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§1. Introduction

Let ξn be the canonical line bundle over ^-dimensional real projective
space RPn, and mξn the Whitney sum of m,-copies of it.

The purpose of this note is to study the number span mξn of the linearly
independent cross-sections of mξn. These are related to the immersion prob-
lems of RPn in the Euclidean space Rm by [2], and also to the submersion
problems of P% = RPn-RPkι in Rm by [7] and Theorem 2.4 below.

In §2, we study the simple properties of span mξn. In order to make
further calculations, we consider in §3 the Postnikov resolution of the uni-
versal sphere bundle and characterize the third A -invariant by the methods
of [9], where the results obtained may be contained in \JΓ\. These are applied
to span mξn in §4, and we consider the submersion problems of Pξ in §5. The
author expresses his hearty thanks to Prof. M. Sugawara and Dr. T. Kobayashi
for their valuable suggestions and discussions.

§2. Some properties of mξn

If ξ is a real vector bundle, we denote by span ξ the maximum number of
the linearly independent cross-sections of ξ. Especially, when M is a C°°-
manifold, we denote by span M the span r(Λf), where r(Λf) is the tangent
vector bundle of M.

The following two lemmas are well known.

LEMMA 2.1. Let f: Z—• Y be a homotopy equivalence between CW-complexes
X and F, and ξ be a real vector bundle over Y. Then

spanf*ξ — span ζ,

where f*ξ is the induced bundle of ξ by f.

LEMMA 2.2. Let ξ be a real vector bundle over a CW-complex X. If
dim ξ > dim X, then span ξ ^ dim ζ — dim X, and

span(ξφl) = l-\-spanξ,

where © is the Whitney sum and 1 in the left hand side is the 1-dimensional
trivial bundle over X.

Now, let ξn be the canonical line bundle over the ^-dimensional real pro-
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jective space RPn, and mξn be the Whitney sum of ^-copies of ξn.

LEMMA 2.3. If span(m + l)ξn^p + l and πι—p + l<,n, then ί

(mod 2).

PROOF. If span(m + l)ξn^>p + l, then there is a bundle η over RPn such
that (7n + l)f»=(/> + l)Θ?. Then the (τn-jσ + l)-th Stiefel-Whitney class
Wm-fi+i(y) of v is 0 because dim-η=m—p. On the other hand

for the generator # e H\RPn; Z2). This shows the lemma,

THEOREM 2.4. Lei m^>n, then

where RP'1 is the empty set

PROOF. Let the natural inclusion Rpm~^-ι(^Rpm be defined by mapping
[>o, , χm-n-il € RPmnl to |>o, , χm-n-u 0, , 0] € RPm, and let i: RPn^

Rpm_Rpm-n-ι ^e the into-homeomorphisixi defined by ί[_χ0, ..., Λ;J =
[0, ..., 0, A;0, , XnΊ- Then, i is clearly a homotopy equivalence, and
iK$m\RPm-RPm-"-1)=Sn where ^ I Λ P ^ - Λ F "11-1 is the restriction of ξm.
Hence we have

span(m + l)ξn = span((m

= span(vm®l \ RPm-RPm-n-1\

by 2.1 and the well known facts (ττι4-l)ίw = r w φ l , where τm=τ(RPm). There-
fore, for the case m >n, this is equal to

1 + span(vm \ RPm - RPm~^)

by 2.1 and 2.2, and the theorem is proved for this case.
Consider the case m = n, and set span RPn=d — l, then span(n + l)ξn =

span(rn®l)^>d. Suppose rc^?15 (mod 16), then n + l = ud, d=2c (w odd,

0<:c<:3) by [ I ] . Also we have (7* + 1 ) = l (mod 2), and so span(n + l)ξn<

d +1 by 2.3. These show that span(n + ΐ)ξn=1 + span RPn for n ̂  15 (mod 16).
If there is a bundle rj over RPn such that (n + l)$n=(d+l)®τj, then

r « φ l = (d0 9 y)φl ) and this implies that τn= d@η for n=l (mod 2) by [3, Cor.
1. 11]. This is impossible, because d=1 + spanτn, and the above equality holds
also for n=l (mod 2). q.e.dP

1) Our original proof for the case π. —15 (mod 16) is based on ^-theory (and [1], [2]) which is
due to Dr. T. Kobayashi, and the above simple proof was suggested by Dr. B. Steer, to whom the author
wishes to thank.
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REMARKS. (2.5) span mξn = 0 if O^m^n, because the Stiefel-Whitney
class wm(mξn) is not zero.

