On the Vector Bundles mîn over Real Projective Spaces

Toshio Yoshida
(Received February 22, 1968)

§1. Introduction

Let ξ_{n} be the canonical line bundle over n-dimensional real projective space $R P^{n}$, and $m \xi_{n}$ the Whitney sum of m-copies of it.

The purpose of this note is to study the number $\operatorname{span} m \xi_{n}$ of the linearly independent cross-sections of $m \xi_{n}$. These are related to the immersion problems of $R P^{n}$ in the Euclidean space R^{m} by [2], and also to the submersion problems of $P_{k}^{n}=R P^{n}-R P^{k-1}$ in R^{m} by [7] and Theorem 2.4 below.

In §2, we study the simple properties of $\operatorname{span} m \xi_{n}$. In order to make further calculations, we consider in $\S 3$ the Postnikov resolution of the universal sphere bundle and characterize the third k-invariant by the methods of [9], where the results obtained may be contained in [5]. These are applied to span $m \xi_{n}$ in $\S 4$, and we consider the submersion problems of P_{k}^{n} in $\S 5$. The author expresses his hearty thanks to Prof. M. Sugawara and Dr. T. Kobayashi for their valuable suggestions and discussions.

§2. Some properties of $\boldsymbol{m} \boldsymbol{\xi}_{\boldsymbol{n}}$

If ξ is a real vector bundle, we denote by $\operatorname{span} \xi$ the maximum number of the linearly independent cross-sections of ξ. Especially, when M is a C^{∞} manifold, we denote by span M the $\operatorname{span} \tau(M)$, where $\tau(M)$ is the tangent vector bundle of M.

The following two lemmas are well known.
Lemma 2.1. Let $f: X \rightarrow Y$ be a homotopy equivalence between $C W$-complexes X and Y, and ξ be a real vector bundle over Y. Then

$$
\operatorname{span} f^{\# \xi}=\operatorname{span} \xi,
$$

where $f^{\sharp} \xi$ is the induced bundle of ξ by f.
Lemma 2.2. Let ξ be a real vector bundle over a $C W$-complex X. If $\operatorname{dim} \xi>\operatorname{dim} X$, then span $\xi \geqq \operatorname{dim} \xi-\operatorname{dim} X$, and

$$
\operatorname{span}(\xi \oplus 1)=1+\operatorname{span} \xi
$$

where \oplus is the Whitney sum and 1 in the left hand side is the 1-dimensional trivial bundle over X.

Now, let ξ_{n} be the canonical line bundle over the n-dimensional real pro-
jective space $R P^{n}$, and $m \xi_{n}$ be the Whitney sum of m-copies of ξ_{n}.
Lemma 2.3. If $\operatorname{span}(m+1) \xi_{n} \geqq p+1$ and $m-p+1 \leqq n$, then $\binom{m+1}{p} \equiv 0$ $(\bmod 2)$.

Proof. If $\operatorname{span}(m+1) \xi_{n} \geqq p+1$, then there is a bundle η over $R P^{n}$ such that $(m+1) \xi_{n}=(p+1) \oplus \eta$. Then the $(m-p+1)$-th Stiefel-Whitney class $w_{m-p+1}(\eta)$ of η is 0 because $\operatorname{dim} \eta=m-p$. On the other hand

$$
w_{m-p+1}(\eta)=w_{m-p+1}\left((m+1) \xi_{n}\right)=\binom{m+1}{p} x^{m-p+1}
$$

for the generator $x \in H^{1}\left(R P^{n} ; Z_{2}\right)$. This shows the lemma. q.e.d.
Theorem 2.4. Let $m \geqq n$, then

$$
\operatorname{span}(m+1) \xi_{n}=1+\operatorname{span}\left(R P^{m}-R P^{m-n-1}\right),
$$

