwig. Since ¢ < ¢, it follows that S(odwiszji(x) for

all x € X and ¢=¢ w%-a.e. (=1, 2).
Next, suppose ¢ is any bounded function. Choose a sequence {¢,} of
bounded lower semi-continuous functions such that ¢,—=¢ for each n and

S(p,, dwig\g(pdwﬁ (i=1,2). For each n, there exists a ¢;- and g,-resolutive

function ¢, such that SwndwiizHig(x) for all x € X and ¢,=¢, w%-a.e. (i=1,2).

Let ¢,=min(¢1, -, ¢»). Then lim¢,=¢ exists and ¢ is ¢;- and g.-resolutive

by Proposition 8.1, (iii). As above, we see that Hii(x)gggodwﬁz forall x € X

and Sgbdwig —|pdot (1=1,2). Since ¢=¢ otae. (i=1,2) it follows that
g(pdwitzHii(x) for all x ¢ X and ¢=¢ 0%-a.e. (=1, 2).

(ii) If we put ¢g;=¢2=gq in (i), then we see that any bounded w’-measur-
able function ¢ is equal to a g-resolutive function ¢ w’a.e. and H(x)= S(pdwz.
If ¢ is any w’summable function, then apply the above result to functions
¢,=max(min(g, n), —n). Then we can easily complete the proof using Pro-
position 3.1.

§8.4. Comparison of g-resolutivity
Let X be an arbitrary compactification and let "= X— X.

Lemma 3.8, If g1=q: and ¢ =0, then the greatest q.-harmonic minorant
of HI 1s equal to HZz, provided that HI: is finite.

Proor. By Lemma 3.2, Hj: = H{:. Let u be the greatest g.-harmonic
minorant of HY:. Then u > H?:. By Lemma 3.3, there exists a non-negative
gi-superharmonic function v on X such that Hi'—ev ¢ J% for all ¢>0. By
Proposition 1.9, v is g,-superharmonic. Since u << H%!, we see that u—ev ¢ J!:
for all e>0. Hence u—ev<Hj* for all ¢>0, so that u << H%:. Therefore,

— q
u=H.

Lemma 3.9.  Let g1 =< g5 (g270).
(1) If ¢ is bounded below and H!' is finite, then

() = B9 = (6%, pLgan)— ) IHI )iy
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(i) If ¢ is bounded above and HI' is finite, then

H3:(x) = A2 = (6%, pla 9= qIAL()dy:

Ca

Proor. First, let ¢==0. By the previous lemma and Theorem 2.2, we
have

1

Ho(x) = Hy(x)— o

gcwx, PAHD(y)— g DHI()} d y

= Ho(x)+ L gcqzu, Pg P — g PIHL()d y.

In particular, this equality holds for ¢=M (const. >0). By Proposition 3.2,
M is g-resolutive and it follows that H{,,=H{+ Hj, for any ¢q. Therefore,
if ¢ is bounded below, then, by considering ¢+ M for some M>0 such that
¢+ M=>0, we obtain the required result. (ii) follows immediately from (i) by
considering —¢.

Trareorem 3.1.  Let g1 < g; (q270).
(i) Any gi-resolutive function on I" is go-resolutive.
(i) If ¢ is a qi-resolutive function, then

BL  HE)=HiG)— (6%, ylg 0= () IH Dy

m particular, if ¢ is non-negative, then the greatest gz-harmonic minorant of
H?v 4s equal to Hix.

Proor. If ¢ is a bounded g,-resolutive function on /°, then Lemma 3.9
implies that ¢ is ¢;-resolutive and the equality (3.1) holds. If ¢ is ¢;-resolu-
tive and non-negative, then consider ¢,=min(p, n). By Lemma 8.5, each ¢,
is gi-resolutive, and hence g,-resolutive. Since H{: < H{: < H?' and ¢, "¢,
Proposition 3.1, (iii) implies that ¢ is g,-resolutive and the equality (3.1) fol-
lows from the corresponding equalities for ¢,. Finally, if ¢ is an arbitrary
gi-resolutive function, then consider ¢*=max(p, 0) and ¢~ = —min(g, 0).
Since ¢p=¢"— ¢, the above results and Proposition 3.1, (i) imply the theorem.

CoroLLarY 1. If ¢1=gqs, then any q,-resolutive compactification s q,-
resolutive; tn particular, any resolutive compactification is g-resolutive for any

q.
CoroLLARY 2. If g1 =g: and if X is a qi-resolutive compactification, then

w2 is absolutely continuous with respect to v’ and any g,-measurable set (or
Sfunction) is g;-measurable.
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CoroLLARY 3. Let X be a resolutive compactification of X and let xo€ X
be fized. For each yc X, there exists a bounded nom-negative w-measurable
Sunction x5 such that doj=xjdo,,.

Proor. The existence of a non-negative function x} satisfying the above
relation follows from the previous corollary and the corollary to Lemma 3.6.
Harnack’s inequality (Proposition 1.7) implies the boundedness of x}.

The converse of the above theorem or Corollary 1 is not generally true.
For example, we can construct ¢ on a Green space such that H{=0. Then
any bounded function on any compactification is g-resolutive. On the other
hand, there are non-resolutive compactifications of X (see [7]).

However, we have the following:

Lemma 3.10.  Let g1 = ¢, and suppose
(3.2) 6, Yl = qu DIy < co.

(In case ¢;=0, we assume that X is a Green space.) Then, for any bounded
Sunction ¢ on I,

() = B + (69, 9Lgal) = (IS dy
and

A9 () = H(x)+ —1 gcwx, g ) — g DIy y.
Proor. Let u;=H? (resp.=HZ),i=1,2. By Lemma 3.9,
ux) = () — - gcf'z(x, gl ) — gy Jus(dy.

Cq

Hence
Cid SG‘“(x, PLg(Y)—qu( ) Ju()d y
_ % Squ(x’ y)[‘IZ(y/— ql(y>]{u1(y)— %SG%(% Z)El]z(z)— QI(Z)]UKZ) dz% d}r.

By condition (8.2), Fubini’s theorem and Theorem 2.4, this is equal to

T fenn g —anTundy

B 7701;, S{%d SGq(x’ Gy gL )~ Q1(y>]dy}[92(Z>—‘]1(z):|u1(z)dz
a C%S {G"“x’ 2) =G (x, z)}[‘IZ(Z)—%(z)]ul(z)dz

1 fle7u e, ML) =g Ts( Dy = r() — sl

Ca
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Hence we have the lemma.

TueoreM 3.2. Let ¢y =q; and suppose that condition (3.2) in the above
lemma s satisfied; in case g, =0, we assume that X is a Green space.

(i) Any bounded gs-resolutive fumction on I" is g -resolutive; any gq-
resolutive function ¢ such that | Hy?| s dominated by a gi-harmonic function
18 gi-resolutive.

(i) If ¢ 1s a gi-resolutive function on I', then

Hy()— Hip) = - (64, p)laa 0= () IHH()d
so that 1.f ¢ is non-negative, then the least q,-harmonic majorant of H: is equal
to HIv.

The proof of this theorem is similar to that of Theorem 3.1, using Lemma
3.10 in place of Lemma 3.9.

CororrLarY 1. Under the same assumptions as in the above theorem, any
ge-resolutive compactification is g,-resolutive (and vice versa).

Remark. If ¢;=0 and ¢;=g¢, then condition (3.2) is reduced to the condi-
tion g ¢ Qp. Thus we have

CoroLLARY 2. If q € Qy, then a g-resolutive compactification is resolutive.

Lemma 8.11. Let q1=gq. and let X be a gi-resolutive compactification.
Then, for any mnon-negative bounded function ¢, the greatest g,-harmonic
minorant of

R (x) = Swdwi‘ (resp. h%1(x) = g<ﬂdw§il)

18 equal to

Bi(x) = {0 dots (resp. 194(x) = [ pdot)
If, in addition, condition (3.2) is satisfied and X is a Green space in case =0,
then the least gi-harmonic majorant of h?: (resp.h’z) is equal to A% (resp.h").

Proor. This lemma immediately follows from Lemmas 3.7, 3.9 and 3.10.

Turorem 3.3.  Let g1 = g, and suppose that condition (3.2) is satisfied; in
case ¢=0, assume that X is a Green space. If Xisa q1-resolutive compactifica-
tion, then 0wl and wi: are equivalent measures for any x ¢ X. In particular,
i.f X is a Green space, X is a resolutive compactification and g ¢ Q,, then w? is
equivalent to w,.

Proor. Let ¢ be a non-negative bounded function on 7". By the above
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lemma, we see that ggodwé’,l=0 if and only if g(ada)?ﬁ:O. It follows that wi:

and ol are equivalent to each other.
From this lemma, it follows that, if ¢ € Qo, then x§>0 w-a.e. on I".

§8.5. Dependence of HJ on q

Tueorem 3.4.  Let g, increase to g as n—>oo.

(1) If ¢ is bounded below and H?' is finite, then Hi(x) tends to HI(x) for
each x € X;

(i) If ¢ is bounded above and HI' is finite, then Hi(x)tends to Hi(x) for
each x € X;

(iii) If ¢ vs gi-resolutive, then Hi»(x) tends to Hi(x) for each x € X.

Proor. First let ¢ be non-negative, u,=H! (resp.=HI», =H?I) and

u=H? (resp. = H?, = H?). Then, by Lemma, 3.9, (i) (resp. Lemma 3.9, (ii), Theo-
rem 3.1, (ii)), we have

() — (%) = i feer, PLaCr= gy Juny)dy

Since u,(x) is finite, {u,} is monotone decreasing and ¢—g. decreases to 0 as
n—oo, we see that u, tends to u. Now it is easy to show the theorem in
case ¢ is not necessarily non-negative (cf. proofs of Lemma 3.9 and Theorem
3.1).

Tueorem 3.5. If ¢ is a bounded function on I, then, for any ¢, and g,
B — 1| <196ty la(n—ainldy,
where |[¢l| =sup ser | 9(&)] and g*=max (g, g2).
Proor. By Lemma 3.9 and Proposition 3.1, (ii), we have
| T3~ A5 )| = (67 Gy D (=g DHIH( )y
<6 e, g —aray

d

for i=1, 2. Hence
| H3(x)— Hyx(2) | < | Hy(x)— H (2)| + | Hi(x)— HJ (x)]

< %JSG“*(x, N2 (P — () —qo(M}dy

llell qu‘(x, () =gy dy.

Cq
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Remark. The integrals in the above proof are finite, since

1 * ES
et g —gnldy=— {67 @ pen=1

(cf. the corollary, (ii), to Theorem 2.1). Thus it also follows that | H2(x)—
Hi(x) ] < llgll.

Tueorem 3.6. Let q,—q (n—>o0), ¢,=q¢* (n=1, 2, ...) and suppose
SG"(x, Yg*(y)d y<co. Then, for any bounded function ¢ on I,

Hyp(x)—> Hy(x) and  Hy(x)—> Hi(x)  (n—>=0).

Proor. By the previous theorem,

| A= B < 1 (G, g =gl dy
<||(€|| G? _ -
= (x, Vgl —q(P]dy.

Since |¢.(y)—q(y)| <g¢*(») and qu(x, Pg*(y)d y< oo by assumption, the Le-
besgue convergence theorem implies that

6, DNgD=a(pldy—>0 (oo,

Hence Hi(x)— H¥(x) (n— ). By considering —¢, we also have H(x)—
Hi(x) (n— o).

CororrarY 1. If g, decreases to g and qu(x, gi(y)d y< oo, then
Hi(x)—>Hi(x) and Hi(x)—>Hiyx) (n—>o0)
for any bounded function ¢ on I

Cororrary 2. If g, € Qo (n=1,2, ...) and ¢, decreases to 0, then H(x)—>
H,(x) for any bounded resolutive function ¢.

Remark. In Theorem 3.4 and in the above two corollaries, the con-
vergence is locally uniform on X by Dini’s theorem.

