On the Vector Bundles $m\xi_n$ over Real Projective Spaces

Toshio Yoshida

(Received February 22, 1968)

§1. Introduction

Let ξ_n be the canonical line bundle over *n*-dimensional real projective space RP^n , and $m\xi_n$ the Whitney sum of *m*-copies of it.

The purpose of this note is to study the number $span m\xi_n$ of the linearly independent cross-sections of $m\xi_n$. These are related to the immersion problems of RP^n in the Euclidean space R^m by [2], and also to the submersion problems of $P_k^n = RP^n - RP^{k-1}$ in R^m by [7] and Theorem 2.4 below.

In §2, we study the simple properties of span $m\xi_n$. In order to make further calculations, we consider in §3 the Postnikov resolution of the universal sphere bundle and characterize the third k-invariant by the methods of [9], where the results obtained may be contained in [5]. These are applied to span $m\xi_n$ in §4, and we consider the submersion problems of P_k^n in §5. The author expresses his hearty thanks to Prof. M. Sugawara and Dr. T. Kobayashi for their valuable suggestions and discussions.

§2. Some properties of $m\xi_n$

If ξ is a real vector bundle, we denote by $span \xi$ the maximum number of the linearly independent cross-sections of ξ . Especially, when M is a C^{∞} -manifold, we denote by span M the $span \tau(M)$, where $\tau(M)$ is the tangent vector bundle of M.

The following two lemmas are well known.

LEMMA 2.1. Let $f: X \rightarrow Y$ be a homotopy equivalence between CW-complexes X and Y, and ξ be a real vector bundle over Y. Then

$$span f^{*} \xi = span \xi,$$

where $f^{\sharp} \xi$ is the induced bundle of ξ by f.

LEMMA 2.2. Let ξ be a real vector bundle over a CW-complex X. If $\dim \xi > \dim X$, then $\operatorname{span} \xi \ge \dim \xi - \dim X$, and

$$span(\xi \oplus 1) = 1 + span\xi,$$

where \oplus is the Whitney sum and 1 in the left hand side is the 1-dimensional trivial bundle over X.

Now, let ξ_n be the canonical line bundle over the *n*-dimensional real pro-

jective space RP^n , and $m\xi_n$ be the Whitney sum of *m*-copies of ξ_n .

LEMMA 2.3. If $span(m+1)\xi_n \ge p+1$ and $m-p+1 \le n$, then $\binom{m+1}{p} \equiv 0 \pmod{2}$.

PROOF. If $span(m+1)\xi_n \ge p+1$, then there is a bundle η over RP^n such that $(m+1)\xi_n = (p+1) \oplus \eta$. Then the (m-p+1)-th Stiefel-Whitney class $w_{m-p+1}(\eta)$ of η is 0 because dim $\eta = m-p$. On the other hand

$$w_{m-p+1}(\eta) = w_{m-p+1}((m+1)\xi_n) = {m+1 \choose p} x^{m-p+1}$$

for the generator $x \in H^1(\mathbb{RP}^n; \mathbb{Z}_2)$. This shows the lemma. q.e.d.

THEOREM 2.4. Let $m \ge n$, then

$$span(m+1)\xi_n = 1 + span(RP^m - RP^{m-n-1}),$$

where RP^{-1} is the empty set.

PROOF. Let the natural inclusion $RP^{m-n-1} \subset RP^m$ be defined by mapping $[x_0, \dots, x_{m-n-1}] \in RP^{m-n-1}$ to $[x_0, \dots, x_{m-n-1}, 0, \dots, 0] \in RP^m$, and let $i: RP^n \rightarrow RP^m - RP^{m-n-1}$ be the into-homeomorphism defined by $i[x_0, \dots, x_n] = [0, \dots, 0, x_0, \dots, x_n]$. Then, i is clearly a homotopy equivalence, and $i^{*}(\xi_m | RP^m - RP^{m-n-1}) = \xi_n$ where $\xi_m | RP^m - RP^{m-n-1}$ is the restriction of ξ_m . Hence we have

$$span(m+1)\xi_{n} = span((m+1)\xi_{m} | RP^{m} - RP^{m-n-1})$$
$$= span(\tau^{m} \oplus 1 | RP^{m} - RP^{m-n-1}),$$

by 2.1 and the well known facts $(m+1)\xi_m = \tau^m \oplus 1$, where $\tau^m = \tau(RP^m)$. Therefore, for the case m > n, this is equal to

$$1 + span(\tau^m | RP^m - RP^{m-n-1})$$

by 2.1 and 2.2, and the theorem is proved for this case.