(2.6) The case m = n in 2.4 is equivalent to

span RPn = n — g. dim (rn— n),

where g. dim (vn — n) is the geometrical dimension of τn — n e KO(RPn).
As an application of 2.4 for m = n,we have

THEOREM 2.7 Let M be a C°°-manifold, then

span (MxRPn)<,άim M+span RPn.

Especially, if M is a π-manifold, and n is odd, then

span (MxRPn) = dim M+span RPn

PROOF. Let dim M=m and d — l — span RPn, and suppose span(MxRPn)
^m + d. Then there is a bundle ξ over MxRPn such that τ(MxRPn)=
(m + d)φξ, and we have mQ)τ(RPn) = (ja + d)@fξ inducing by the inclusion
map j:RPn = *xRPnCMxRPn. Hence span(l®τny^d + l by 2.2, which con-
tradicts to 2.4 for m = n, and so the first relation is obtained.

If n is odd, there exists a vector bundle η over RPn such that τ(RPn) =
, as span RPn7>l. So, for 7Γ-manifold M,

r(M x

-(dim

where /?,- is the projection map onto the ΐ-th factor. This shows that
w, and the second equation, q.e.d.

Now, we consider the simple properties of span(nξk) for n^>k + 2.

THEOREM 2.8. Let k and n be integers such that n^>k + 2.

(a) Iff \ ) = 1 (mod 2), £Λew s^α^ (nξk)=n — k.
\tC/

(b) // A: and n are even integers, then the inverse of (a) holds.

PROOF, (a) is immediate from 2.2 and 2.3
(b): Let rj be a vector bundle over RPn such that nξk = {n — k)®7j. For

even A; and ra, Hk(RPk; Z) and Hk(RPk; Z2) are isomorphic by the mod 2-reduc-
tion homomorphism, and rj is orientable. Therefore, the fact that η has a

non-zero cross-section is equivalent to wk(y) = 0, i.e., ( ? )=0 (mod 2) (cf.

g.e.

THEOREM 2.9. Let n be even, k be odd such that n^>k + 2, then
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Moreover, if (i.ϋ.i ) Ξ 1 (mod 2), then span (nξk) = n —

PROOF. Put nξk = (n — k)<g)7]. Since k is odd, the obstruction for TJ to have
a non-zero cross-section is δwh-i(?ι\ where δ: Hk~\RPk\ Z2)-+Hk(RPk; Z) is
the Bockstein operator. Since this δ is zero, we have δwk-i(τj) = 0, and the
first is obtained. The rest is easy from 2.3. q.e.d.

THEOREM 2.10. Let I, m and n be integers, and d=2, 4 or 8. Then,

span(dl + m)ξn= dl for 0^m^n^d — l.

PROOF, span (dl + m)ξn I>span (dl + m)ξd^ι ;> span (dlξd-χ) = dl because

span(RPd~1)= d—1. Also, span(dl + m)ξn<dl + 1 by 2.3, because ( ~j~jm) = l

(mod 2). q.eA.