Appendix. We can define a topology in Q, by a family of metrics
£d . .
W& Z§ Z compact *

dgs, 4 = 5up | 6(x, 9= (D] dy:

By the topology defined by {d;}, Q, is a metrizable space. Let C(X) be the
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space of continuous functions on X with the compact convergence topology
and let Rg(I") be the space of all bounded resolutive functions on /" with the
sup topology. Then Theorem 3.5 implies that the mapping (¢, ¢) — Hj is con-
tinuous from Rp(7"): o into C X ). (Also, we see that the mapping ¢—>Gx, y)
is continuous on Q, for any x 5 y; cf. Theorems 2.4 and 2.5.)

Let us say that X is a space of bounded type if ¢q(x)=1 belongs to Q,, i.e.,

if SG(x, y) dy<oo for some (hence all) x € X. Any bounded domain in R? is
of bounded type. Let Q,={q ¢ Qo; g is bounded} and let ||q1—qz||=su)1() [g1(y)
y€

—q:(y)[. Then it is easy to see that if X is of bounded type, then, for each
compact set Z, there exists M; >0 such that

dz(ql, qz)gMZqu—qzll for all g1, q2 € Ob.

Thus, if X is of bounded type, then the mapping (¢, ¢)—> HZ is continuous
from Rp(I") % Q; into C(X), where the topology in Q, is given by the metric

llgr—gll-

CHAPTER IV Normal Derivatives.

In what follows, we shall always assume that X is a Green space.

§4.1. The spaces O and D.

Let O be the set of all locally summable functions g on X (with respect
to dx) such that in each ball V' in X, 0g/0x;, i=1, ..., d, in the distribution
sense are identified with square summable functions (on 7)) and such that

d
D[g]sgx 2. (0g/0x;)dx < co. Remark that this integral is determined
i=1
coordinate-free. @ is obviously a linear space. If g, g€ D, then their
mutual Dirichlet integral D[ g1, g»]= SX (29, (0g:/0%:)(0g:/0x )} dx is de-

fined. We denote by || || the corresponding norm, i.e., ||g|[*=D[g].

The space D coincides with the space BL(X) in [10]in case X is a domain
in RY. Thus 0g/dx; in the ordinary sense exists almost everywhere in a ball
V and coincides with the one in the distribution sense ([107], [257). Also,
BLD-functions on X (see [5]; Dirichletsche Funktionen in [77]) belong to Q.

Let H)p be the set of all harmonic functions on X belonging to @. It is
also the space of all BLD-harmonic functions.

Next, we consider the subspace D of D consisting of all g ¢ D such that
dg in the distribution sense is identified with a (signed) Radon measure on
X. It can be seen from Theorem 1.2 and a general theory in [10] that g¢ &
belongs to  if and only if g=u+p a.e. on X, where u ¢ Hp and p is a differ-
ence of two Green potentials belonging to & (ef. Doob [117], §11).
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We shall also consider the class D of ' functions g on X for each of which
there exist a compact set Z in X and g ¢ & such that g=g on X—Z.

§4.2. Definitions of normal derivatives

We consider a resolutive compactification X of X and define normal deriva-
tives with respect to the ideal boundary I'=X—X, for functions in & in
general.

For any subset 4 of I, let
Co(A)=4{peCl); H,c Hp, p =0 0on ['— 4}.

Cp(4) is a linear subspace of C(/"). In case 4 is a Borel set, by a measure on
A, we shall mean the restriction of a signed Radon measure on I” to 4.

Drrmition 1. Let 4 be a Borel set on /" and v be a measure on 4. Given
gec D, we say that v is a normal derivative of g on A in the weak sense, or g
has a normal derivative v on A in the weak sense, if the following condition is
satisfied:

For any ¢ € Cp(A), S|H¢|d|4’g| <o and
(4.1) qu,d(Ag)—l- DLH,, ¢]= —Sqodv.

Remark. This definition includes the definition given by Constantinescu-
Cornea ([77], p. 218) as a special case.

Next, we consider the case where a normal derivative of ge¢ D on 4 in
the weak sense is absolutely continuous with respect to the harmonic measure
w,. In this case we fix x, € X and find an w-measurable function y on 4 such
that dv=rdw,, (v is determined only w-a.e. for each v). We shall again call 7
a normal derivative of g on 4 in the weak sense (and with respect to xo).

If we define normal derivatives as functions, then it is possible to make
the following somewhat stronger definition, which is more suitable for our
purpose: Let 4 be an w-measurable subset of /" and let

Rgp(A) = {¢; bounded resolutive, H, € Hp, =0 w-a.e. on I"— 4}.

Dermirion 2. (Cf. definitions in [11 ] and [207].) Let 7 be an w-measur-
able function on an w-measurable set AC/. We say that r is a normal de-
rivative of g€ D on 4, or g has a normal derivative v on 4, if the following
condition is satisfied:

For any ¢ ¢ Rpn(A), S|H¢|dug| < oo, SA 70| do,, < oo and

41y [m.aag+ D, 1=~ redo,
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Since Rpp(A) CCp(A), any normal derivative is that in the weak sense.

Lemma 4.1, Let g1, g2 € D and g1= g2 a.e. outside a compact set in X. If
¢ ¢ Rop(I") and if g|H¢,| d|dg.| <o, then g|H¢|d|Ag2| < oo and

[ acagn+ DM, g1= (Hdag)+ DLH, &1

Proor. Let f be a C°-function with compact support in X such that f=1
on a compact set outside of which gy =g, a.e. Since SI fH,|d|4gi| < o for

i=1,2, S|H¢ld|4g1|<oo implies S]H¢IdIAg2I<00. Since fH, is a C*-func-

tion with compact support, we have
[H.dr4g1— 207+ DLH,, 51— g2
= (rH.d s~ g2+ DL fH,, 61— g =0,

By this lemma, we can extend the definition of normal derivatives to
functions in D: For ge D, let ge D be equal to Z outside a compact set in
X. If ghas a normal derivative 7 (resp. in the weak sense) on 4, then we
define r as a normal derivative of on A (resp. in the weak sense).

The following properties are immediate consequences of the definitions:

(a) Let 4,C 4, and if 7 is a normal derivative of ge D on 4, (resp. in
the weak sense), then the restriction of y to 4, is a normal derivative of g on
Ay (resp. in the weak sense). _

(b) If 7; is a normal derivative of g; €D on A (resp. in the weak sense)
for each i=1, 2, and if 4;, i=1, 2, are real numbers, then 2,7, + 45, is a normal
derivative of 1;41+1:42 on A (resp. in the weak sense). (Cf. the convention
considered in Proposition 3.1, (i).) N

(¢) If y is a normal derivative of ge¢ D on 4 (resp. in the weak sense)
and if y;=r w-a.e. on 4, then 7, is also a normal derivative of gon 4 (resp. in
the weak sense).

ExampLe 1. Let X be a bounded domain in R? such that its relative
boundary I” in R? consists of a finite number of smooth closed hypersurfaces.
Let dS be the surface element on I". If gis a C*function on X such that g
and its first order partial derivatives are continuous on X=X\U/, then
Green’s formula implies that the measure (0g/0n)dS is a normal derivative
of g on /" in the weak sense, where 0g/0n is the ordinary inner normal
derivative on /. Since the harmonic measure is expressed as‘dw, =
(0G,,/0n)dS, we see that (0g/0n)/(0G,,/0n) is a function valued normal de-
rivative of g on /" in the weak sense (cf.[11]). We can show that this is
also a normal derivative of g on I” in the sense given in Definition 2.
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Remark. In general, it can be seen that a normal derivative on I” in the
weak sense is also a normal derivative on /" in the sense of Definition 2 if I”
is the Kuramochi boundary.

ExampLE 2. For any Green space X and any resolutive compactification
X, the Green function G, has a normal derivative c,x, on I" (see [ 207, Proposi-
tion 1). More generally, we shall show (Proposition 4.4) that G} has a normal
derivative c,x} on I" for each ye X. (See Corollary 3 to Theorem 3.1 for the
function x%).

§4.8. Royden decomposition

We now consider the set D of all BLD-functions on X. It is a subspace
of D, so that D[ g1, g»] and D[ g ] make sense for g1, g5, g€ D. If ge D and
|lgl|=0, then g=const. q.p., where “q.p.” means “quasi-partout” or “except
for a polar set” (see [3]). We know ([3], [10], [7])

Prorosition 4.1. The quotient space of D (resp. Hp) with respect to the
equivalence relation ||g1— g:||=0 is a Hilbert space with respect to the inner

product D[ g1, g
Since every ge D is Lebesgue measurable, the integral Sq(x)gz(x)dx

makes sense. We consider the spaces
D= {geD; Sq(x)gz(x)dx<°°},

H} = {u € D; u is g-harmonic on X}.

For g1, g2, g€ D%, let

D e, &)= Dlas, &1+ [gatads,

D[gl=D"g g] and |gll,=vDCgl.
Obviously, if g1 = ¢», then D: C D% and D“[ g]<<D%[ g] for any ge D*:.
Lemma 4.2.  If q=0, then || ||, 18 @ norm in D? and D? is a Hilbert space

with respect to the inmer product D[ g1, g, provided that we identify two
functions which are equal q.p. on X.

Proor. Obviously, || ||, is a semi-norm on D% If |[g][,=0, then |[g][=0
and ngdezo. It follows that g=0 q.p. on X, since ¢==0. Thus || ||, is a

norm on D? D g, g, is the corresponding inner product. Hence it is
enough to show that D? is complete with respect to the norm || ||,. Suppose

{g»} is a Cauchy sequence in D?. Since Sq( gn— gn)’dx—0 (n, m — o), there
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exists a subsequence {g,,} such that {g, (x)} is convergent almost everywhere
on the set {x € X; ¢q(x)>0}. Since D is complete and || g,— gnll— 0 (n, m — o),
there exists g ¢ D such that || g,— g|| >0 (n — o). By choosing a subsequence
again if necessary, we may assume that {g, } converges to g q.p. on X (cf.
[5],[7]or [197]). Then we easily see that gc D? and |[g,,— gll, >0 (k—> o),
which implies ||g,— gll, =0 (n > o). Hence D? is complete.

Let €7 be the set of all infinitely differentiable functions with compact
support on X. Obviously, C;CD? In case ¢=0, D, is the set of ge¢ D for
which there exists a sequence { f,} of functions in C; such that || f,— g||—0
and f,— g q.p. (n > o0). If g0, then let D{ be the closure of C; in D? with
respect to the norm || ||,. Thusif g, € D{, then there exist f, € €7, n=1,2, ...,
such that || f,— gll;—0. An argument similar to the proof of the above
lemma implies that there exists a subsequence {f, } which converges to g,
qa.p. on X. Therefore we have

Lemma 4.3. D{CD,.
It is known ([57], [7]) that

Prorosrrion 4.2. Hp and D, are orthogonal to each other, v.e., D[ h, f 1=0
for any hc Hp and f c D,. Any function ge D is uniquely decomposed into
g=h+f with h ¢ Hp and f € D, (Royden decomposition).

Similarly we have (cf. [24 ], Theorem 3 for a special case)

Lemma 4.4. For any q=0, Hf 1s complete with respect to the norm || ||,
and s orthogonal to the space D, i.e., D[ u, f ]=0 for any u ¢ Hj and f ¢ D{.
Any function ge D? is uniquely decomposed into g=u-+ g, with u ¢ H}, and
8o € Dy,

Proor. Let Hi={ge D?; g=u q.p. for some u ¢ Hi}. It is enough to
show that H} is the orthogonal complement of C; in D If f¢ C; and u € HE,
then Green’s formula implies

0= S(Au)fdx—l—D[u, = Squfdx—{-D[u, f1=DTu, f]

Conversely, suppose g ¢ D?satisfies D[ g, f ]=0 for all f € C§. Since D[ g, f]
=— S fd(4g) in the distribution sense, it follows that S fd(dg—qg)=0 for all

f€C;,or 4g—qg=0 in the distribution sense. Therefore, by Proposition 1.1,
g is equal to a g-harmonic function almost everywhere (hence q.p.) on X.
Hence g ¢ Hf.