Consider the case m=n, and set span $RP^n = d-1$, then $span(n+1)\xi_n = span(\tau^n \oplus 1) \ge d$. Suppose $n \equiv 15 \pmod{16}$, then n+1=ud, $d=2^c (u: \text{ odd}, 0 \le c \le 3)$ by [1]. Also we have $\binom{n+1}{d} \equiv 1 \pmod{2}$, and so $span(n+1)\xi_n < d+1$ by 2.3. These show that $span(n+1)\xi_n = 1 + span RP^n$ for $n \equiv 15 \pmod{16}$.

If there is a bundle η over RP^n such that $(n+1)\xi_n = (d+1)\oplus \eta$, then $\tau^n \oplus 1 = (d \oplus \eta) \oplus 1$, and this implies that $\tau^n = d \oplus \eta$ for $n \equiv 1 \pmod{2}$ by [3, Cor. 1.11]. This is impossible, because $d = 1 + span\tau^n$, and the above equality holds also for $n \equiv 1 \pmod{2}$. *q.e.d.*¹⁾

¹⁾ Our original proof for the case $n \equiv 15 \pmod{16}$ is based on K-theory (and [1], [2]) which is due to Dr. T. Kobayashi, and the above simple proof was suggested by Dr. B. Steer, to whom the author wishes to thank.

REMARKS. (2.5) span $m\xi_n = 0$ if $0 \leq m \leq n$, because the Stiefel-Whitney class $w_m(m\xi_n)$ is not zero.

(2.6) The case m = n in 2.4 is equivalent to

span $RP^n = n - g$. dim $(\tau^n - n)$,

where g. dim $(\tau^n - n)$ is the geometrical dimension of $\tau^n - n \in \widetilde{KO}(RP^n)$. As an application of 2.4 for m = n, we have

THEOREM 2.7 Let M be a C^{∞} -manifold, then

 $span (M \times RP^n) \leq \dim M + span RP^n$.

Especially, if M is a π -manifold, and n is odd, then

 $span (M \times RP^{n}) = \dim M + span RP^{n}$

PROOF. Let dim M=m and $d-1=span RP^n$, and suppose $span(M \times RP^n) \ge m+d$. Then there is a bundle ξ over $M \times RP^n$ such that $\tau(M \times RP^n) = (m+d) \oplus \xi$, and we have $m \oplus \tau(RP^n) = (m+d) \oplus j^{\sharp} \xi$ inducing by the inclusion map $j: RP^n = * \times RP^n \subset M \times RP^n$. Hence $span(1 \oplus \tau^n) \ge d+1$ by 2.2, which contradicts to 2.4 for m=n, and so the first relation is obtained.

If n is odd, there exists a vector bundle η over RP^n such that $\tau(RP^n) = 1 \oplus \eta$, as span $RP^n \ge 1$. So, for π -manifold M,

$$\tau(\mathbf{M} \times RP^{n}) = p_{1}^{\sharp}\tau(M) \oplus p_{2}^{\sharp}(1 \oplus \eta) = p_{1}^{\sharp}(\tau(M) \oplus 1) \oplus p_{2}^{\sharp}(\eta)$$
$$= (\dim M + 1) \oplus p_{2}^{\sharp}(\eta) = \dim M \oplus p_{2}^{\sharp}\tau^{n},$$

where p_i is the projection map onto the *i*-th factor. This shows that $span(M \times RP^n) \ge \dim M + span RP^n$, and the second equation. *q.e.d.*

Now, we consider the simple properties of $span(n\xi_k)$ for $n \ge k+2$.

THEOREM 2.8. Let k and n be integers such that $n \ge k+2$.

- (a) $If \binom{n}{k} \equiv 1 \pmod{2}$, then span $(n\xi_k) = n k$.
- (b) If k and n are even integers, then the inverse of (a) holds.

PROOF. (a) is immediate from 2.2 and 2.3

(b): Let η be a vector bundle over RP^n such that $n\xi_k = (n-k) \bigoplus \eta$. For even k and n, $H^k(RP^k; Z)$ and $H^k(RP^k; Z_2)$ are isomorphic by the mod 2-reduction homomorphism, and η is orientable. Therefore, the fact that η has a non-zero cross-section is equivalent to $w_k(\eta) = 0$, i.e., $\binom{n}{k} \equiv 0 \pmod{2}$ (cf. [6]).

q.e.d.