§3. Postnikov resolution of the universal sphere bundle for the third stage

Let (E, p, B, F) be a fiber space over a CW-complex B with (n — ^-con-
nected fiber F, and assume that the fundamental group nχ(B) acts trivially on
the homology group H*(F; G) with coefficient group G. Let w: B->C be a
map into the Eilenberg-MacLane space C=K(Π, ^ + 1), and (Eu Pu B, ΩC) be
the principal fiber space with classifying map w [Ό], where ΩC=K(Π, n) is
the loop space of C. As is well known, the homotopy set [_B, CJ is naturally
isomorphic to Hn+1(B; 77), and so we identify these. Also, assume that
p*w=0, which is equivalent to the existence of the map q: E->EX such that

Consider the following commutative diagram in [β~]

ΩC

ΩCxE )

E

=

•ΩC x Eλ—
P

ΩC
a. i
->Eι

[P

B

where μ is the action map and π is the projection map.
Put v=u°(lxq). If s: E=* xEQΩCxE is the inclusion map, then v°s is

homotopic to q [9J.
Under the above notations, it follows:

THEOREM 3.1. [9, Cor. 1] For any abelian group G, the sequence

• >ίl {MLJ X .Hi , Lr) >/Z {I> , HJ , (jr) >/Z {iLi . Lr)

E; £)-> ->H2n(ΩC xE G)
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is exact, where (B, E) should be considered as (Mp, E) (Mp is the mapping
cylinder of p), l=j°pι(j' B-+(B, E) is the inclusion map), and r0 is the relative
transgression homomorphism.

COROLLARY 3.2. Assume that the following two conditions (a) and (b) hold
for a positive integer ί (<2n — l) and for a coefficient group G:

(a) Ker pf D Ker p* in dimension ί,
(b) /?* is surjective in dimension ί.

Then, the sequence

0 >Hi(E1; G)-^HKΩCxE; G)-^ffi+\B; G)

is exact, where ri=/*°r0.

PROOF, (a) implies ImZ* = p¥(Imj*)=pf(Keγp*)=O, and so v* in the
above sequence is monomorphic by 3.1.

By the exact sequence of (B, E) and (b), j*: Hi+\B, E; G)^Hi+\B; G) is
a monomorphism, and so Kerro = Kerri. These and 3.1. show the exactness.
q.e.d.

Let n^>4:, and Sn-ι^BSO{n-iy^BSO{n) be the universal oriented (τz-l>
sphere bundle, π is homotopically equivalent to the natural inclusion
BSO(n-l)CBSO(n).

The Postnikov resolution of π for the third stage is as follows:

BSO(n-l) >E' >K(Z2, n + 2)

(*) "\ E >K(Z2,n + l)
ψ
 /P

 k

BSO(n) >K(Z, n)
Xn

where Xnt Hn(BSO(n); Z) is the Euler class, (E, p, BSO(n)) is the principal
fiber space with classifying map Xn, q is the map such that poq = π, h is the
second λ -invariant, (E\ p', E) is the principal fiber space with classifying map
k, qr is the map such t h a t / Z o ^ ^ , and k' is the third ^-invariant.

The two conditions of 3.2 for the bundle (BSO(n-l), π, BSO(n), S*'1)
hold for 0<ί<^2n-3 and G=Z2 by [9, p. 20]. So,

(**) 0-^HXE; Z2)^HXK(Z, n-l)x BSO(n-l); Z2)-^Hu\BSO{n)', Z2)

is exact for 0<X<Ξ2n — 3 by 3.2, where v=//o(lχg), μ\ K(Z, n — l)xE->E is
the action map.

Also, the invariant k is characterized uniquely by the equation [9, p. 21]:

where e is the generator of Hnl(K(Z, n-1); Z2)=Z2, w{ e H\BSO{n-l)', Z2) is
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the i-th Stiefel-Whitney class, and Sq is the Steenrod square operation.
Now, to consider the characterization of k', we consider the bundle

(BSO(n — l\ q, E). For the conditions of 3.2 of this bundle, we have:

LEMMA 3.3 For n I> 5, and for coefficient group Z2, we have
(a) K e r / * D Ker q* in dim n + 2,
(b) q* is surjective in dimτι + 2.