§4.4. Properties of functions in D?

Let us recall that for any g€ D, there exists a potential p such that
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| gl <p (see [7], Hilfssatz 7.7 and [197], Lemma 4). By Proposition 1.14, p
is also a g-potential. Thus we have

Lemma 45. For any g € Dj, there exists a g-potential p such that | go| <p
on X.

Using this lemma, we have

Lemuma 4.6.  If v is a g-superharmonic function on X and v € D?, then v
has a g-harmonic minorant. Furthermore, if v=u+ g is the decomposition
wmto a g-harmonic function u and a g-potential g, then u ¢ Hf and g€ D{, so
that D u]<D[v]and D g]<Dv]. In particular, any g-potential which
belongs to D? belongs to Di.

Proor. Let v=u;+ g1 be the decomposition into u, € H} and g € D§
(Proposition 4.2 and Lemma 4.4). By the previous lemma, there exists a ¢-
potential p such that | g|<p. Since v is g-superharmonic, so is g. Hence
it follows that g; is a ¢g-potential. Hence u,=u and g= g and the lemma is
proved.

Lemma 4.7. Let uy, u, € Hj. Then the least g-harmonic majorant v of
max (ui, usz) and the greatest g-harmonic minorant w of min(uy, u,) both belong
to HY and

D v]+DTw]<D[u, 1+ D[ u,].

Proor. It is easy to see that max(u;, u;), min{u;, u,)€ D? and
D max (u1, uz)]+ D min(u,, u2)]= D[ u, |+ D[u;] (cf. Satz 7.8 in [7).
Since —max(u1, uz) and min(uy, u,) are g-superharmonic, » and w belong to
Hf by the previous lemma and DY v ]|<D{max(u;, uy)] and D Tw]<<
D min (ui, uz)].

Lemma 4.8. (i) If u,€ Hp, n=1,2, ..., D[u,]—0 and u,(x,)—0 (for a
fixed xo € X), then u,— 0 locally uniformly on X.

) Ifq#0,u,€e Hf, n=1,2, ..., and D u,]—0,then u,— 0 locally uni-
Sormly on X.

Proor. (i) is well-known (see [ 3], p. 11 and [ 5], Lemma 2 and n° 21).
(ii) Let {u,} be any subsequence of {u,}. Since D u,,]—0, Sq(u,,j)zdx

—0 (j— o). Hence there exists a subsequence {n;} of {n;} such that u,—0
(j— o) almost everywhere on {x € X; ¢(x)>0}. Each —|u,;| is g-super-
harmonic, so that superharmonic (Proposition 1.9). Let |u,;| =h;—p;, where
h; is harmonic and p,; is a potential, for each ;. By the previous lemma,
DChy]), DLp;i]=< D[ |uwml| 1= D[ us]—>0 (j—>o0). Since p; € D,, there exists a
subsequence {p, } such that p; —0 q.p. (see [ 7], Hilfssatz 7.8). Then &; —0
almost everywhere on {x € X; ¢(x)>0}. Thus (i) implies that 4; — 0 locally
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unifofmly on X. Since Iu,,], | =< hj, Un — 0 locally uniformly on X. Thus

we have seen that any subsequence of {u,} contains another subsequence
which converges to 0 locally uniformly. It then follows that {u,} itself con-
verges to 0 locally uniformly on X.

§4.5. The space Ri(I")

Given a resolutive compactification X and an w-measurable subset 4 of
I'=X—1X, let
g-resolutive function on /" such that
Ri) =1 ¢;
H!c Hf and ¢=0 w’a.e.on I'— 4
We shall study the properties of the space R3(/") in this section.

Levma 4.9, If ¢, @2 € RE), then max (g1, ) and min(¢,, ¢2) both belong
to Ri(I") and
D'LH xioy o0 ]t D' LH v, 0p ] = DLHG 1+ DLHS, ]

Proor. This is an immediate consequence of Proposition 8.1, (i) and
Lemma 4.7.

By this lemma, we see that if ¢ ¢ RL("), then |¢| ¢ RL(") and that
DLHf, J=D[Hj .

Levva 4.10. If o ¢ RY) and ¢ =0, then min(p, ) ¢ RYI") for any non-
negative constant 2 and D[ H%, .o\ <D H].

Proor. By Lemma 3.3, min(gp, 1) is g¢-resolutive. Since Hle¢ D, v=
min(H?, 2) ¢ D and D[v]<D[H?]. Since 0=v<= HY, S gvPdx < S g(H O dx <

co. Therefore, v € D? and D[ v < D H!]. Now, Lemma 4.6, together with
Lemma 3.3, implies that HZ. ) ¢ Hj and D HS,,, =D H]

Lemma 4.11. Let ¢ ¢ R(I") and ¢, =max(min(g, n), —n), n=1, 2, ...
Then DLHY —H%]—0 (n—> o).

Proor. By virtue of Lemma 4.9, it is enough to show the case ¢>0.
Then ¢,=min(g, n). Let v,=HI—min(HZ n). As in the proof of the previ-
ous lemma, we see that D H{—H] ]< D v,]. On the other hand, since

H! e HE, we have D[ v, ]—0 and gg(v,,)zdx—%), i.e., D v, ]—0 (n—>>). Hence
we have the lemma.

For different ¢’s, we have

Prorosition 4.3.  Let ¢, = g, and suppose (3.2) is satisfied. Then RA:(I")C
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R (I 'and DU HP J<D*[ H{*] for all ¢ ¢ REX(I"). In particular, if g€ Qo,
then RYI)CRp(I") and DLH, ] D[ HZ] for all ¢ € RKI").

Proor. If ¢ € Rfx(I") is bounded, then Theorem 3.2 implies that ¢ is ¢:-
resolutive and Hj' is the least g;-harmonic minorant of H{: Hence, using
Lemma 4.6, we see that ¢ € R(I") and DO[HH < DU[HI: )< D" [HZ|. If
¢ € R§x(I") is not bounded, then we consider ¢,=max(min(p, n), —n). Then
¢, € Rpx(I') and D[ Hl: — H{: ]—0 (n, m — o) by the previous lemma. Thus
the above result for bounded ¢ implies D[ H]:—H{ 1<<D*[H}:—H}:]—>0
(n, m— o). By Lemmas 4.4 and 4.8, H?: tends to u € H§' locally uniformly
on X and also in the norm || |[,,. It follows from Proposition 3.1, (iii) that
u=H%. Hence ¢ ¢ R{(I") and Lemma 4.11 and the above results imply

DU HY ] =lim Do HL ) <lim D[ H%]= DU H%¥].

§4.6. Normal derivatives of ¢q-Green functions

First, we show

Lemma 4.12.  For a suffictently large 2o, the set V,={x ¢ X; Gi(x)=2} s
compact 1n X for all 2=2%, and g, = min(G3, 1) belongs to Df (yc X: fixed).
Furthermore, 1, = —(4g.—qg.) s a measure supported by V, and vaguely con-
verges to cq,0, as 1 — co.

Proor. Since G§<G, and {x ¢ X; G,(x)=41} is compact for sufficiently
large 1, ¥, is compact for such 4. Also, as in the case of ¢=0, we can show
that g, ¢ D?. (For example, we may use the method in the proof of Hilfssatz
7.5 and fatz 7.2 in [7].) Since g, is a g-potential, it belongs to D{ by Lemma
4.6.

For any f ¢ C3, S Fdm=— S(Af—q Nagndx—— S(Af—q F)Gidx = caf(y) as
A— oo, since 4G5 —qGi= —c.0,. It follows that x,— c.0, vaguely as 21— co.

By this lemma, we see that G} ¢ D for any yc X. Now we have

Proposition 4.4.  For any resolutive compactification X, G has a normal
derivative c,x§ on I'=X—X for each ye X.

Proor. For any ¢ € Rpp(I"), D[ H,, g.]=0 by the above lemma, together
with Lemma 4.3 and Proposition 4.2, and SHq,d(Agx):—Sflq,d/zﬁ—gg}lq,gkdx.

As 1o, SH¢dﬂ,\—+ —cq4H,(y) by the above lemma. Also we have Squ, gdx—

SqH(,,ngx. Hence, using Theorem 3.1, we have
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(Hodag)+ DLR,, 01— —cali(p+ (gl Gidz = i) (oo,
Since the left hand side is independent of 2 by Lemma 4.1, we have
[Macag+ DLH,, g)= —calli(p) = ~capdos
= — cdg(pxgdw,,u,

so that cxj is a normal derivative of G4.

§4.7. Uniqueness of normal derivatives

In [207, a resolutive compactification X was called regular if Cp(I") is
dense in €(/") with respect to the uniform convergence topology. For ex-
amples of regular compactifications, see [207].

Remark. By Stone’s theorem, we see that X is regular if and only if
Cp(I") separates points of 7.

LemMa 4.18. If X is a regular compactification, then Cp(A) is dense in
Co(A), where Co(A)=4{p c CUI"); ¢=0 on I'— A} with the uniform convergence
topology.

Proor. Given ¢ € Cy(4), ¢ =0 and ¢ >0, there exists ¢; € Cp(I") such that
l¢p—¢1| <e/2 on I', since X is regular. Let ¢*=max(p;—¢/2,0). Then ¢* ¢
Cp(I') by Lemma 4.9 and ¢*=0 on I"'— 4, i.e., p* € Cp(A). It is easy to see that
log—¢*|<eon I'. If ¢ € Cy(A) is not necessarily non-negative, then consider
¢* and ¢~ and we find ¢* € Cp(A) such that |p—¢*| <e.

Prorosrtion 4.5.  If X is a regular compactification and A is a_relatively
open subset of I, then a normal derivative of a given function ge D on A (in
the weak sense or not) is uniquely determined as a measure and w-a.e. as a
Sunction.

Proor. Let v, and v, be two (measure valued) normal derivatives of g on

A4 in the weak sense. Then, for any ¢ € Cp(4), we have S(pdvl = S(pdvz. From

the above lemma, it follows that this equality holds for any ¢ ¢ Co(4). Since
A is open in I', it follows that v;=v, on 4. The rest of the proposition now
easily follows.

§4.8. Normal derivatives of Hj-functions

Now we shall study normal derivatives of functions in Hf. If u ¢ Hf,
then du=qu and u € D. Thus the left hand side of (4.1) in Definition 2 for
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g=u is reduced to D[ H,, u], provided that H, ¢ D?. Let
R%,(A) = {¢ € RL(A); ¢ is bounded}

for any w-measurable set 4 on /. Then we have

Lemma 4.14. Let ¢ and ¢, satisfy Slq(x)—ql(x)l dx<oo. Then RL,(I")
=R4,(I") and D' u, H =D u, H3] for any u ¢ H} and for any ¢ € Ry ().

Proor. Let go=min(g, ;). Then S(q—go)dx<oo and |(g:—go)dx < oo.

It follows that SG‘“’(x, gy —qo(y]dy< o and SG‘“’(x, P — gy
<co. Hence, by Theorems 3.1 and 3.2, we see that g-resolutivity, ¢;-resolu-
tivity and go-resolutivity all coincide. By Proposition 4.3, we see that R} (1)
CRYy(I) and RY,(IN)C Ry (I'). Let ¢ ¢ Ryp(I') and ¢ =0. Theorem 3.1 im-
plies that H{»=H{+p with a bounded g¢-potential p. Since D H}]=
D[ HIo |+ S(q —qo)(Hi)?dx < oo, Lemma 4.6 implies ¢ ¢ R%,(I") and D[ u, H?]