THEOREM 2.9. Let n be even, k be odd such that $n \ge k+2$, then

$$span(n\xi_k) \geq n-k+1.$$

Moreover, if $\binom{n}{k-1} \equiv 1 \pmod{2}$, then span $(n\xi_k) = n-k+1$.

PROOF. Put $n\xi_k = (n-k)\otimes \eta$. Since k is odd, the obstruction for η to have a non-zero cross-section is $\delta w_{k-1}(\eta)$, where $\delta \colon H^{k-1}(RP^k; Z_2) \to H^k(RP^k; Z)$ is the Bockstein operator. Since this δ is zero, we have $\delta w_{k-1}(\eta) = 0$, and the first is obtained. The rest is easy from 2.3. *q.e.d.*

THEOREM 2.10. Let l, m and n be integers, and d=2, 4 or 8. Then,

 $span(dl+m)\xi_n = dl$ for $0 \leq m \leq n \leq d-1$.

PROOF. span $(dl+m)\xi_n \ge span (dl+m)\xi_{d-1} \ge span (dl\xi_{d-1}) = dl$ because $span(RP^{d-1}) = d-1$. Also, $span(dl+m)\xi_n < dl+1$ by 2.3, because $\binom{dl+m}{dl} \equiv 1 \pmod{2}$. (mod 2). q.e.d.

§3. Postnikov resolution of the universal sphere bundle for the third stage

Let (E, p, B, F) be a fiber space over a CW-complex B with (n-1)-connected fiber F, and assume that the fundamental group $\pi_1(B)$ acts trivially on the homology group $H_*(F; G)$ with coefficient group G. Let $w: B \to C$ be a map into the Eilenberg-MacLane space $C = K(\Pi, n+1)$, and $(E_1, P_1, B, \mathcal{Q}C)$ be the principal fiber space with classifying map w [9], where $\mathcal{Q}C = K(\Pi, n)$ is the loop space of C. As is well known, the homotopy set [B, C] is naturally isomorphic to $H^{n+1}(B; \Pi)$, and so we identify these. Also, assume that $p^*w=0$, which is equivalent to the existence of the map $q: E \to E_1$ such that $p_1 \circ q = p$.

Consider the following commutative diagram in [9]

$$\begin{array}{ccc}
\mathcal{Q}C &= \mathcal{Q}C \\
\downarrow & \downarrow \\
\mathcal{Q}C \times E \xrightarrow{1 \times q} \mathcal{Q}C \times E_{1} \xrightarrow{\mu} \downarrow \\
\downarrow \pi & \downarrow p \\
E & \xrightarrow{p} & B
\end{array}$$

where μ is the action map and π is the projection map.

Put $\nu = \mu \circ (1 \times q)$. If $s: E = * \times E \subset \mathcal{Q}C \times E$ is the inclusion map, then $\nu \circ s$ is homotopic to q [9].

Under the above notations, it follows:

THEOREM 3.1. [9, Cor. 1] For any abelian group G, the sequence

is exact, where (B, E) should be considered as (M_p, E) $(M_p$ is the mapping cylinder of p), $l = j \circ p_1(j: B \rightarrow (B, E)$ is the inclusion map), and τ_0 is the relative transgression homomorphism.

COROLLARY 3.2. Assume that the following two conditions (a) and (b) hold for a positive integer $i \leq 2n-1$ and for a coefficient group G:

- (a) Ker $p_1^* \supset$ Ker p^* in dimension i,
- (b) p^* is surjective in dimension *i*.

Then, the sequence

$$0 \longrightarrow H^{i}(E_{1}; G) \xrightarrow{\nu^{*}} H^{i}(\mathscr{Q}C \times E; G) \xrightarrow{\tau_{1}} H^{i+1}(B; G)$$

is exact, where $\tau_1 = j^* \circ \tau_0$.

PROOF. (a) implies $\text{Im } l^* = p_1^*(\text{Im } j^*) = p_1^*(\text{Ker } p^*) = 0$, and so ν^* in the above sequence is monomorphic by 3.1.