where $R P^{-1}$ is the empty set.
Proof. Let the natural inclusion $R P^{m-n-1} \subset R P^{m}$ be defined by mapping $\left[x_{0}, \ldots, x_{m-n-1}\right] \in R P^{m-n-1}$ to $\left[x_{0}, \cdots, x_{m-n-1}, 0, \ldots, 0\right] \in R P^{m}$, and let $i: R P^{n} \rightarrow$ $R P^{m}-R P^{m-n-1}$ be the into-homeomorphism defined by $i\left[x_{0}, \ldots, x_{n}\right]=$ $\left[0, \ldots, 0, x_{0}, \ldots, x_{n}\right]$. Then, i is clearly a homotopy equivalence, and $i^{\#}\left(\xi_{m} \mid R P^{m}-R P^{m-n-1}\right)=\xi_{n}$ where $\xi_{m} \mid R P^{m}-R P^{m-n-1}$ is the restriction of ξ_{m}. Hence we have

$$
\begin{aligned}
& \operatorname{span}(m+1) \xi_{n}=\operatorname{span}\left((m+1) \xi_{m} \mid R P^{m}-R P^{m-n-1}\right) \\
= & \operatorname{span}\left(\tau^{m} \oplus 1 \mid R P^{m}-R P^{m-n-1}\right),
\end{aligned}
$$

by 2.1 and the well known facts $(m+1) \xi_{m}=\tau^{m} \oplus 1$, where $\tau^{m}=\tau\left(R P^{m}\right)$. Therefore, for the case $m>n$, this is equal to

$$
1+\operatorname{span}\left(\tau^{m} \mid R P^{m}-R P^{m-n-1}\right)
$$

by 2.1 and 2.2 , and the theorem is proved for this case.
Consider the case $m=n$, and set $\operatorname{span} R P^{n}=d-1$, then $\operatorname{span}(n+1) \xi_{n}=$ $\operatorname{span}\left(\tau^{n} \oplus 1\right) \geqq d$. Suppose $n \equiv 15(\bmod 16)$, then $n+1=u d, d=2^{c}$ ($u:$ odd, $0 \leqq c \leqq 3)$ by [1]. Also we have $\binom{n+1}{d} \equiv 1(\bmod 2)$, and so $\operatorname{span}(n+1) \xi_{n}<$ $d+1$ by 2.3. These show that $\operatorname{span}(n+1) \xi_{n}=1+\operatorname{span} R P^{n}$ for $n \neq 15(\bmod 16)$.

If there is a bundle η over $R P^{n}$ such that $(n+1) \xi_{n}=(d+1) \oplus \eta$, then $\tau^{n} \oplus 1=(d \oplus \eta) \oplus 1$, and this implies that $\tau^{n}=d \oplus \eta$ for $n \equiv 1(\bmod 2)$ by [3, Cor. 1.11]. This is impossible, because $d=1+\operatorname{span} \tau^{n}$, and the above equality holds also for $n \equiv 1(\bmod 2)$. q.e.d. ${ }^{1)}$

[^0]Remarks. (2.5) span $m \xi_{n}=0$ if $0 \leqq m \leqq n$, because the Stiefel-Whitney class $w_{m}\left(m \hat{\xi}_{n}\right)$ is not zero.
(2.6) The case $m=n$ in 2.4 is equivalent to

$$
\operatorname{span} R P^{n}=n-\mathrm{g} \cdot \operatorname{dim}\left(\tau^{n}-n\right),
$$

where g. $\operatorname{dim}\left(\tau^{n}-n\right)$ is the geometrical dimension of $\tau^{n}-n \in \widetilde{K O}\left(R P^{n}\right)$.
As an application of 2.4 for $m=n$, we have
Theorem 2.7 Let M be a C C^{∞}-manifold, then

$$
\operatorname{span}\left(M \times R P^{n}\right) \leqq \operatorname{dim} M+\operatorname{span} R P^{n} .
$$

Especially, if M is a π-manifold, and n is odd, then

$$
\operatorname{span}\left(M \times R P^{n}\right)=\operatorname{dim} M+\operatorname{span} R P^{n}
$$

Proof. Let $\operatorname{dim} M=m$ and $d-1=\operatorname{span} R P^{n}$, and suppose $\operatorname{span}\left(M \times R P^{n}\right)$ $\geqq m+d$. Then there is a bundle ξ over $M \times R P^{n}$ such that $\tau\left(M \times R P^{n}\right)=$ $(m+d) \oplus \xi$, and we have $m \oplus \tau\left(R P^{n}\right)=(m+d) \oplus j^{\#} \xi$ inducing by the inclusion map $j: R P^{n}=* \times R P^{n} \subset M \times R P^{n}$. Hence $\operatorname{span}\left(1 \oplus \tau^{n}\right) \geqq d+1$ by 2.2 , which contradicts to 2.4 for $m=n$, and so the first relation is obtained.