=D u, H] for any v ¢ Hf. Similarly, we see that ¢ ¢ Ry,(7"). By Theo-
rem 3.2, H{*=H}'+p, with a bounded g¢o-potential p,. Since H{' ¢ D" C D%,

p1 € D{» (Lemma 4.6). Since p; is bounded and g(q—qo)dx< oo, we see that

p1 € D?. By Proposition 1.14, p, is a g-potential. Hence p, € D{ by Lemma
4.6. Therefore D[ u, H: =D u, H:'] for any u ¢ Hf. Thus we have seen
that if ¢ € Ry, (") and ¢ =0, then ¢ ¢ R (), ¢ € Ry(I7) and D[ u, HY =
D u, H'] for any u ¢ Hf. By considering ¢* and ¢~ in general, we can easily
complete the proof.

Turorem 4.1.  Suppose
(4.2) Sq(x)dx < co.

Let u € Hf, A be an w-measurable subset of I and r be an w-measurable function
on A. Then v is a normal derivative of u on A if and only if, for any
¢ € Rpp(A) (=R%p(A)), ¢1 is w-summable on A and

(4.3) DTHY, u]= — SAqarda),,ﬂ.

Proor. By the above lemma, Rgp(A)=R%,(A4) and D[ H,, u |=D HI, u]
for all ¢ € Rpp(I”). Therefore, as remarked at the beginning of this section,
the left hand side of (4.1) in Definition 2 is reduced to D HI, u] and the
theorem is proved.

Remark. (4.2) implies g ¢ Qo, so that “w-a.e.” and “w’-a.e.” mean the same
(Theorem 3.3) in this case.
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CoroLrLARrY. Let ¢ satisfy (4.2). If 1 is a normal derivative of u € Hp on

A, then (4.3) holds for any ¢ € RA(A) such that S 70| dose, < oo,
A

Proor. Let ¢ ¢ R4(A) be such that gAir(oldw<oo. Then ¢, € R%p(4),

where ¢,=max(min(g, n), —n), n=1,2, .... Hence by the above theorem,
D, )=~ o do,,  n=1,2, ..
A

By Lemma 4.11, D[ H] , u]—> D[ H{, u] as n—>co. On the other hand, since

ler| dw, < oo and ¢,— ¢ w-a.e., the Lebesgue convergence theorem implies
A 0

g/‘(pnrdwxo —>S ¢rdw,, (n— o). Hence (4.3) holds for ¢.
4

Remark 1. We shall show in the next chapter (Lemma 5.1) that any
function in Rx(I") is w-square summable. Hence the condition that S|¢7’] do

< oo for all ¢ € RY(A)(C Rp(4)) is satisfied if y is w-square summable on 4.

Remark 2. Even when g does not satisfy (4.2), we may formally define a
“g-normal derivative” of u € Hj on an w’-measurable subset 4 on /" as an ‘-
measurable function y on 4 such that (4.8) holds for all ¢ € R%,(4) (or for all
@ € Ri(A)). With this definition, it is possible to obtain a theory analogous to
that given in the next two chapters, replacing normal derivatives by g-normal
derivatives.

CHAPTER V Boundary Value Problems.

Throughout this and the next chapters let X be a resolutive compactifica-
tion of X and let '=X—X. We also fix x, ¢ X and denote w=w,,. Moreover
we assume that the condition

(4.2) gq<x>dx< oo

is satisfied (cf. Remark 2 at the end of the previous chapter).

§5.1. Problem setting

We now formulate a general boundary value problem, which includes the
Neumann problem, the third boundary value problem and the mixed problem.

Suppose an w-measurable subset 4 of I" and an w-measurable non-negative
function 8 on 4 are given. We shall call the pair [ 4, 3] a boundary condition.
As boundary data, we consider two w-measurable functions r on I'— 4 and r
on 4. With such boundary condition and data, we set
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Problem P[4, 3;7,7;9]: To find u=H{ e H} with ¢ € Ri(I") such that
(i) ¢=tvw-a.e.on ' —4,
(i) u has a normal derivative f¢+7 on A.

ReEmark 1. The above problem includes the following as special cases:

(a) The case w{4)=0. In this case the problem is regarded as the
Dirichlet problem. Since we assumed that X is resolutive (hence g-resolutive),
the existence and the uniqueness of the problem in this case are trivial.

(b) The case w(/'—A4)=0 and 3=0 w-a.e. on 4. In this case condition (i)
is not in force and condition (ii) is reduced to

(i)’ u has a normal derivative y on A.

Thus in this case the problem is regarded as the Neumann problem. By
Theorem 4.1, condition (ii)’ is rewritten as

DTHY, u)= —Swdw for all ¢ ¢ Rpo(I").

Hence, if ¢=0, then it is necessary that Srdwzo.

(¢) The case w(I'—A)=0and 8=£0 w-a.e. on 4. The problem in this case
may be regarded as the third boundary value problem.

(d) The case w(A)>0, o(I'—A)>0 and =0 w-a.e. on 4. The problem in
this case is regarded as the mixed problem.

Remark 2. We can formulate similar problems with respect to normal
derivatives in the weak sense. For example, as a Neumann problem, we may
consider a problem to find u € H having a given signed measure v on /" as a
normal derivative in the weak sense. In fact, Constantinescu-Cornea [ 7]
treated this form of problem for ¢=0 with respect to the Kuramochi
boundary. However, we shall restrict ourselves to normal derivatives given
in Definition 2 in treating a general form of problem on a general ideal
boundary.

From the formulation of the problem, we immediately see the following:

Prorosition 5.1.  The problem P[ 4, 8; «, 1; g is linear in v and 7, i.e., if
u; 18 a solution of P[4, B; ti, vi; g for each i=1, 2 and if A, A, are real num-
bers, then 2yui+ Aou, 18 a solution of P[4, 3; Ayt 2otz Jir1+ Z2r2; ¢ ] (cf. the con-
vention given in Proposition 3.1, (i)).

§5.2. Uniqueness of solutions

Tueorem 5.1, If the problem P[ A, B; 1, v; q] has a solution of the form
w=HY} with ¢ ¢ RKI), then it is uniquely determined (up to an additive con-
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stant in case ¢=0, o(I'— A)=0 and 3=0 w-a.e. on I").

Proor. Let u;,=H]{, i=1, 2, be two solutions of the problem. Since
hr=¢y=1 w-a.e. on I'— 4, {1 —¢s € RY(A). Let ¢,=max(min(p:—¢z, n), —n).
Then ¢, € Rgp(4). Hence, by condition (ii) of the problem and by Theorem
4.1, we have

5D Dus—us, HJ= = {Bh1+D—Bpat Do
= —{ Bw—gedn=o.

By Lemma 4.11, we have 0 << D[ u; —u, | = lim,..D[ uy—u,, H; ]=0. There-
fore, u1=u; if ¢+0 and u,=u,+const. if g=0. In the latter case, if w(/"— 4)
>0, then ¢, =¢,=1 w-a.e. on I"— A implies u,=u,; if #=0 w-a.e., then (5,1)
implies that ¢;=¢, w-a.e. on the set {¢ € 4; 5(¢)>0}, since ¢,=¢,+c w-a.e. on
I implies ¢,= ¢, — ¢ w-a.e. for n=|c|. It then follows that u;=u, in this
case, too.

§5.8. More properties of the space RJ([I")

In addition to those given in §4.5, we shall need the following properties
of RA(I") to obtain the existence theorem for our problem. In this and the
next section, the assumption (4.2) can be weakened to the assumption g € Q.

In case ¢=0, we also consider the space

Ry, = {¢ € Roll); (pdo=0}.

The following lemma was obtained by Doob [11] in case ¢=0:

Lemma 5.1,  There exists a constant M, >0 such that
(5.2) frao <m,prHE]

SJor all g ¢ R{(I") in case g+0; for all g € Rp, in case ¢=0. In particular,
R C L¥w) for any q.

Proor. We prove the case ¢0. First consider ¢ ¢ Ri(/") which is non-
negative and bounded. Let u=H? and consider the measure x=(1/c,)du®
associated with the superharmonic function —u? Then

1

(5.3) Sdﬂ — 1 opruy+e S w(du)dax)

)
Nk

I

{2D[u]+2§qu2dx} = 2 pryi<e.
Cd

Cd
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It then'follows that the potential G, exists (i.e., = o), so that u®*=h—G, with
a harmonic function 2. By Lemma 3.4, there exists a positive superharmonic
function s such that u+es € 3 for all e>0. By the same method as in the
proof of Lemma, 2 of (207, we see that h+ese J,.. Hence h==H,.. On the

2
other hand, u%(x) = <S(pdw,‘i> gg¢2dw,§ﬁ¢z<x) (Lemma 3.5). Since % is the

least harmonic majorant of u? it follows that A<<H,.. Hence h=H,: or
u*=H,»—G,.

Now we prove that there exists M, >0 such that (5.2) holds for all
¢ € RE(I") which are bounded non-negative. Suppose this is not true. Then
there would exist a sequence {¢,} of bounded non-negative functions in RA(I")

such that S(p%dm:l and DTH? ]<1/2", n=1,2, .... Let u,=H! and p,=

(1/c)4(un)’. Then, by (5.3), cdgdﬂ,,=2pq[un]<1/2"~l. Hence 3, u, defines
a measure with finite total mass. It follows that G, tends to zero almost
everywhere on X. Since u,—0 locally uniformly on X by Lemma 4.8 and
u}=H, :—G,, it follows that {H, :} converges to 0 a.e. on X, and hence locally
uniformly on X (cf. Proposition 1.7). This contradicts the assumption that
, o(x0) = §¢gdw —1. Therefore, there exists M,>0 such that (5.2) holds for

all ¢ € RE(I") which are bounded non-negative. Then we see from Lemmas 4.9
and 4.10 that (5.2) holds for all ¢ € RA(I").

The above proof is a modification of the proof for ¢=0 given in [117] and

[207].

Let 4 be an w-measurable subset of 7" and let ¢ be an w-measurable fune-
tion on I'— 4. We define

Ri(4;v)={pc REI"); ¢ =t w-a.e. on [ — A}.

Obviously, R%(4; 0)=R}(A4) and if w(/"— A)=0, then R%(A; ©)=R%(") for any
7. We shall denote Hi(A; ©)={H%; ¢ ¢ RY(4; )}, HY(A)=H}A;0) and Hp ;=
{Hzp; @ € RD,l}'

Lemma 5.2 In case =0 or in case g=0 and o(l'—A4)>0, Hj(4; ) s
complete with respect to the norm || ||,, +.f it is non-empty. In particular, HE(A)
1s a Hilbert space in this case. In case g=0 and o(I'—A4)=0, Hp ; is a Hilbert
space with respect to D[ w1, us .

Proor. First suppose ¢=+0. Let u,=H] ¢ Hj(A4; ), ¢, € Ri(4;7) and
let {u,} be a Cauchy sequence with respect to || ||,, By Lemma 4.4, there
exists u € Hf such that |[u,—u|l,—~0. On the other hand, Lemma 5.1 implies
that {¢,} is a Cauchy sequence in L*w), so that there exists ¢ ¢ L%w) such

that S((p,,—ga)zdw—w {(n — o0). Then Proposition 1.7 implies that S(q)n—ga)zdwx

—0 for any x € X. By Lemma 3.7, (ii), we may assume that ¢ is resolutive
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(hence g-resolutive). Thus, for each x ¢ X, we have
2
| 11— un)| = | (=)ot
gg(w—(ﬂ)zdwx -0  (n—>o0)

It then follows from Lemma 4.8, (ii) that u=H!. Hence ¢ € R{(I"). We can
choose a subsequence {¢,} of {¢,} such that ¢, tends to ¢ w-a.e. on /. Since
¢n,=7 w-a.e. on I'—A, p=t w-a.e. on I'—A. Hence ¢c Rj(4;1), so that
u € Hi(4; 7).

Quite similarly, we can show that Hp , is complete (cf. [207]).