By the exact sequence of (B, E) and (b), $j^*: H^{i+1}(B, E; G) \to H^{i+1}(B; G)$ is a monomorphism, and so $\operatorname{Ker} \tau_0 = \operatorname{Ker} \tau_1$. These and 3.1. show the exactness. *q.e.d.*

Let $n \ge 4$, and $S^{n-1} \xrightarrow{i} BSO(n-1) \xrightarrow{\pi} BSO(n)$ be the universal oriented (n-1)-sphere bundle. π is homotopically equivalent to the natural inclusion $BSO(n-1) \subset BSO(n)$.

The Postnikov resolution of π for the third stage is as follows:

where $X_n \in H^n(BSO(n); \mathbb{Z})$ is the Euler class, (E, p, BSO(n)) is the principal fiber space with classifying map X_n , q is the map such that $p \circ q = \pi$, k is the second k-invariant, (E', p', E) is the principal fiber space with classifying map k, q' is the map such that $p' \circ q' = q$, and k' is the third k-invariant.

The two conditions of 3.2 for the bundle $(BSO(n-1), \pi, BSO(n), S^{n-1})$ hold for $0 < i \leq 2n-3$ and $G = Z_2$ by [9, p. 20]. So,

$$(**) \quad 0 \to H^{i}(E; Z_{2}) \xrightarrow{\nu^{*}} H^{i}(K(Z, n-1) \times BSO(n-1); Z_{2}) \xrightarrow{\tau_{1}} H^{i+1}(BSO(n); Z_{2})$$

is exact for $0 < i \leq 2n-3$ by 3.2, where $\nu = \mu \circ (1 \times q)$, $\mu: K(Z, n-1) \times E \rightarrow E$ is the action map.

Also, the invariant k is characterized uniquely by the equation [9, p. 21]:

$$u^*k = Sq^2 \mathfrak{c} \otimes 1 + \mathfrak{c} \otimes w_2$$

where ι is the generator of $H^{n-1}(K(Z, n-1); Z_2) = Z_2, w_i \in H^i(BSO(n-1); Z_2)$ is

the *i*-th Stiefel-Whitney class, and Sq is the Steenrod square operation.

Now, to consider the characterization of k', we consider the bundle (BSO(n-1), q, E). For the conditions of 3.2 of this bundle, we have:

LEMMA 3.3 For $n \ge 5$, and for coefficient group Z_2 , we have

(a) Ker $p'^* \supset$ Ker q^* in dim n+2,

(b) q^* is surjective in dim n+2.

PROOF. (a): Since $\nu \circ s$ is homotopic to q and $n \ge 5$,

$$\nu^* \colon H^{n+2}(E; Z_2) \cap \operatorname{Ker} q^* \cong \operatorname{Ker} \tau_1 \cap \operatorname{Ker} s^* \cap H^{n+2}(K(Z, n-1) \times BSO(n-1); Z_2)$$

is isomorphic by the exact sequence (**) for i=n+2, where $s: BSO(n-1) \rightarrow K(Z, n-1) \times BSO(n-1)$ is the inclusion map.

The right side is Z_2 generated by $\iota \otimes w_3 + Sq^3\iota \otimes 1$, because

$$\tau_1(\iota \otimes w_3) = w_n w_3,$$

$$\tau_1(Sq^3\iota \otimes 1) = Sq^3\tau_1(\iota \otimes 1) = Sq^3w_n = w_n w_3$$

by [8], [9] and a formula of Wu [11]. On the other hand,

$$\begin{split} \nu^* Sq^1 k &= Sq^1 \nu^* k = Sq^1 (Sq^2 \iota \otimes 1 + \iota \otimes w_2) \\ &= Sq^1 Sq^2 \iota \otimes 1 + \iota \otimes Sq^1 w_2 + Sq^1 \iota \otimes w_2 = Sq^3 \iota \otimes 1 + \iota \otimes w_3, \end{split}$$

and so, $H^{n+2}(E; Z_2) \cap \text{Ker } q^*$ is equal to Z_2 generated by $Sq^1 k$. Also, $p'^*Sq^1k = Sq^1p'^*k = Sq^10 = 0$, and we have (a).

(b): This follows from the fact that π^* is an epimorphism for coefficient group Z_2 in all dimensions. *q.e.d.*

By 3.2 and 3.3, we have

Corollary 3.4. For
$$n \ge 5$$
,

$$0 \to H^{n+2}(E'; Z_2) \xrightarrow{\nu''} H^{n+2}(K(Z_2, n) \times BSO(n-1); Z_2) \xrightarrow{\tau_1} H^{n+3}(E; Z_2)$$

is an exact sequence, where ν' , τ'_1 , are defined similarly as before.