If n is odd, there exists a vector bundle η over $R P^{n}$ such that $\tau\left(R P^{n}\right)=$ $1 \oplus \eta$, as $\operatorname{span} R P^{n} \geqq 1$. So, for π-manifold M,

$$
\begin{aligned}
\tau\left(\mathrm{M} \times R P^{n}\right) & =p_{1}^{\sharp} \tau(M) \oplus p_{2}^{\sharp}(1 \oplus \eta)=p_{1}^{\sharp}(\tau(M) \oplus 1) \oplus p_{2}^{\sharp}(\eta) \\
& =(\operatorname{dim} M+1) \oplus p_{2}^{\sharp}(\eta)=\operatorname{dim} M \oplus p_{2}^{\#} \tau^{n},
\end{aligned}
$$

where p_{i} is the projection map onto the i-th factor. This shows that $\operatorname{span}\left(M \times R P^{n}\right) \geqq \operatorname{dim} M+\operatorname{span} R P^{n}$, and the second equation. q.e.d.

Now, we consider the simple properties of $\operatorname{span}\left(n \xi_{k}\right)$ for $n \geqq k+2$.
Theorem 2.8. Let k and n be integers such that $n \geqq k+2$.
(a) If $\binom{n}{k} \equiv 1(\bmod 2)$, then $\operatorname{span}\left(n \xi_{k}\right)=n-k$.
(b) If k and n are even integers, then the inverse of (a) holds.

Proof. (a) is immediate from 2.2 and 2.3
(b): Let η be a vector bundle over $R P^{n}$ such that $n \xi_{k}=(n-k) \oplus \eta$. For even k and $n, H^{k}\left(R P^{k} ; Z\right)$ and $H^{k}\left(R P^{k} ; Z_{2}\right)$ are isomorphic by the mod 2 -reduction homomorphism, and η is orientable. Therefore, the fact that η has a non-zero cross-section is equivalent to $w_{k}(\eta)=0$, i.e., $\binom{n}{k} \equiv 0(\bmod 2)(c f . \quad[6])$.
q.e.d.

Theorem 2.9. Let n be even, k be odd such that $n \geqq k+2$, then

$$
\operatorname{span}\left(n \xi_{k}\right) \geqq n-k+1
$$

Moreover, if $\binom{n}{k-1} \equiv 1(\bmod 2)$, then $\operatorname{span}\left(n \xi_{k}\right)=n-k+1$.
Proof. Put $n \xi_{k}=(n-k) \otimes \eta$. Since k is odd, the obstruction for η to have a non-zero cross-section is $\delta w_{k-1}(\eta)$, where $\delta: H^{k-1}\left(R P^{k} ; Z_{2}\right) \rightarrow H^{k}\left(R P^{k} ; Z\right)$ is the Bockstein operator. Since this δ is zero, we have $\delta w_{k-1}(\eta)=0$, and the first is obtained. The rest is easy from 2.3. q.e.d.

Theorem 2.10. Let l, m and n be integers, and $d=2,4$ or 8 . Then,

$$
\operatorname{span}(d l+m) \xi_{n}=d l \quad \text { for } 0 \leqq m \leqq n \leqq d-1 .
$$

Proof. $\operatorname{span}(d l+m) \xi_{n} \geqq \operatorname{span}(d l+m) \xi_{d-1} \geqq \operatorname{span}\left(d l \xi_{d-1}\right)=d l$ because $\operatorname{span}\left(R P^{d-1}\right)=d-1$. Also, $\operatorname{span}(d l+m) \xi_{n}<d l+1$ by 2.3 , because $\binom{d l+m}{d l} \equiv 1$ $(\bmod 2) . \quad$ q.e.d.