PROOF, (a): Since voS is homotopic to q and π,J

v*: Hn+\E; Z2)r\Keγq*^Kerτ1r\Keγs*r\Hn+2(K(Z, n-l)x BSO(n-l); Z2)

is isomorphic by the exact sequence (**) for i = n + 29 where s: BSO(n — l)
-* K(Z, n — l)x BSO(n — 1) is the inclusion map.

The right side is Z2 generated by c<g>w3+ Sg3c(g)l, because

= Sq3wn = wnw3

by [8], [9] and a formula of Wu [11]. On the other hand,

SqlC(g)W2= S

and so, Hn+2(E; Z 2 )nKer^* is equal to Z2 generated by Sq1 k. Also, pf*Sqιk
= Sqlpf*k=Sq10 = 0, and we have (a).

(b): This follows from the fact that π* is an epimorphism for coefficient
group Z2 in all dimensions, q.e.d.

By 3.2 and 3.3, we have

COROLLARY 3.4. For n ^> 5,

^ n)x BSO(n-l); Z2y>Hn+\E', Z2)

is an exact sequence, where v\ r(, are defined similarly as before.
The following characterization of kr is obtained

THEOREM 3.5. For n^>6, k' c Hn+2(Er; Z2) is characterized uniquely by the
equation:

where cr is the generator of Hn(K(Z2, n); Z2)=Z2.

PROOF. By [9, Property 2, p. 14], we have

rί(*'®W2) = kp*w2,

rί(S9Y(g)l) = Sqhίic'®!) = Sq2k.
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These are not zero and mapped to the same element by v*, because

v*(kp*w2) = v*k\Jv*p*w2

V*Sq2k = Sq2V*k = S

= Sq2Sq2C<g)l+ Sq2C(g)w2+

= Sq3Sqh<g)l + Sq2

As π, 22; 6, these and the exactness of (**) show that

And so, c'<g>w2 + Sq2c'®l is the only non-zero element of i/*(Kergr'*). There-
fore, we have 3.5. q.e.d.

§4. Obstructions for cross-sections of vector bundles

Now, let X be a CW-complex and ξ be an orientable real vector bundle of
dimension n over X. The equivalence class of ξ corresponds bijectively to a
homotopy class of a map ξ: X-+BSO(n).

Consider the diagram (*) and suppose that ξ*Xn = 0. Then there is a map
-η: X->E such that JD© η = ξ. We define, as in CIO],

where the union is taken over all maps -η: X->E such that po-η = ξ. As is well
known, k(ξ) B 0 if and only if ξ has a non-zero cross-section over the (n +1)-
skeleton of X.

We obtain the following theorem as a special case of

THEOREM 4.1. For n^>4,

k(ξ) e Hn+\X Z2)/(w2®l + l®Sq2yHn-KX; Z2)

where the dot operates by ξ C10].2)

PROOF. Put β* = β*—p$, where β\ K(Z, n — l)xE-+E is the action map
and p0: K(Z, n — l)x E->E is the projection. Then

= v*A-(l x ?

Because Im/2*C Σ^ H^-^KiZ, n-ΐ); Z2)<g)HXE; Z2) and q*: H%E; Z2)

2) This means that (w£$\ + \(&Sq*) H»-\X , Z2)= {w2(ξ)x + Sq2x\ x € Hn~\X\ Z2)}
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-+HXBSO(n-l); Z2) is injective for i^2, we have

where the dot operates by p°p^ and the proof is completed by CIO], q.e.d.
Suppose Ύj be a map such thatpoη=ξ. Define similarly

where the union is taken over all maps ζ: X->E' such that pΌζ=>η. Then,
k'(τf) 5 0 if and only if ξ has a non-zero cross-section over the (ra + 2)-skeleton
of X

Using 3.5, we have

, THEOREM 4.2. For τ * ; ,

kf(v) e Hn+\X; Z2)/(w2®l + l®Sq2yHn(X; Z2),

where the dot operates by ξ.