The following characterization of k' is obtained [5]:

THEOREM 3.5. For $n \ge 6$, $k' \in H^{n+2}(E'; Z_2)$ is characterized uniquely by the equation:

$$u'^*k' = \epsilon' \otimes w_2 + Sq^2\epsilon' \otimes 1$$

where ι' is the generator of $H^n(K(Z_2, n); Z_2) = Z_2$.

PROOF. By [9, Property 2, p. 14], we have

$$au_1'(t'\otimes w_2) = kp^*w_2,$$
 $au_1'(Sq^2t'\otimes 1) = Sq^2 au_1'(t'\otimes 1) = Sq^2k.$

10

These are not zero and mapped to the same element by ν^* , because

$$\begin{split} \mathfrak{v}^*(kp^*w_2) &= \mathfrak{v}^*k \cup \mathfrak{v}^*p^*w_2 \\ &= (Sq^2\mathfrak{c} \otimes 1 + \mathfrak{c} \otimes w_2)(1 \otimes w_2) = Sq^2\mathfrak{c} \otimes w_2 + \mathfrak{c} \otimes w_2^2, \\ \mathfrak{v}^*Sq^2k &= Sq^2\mathfrak{v}^*k = Sq^2(Sq^2\mathfrak{c} \otimes 1 + \mathfrak{c} \otimes w_2) \\ &= Sq^2Sq^2\mathfrak{c} \otimes 1 + Sq^2\mathfrak{c} \otimes w_2 + Sq^1\mathfrak{c} \otimes Sq^1w_2 + \mathfrak{c} \otimes Sq^2w_2 \\ &= Sq^3Sq^1\mathfrak{c} \otimes 1 + Sq^2\mathfrak{c} \otimes w_2 + \mathfrak{c} \otimes w_2^2 = Sq^2\mathfrak{c} \otimes w_2 + \mathfrak{c} \otimes w_2^2. \end{split}$$

As $n \ge 6$, these and the exactness of (**) show that

$$au_1'(\epsilon' \otimes w_2) = au_1'(Sq^2\epsilon' \otimes \mathbf{1}).$$

And so, $\iota' \otimes w_2 + Sq^2 \iota' \otimes 1$ is the only non-zero element of $\nu'^*(\operatorname{Ker} q'^*)$. Therefore, we have 3.5. *q.e.d.*

§4. Obstructions for cross-sections of vector bundles

Now, let X be a CW-complex and ξ be an orientable real vector bundle of dimension *n* over X. The equivalence class of ξ corresponds bijectively to a homotopy class of a map $\xi: X \to BSO(n)$.

Consider the diagram (*) and suppose that $\xi^* X_n = 0$. Then there is a map $\eta: X \to E$ such that $p \circ \eta = \xi$. We define, as in [10],

$$k(\xi) = \bigcup_n \eta^* k \subset H^{n+1}(X; Z_2),$$

where the union is taken over all maps $\eta: X \to E$ such that $p \circ \eta = \xi$. As is well known, $k(\xi) \ni 0$ if and only if ξ has a non-zero cross-section over the (n+1)-skeleton of X.

We obtain the following theorem as a special case of [10].

THEOREM 4.1. For $n \ge 4$,

$$k(\xi) \in H^{n+1}(X; Z_2)/(w_2 \otimes 1 + 1 \otimes Sq^2) \cdot H^{n-1}(X; Z_2)$$

where the dot operates by $\xi [10]^{(2)}$.

PROOF. Put $\tilde{\mu}^* = \mu^* - p_0^*$, where $\mu: K(Z, n-1) \times E \to E$ is the action map and $p_0: K(Z, n-1) \times E \to E$ is the projection. Then

$$(1 \times q)^* \tilde{\mu}^* k = \left(\nu^* - (1 \times q)^* p_0^*\right)(k)$$
$$= \nu^* k - (1 \times q)^* (1 \otimes k) = \nu^* k = Sq^2 \iota \otimes 1 + \iota \otimes w_2.$$

Because $\operatorname{Im} \tilde{\mu}^* \subset \sum_{0 \leq i \leq 2} H^{n+1-i} (K(Z, n-1); Z_2) \otimes H^i(E; Z_2)$ and $q^*: H^i(E; Z_2)$