§3. Postnikov resolution of the universal sphere bundle for the third stage

Let (E, p, B, F) be a fiber space over a CW-complex B with ($n-1$)-connected fiber F, and assume that the fundamental group $\pi_{1}(B)$ acts trivially on the homology group $H_{*}(F ; G)$ with coefficient group G. Let $w: B \rightarrow C$ be a map into the Eilenberg-MacLane space $C=K(I I, n+1)$, and ($E_{1}, P_{1}, B, \Omega C$) be the principal fiber space with classifying map $w[9]$, where $\Omega C=K(\Pi, n)$ is the loop space of C. As is well known, the homotopy set $[B, C]$ is naturally isomorphic to $H^{n+1}(B ; \Pi)$, and so we identify these. Also, assume that $p^{*} w=0$, which is equivalent to the existence of the map $q: E \rightarrow E_{1}$ such that $p_{1}{ }^{\circ} q=p$.

Consider the following commutative diagram in [9]

where μ is the action map and π is the projection map.
Put $\nu=\mu \circ(1 \times q)$. If $s: E=* \times E \subset \Omega C \times E$ is the inclusion map, then $\nu \circ s$ is homotopic to q [9].

Under the above notations, it follows:
Theorem 3.1. [9, Cor. 1] For any abelian group G, the sequence

$$
\begin{aligned}
& \cdots \rightarrow H^{i}(\Omega C \times E ; G) \xrightarrow{\tau_{0}} H^{i+1}(B, E ; G) \xrightarrow{l^{*}} H^{i+1}\left(E_{1}: G\right) \\
& \xrightarrow{\nu^{*}} H^{i+1}(\Omega C \times E ; G) \rightarrow \cdots \rightarrow H^{2 n}(\Omega C \times E ; G)
\end{aligned}
$$

is exact, where (B, E) should be considered as $\left(M_{p}, E\right)$ (M_{p} is the mapping cylinder of $p), l=j \circ p_{1}(j: B \rightarrow(B, E)$ is the inclusion map $)$, and τ_{0} is the relative transgression homomorphism.

Corollary 3.2. Assume that the following two conditions (a) and (b) hold for a positive integer $i(\leqq 2 n-1)$ and for a coefficient group G :
(a) Ker $p_{1}^{*} \supset \operatorname{Ker} p^{*}$ in dimension i,
(b) p^{*} is surjective in dimension i.

Then, the sequence

$$
0 \longrightarrow H^{i}\left(E_{1} ; G\right) \xrightarrow{\nu^{*}} H^{i}(\Omega C \times E ; G) \xrightarrow{\tau_{1}} H^{i+1}(B ; G)
$$

is exact, where $\tau_{1}=j^{*} \circ \tau_{0}$.
Proof. (a) implies $\operatorname{Im} l^{*}=p_{1}^{*}\left(\operatorname{Im} j^{*}\right)=p_{1}^{*}\left(\operatorname{Ker} p^{*}\right)=0$, and so ν^{*} in the above sequence is monomorphic by 3.1.

By the exact sequence of (B, E) and (b), $j^{*}: H^{i+1}(B, E ; G) \rightarrow H^{i+1}(B ; G)$ is a monomorphism, and so $\operatorname{Ker} \tau_{0}=\operatorname{Ker} \tau_{1}$. These and 3.1. show the exactness. q.e.d.

Let $n \geqq 4$, and $S^{n-1} \xrightarrow{i} B S O(n-1) \xrightarrow{\pi} B S O(n)$ be the universal oriented $(n-1)$ sphere bundle. π is homotopically equivalent to the natural inclusion $B S O(n-1) \subset B S O(n)$.

The Postnikov resolution of π for the third stage is as follows:

$$
\begin{align*}
& B S O(n-1) \underset{q^{\prime}}{\longrightarrow} E^{\prime} \xrightarrow[k^{\prime}]{\longrightarrow} K\left(Z_{2}, n+2\right) \\
& \pi \downarrow \xrightarrow{q \searrow} \underset{k}{q^{\prime}} \underset{{ }^{\prime}}{\ell^{\prime}} K\left(Z_{2}, n+1\right) \tag{*}\\
& B S O(n) \xrightarrow[x_{n}]{\stackrel{\swarrow}{\bullet}} K(Z, n)
\end{align*}
$$

where $X_{n} \in H^{n}(B S O(n) ; Z)$ is the Euler class, $(E, p, B S O(n))$ is the principal fiber space with classifying $\operatorname{map} X_{n}, q$ is the map such that $p \circ q=\pi, k$ is the second k-invariant, ($E^{\prime}, p^{\prime}, E$) is the principal fiber space with classifying map k, q^{\prime} is the map such that $p^{\prime} \circ q^{\prime}=q$, and k^{\prime} is the third k-invariant.