PROOF. By 3.5 and the same technique as in the proof of 4.1, we see that

kf(τj) 6 Hn+2(X; Z2)/(p*w2®l + l®Sq2).H\X; Z2\

where the dot operates by rj. But, we have

2 2Hn(X; Z2)

by the definition of the operations, and 4.2 is obtained, q.e.d.
Now, we shall apply these two results to the bundles over RPn.

THEOREM 4.3. Let k and n be integers such that n^k + 2^>7. Suppose
one of the following two conditions (a) and (b) holds:

(a) n^O (mod 4), ^ 0 (mod 4), ( j j )=0 (mod 2),

(b) ^ 2 (mod 4), ^ 2 (mod 4), ( j ) = 0 (mod 2).

Then,

PROOF. By 2.8(b), there is a (k — l)-dimensional vector bundle ΎJ over RPk

such that nξk = (n — k + ϊ)(By- As Hk~\RPk; Z)=0, η has a non-zero cross-
section over the (A — l)-skeleton of RPk, and the final obstructions of the non-
zero cross-section of η extending to RPk form a coset of

; Z2),

where the dot operates by 97, by 4.1. But we have easily
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k k; Z 2 )

by the assumption. So, -η has a non-zero cross-section and the proof is com-
pleted, q.e.d.

THEOREM 4.4. Let k and n be integers such that n^>k+2^>7. Suppose one
of the following conditions (a) and (b) holds:

(a) n^O (mod 4), k = l (mod 4), ^ ^ = 0 (mod 2),

(b) n^2 (mod 4), k^3 (mod 4), (\ 0 = 0 (mod 2).

Then,

span(nξk) ^n —

Moreover, if k J> 8,

span(nξk) ^>n

PROOF. By 2.9, we can write nξk = (n — k + l)φηu where 771 is the (jfc —1)-
dimensional vector bundle over RPk.

As Hk~\RPk; Z) is isomorphic to Hkl(RPk; Z2) by the mod 2-reduction
homomorphism, it follows by the assumption that the Euler class X(vύ of rji
is zero. By 4.1, the obstructions of the non-zero cross-section of 971 extending
to RPk form a coset of

(w2®l + l®Sq2).Hk-\RPk; Z2),

which is equal to Hk(RPk; Z2) by the assumption.
So, 771 has a non-zero cross-section and we can write nξk = (n — k-\-2)φτj2

where η2 is the (k — 2)-dimensional vector bundle over RPk.
Now, the Euler class X(JJ2) of τj2 is zero, because Hk~2(RPk; Z)=0. So, 972

has a non-zero cross-section over the (k — 2)-skeleton of i^Pfe, and the obstruc-
tions extending to the {k — l)-skeleton of RPk form a coset

; Z2),

by 4.1, where the dot operates by y2, and this group is equal to Hkl(RPk; Z2).
So, ??2 has a non-zero cross-section over the (k — l)-skeleton of RPk, and

the obstructions extending to RPk form a coset of

; Z2)=H\RPk; Z2)

by 4.2.
So, τ/2 has a non-zero cross-section over RPk and the proof is completed.

q.e.d.
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§5. Applications to the submersions of P£

Let Mn be an open C~-manifold of dimension n, and Wp be a C°°-manifold
of dimension p. Then by [7], we say a differentiate map/: Mn-> Wp (n^>p)
is a submersion if/ has rank p at each point of Mn. In this case, we say
that Mn submerges in Wp. Rp denotes the jo-dimensional Euclidean space.

Now, we consider the problem of submersions in Rp. Our results are
based on the following theorem of

THEOREM 5.1. Mn submerges in Rp if and only if span Mn^>p.
By RPnQRn+\ we mean that RPn is immersible in Rn+k.

THEOREM 5.2. Rpn+k-Rpk~ι submerges in Rn if and only if RPn^Rn+k

PROOF. By [2, Theorem 1.1], span(n + k + l)fn^>7i + l if and only if
Rpn £ Rn+k g θ 5 t h e p r o o f f o n o w s from 2.4 and 5.1. q.e.d.