Finally suppose =0 and o(/"— 4)>0. It is easy to see that if |lu;—u,||=0
for uy, us € Hp(4; v) then uy=u,. Let u,=H, ¢ Hy(4; 1) with ¢, € Rp(4; )
and suppose {u,} is a Cauchy sequence with respect to || ||. Let c,=u.(xo)
for each n. Then u,—c, € Hp, for each n. Since Hp , is complete, there exists
u* € Hp, such that u,—c,—u* in Hp,. Let u*=H,. with ¢*¢ Rp,. By

Lemma 5.1, S((on—cn—qo*)zdw—»O. Since ¢,=rt w-a.e. on I'—A, we have

S (t—cn—¢*)dw—0. Therefore, p*=1+c {const.) w-a.e. on I'—A. Hence
r—-4

u=u*—c € Hpy(4;7) and ||lu,—u||—0.

Lemma 5.3.  Let A be an w-measurable subset of I' such that o(I”— A)>0.
Then there exists a constant M >0 such that

(5.2) S(pzda) < M'D[H,)
for all ¢ ¢ Rp(A).

Proor. By Lemma 5.1, we have S((p—H,,(xo))zdngD[Hq,] for all ¢c

Ry(I"). Hence it is enough to show that there exists M;>0 such that
| H(x0)|*< M,D[ H, ] for all ¢ ¢ Rp(A). Suppose the contrary. Then there
would exist ¢, ¢ Rp(4), n=1, 2, ..., such that H, (xo)=1 for all n and D[ H, ]
—0 (n—>oc0). By Lemma 4.8, H, tends to constant 1, while the previous
lemma implies that it tends to constant 0, a contradiction.

§5.4. Condition (B),; for a boundary condition

We shall consider the following condition:

B),: S Bprdo<co  forall ¢cRYA)
A

for a boundary condition [ 4; 5.
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If \g; = ¢3, then (B),, implies (B),, (Proposition 4.3). If 8 is bounded (-
essentially) on 4, then (B)=(B), (hence (B), for any ¢) is satisfied by virtue
of Lemma 5.1.

Luamva 5.4, Let [ A, 8] be @ boundary condition satisfying (B, and sup-
pose g Bdw>0. Then there exists a constant M,{(3)>0 such that
A

(5.4) | o= MS@DTH?)

Sfor all ¢ ¢ RH(A) in case g #0 or tn case g=0 and o{l'—A4>>0; for all ¢ ¢ Rp,
m case ¢g=0 and o{/'—A)=0.

Proor. Let g=0or ¢g=0 and o{/'— A >0 (resp. ¢=0 and o/ —A)=0).
Suppose there is no M,(B)>0 satisfying (5.4) for all ¢ ¢ R}{A) (resp. ¢ Rp .
Then we would find ¢, c Rj(A) {resp. ¢ Rp:) such that &Bgo;;a’w:] and
D[H} 1<1/2", n=1,2, ... Letogf=|pi|+ -+ g, for each n. Then @nC
R}(A) (resp. ¢ Ry{I") and SAB(¢;§<)2dwg n. Using Lemma 4.9, we see that
DUTHY— Hg:1—-0 (n, m—>oco). Furthermore, in case ¢=0, 0=H, x)
~Hao= 21| o do= 51, ((eido)  =MPTE, DUH, T for m>,

by Lemmas 5.1 and 5.3. Therefore {H,:(x,)} is convergent in this case.
Hence, by Lemma 5.2, there exists ¢* ¢ Ri(4) (resp. ¢ Rp(I")) such that
DTH!+—H{.]-0 (n—>o0). Since ¢} is monotone increasing, Lemmas 5.1
and 5.3 imply that ¢*=1lim,_ ¢} w-a.e. on I' {resp. we may assume that ¢*=

lim,_.¢F). By assumption, g/‘ﬁgo*zdw< oo, while n < SAB((/J}Q:\,Zdw <Z g43(0*2d0)
for all », which is a contradic.tion. . h

Lrvya 5.5, Let [ 4, 5] be a boundary condition satisfying (B), and suppose
gABdw>0. If we define an inner product (u;, uz)s, on H(A) by

(ur, u2ds o =D uy, us ]+ SA Byypado

for un=Hj , ¢; ¢ Ry’AY, i=1, 2, then H(A) s a Hilbert space with respect to
this inner product.

Proor. 1If g0 or if ¢=0and w/'— 4)>0, then the above lemma asserts
that || ||, and the norm corresponding to {,);, are equivalent norms. Hence
Hj(A) is a Hilbert space with respect to {, )z, by Lemma 5.2.

Next let ¢=0 and o(/"—4)=0. Since g Bdw>0, (u, u);=0 implies u=0.
A

If {u,} is a Cauchy sequence in HpA) with respect to (,)s, i.e., (Up—tm, tn—1y)s
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—0 (n, m— o), then D[ u,—u, |0 and S B(@n—@m)?dw—0 (n, m~—>c0), where
A

u,=H, , ¢, € Rp(A), n=1,2, .... By Lemma 5.2, there exists u=H,, ¢ € Rp,
such that D[ u,—u]—>0 (n—>o0). On the other hand, the previous lemma

implies that g Bl@n—c)—(@m—cm)}?do—>0 (n, m—co), where c,= S(ﬂ”dw
4

(n=1,2,...). It follows that {c,} is convergent. Let c=lim,_.c,. By the

previous lemma again, SAB((a,,- cn— @) dw—0, so that gﬁ{%—(“ o)}Yedw—0.

Hence (u,—(u+c¢), un—(u+c))s— 0. Therefore Hp(4) is complete with respect
to the norm induced by (, )s.

§5.5. The existence theorem

Let [ 4, 5] be a boundary condition satisfying (B),. We shall denote by
I |ls., the norm induced by (, )z, on Hj(A), i.e.,

. =lulli+ | fotdo

for u=H?c Hi(A). Now, for functions r and y given on I'— 4 and on A res-
pectively, we consider the following conditions, which depend on [ 4, 7] and

q .
(T),: g/‘ Bpidw < > for some ¢, € Rj(A; 7).
(T),: For any ¢ € Rpp(A), ¢r 1s w-summable and there exists a constant
K, >0 such that
|
§ orao| =K 115,

fm' all Q€ RBD<A)
Remark. (a) If ¢ satisfies condition (T),, then gABqazdw<oo for any

@ € Rj(4; ©) by virtue of condition (B),.

(b) ©=0 satisfies (T), because of (B),.

(¢) If g is bounded on 4, then any « on I"'— 4 for which R} (4; ) is non-
empty satisfies (T),. (Cf. the similar remark for (B), in the previous section;
also c¢f. Doob [117])

(d) If PC4,B; 7, r; g] has a solution w=HY, then, by Theorem 4.1,

DT u, H ]+ SA(B¢+7)¢dw=O for all ¢ ¢ Ryp(A). Tt follows that

| [ rodo ‘ "< DT DT+ (02a0)((8edo)

<max(D'[u’, |34 do)|H23.q
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for all ¢ € Rpp(A). Thus condition (T"), is a necessary condition for P[4, 3;
7, 7; ¢ to have a solution, under conditions (B), and (T), (cf. (a) above).

(e) By virtue of Lemma 5.4, condition (T"), can be replaced by the follow-
ing (under condition (B),):

(I"s: For any ¢ € Rgp(A4), ¢r is w-summable and there exists a constant
K, >0 such that

! gAwdw!éKéllHillq

for all ¢ € Rgp(4) in case g=*0 or in case ¢=0and w(/"—4)>0; for all p € Rp,,
in case ¢=0 and w(/'—4)=0. In addition Srdsz in case ¢=0, (/" —4)=0

and 3=0 w-a.e.
Thus, under condition (B),, (I"), can be stated in a form independent of 3.

(f) In case ¢=0, w(I'—4)=0 and =0 w-a.e., (I"), implies Srdsz, since
¢=1 belongs to Rzp(T"). Cf. Remark 1, (b) in §5.1.
(g) If yis w-square summable on 4 (and in addition Srdw:() in the case

of (f)), then it satisfies (T"), by Lemma 5.1. C£. [11] and [ 20].
Now we have the following existence theorem for the problem P[ 4, 8; t,

75 9]

Turorem 5.2, (The existence theorem) Let [ A, 3] be a boundary condition
satisfying (B), and let © and v be w-measurable functions on I'— A and A res-
pectively satisfying conditions (T), and (I'),. Then the problem P[4, 3;t, 1; q]
has a solution u=H{ with ¢ € RAI).

This theorem for ¢=0 includes the existence theorems in Doob [117] (for
the Martin boundary) and in Maeda [ 20]; cf. the above remark, (c¢) and (g).

§5.6. A proof of the existence theorem
(I) The Newmann problem for q=0, i.e., P[ 1", 0;0, y; 0.
For each u=H, with ¢ ¢ Rp1"\Rpp(I"), let

(uw)y=— ggordw.

By condition ("), / is a continuous linear form on Hp N\Hgp, where Hpp=
{H,; 9 € Rpp(I")}. By Lemma 4.11, we see that Hp,\Hpp is dense in the
Hilbert space Hp ;. Therefore there exists uo= H, € Hp; such that

l(u)= Dl u, uo]

for all u € HD,lf\HBD, i.e.,
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D[ H,, uy = — gqarda)

for all ¢ ¢ Rp 1 \Rpp({"). Since grdwzo by assumption, this equality holds

for all ¢ € Rpp(I"). Hence 7 is a normal derivative of 1, on I" by Theorem 4.1,
so that u, is a solution of P[ /", 0; 0, 7; 0.

(II) Dairichlet principle: P[4, 0; ¢, 0; ¢ ] with o(I"— 4)>0.

For this problem, condition (T), is reduced to Rj(4; r)=*¢ (see Remark,
{¢) in the previous section). Then HA(4; ©) is a non-empty convex set and is
complete by Lemma 5.2. Therefore, there exists uo=HJ ¢ Hi(4; t) such that

llwolly = min {|lulls; u € Hi(4; )}

For any ¢ ¢ Ri(A) and for any real number 2, u,+AH?!c Hi(A4; ). Hence
Nuo+ AHE |, = ||uoll, for all 4, i.e.,

22D [uo, HY+2*D[HY] =0

for all 2. It follows that D u,, H:]=0. Therefore u, has a normal deriva-
tive zero on 4, and hence it is a sclution of P[4, 0; 7, 0; ¢ .
(II) General case: P[ A, B; 7, 1; ¢, excluding the cases (I) and (II).
Since t satisfies (T), with respect to [ 4, 0], there exists a solution u,=H{,
of the preblem P[4, 0; 7, 0; ¢ (the case (II); if o{/"—4)=0, then ©,=0). We
consider the linear mapping

(w =~ { Bop+ordo

defined for u=HJc Hi(A)={HJ; ¢ ¢ Rgp(A)}. By conditions (B), and (T),,
we see that

| SABW/’] dw \ 2 < <SAB(/J%dw><SAB¢2dw>

I

(§ sorao iz,
A
and by condition (I"),, we have

| orao <K gl

for all ¢ ¢ Rgp(A4). Hence [ is a continuous linear form on Hfp(4) with the
norm || ||s,. By Lemma 4.11, we see that H},(A) is dense in the Hilbert space
(A (Lemma 5.5). Hence there exists u,=H! ¢ Hj(A) such that

l(u) = (u, U'Z)/R,q

for all u ¢ Hi(A), ie.,
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DLHY, usl+ | Bopedo = — Bogi+ondo

for all ¢ € Rgp(A4). Therefore, by Theorem 4.1, uy=u; + u, has a normal deriva-
tive Byo+7 on A, where ¢o=¢;+¢,. Obviously ¢o=1t w-a.e. on I'— 4. Hence
uo is a solution of P[4, 3; ¢, 1; ¢

§5.7. General properties of solutions

In this and the next sections, we shall always assume that, for a given
problem P[4, 83; 7, r; ¢, [ 4, 8] satisfies (B),, r satisfies (T), and |r| satisfies
(), (cf. Lemma 5.6 below). Also we exclude the case ¢=0, o(I'—4)=0 and
B8=0 w-a.e.. Thus the problem has a unique solution.

First we remark

Lemma 5.6. If |r| satisfies ('), with respect to [ A, B, then 1%, v~ and 7
also satisfy ('), and tf u=HY is the solution of P[4, 3;t, v; q¢] in this case,
then

(5:5) (uy H2)ao = = rodo

holds for all ¢ € RA(A).