The two conditions of 3.2 for the bundle ($\left.B S O(n-1), \pi, B S O(n), S^{n-1}\right)$ hold for $0<i \leqq 2 n-3$ and $G=Z_{2}$ by [9, p. 20]. So,
$\left(^{* *}\right) \quad 0 \rightarrow H^{i}\left(E ; Z_{2} \xrightarrow{\nu *} H^{i}\left(K(Z, n-1) \times B S O(n-1) ; Z_{2}\right) \xrightarrow{\tau_{1}} H^{i+1}\left(B S O(n) ; Z_{2}\right)\right.$
is exact for $0<i \leqq 2 n-3$ by 3.2 , where $\nu=\mu \circ(1 \times q), \mu: K(Z, n-1) \times E \rightarrow E$ is the action map.

Also, the invariant k is characterized uniquely by the equation [$9, \mathrm{p} .21]$:

$$
\nu^{*} k=S q^{2} \iota \otimes 1+\iota \otimes w_{2}
$$

where ι is the generator of $H^{n-1}\left(K(Z, n-1) ; Z_{2}\right)=Z_{2}, w_{i} \in H^{i}\left(B S O(n-1) ; Z_{2}\right)$ is
the i-th Stiefel-Whitney class, and $S q$ is the Steenrod square operation.
Now, to consider the characterization of k^{\prime}, we consider the bundle ($B S O(n-1), q, E)$. For the conditions of 3.2 of this bundle, we have:

Lemma 3.3 For $n \geqq 5$, and for coefficient group Z_{2}, we have
(a) $\operatorname{Ker} p^{*}>\operatorname{Ker} q^{*} i n \operatorname{dim} n+2$,
(b) q^{*} is surjective in $\operatorname{dim} n+2$.

Proof. (a): Since עos is homotopic to q and $n \geqq 5$,

$$
\nu^{*}: H^{n+2}\left(E ; Z_{2}\right) \cap \operatorname{Ker} q^{*} \cong \operatorname{Ker} \tau_{1} \cap \operatorname{Ker} s^{*} \cap H^{n+2}\left(K(Z, n-1) \times B S O(n-1) ; Z_{2}\right)
$$

is isomorphic by the exact sequence (${ }^{* *}$) for $i=n+2$, where $s: B S O(n-1)$ $\rightarrow K(Z, n-1) \times B S O(n-1)$ is the inclusion map.

The right side is Z_{2} generated by $\iota \otimes w_{3}+S q^{3} \iota \otimes 1$, because

$$
\begin{aligned}
& \tau_{1}\left(\iota \otimes w_{3}\right)=w_{n} w_{3}, \\
& \tau_{1}\left(S q^{3} \iota \otimes 1\right)=S q^{3} \tau_{1}(\iota \otimes 1)=S q^{3} w_{n}=w_{n} w_{3}
\end{aligned}
$$

by [8], [9] and a formula of $\mathrm{Wu}[11]$. On the other hand,

$$
\begin{aligned}
\nu^{*} S q^{1} k & =S q^{1} \nu^{*} k=S q^{1}\left(S q^{2} \iota \otimes 1+\iota \otimes w_{2}\right) \\
& =S q^{1} S q^{2} \iota \otimes 1+\iota \otimes S q^{1} w_{2}+S q^{1} \iota \otimes w_{2}=S q^{3} \iota \otimes 1+\iota \otimes w_{3}
\end{aligned}
$$

and so, $H^{n+2}\left(E ; Z_{2}\right) \cap \operatorname{Ker} q^{*}$ is equal to Z_{2} generated by $S q^{1} k$. Also, $p^{\prime *} S q^{1} k$ $=S q^{1} p^{*} k=S q^{1} 0=0$, and we have (a).
(b): This follows from the fact that π^{*} is an epimorphism for coefficient group Z_{2} in all dimensions. q.e.d.