By 2.4 and 5.1, we have also

LEMMA 5.3. // RPn+k-RPkl submerges in R", then RPn+k-RPk sub-
merges in Rn and RPn+k+1 — RPk submerges in Rn,

We denote by s(n, h) the number s such that P£ = RPn — RPkι submerges
in Rs and not in Rs+1. Then, we have the following results, using 2.8, 2.9,
2.10, 4.3 and 4.4:

(5.4) Let k and n be integers such that n^>

(a) If ( J ) Ξ 1 (mod 2), then s(n-l, n-k-ΐ)=n-k-l.

(b) If k and n are even integers, then the inverse of (a) holds.

(5.5) Let n be an even integer, k be an odd integer such that n

then s(n — 1, n — k — 1)^>n — k. Moreover, if (ΊJ^Λ ) = 1 (mod 2), then

5(in — 1, n — k — l)=n — k.

(5.6) Let Z, 77i and n be integers, and d=2, 4 or 8. Then s(dl + m — l,

— n — l)=dl — l for

(5.7) Under the assumptions of 4.3, 5(71 — 1, n — k — 1) ̂ > n — A: +1.

(5.8) Under the assumptions of 4.4, s(n — l, n — k — l)^n~

and 5(71 —1, n — k — l)^>n — k + 2 for &:>8.

By 5.3 and (5.4)-(5.6), s(n, k) are determined partially as follows:

(5.9) 5(71 + 8, k + 8) = 8 + 5(71, k) for n-Ί^k^n,

s(n + S,k)=s(n,k) for 0<k^l<,6 where 7i =
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Moreover, we have the following table of s(n, k) for 7i<^30 = 25 — 2, which
is a partial improvement of the table of [7, p. 201]. The symbols in the table
are used in the following sense:

EZ3

o

is determined by (5.9).

comes from 5.2 and the known results concerning the immersion of RPn.

is a consequence of (5.8).

f comes from [4, Th. 1, (vi) and Prop. 3].

Δ comes from ϋΓ-theory as in [7].

(0)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Ψ/
1
ψ/

''///,

%
%
W/
ύ
'//
'///
///

15

8

8,10

8,10

8,10

8,10

8,10
O Δ
9,14

9,16

u 1 5 '

15

; 15

; 15

: is

: is

15

..15.,.

n

> s

16

0

8,12

8,12

8,12
Δ

8,12

11,13

11,13
Δ

11,15

11,16

is :

15

15

15

15

15

15

h

n,k) = s

17

1

: 1

8,12

8,12

8,12

8,1*2

11,14
Δ

11,14

11,16

11,16

1 5 I

15

15

15

15

15

17

Liz...

r

18

0

1

: 2

8,13

8,13

8,13
* Δ

12,14

12,15

12,15

12,16

12,16

15 \

15

15

15

15

16

17

; ( r 18 r i

I

I
->! S, t

s<*s(n,h)<t

19

3

3

3

3

8,13

8,13

o
9,13
12,16

12,16

12,16
o
13,16

13,16

15

15

15

15

19

19

19

20

0

3

3

3

: 4

8,13
t
9,13

9,13

12,16

12,16

12,16

13,16

13,16

15 \

15

15

16

19

19

19

20

21

1

1

3

3

5

5
o
9,13

9,13

9,13

12,16

13,16

13,16

13,16

14,16

15 :

15

17

17

19

19

21

I 2 1 . , .

22

0

1 ί

2 \

3 :

5

\ 6 \
*
15

15

15

15

15

15

15

15

15

16

17 i

is

19

20 :

, 2i :

23

7

7

7

7

15

15

15

15

15

15

15

15

W////
'//////
'//////
W////,
MM
W/M
W//W
WWW

24

0

7

7

7

8

15

15

15

15

15

15

15

16

WW/,
MM/
M/W
//WW
W/W
WW/
MW//
////////,

25

1

ψ/Λ
7

7

9

9

15

15

15

15

15

15

17

17

β
β
β
β
W//Λ
W////
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