2) This means that $(w_2 \otimes 1 + 1 \otimes Sq^2) \cdot H^{n-1}(X; Z_2) = \{w_2(\xi)x + Sq^2x \mid x \in H^{n-1}(X; Z_2)\}$

Toshio Yoshida

 $\rightarrow H^{i}(BSO(n-1); Z_{2})$ is injective for $i \leq 2$, we have

$$ilde{\mu}^*k = Sq^2\iota \otimes 1 + \iota \otimes p^*w_2 = (w_2 \otimes 1 + 1 \otimes Sq^2) \cdot (\iota \otimes 1),$$

where the dot operates by $p \circ p_0$, and the proof is completed by [10]. *q.e.d.*

Suppose η be a map such that $p \circ \eta = \xi$. Define similarly

$$k'(\eta) = \bigvee_{\zeta} \zeta^* k' \subset H^{n+2}(X; Z_2)$$

where the union is taken over all maps $\zeta: X \to E'$ such that $p' \circ \zeta = \eta$. Then, $k'(\eta) \ni 0$ if and only if ξ has a non-zero cross-section over the (n+2)-skeleton of X.

Using 3.5, we have

THEOREM 4.2. For $n \ge 6$,

$$k'(\eta) \in H^{n+2}(X; Z_2)/(w_2 \otimes 1 + 1 \otimes Sq^2) \cdot H^n(X; Z_2),$$

where the dot operates by ξ .

PROOF. By 3.5 and the same technique as in the proof of 4.1, we see that

 $k'(\eta) \in H^{n+2}(X; Z_2)/(p^*w_2 \otimes 1 + 1 \otimes Sq^2) \cdot H^n(X; Z_2),$

where the dot operates by η . But, we have

$$(p^*w_2 \otimes 1 + 1 \otimes Sq^2) \cdot H^n(X; Z_2) = (w_2 \otimes 1 + 1 \otimes Sq^2) \cdot H^n(X; Z_2)$$

by the definition of the operations, and 4.2 is obtained. q.e.d.

Now, we shall apply these two results to the bundles over RP^n .

THEOREM 4.3. Let k and n be integers such that $n \ge k+2 \ge 7$. Suppose one of the following two conditions (a) and (b) holds:

(a) $n \equiv 0 \pmod{4}$, $k \equiv 0 \pmod{4}$, $\binom{n}{k} \equiv 0 \pmod{2}$, (b) $n \equiv 2 \pmod{4}$, $k \equiv 2 \pmod{4}$, $\binom{n}{k} \equiv 0 \pmod{2}$.

Then,

$$span(n\xi_k) \geq n-k+2.$$

PROOF. By 2.8(b), there is a (k-1)-dimensional vector bundle η over RP^k such that $n\xi_k = (n-k+1) \bigoplus \eta$. As $H^{k-1}(RP^k; Z) = 0$, η has a non-zero crosssection over the (k-1)-skeleton of RP^k , and the final obstructions of the nonzero cross-section of η extending to RP^k form a coset of

$$(w_2\otimes 1+1\otimes Sq^2)\cdot H^{k-2}(RP^k;Z_2),$$

where the dot operates by η , by 4.1. But we have easily

12

On the Vector Bundles $m\xi_n$ over Real Projective Spaces

$$(w_2 \otimes 1 + 1 \otimes Sq^2) \cdot H^{k-2}(RP^k; Z_2) = H^k(RP^k; Z_2)$$

by the assumption. So, η has a non-zero cross-section and the proof is completed. *q.e.d.*

THEOREM 4.4. Let k and n be integers such that $n \ge k+2 \ge 7$. Suppose one of the following conditions (a) and (b) holds:

(a) $n \equiv 0 \pmod{4}$, $k \equiv 1 \pmod{4}$, $\binom{n}{k-1} \equiv 0 \pmod{2}$, (b) $n \equiv 2 \pmod{4}$, $k \equiv 3 \pmod{4}$, $\binom{n}{k-1} \equiv 0 \pmod{2}$.

Then,

$$span(n\xi_k) \geq n-k+2.$$

Moreover, if $k \geq 8$,

$$span(n\xi_k) \geq n-k+3.$$

PROOF. By 2.9, we can write $n\xi_k = (n-k+1) \bigoplus \eta_1$, where η_1 is the (k-1)-dimensional vector bundle over RP^k .