By 3.2 and 3.3 , we have
Corollary 3.4. For $n \geqq 5$,

$$
0 \rightarrow H^{n+2}\left(E^{\prime} ; Z_{2}\right) \xrightarrow{\nu / *} H^{n+2}\left(K\left(Z_{2}, n\right) \times B S O(n-1) ; Z_{2}\right) \xrightarrow{\tau_{1}^{\prime}} H^{n+3}\left(E ; Z_{2}\right)
$$

is an exact sequence, where $\nu^{\prime}, \tau_{1}^{\prime}$, are defined similarly as before.
The following characterization of k^{\prime} is obtained [5]:
Theorem 3.5. For $n \geqq 6, k^{\prime} \in H^{n+2}\left(E^{\prime} ; Z_{2}\right)$ is characterized uniquely by the equation:

$$
\nu^{\prime *} k^{\prime}=\iota^{\prime} \otimes w_{2}+S q^{2} \iota^{\prime} \otimes 1
$$

where ι^{\prime} is the generator of $H^{n}\left(K\left(Z_{2}, n\right) ; Z_{2}\right)=Z_{2}$.
Proof. By [9, Property 2, p. 14], we have

$$
\begin{gathered}
\tau_{1}^{\prime}\left(\iota^{\prime} \otimes w_{2}\right)=k p^{*} w_{2}, \\
\tau_{1}^{\prime}\left(S q^{2} \iota^{\prime} \otimes 1\right)=S q^{2} \tau_{1}^{\prime}\left(\iota^{\prime} \otimes 1\right)=S q^{2} k .
\end{gathered}
$$

These are not zero and mapped to the same element by ν^{*}, because

$$
\begin{aligned}
\nu^{*}\left(k p^{*} w_{2}\right) & =\nu^{*} k \cup \nu^{*} p^{*} w_{2} \\
& =\left(S q^{2} \iota \otimes 1+\iota \otimes w_{2}\right)\left(1 \otimes w_{2}\right)=S q^{2} \iota \otimes w_{2}+\iota \otimes w_{2}^{2}, \\
\nu^{*} S q^{2} k & =S q^{2} \nu^{*} k=S q^{2}\left(S q^{2} \iota \otimes 1+\iota \otimes w_{2}\right) \\
& =S q^{2} S q^{2} \iota \otimes 1+S q^{2} \iota \otimes w_{2}+S q^{1} \iota \otimes S q^{1} w_{2}+\iota \otimes S q^{2} w_{2} \\
& =S q^{3} S q^{1} \iota \otimes 1+S q^{2} \iota \otimes w_{2}+\iota \otimes w_{2}^{2}=S q^{2} \iota \otimes w_{2}+\iota \otimes w_{2}^{2} .
\end{aligned}
$$

As $n \geqq 6$, these and the exactness of $(* *)$ show that

$$
\tau_{1}^{\prime}\left(c^{\prime} \otimes w_{2}\right)=\tau_{1}^{\prime}\left(S q^{2} c^{\prime} \otimes 1\right) .
$$

And so, $\iota^{\prime} \otimes w_{2}+S q^{2} \iota^{\prime} \otimes 1$ is the only non-zero element of $\nu^{\prime *}\left(\operatorname{Ker} q^{\prime *}\right)$. Therefore, we have 3.5. q.e.d.

§4. Obstructions for cross-sections of vector bundles

Now, let X be a CW-complex and ξ be an orientable real vector bundle of dimension n over X. The equivalence class of ξ corresponds bijectively to a homotopy class of a map $\xi: X \rightarrow B S O(n)$.

Consider the diagram (*) and suppose that $\xi^{*} X_{n}=0$. Then there is a map $\eta: X \rightarrow E$ such that $p \circ \eta=\xi$. We define, as in [10],

$$
k(\xi)=\bigcup_{\eta} \eta^{*} k \subset H^{n+1}\left(X ; Z_{2}\right)
$$

where the union is taken over all maps $\eta: X \rightarrow E$ such that $p \circ \eta=\xi$. As is well known, $k(\xi) \ni 0$ if and only if ξ has a non-zero cross-section over the ($n+1$)skeleton of X.