Proor. The first assertions are obvious if we remark that ¢ € Rgp(A)
implies |¢| € Rpp(A) (Lemma 4.9).

For any ¢ € Rj(4), let p,=max(min(g, n), —n). By condition (I"), for
|7| and condition (B),, we see that

[ ronl do < Kl 15,0 < Kol H 5,0 < o0

Since |7¢,| increases to |r¢|, it follows that S|r¢|dw< oo, Hence, by the
corollary to Theorem 4.1, we conclude that (5.5) holds for any ¢ € RA(4).

TueoreMm 5.3. If =0 w-a.e. on I'— A4 and y <0 w-a.e. on A, then the solu-
tion u of P[4, B; 7, r; ¢ is non-negative.

Proor. Let u=HY andlet ¢* =max(p,0). Since p=1>0 w-a.e.onl — 4,
¢t —¢ € Ri(A4). Hence, by the above lemma,

(u, H$+)6,4+SAT¢+dw= (u, u)g,q +gAr¢dw-
Since 7 <0 w-a.e. on 4 and ¢* = ¢, we have gArgb*dwggA r¢dw. Therefore

(u, Hg*)/?,qz(u’ U)g,q = ”u”%,q'
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Hence

0=llu—Hi+ 5,0 < [1Hi+ |30 llullf,q

On the other hand, D H{+]<<D’ u7] by Lemma 4.9. Also, Sﬁ’gb*zda) ggﬁgbzdw.
Hence ||Hj+||s, <|lul|s,,- It then follows that |[u— Hi+||s,=0 or u=H}+=>0.

CoroLrary. Let u; be the solution of PLA, B; i, vi; ¢ for each i=1, 2.
If r, =1 w-a.e. on I'— A and v, <7, w-a.e. on A, then u, = u,.

Turorem b.4. Let u; be the solution of P[ A;, Bi; ©i, i q for each i=1, 2.
If (a) 4;D 4z, (b) 1= B2 w-a.e. on A3, (¢) 11273 w-a.e.on I — A4y, (d) 117> w-a.e.
on Az, (€) 120 w-a.e. on A, — Az, (f) 11 =0 w-a.e. on I'— 4, and (g) 11 =0 w-a.e.
on Ay, then u, = u,.

Proor. Let u;=H{,i=1, 2 and let ¢*=max(¢;, ¢») and ¢, =min(¢;, ¢»).
By (¢), ¢1=¢; w-a.e.on I'—4;. By (f) and (g), ¢, =0 w-a.e. (the previous theo-
rem). Hence, together with (e), we see that ¢,—>¢, w-a.e. on A, —A,. It
follows that ¢*— ¢, =¢,— ¢y € Ri(A4;) CRE(A,). Therefore, by Lemma 5.6, we
have

(5.6) (= u)py g = = || 10 =)o
and
(5.7) (uzy HY. —uz)ag = = | | 7ol —o)do.
Now

(s, Bl =), 0 =y Hi— ), + || Gi=B0@*—)do

Since ¢; =0 and ¢*— ¢, =0, condition (b) implies that the last term is non-
positive. Hence, by (5.6), we have

(5.6) (u1, Hfi*—ul)sz,q; —SA 71(¢* —d1)do.
Combining (5.6) and (5.7) and using the relation ¢* —¢; =¢,— ¢4, we obtain
(w1, H— ul)/s’z,q +(ugy Hix— u2)/32,q =— SA (r1—12)(@* =) do.

By condition (d), the right hand side is non-negative. Hence
(w1, Hjw—u1)g, o+ (uz, H, —u2)g,,=0.

Thus we have
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0 <lus—Hjull3, o+ Nlua— Hi 2,0
=1 H 13,0+ 1 HENE, o — luallh, o= llueall?,.q
—2{(uy, Hjs—u1)p, o+ (w2, Hj, —uszs, .}
<[ Hb, o H I HENR, o= luallt, o= lluzll, o

By virtue of Lemma 4.9 and the relation (¢*)*+ (¢x)*=¢%+ ¢3, we see that the
last expression is non-positive. Hence we have u,=H{. = H}, =u..

§56.8. Dependence of the solution on = and 7

Tueorem 5.5. Let u be the solution of P[4, 8; t, r; q] and let M be a posi-
tive constant. If |t|< M w-a.e. on I'—A and if |y|<MB w-a.e. on A, then
lu| =M.

Proor. First let t==0 and y=0. Then z=>0 by Theorem 5.3. Let
u=H{ and ¢,=min(¢, M). By Lemma 4.10, ¢, € Ri(I") and D H{ 1D u].
By the assumption that 1 <M w-a.e. on I'— A4, we see that ¢—¢; € Ri(4).
Therefore, Lemma 5.6 implies

DL, u—H3, )= = B6+1G—$0do.

¢— ¢, =0 everywhere on I" and if ¢(&)— ¢(€) >0, then ¢(&) > M, so that B(&)(&)
= MB(E) = —71(¢). Hence D[ u, u—H{ ]<0. Hence

0<D[u—H{ 1<D[H] ]—D[u]=0.
If ¢=~0 or if w(I'—4)>0, then it follows that u=H{. If ¢=0 and o(/'—4)
=0, then it follows that either u=H, or u=c (const. >M). Suppose the

latter case occurs. Since gﬁdw>0 in this case, Lemma 5.6 implies

0=D[u]=— SA(Bc+r)cda)< —SA(BM—I— Pedo <0,

a contradiction. Therefore u=H{ in any case. By Proposition 3.1, (ii),
Hi <M. Hence u=<M.

In the general case, we consider solutions u, and u; of P[4, B;¢*, —77; ¢
and P[4, 8;t; —7*; ¢ respectively. Then u=u;—u;, 0=u;, <M and 0= u,
<M. Hence |u|< M.

CoroLLARY. Let u be the solution of P[ A, B; ¢, 7; q] and let M be a non-
negative constant. If t <M w-a.e. on I'—A and if v =0 w-a.e. on A, then

Proor. Let u; be the solution of P[4, 8; ", 0; ¢g]. Then u, <M by the
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abovertheorem, while u < u; by Theorem 5.4 (or the corollary to Theorem 5.3).
Hence u < M.

Turorem 5.6.  Let a boundary condition [ 4, 5] and g be given.
(i) There exists M>0 such that +f u 1is the solution of P[4, 8;0,7;q],
then

Dq[ungS P do.
A

(i) Given a compact set Z in X, there exists My >0 such that if u is the
solution of P[4, 8; 0, r; g, then

lu(x)lzéMzSArzdw
for all x € Z.

Proor. (i) First, we consider the case ¢<0 or the case ¢=0 and
o(I"—A4)>0. Let u=H). By Lemmas 5.6, 5.1 and 5.3,

piru] == Bp+rwdo=— rpdo

(] o) ()

1/2
gMIIZDq[u]LQ(g rzda)> ,
4

where M depends only on 4 and ¢g. Hence D[u]<M S rido.
A
Next, consider the case ¢=0, o(/'—4)=0 and f5~0 w-a.e. In this case

S(ﬁ¢+r)dw:0, since ¢=1 belongs to Rpzp(4). Let c=<grdw>/<gﬁda}>. Then

gﬁ(gb—c)da)zo. Let Ry o= {0 € Ro(I); g5¢dw=0}. We shall show that there

exists Mz;>0 such that S(pzdngﬁD[Hq,] for all p € Rp 5. By Lemma 5.1,

[ do < MoADLH I+ | H (o).
Therefore, it is enough to show that there exists M’ >0 such that | H,(x,)|*<

M'D[H,] for all g€ Rp s Suppose this is not true. Then we would find
¢» € Rp g, n=1,2, ..., such that H, (x)=1 for each n and D[ H, ]—0 (n—o0).

Since 1—¢, € Rp; and SBgaﬂdw:O, we have, using Lemma 5.4,

0< (o = (8010 =([pdo) " ((s0-rd0)

g(M(B)gBdw)”zD[H%j“z 50 (n—oo),
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a contradiction.
Now we have

DLu]= = {Bp+rXg—o)do

A

= Srdw Sr(sb—c)dw

(frao)’ /(§5a0)+({raw) “(fio—eraw) "
<S >/<Sﬁd‘°)+Mé’2<gr2dw>1/20[u]uz.

I

(A

It follows that

DLu=(My+ S;E))de'

(ii) By Proposition 1.7, there exists K;>0, depending only on Z and g,
such that

|u(a) | < Hin() = Ke{ 19]do
for all x € Z. Hence
|u()|* < K3|¢*do
for all x € Z.

If g0 or if g=0 and w(/"—4)>0, then Lemmas 5.1 and 5.3 imply
S(/)zdngqu[u]. Hence, by the above result, we see that

lu(x)|? < K3M,Du]<K2M, MS 2do.

If =0, w(I'—4)=0 and §=0 w-a.e., then consider ¢—c e Rp s Using
the result in (i), we have

g¢2dw gz{gwj—c)mw 02}
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Hence

1

(puy

|u)| < 2K MM+

for all x ¢ Z.

TueoreMm 5.7. Let o(I'—A)>0 and {c,} be a monotone sequence of w-
measurable functions on I'—A. Suppose all v,, n=1,2, ... and to=lim, ..c,
satisfy (T), for [ 4, 8]. Suppose furthermore there exist ¢, € Ri(A; t,), n=1,
2, ..., such that D[H] —H} 10 (n, m—oo). Then the solution u, of
P[4, B; ta, 05 q] converges to the solution w, of P[4, B; v, 0; q] locally uni-
Sormly on X and D[ u,—uo]—0 (n—> o).

Proor. We assume that {r,} is monotone increasing. Let u,=H],

n=0,1,.... By the corollary to Theorem 5.3, {u,} is monotone increasing
and u, < u, for all n. Next let v,=H] be the solution of P[4, 0;,, 0; q]
for each n=0, 1, .... Then it is easy to see that D v,—v, | <D H] —H] ]

—0 (n, m— ). Also, again by the corollary to Theorem 5.3, {v,} is mono-

tone increasing and v, <v,. Since gﬁ(gbo—gbl)zdw<oo and gﬁ(po—pl)z do< oo

by condition (T), for z, and r;, we have SB(¢n—¢m)(pn~pm)dw—>0 (n, m— oo).

Since ¢, —p, € Rj(A) for each n, Lemma 5.6 implies

Dq[un — Um, (un - um)"‘(’vn - 'Um):l = - gﬁ(¢n —¢m)[(¢n - ¢m)_(pn— pm)]dw

< |6 daXos—om)do.
Thus we have
0 g Dq[(un - um)_‘ (Un - vm)]
< DToa =)= DTty — un 1+ (80— 0N, — 00

Therefore

DLy —un] = DCos—v 1+ (86— ) (0u—0m)d0 >0 (1, > c0)
Hence {u,} is a Cauchy sequence in H}.

Next let #=lim,,....u, and y=1im,_..¢,. Then Proposition 8.1, (iii) implies

that i=H{. By Lemma 4.8, we see that 2 ¢ Hf and D[ u,—a]—>0 (n— o).
Obviously =ty w-a.e. on I'— 4. By Theorem 4.1,

DCu, HE) = — | Bhupdo
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for all ¢ € Rpp(A4). Letting n — oo, we obtain
D[a, 7Y = — {pdedo
for all ¢ € Rgp(4). Hence @ is the solution of P[4, 8; =, 0; ¢, i.e., a=u,.

CoroLLARY. Let o(I'—A)>0 and let ¢ be an w-measurable function on
I'— 4 satisfying (T),. Let c,=max(min(r, n), —n) on I'—A. Then the solu-
tion u, of P[4, B; t,, 0; g converges to the solution u, of P[4, 5; 7, 0; ¢ ] locally
uniformly and D[ u,—uo | —0 (n—> o).