As $H^{k-1}(RP^k; Z)$ is isomorphic to $H^{k-1}(RP^k; Z_2)$ by the mod 2-reduction homomorphism, it follows by the assumption that the Euler class $X(\eta_1)$ of η_1 is zero. By 4.1, the obstructions of the non-zero cross-section of η_1 extending to RP^k form a coset of

$$(w_2\otimes 1+1\otimes Sq^2)\cdot H^{k-2}(RP^k;Z_2),$$

which is equal to $H^k(RP^k; Z_2)$ by the assumption.

So, η_1 has a non-zero cross-section and we can write $n\xi_k = (n-k+2) \bigoplus \eta_2$ where η_2 is the (k-2)-dimensional vector bundle over RP^k .

Now, the Euler class $X(\eta_2)$ of η_2 is zero, because $H^{k-2}(RP^k; Z)=0$. So, η_2 has a non-zero cross-section over the (k-2)-skeleton of RP^k , and the obstructions extending to the (k-1)-skeleton of RP^k form a coset

$$(w_2\otimes 1+1\otimes Sq^2)\cdot H^{k-3}(RP^k;Z_2),$$

by 4.1, where the dot operates by η_2 , and this group is equal to $H^{k-1}(RP^k; Z_2)$.

So, η_2 has a non-zero cross-section over the (k-1)-skeleton of RP^k , and the obstructions extending to RP^k form a coset of

$$(w_2 \otimes 1 + 1 \otimes Sq^2) \cdot H^{k-2}(RP^k; Z_2) = H^k(RP^k; Z_2)$$

by 4.2.

So, η_2 has a non-zero cross-section over RP^k and the proof is completed. *q.e.d.*

§5. Applications to the submersions of P_k^n

Let M^n be an open C^{\sim} -manifold of dimension n, and W^p be a C^{\sim} -manifold of dimension p. Then by [7], we say a differentiable map $f: M^n \to W^p$ $(n \ge p)$ is a submersion if f has rank p at each point of M^n . In this case, we say that M^n submerges in W^p . R^p denotes the p-dimensional Euclidean space.

Now, we consider the problem of submersions in \mathbb{R}^p . Our results are based on the following theorem of $\lceil 7 \rceil$:

THEOREM 5.1. M^n submerges in \mathbb{R}^p if and only if span $M^n \ge p$. By $\mathbb{R}P^n \subseteq \mathbb{R}^{n+k}$, we mean that $\mathbb{R}P^n$ is immersible in \mathbb{R}^{n+k} .

THEOREM 5.2. $RP^{n+k} - RP^{k-1}$ submerges in R^n if and only if $RP^n \subseteq R^{n+k}$.

PROOF. By [2, Theorem 1.1], $span(n+k+1)\xi_n \ge n+1$ if and only if $RP^n \subseteq R^{n+k}$. So, the proof follows from 2.4 and 5.1. q.e.d.

By 2.4 and 5.1, we have also

LEMMA 5.3. If $RP^{n+k}-RP^{k-1}$ submerges in R^n , then $RP^{n+k}-RP^k$ submerges in R^n and $RP^{n+k+1}-RP^k$ submerges in R^n .

We denote by s(n, k) the number s such that $P_k^n = RP^n - RP^{k-1}$ submerges in R^s and not in R^{s+1} . Then, we have the following results, using 2.8, 2.9, 2.10, 4.3 and 4.4:

(5.4) Let k and n be integers such that $n \ge k+2$.

(a) If $\binom{n}{k} \equiv 1 \pmod{2}$, then s(n-1, n-k-1) = n-k-1.

(b) If k and n are even integers, then the inverse of (a) holds.

(5.5) Let n be an even integer, k be an odd integer such that $n \ge k+2$, then $s(n-1, n-k-1) \ge n-k$. Moreover, if $\binom{n}{k-1} \equiv 1 \pmod{2}$, then s(n-1, n-k-1) = n-k.

(5.6) Let l, m and n be integers, and d=2, 4 or 8. Then s(dl+m-1, dl+m-n-1)=dl-1 for $0 \le m \le n \le d-1$.

(5.7) Under the assumptions of 4.3, $s(n-1, n-k-1) \ge n-k+1$.

(5.8) Under the assumptions of 4.4, $s(n-1, n-k-1) \ge n-k+1$ for $k \ge 5$ and $s(n-1, n-k-1) \ge n-k+2$ for $k \ge 8$.