Proor. First suppose r=>0. It is easy to verify that each r, satisfies
(T),. Let uo=H{, and let ¢,=min(¢o, n). Then ¢, € RL(4; r,) for each n
and DH{ —H} ]—0 (n, m—o0) by Lemma 4.11. Hence our corollary
follows from the theorem. If r is arbitrary, then it is enough to consider r*
and

§5.9. Dependence of the solution on boundary condition

Theorem 5.4 gives one result on the dependence of the solution of our
problem on boundary condition [ 4, 3]. We shall give two more results in
this direction.

TureoreM 5.8. Let {A4,} be a monotone decreasing sequence of w-measurable
subsets of I' and let Ag=/\n-,4,. In case g=0,we further assume that o(I"— 4,)
>0. Let v1 be an o-measurable function on A; such that |71| satisfies (T'), with
~ respect to [ A1, 0] and let 1, be the restriction of v, to A, (n=0,1,...). Then the
solution u, of P[4,, 0; 0, r,; ] converges to the solution u, of P[ Ao, 0; 0, 70; ¢
locally uniformly on X and D u,—uo|—0 (n—> o).

Proor. Obviously, each 7, satisfies (I"), with respect to [ 4,, 0], n=0, 1,

Let u,=H{ ,n=0,1, .... First suppose ;=0 on 4,. By Theorems 5.3
and 5.4, {u,} is a monotone decreasing sequence of non-negative functions.
Thus ¢=lim¢, and a=limu, exist and = H? by Proposition 3.1, (iii). Obvi-
ously ¢=0 w-a.e. on I'—A,. If n<m, then ¢,=>¢, (v-a.e.) and ¢, ¢ RE(A,)C
Rj(4,). Since y; <0, we have, by Lemma 5.6,

Dq[un] = - SA T1¥ndoo = — SA rl¢mdw = Dq[um]
It follows that {D u, |} is convergent. Also we have

DU u,, up] = — SA rmde = —SA idmdo = DLy,

Hence
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0<DTu,—um]=DTu,]—D[un]—0 (n, m— o0).

Thus {u,} is a Cauchy sequence in Hj. It follows that i ¢ HE, i.e., ¢ € REI)
and that D[ u,—a]—>0 (n—> o). Since RAi(A4,)CRj(4,) for any n, Theorem
4.1 implies

DY u, HI = —SA T10dw = —gA 710dw®
for any ¢ € Rzp(A4,) and for any n. Letting n— oo, we obtain

D&, H = —SA T10dw = —SA Topdw

for any ¢ € Rgp(4). Therefore @ is a solution of P[4, 0; 0, 7,3 ¢, i.e., Z=u,.
If y, is not necessarily non-positive, then we consider —y; and —y7 and
obtain the required result.

Turorem 5.9. Let A be an w-measurable subset of I' and let {5,} be a
monotone sequence (imcreasing or decreasing) of mon-negative w-measurable
Sunctions on A such that [ A, B, ] satisfies condition (B), for each n=0,1, ...,
where fo=1im,_... 8,. In case ¢=0 and o(I'— A)=0, we further assume that 38,50
w-a.e. for any n=0,1, .... Lett be a function on I'— A satisfying (T), with
respect to all [ 4, 8, ], n=0, 1, ... and v be a function on A such that |y| satisfies
("), with respect to [ A, Bo]). If wu, is the solution of P[ A, B.; ¢, r; ¢ for each

n=0,1, ..., then u, tends to uo locally uniformly on X and D[ u,—u,]—0 as
n —> o0,
Proor. Let u,=H{,n=0,1,.... Firstsupposer=0on/—4andy=0

on A. If 8, increases to 3, (resp. decreases to @), then {u,} is a monotone
decreasing sequence (resp. monotone increasing sequence, dominated by u,)
of non-negative functions by Theorems 5.3 and 5.4. Hence ¢=lim¢, and &=
limu, exist and a=H{. Obviously, =1 w-a.e.on I'— A. Since ¢,— ¢, € R5(A),
Lemma 5.6 implies

DLun—tmy )= — | Butbut Do — e
for any n, m. Hence

DU tn—un]= — g (Buhn— Bunthm) (o — ).

Let g*=p, (resp. =B1) and ¢*=¢, (resp. =¢@). Then |B,b,—Buhn| =B*)* (0-
a.e.). By conditions (B), and (T),, we see that J= SAB*(¢*)2dw< oo. Hence

DLus—un]< | 849* 00— gnl do

gJ“Z[SAB*cm—sbm)Zdw]m.
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Now ¢, converges to ¢, |¢,—¢n| < [¢1—¢| and SAB*(sbl—«ﬁ)zdw <o by (B),.

Hence SA3*<¢,,—¢m)2dw—>o (n,m—>co). Therefore D/ u,—un]—0 (n, m—»oco),

ie., {u,} is a Cauchy sequence in Hf. It then follows that # e H} and
DT u,—ua]—>0(n—>). For any ¢ € Rpp(A).

D'Lu, HY) =~ Buut1odo.

By the above result, D[ u,, H3]— D&, HY] (n—> o). On the other hand,
since SB*(¢*)2dw<oo, Sﬁ*(pzdw<oo by B)g, 0=B.0, <F*¢* and B.p.— Bod,

the Lebesgue convergence theorem implies
[ Bupdo—| gudpdo  (n>eo)
Therefore
p(a, HE)= = Bub+riedo

for all ¢ ¢ Rgp(4). Hence we have Z=u, by Theorem 4.1 and the present
theorem is proved in case r =0 and y <0.

In the general case, we consider problems P[4, 8,;t*, —v7;¢] and
P4, 8,; 7, —77; ¢] and obtain the theorem.

§5.10. Dependence of the solution on g

Finally we investigate the dependence of the solution of our problem on

TuroreM 5.10. Let g1 <q. and suppose [ 4, 5] is given to satisfy (B),,;
m case ¢ =0 and o(I"— A4)=0, suppose further that 3540 w-a.e. Let v (resp. r)
be a non-negative (resp. non-positive) function on I'— A (resp. on A) satisfying
(T),, (resp. (I'),,) with respect to [ 4, 5. If u; s the solution of P[4, 8; t,7; q:]
for each i=1, 2 and 1f u; are both bounded, then u, = u.,.

Proor. By Proposition 4.3, Rj:(I")C RS(I"). Hence [ 4, f7] satisfies also
(B),,. Since u, is bounded, r is (w-essentially) bounded. Hence Lemma 4.14
implies that r satisfies (T),, and Lemma 4.14 and Proposition 4.3 imply that y
satisfies (I'),,. By Theorem 5.3, u; are non-negative. Let u;,=H{, i=1, 2.
Since ¢, =¢,=1 w-a.e. on I'— A, 1 —¢, and ¢*=max (), — ¢, 0) both belong to
Rpp(A4). Hence

DLus, Higg,-0]= = B0+ D00~ (=) 1o
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by Theorem 4.1. On the other hand, D[ H{+ ]< D[ H{:_,,] by Lemma 4.9.
Therefore

(5.8) DU[H{i—g,-9p]=2D"[H}i_y, ]—2D"[H, ui]+2D"[Hix, Hit]
=2{D"[u,, $ g, = D" uy, HR+2DU[HE (o, -¢, HE T}
=2{ GNP~ =) Jdo+2DULH -0,y HEL

By Lemma 4.14, we have

DULHG g, ~g, HY 1= DT HE (9,4, uz]-

Since Hii_y,-¢,y=0, us =0 and g; < g3, we have

DU[HG (g,~g,) w2 = D [HG (4,9, u2l.
Using Lemma 4.14 again, we have

DU Hh—g,-4,) u2]= D[ Ht_(y,-4,), U2
= —{ GurnP—@—pldo.

Hence, together with (5.8), we obtain

0=IHG g,-opll%.a,

<2 80— g0~ =g Jdo+ | BL9* (=g Fdo

= B0 + @i — eI~ =g Jdo <0,

Therefore we have H{i_, s,y)=0. Thus, using Lemma 3.2, we obtain
uy=H =H}+Hj =Hj = Hi: = u,.
The assumption that u; are bounded can be eliminated; we shall prove
this in the next chapter (§6.4). We also postpone to the next chapter the

discussion on the convergence of solutions according to a monotone conver-
gence of ¢’s.

CHAPTER VI Green Functions for General Mixed Problems.

§6.1. «a-q-Green function

We consider an w-measurable function a(&) on I” such that 0 <a <1 and
regard it as a boundary condition equivalent to [ A,, 8. ], where A,={¢¢ T ;
a(€)>0} and B.(§) =1/a(£)—1 on 4,. The condition (B), for [ 4,, 5. ] becomes
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(A),: g (L —1>(p2dw<oo for all ¢ € RY(A.
A\ &
In this chapter, we shall always assume that « satisfies (A), for a given gq.
In case ¢=0, we also assume that a1 w-a.e. on /.

For each ye€ X, consider the non-negative bounded w-measurable func-
tion x} on I" satisfying dwj=xjdw (cf. Corollary 3 to Theorem 3.1). By
Theorems 5.1 and 5.2, there exists a unique solution U, of the problem
Pl Au Ba; 0, —cax§; q] for each ye X. Here, we remark that —c.x§ is con-
sidered only on A4, and that it satisfies (I"), with respect to [ 4., 8. ], since it
is bounded (cf. Remark, (g) in §5.5). Let U ,=Hg, . @F, is determined -
a.e. and belongs to R3(A4.).

The function

Giw, y)=Ga,y(x) = G5(x)+ Ug, ,(x)

is called the a-g-Green function. This is the Green function for the boundary
condition «. In fact @, can be regarded as the boundary value of GY,,
which vanishes w-a.e. on I'— 4, and Proposition 4.4 implies

Prorosition 6.1.  For each ye¢ X, G, has a mormal derivative 3,0% , on
Ag.

In case =0 (i.e., the case of the Dirichlet problem), 4,=17", and hence
Uf,=0,1ie., Gi,=Gj, for each yec X.

The following lemma, which is an immediate consequence of the definition
of U{ ,, is fundamental in the subsequent discussions:

Lemma 6.1. Let yc X. Then UZ , satisfies
Cali ) = D'LUL,,, HE+ |88 0do
for all ¢ € Ri(A,). Conversely, tf u=HI, ¢ € R}(A,), satisfies
call}(3) = D'Cu, Hi1+|Bupodo

Sfor all ¢ € Rpp(Ay), then u=U} ,.

Proor. By the definition of Uf , and Theorem 4.1, u=U{, (u=H}) if
and only if

D'u, H ] = — S(ﬁoﬁ/)— cax3)pdw

for all ¢ ¢ Rgp(4,). Since z§ is bounded, Rzp(A4,) can be replaced by R}(A4.)
by Lemma 4.11 (cf. Lemma 5.6). On the other hand

- g(ﬂaglz— caxDpdo = — Seawdw caHY( ).
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Hence we have the lemma.

§6.2. Expression of the solution in terms of U .,

TueoreMm 6.1.  Let v and 7 be functions on I'— A, and on A, respectively,
satisfying (T), and (T), with respect to [ Aa, Bo]. Then the solution u, of
Pl A4, Bas 7, 15 ] 18 given by

—_ q 1 q q q 1 q 1
6.1) ufx)=HYx)—-—D UL, H]——\ Bop® . do——
Ca d JAy Ca

c

[ 704.d0

Aa

Jor any x € X, where ¢ 1s any function in Ri(A.; 7). In particular, uo=H},
satisfies

(6.2) DU, uo]+g ﬁa¢o¢z,xdw+g 104, .do =0
Ay 4

a

for any x € X.

Remark. The right hand side of (6.1) does not depend on the choice of
¢ € R}(A,; ©), by virtue of Lemma 6.1.

Proor of the Tueorem. Since &% . € Ri(4,), (6.2) is an immediate con-
sequence of the fact that u, is the solution of P[4,, 8.; 7, 7; ¢ and Lemma
5.6. On the other hand, ¢y—¢ € Rj(4,) for any ¢ € R}(4,; r). Hence Lemma
6.1 implies

caluo(x)— HY(x)} = DLUS,, uo]— DU, HE]
+ geasaoa);,xdw- gﬁam,xdw.

Hence, using (6.2), we obtain (6.1).

The converse of the last half of this theorem immediately follows from
(6.1) and (6.2):

CoroLLARY. Let t and 7 be as in the above theorem. If ¢ € Ri(Ay; ©) and
uo=H{, satisfies (6.2) for all x € X, then u, is the solution of P[ A, Ba; T, 75 .

TuroreMm 6.2. Let v and v be as in the previous theorem. Suppose, for
each x € X, G% . has a normal derivative v, on I' such that it coimcides with
BDE . on A, and 7,7 18 w-summable on I'— A,. Then the solution u, of P[ A, Ba;
7,75 ¢ s giwen by

uo(x) = 1 {S f}’xda)—g r@fﬁ,xda)}.
c r-4, Ay

d

Proor. Since G¢ has a normal derivative c,xi on I'* (Proposition 4.4),
US . has a normal derivative y,—csx! on /. By assumption, (y,—csx$)¢ is



Boundary Value Problems for the Equation Ju —gqu =0 with respect to an Ideal Boundary 141

w-summable on I” for any ¢ € Rj(4,; v). Hence, by the corollary to Theorem
4.1,

D[, H] = = (= cattipdo

=~ redo—{ B.0%.pdo+eati(n)
r-4, Ay

for any ¢ € Rj(4,; ). Then we obtain the theorem by virtue of (6.1) in the
previous theorem.

Remark. If X is a regular compactification and if 4, is relatively open,
then a normal derivative r, of G ,, if it exists, is equal to 50, w-a.e. on 4,
(cf. Propositions 6.1 and 4.5).

§6.3. Properties of UJ,,

Turorem 6.3. Ul .(yp=Ul,(x) and GAx, y)=Gi(y, x) for any x, y< X.

Proor. By Lemma 6.1,
caUb ()= DILUL,, UL, ]+ Sﬁamz,xwz,ydw.

Hence U{.(y)= Uf,(x). Then, by the corollary to Theorem 2.1, Gi(x, y)
=Gy, x).

Tueorem 6.4. If a1 <, on I, then
0=Us . =Ui,x

Sfor any x € X.

Proor. By Theorem 5.3, U§ .=>0 for any a. If ay=<a,, then 4, C4,,
and 8, = (., on 4,. Hence, by Theorem 5.4, Ui .= Ug, ..

Turorem 6.5. Ul ., 1s a bounded function for each x ¢ X.

Proor. Fix ¢, o and x and let U=U{,. Let 4, be a positive number
such that Vy={yc X; Gi(y) ==} is compact and let g.= min(G{, 2) for 1= 4.
We shall write g for g,,. Let i,=sup,cv U(y). Then 0 =1 <co. We con-
sider two functions v=U+ g, and v;=min(4,+41y, v). Both v and v, are g-
superharmonic, v=G% , on X—V, and v=vy on ¥,. Let vi=u,+ g*, where u,
is g-harmonic and g* is a ¢g-potential. Then it is easy to see that u,=HY,
with ¢ =min(o+4;, @} .) (cf. Lemma 3.5). By Lemma 4.12, v € D% and it
follows that v, € D? and D[ v, << D v ] (cf. Lemma 4.10). Therefore, u; ¢ H}
ie., ¢ € RE(I), and g* € Df by Lemma 4.6. Now we compute
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Do, v—vi =D U+ go, U—u1+ go— g*]
= Dq[U, U— U1]+Dq[g0, 1]'—111:[.

Since @ . — ¢, € Ri(A,), Lemma 6.1 implies

6.3) DT, U= ui] = el U(w)— ua(@)} — (08,08 .~ g1
= ca{Ulx)—ui(x)}.
Since v—v1=0 on Vo, D[ go, v—v1]=D[ g\, v—v1] for any 1=4,. We have

D g, v—vi]=D g, go— g 1= D[ g, gol— D[ g, g* 1

Since gp and g* are continuous g-potentials, we can show, by using Lemma
4.12 (cf. the methods in the proofs of Hilfssatz 7.5 and Satz 7.2 of [7]), that
D[ g\, go]— cagolx) and D[ g, g*]1—>cag*(x) as A—>oo. Hence

(6.4) D[ go, v—v1]= ca{go(x)— g*(x)}.
By (6.3) and (6.4), we have
D v, v—v1 1= ca{ Ulw)— us{x)+ golw)— g*(x)}
= ¢cg{v(x)—vi(x)} = 0.
Hence, D[ v, << D[ v] implies
0D v—uv,]<DVv,|—D[v]=<0.

It follows that v=v,. Since v; is bounded, so is ». Since 0=U<wv, U is also
bounded.

CoroLLARY. For any compact set Z in X, there exists a constant Kz;>0
such that UL , <K for all y€ Z.

Proor. This follows from Proposition 1.7, Theorem 6.3 and the above
theorem.
The next theorem follows immediately from Theorems 5.8 and 5.9:

TueoreMm 6.6.  Let {a,} be a monotone sequence of boundary conditions and
let a=lim, ., If q=0,then we assume ,5=0 w-a.e. for all n=0,1, .... In
each of the following two cases, Ul . tends to U} . locally uniformly on X and
D UL —Ul,]—0(n—>o0)for any x € X;

(a) {a,} is decreasing and each «, is a characteristic function of a subset
A, of I'.

(b) 4. =4, for all n.
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§6.4. Dependence of Uj,. on g

Tueorem 6.7. Let g1 <q.; tf q1=0, then assume that a~=1 w-a.e. Then
Ue:=Ul: and Giy=Gés

for any x € X.

Proor. By Lemma 8.2, we have x!1>x2:. Let » be the solution of
Pl Ay, Ba; 0, —caxi?; g1 ). Theorems 5.3 and 5.4 imply 0<<v < UZ2,. Thus,
by Theorem 6.5, » and U%, are both bounded. Hence Theorem 5.10 implies
UZ,<wv,and hence U%, < U%,. The inequality G, <G%, then follows from
Theorem 2.3.

Next we give an improvement of Theorem 5.10:

TueoreM 5.10".  Under the same assumptions as in Theorem 5.10, we have
w1 > uy even tf uy, uz are not bounded.

Proor. Let t,=min(r, n), n=1,2, ... and let u$’ be the solution of
P[4, B;cs 0; gi] for i=1, 2. Then, by Theorem 5.5, u}/’> are bounded. Hence
Theorem 5.10 implies u$’ = u$? for each n. On the other hand, the corollary
to Theorem 5.7 implies that {u$/’} tends to the solution v; of P[4, 8;, 0; ¢;]
as n— oo for each i=1, 2. Hence v; >v,.

Next let w; be the solution of P[4, 3; 0, 7; ¢9:],i=1,2. Leta=0on/l—4
and a=1/(1+p)on 4. Then 4=4, and 3=p,. Therefore, by Theorem 6.1,
we have

wi(x) = — cidgArwzfxdw (i=1, 2)

for all x € X. Since 0%, = 0%, w-a.e. by the above theorem and since r <0,
we obtain w;(x) =wy(x) for all x € X. Since u;=v;+w; (i=1, 2), we have the
theorem.

Tueorem 6.8. Let {g,} be a monotone increasing (resp. decreasing) sequence
such that g,—q (n—> o). If q;=0 (resp. ¢=0), then we assume that as=1l w-
a.e.on I'. Then Ul decreases (resp. increases) to U, and D[ Ul,— UL , 10
(n — o0) for any x € X.

Proor. Fix x € X and let ¢,=0%, U,=Ul». By Theorem 6.7, {¢,} and
{U,} are monotone decreasing (resp. increasing) and are uniformly bounded
by Theorem 6.5. Hence ¢,=1lim,_.. ¢, and u,=1lim,_. U, exist and ¢,=0 w-a.e.
on I'— A, Using Lemma 3.2, Proposition 3.1 and Theorem 3.6, we have

| Un—H,| = |Hiz—Hi: | + | Hjr— H, |

=Hy, 4+ |Hiz—H | >0
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as n—co. Hence uo=H/,.
1f ¢. =< gqm, then D[ U, < D[ U,]. Hence, using Lemmas 6.1 and 3.2,
we obtain

DIU,~U,]=D"[U,—U,]
<D%[ U, |+ D[ U, |—2D%*[ U,, U, ]

= Cq Un(x)+ Ca Um(x)— 2cdH3:l(x)_ Sﬂa<¢721+ ¢72ﬂ_2¢}n¢m)dw

= callfy- () cat Hig(x) = Hip(@)} = |Buldu— g do

Scalir o (1) =coHo, . ()0 (n, m— c0).

Therefore, {U,} is a Cauchy sequence in D. Since U,—» u,, it follows that
up€D and D[ U,—uy]—>0 (n—>o0) (cf. [6]or[19], Lemma 2). Hence ¢ ¢
RBD(Aa)-

On the other hand, by Lemmas 6.1 and 4.14, we have

caH2(x) = D[ U,, Ho]+ geamdw
= D[ U,, Hi]+ gﬁmdw
= DU, H+ |quUsHidx + [Bapgado

for any ¢ € Rpp(4,). Since {U,} and {¢,} are uniformly bounded, Sq(x)dx

< oo (resp. S%(x)dx <o), 0S¢, < ¢* and Sﬁa(gb*)zdw < oo, where ¢* = ¢, (resp.

=¢,), the Lebesgue convergence theorem and the above result, together with
Theorem 3.6, imply

call{(x) = D[ u,, Hj ]+ Squoﬂidx + Sﬂaw}odw

— Do, HEJ+ |Bupiindo

for all ¢ € Rzp(A,). Then, by virtue of Lemma 6.1, uo=U{ , and the theorem
is completely proved.

Combining this theorem with Corollary 1 to Theorem 2.4 and the corollary
to Theorem 2.5, we obtain

CoroLrLARY. Under the same assumptions as in the above theorem on {q.}
and g,
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Gir(y)—>GL.(y)  (n—>o0)
for each x, ye X (x y).
Finally we give

TaEOREM 6.9. Let {g.} be a monotone increasing (resp. decreasing) sequence
such that g,—q (n —> o). Let [ 4, 3] be a boundary condition satisfying (B),,,
(resp. (B),), ¢ be a bounded function on I'— A satisfying (T), (resp. (T),) and
7 be a function on A such that |7| satisfies (I'),, (resp. (T'),). Then the solution
un of PL A, B; 7, 7; qgu] converges to the solution u of PL 4, 357,715 q].

Proor. Let a=0 on I'—A and a=1/14+pB) on 4. Choose ¢ € R}{4; 1)
which is bounded. By Theorem 6.1,

un) = Hin()— - DL U, B3 = -1 gootndo—-1{ 700

for all x € X. By Theorem 3.6, Hi"(x)—> H¥x) (n— o) for each x € X. By
Lemma 4.14, we have
D Udrs, Hyv]= D[ U, H, ]
—D[ U, H+ Sg,,Ug,w,Hq,dx.
By the previous theorem, we see that D[ U, H, |- D[ U% ., H,]. Also, as in
the proof of the previous theorem, we have Sq,, Ui~H,dx — gq U .H,dx.

Hence, using Lemma 4.14 again, we have
D{ULy, Hi]~> DLUL, s, B, )+ \qUs H,dx = D'LUL,,, H,)
=D[U,, H]  (n— o).

Finally, since 0%», — @% . by the previous theorem, conditions (B),, and (T),,
(resp. (B), and (T),) imply

Sﬁwz’,’xdw—» Sﬁwz,xdw

and condition (T"),, (resp. (I"),) implies
gr@éi?,,dw — Sr@i,xdw

(n— o0). Hence, u,(x) tends to

Hi(x)— Ciqu[Uz,x, HY)— ig B dw— Cljg 102 do,
A A

Ca

which is equal to u(x) by Theorem 6.1. Therefore, u,(x)—u{x) for each x € X.
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