By 5.3 and (5.4)-(5.6), s(n, k) are determined partially as follows:

(5.9)
$$s(n+8, k+8) = 8 + s(n, k)$$
 for $n-7 \le k \le n$,
 $s(n+8, k) = s(n, k)$ for $0 < k \le l \le 6$ where $n = 8m + l$.

Moreover, we have the following table of s(n, k) for $n \leq 30=2^5-2$, which is a partial improvement of the table of [7, p. 201]. The symbols in the table are used in the following sense:

is determined by (5.9).

- * comes from 5.2 and the known results concerning the immersion of RP^n .
- \bigcirc is a consequence of (5.8).
- † comes from [4, Th. 1, (vi) and Prop. 3].
- \triangle comes from K-theory as in [7].

											l	· · · · ·					
k		15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
(0)		8	0	1	0	3	0	1	0	7	0	1	0	3	0	1	0
1		8,10	8,12	. 1	1	3	3	1	1	7	7						
2		8,10	8,12	8,12	2	3	3	3	2	7	7	7		¥///////			
3		8,10	8,12	8,12	8,13	3	3	3	3	7	7	7	7				
4		8,10	8,12	8,12	8,13	8,13	4	5	4	7	7	7	7	7			
5		* 8,10	* 11,13	* 8,12	8,13	8,13	8,13	5	5	7	7	7	7	7	7		
6		0 △ 9,14	11,13	11,14	* 12, 14	○ 9,13	† 9,13) 9,13	6	7	7	7	7	7	7	7	
7		9,16	11,15	11,14	12,15	12,16	9,13	9,13	* 15	7	7	7	7	7	. 7	7	7
8		15	11,16	11,16	12, 15	12,16	12,16	9,13	15	15	8	9	8	9,12	8	9	8
9		15	15	11,16	12,16	12,16	12,16	12,16	15	15	15	9	9	10,12	9,12	9	9
10		15	15	15	12,16	$\overset{\mathrm{O}}{13,16}$	12,16	$\overset{\mathrm{O}}{13}$, 16	15	15	15	15	10	11	10,12	11	10
11		15	15	15	15	13,16	13,16	13,16	15	15	15	15	15	11	11	11	11
12		15	15	15	15	15	13,16	13,16	15	15	15	15	15	15	12	13	12
13		15	15	15	15	15	15	14,16	15	15	15	15	15	15	15	13	13
14		15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	14
15		15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
16			16	17	16	19	16	17	16		16	17	16	17,20	16	17	16
17				. 17	17	19	19	17	17			17	17	18,20	17,20	17	17
18					. 18	19	19	19	18				18	19	18,20	19	18
19						. 19	19	19	19					19	19	19	19
20		n		1	r 1		. 20	21	20						20	21	20
21		1	I .	1	Ļ			. 21	21					X//////		21	21
22	k→	> <u>s</u>	k	$s \rightarrow s$,	t									V///////			22
23	s((n, k) =	= \$	$s \leq s(\pi$	(k,k) < t												
				~ ((//////////////////////////////////////	///////////////////////////////////////		V////////		(////	

Toshio Yoshida

References

- [1] J. F. Adams: Vector fields on spheres, Ann. of Math., 75 (1962), 603-632.
- [2] J. Adem and S. Gitler: Non-immersion theorems for real projective spaces, Bol. Soc. Math. Mex., 9 (1964), 37-50.
- [3] I. James and E. Thomas: An Approach to the Enumerations Problem for Non-Stable Vector Bundles, J. Math. Mech., 14 (1965), 485-506.
- [4] Kee Yuen Lam: Construction of nonsingular bilinear maps, Topology, 6 (1967), 423-426.
- [5] M. Mahowald: On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc., 110 (1964), 315-349.
- [6] J. Milnor: Lectures on characteristic classes (mimeo. notes), Princeton University, 1958.
- [7] A. Phillips: Submersions of open manifolds, Topology, 6 (1967), 171-206.
- [8] J.-P. Serre: Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comm. Math. Helv., 27 (1953), 198-232.
- [9] E. Thomas: Seminer on fiber spaces, Springer-Verlag, 1966.
- [10] E. Thomas: Postnikov invariants and higher order cohomology operations, Ann. of Math., 85 (1967), 184-217.
- [11] W. T. Wu: Les i-carrés dans une variété grassmannienne, C. R. Acad. Sci, Paris, 230 (1950), 918-920.

Department of Mathematics, Faculity of Science, Hiroshima University