We obtain the following theorem as a special case of [10].
Theorem 4.1. For $n \geqq 4$,

$$
k(\xi) \in H^{n+1}\left(X ; Z_{2}\right) /\left(w_{2} \otimes 1+1 \otimes S q^{2}\right) \cdot H^{n-1}\left(X ; Z_{2}\right)
$$

where the dot operates by $\xi[10] .^{2)}$
Proof. Put $\tilde{\mu}^{*}=\mu^{*}-p_{0}^{*}$, where $\mu: K(Z, n-1) \times E \rightarrow E$ is the action map and $p_{0}: K(Z, n-1) \times E \rightarrow E$ is the projection. Then

$$
\begin{aligned}
&(1 \times q)^{*} \tilde{\mu}^{*} k=\left(\nu^{*}-(1 \times q)^{*} p_{0}^{*}\right)(k) \\
& \quad=\nu^{*} k-(1 \times q)^{*}(1 \otimes k)=\nu^{*} k=S q^{2} \iota \otimes 1+\iota \otimes w_{2} .
\end{aligned}
$$

Because $\operatorname{Im} \tilde{\mu}^{*} C_{0 \leqq i \leqq 2} H^{n+1-i}\left(K(Z, n-1) ; Z_{2}\right) \otimes H^{i}\left(E ; Z_{2}\right)$ and $q^{*}: H^{i}\left(E ; Z_{2}\right)$
2) This means that $\left(w_{2} \otimes 1+1 \otimes S q^{2}\right) \cdot H^{n-1}\left(X ; Z_{2}\right)=\left\{w_{2}(\xi) x+S q^{2} x \mid x \in H^{n-1}\left(X ; Z_{2}\right)\right\}$
$\rightarrow H^{i}\left(B S O(n-1) ; Z_{2}\right)$ is injective for $i \leqq 2$, we have

$$
\tilde{\mu}^{*} k=S q^{2} \iota \otimes 1+\iota \otimes p^{*} w_{2}=\left(w_{2} \otimes 1+1 \otimes S q^{2}\right) \cdot(\iota \otimes 1)
$$

where the dot operates by $p \circ p_{0}$, and the proof is completed by [10]. q.e.d.
Suppose η be a map such that $p \circ \eta=\xi$. Define similarly

$$
k^{\prime}(\eta)=\bigcup_{\zeta} \zeta^{*} k^{\prime} \subset H^{n+2}\left(X ; Z_{2}\right)
$$

where the union is taken over all maps $\zeta: X \rightarrow E^{\prime}$ such that $p^{\prime} \circ \zeta=\eta$. Then, $k^{\prime}(\eta) \ni 0$ if and only if ξ has a non-zero cross-section over the ($n+2$)-skeleton of X.

Using 3.5, we have
Theorem 4.2. For $n \geqq 6$,

$$
k^{\prime}(\eta) \in H^{n+2}\left(X ; Z_{2}\right) /\left(w_{2} \otimes 1+1 \otimes S q^{2}\right) \cdot H^{n}\left(X ; Z_{2}\right)
$$

where the dot operates by ξ.
Proof. By 3.5 and the same technique as in the proof of 4.1 , we see that

$$
k^{\prime}(\eta) \epsilon H^{n+2}\left(X ; Z_{2}\right) /\left(p^{*} w_{2} \otimes 1+1 \otimes S q^{2}\right) \cdot H^{n}\left(X ; Z_{2}\right),
$$

where the dot operates by η. But, we have

$$
\left(p^{*} w_{2} \otimes 1+1 \otimes S q^{2}\right) \cdot H^{n}\left(X ; Z_{2}\right)=\left(w_{2} \otimes 1+1 \otimes S q^{2}\right) \cdot H^{n}\left(X ; Z_{2}\right)
$$

by the definition of the operations, and 4.2 is obtained. q.e.d.
Now, we shall apply these two results to the bundles over $R P^{n}$.
Theorem 4.3. Let k and n be integers such that $n \geqq k+2 \geqq 7$. Suppose one of the following two conditions (a) and (b) holds:
(a) $n \equiv 0(\bmod 4), \quad k \equiv 0(\bmod 4), \quad\binom{n}{k} \equiv 0(\bmod 2)$,
(b) $n \equiv 2(\bmod 4), \quad k \equiv 2(\bmod 4), \quad\binom{n}{k} \equiv 0(\bmod 2)$.

Then,

$$
\operatorname{span}\left(n \xi_{k}\right) \geqq n-k+2
$$

Proof. By 2.8(b), there is a ($k-1$)-dimensional vector bundle η over $R P^{k}$ such that $n \xi_{k}=(n-k+1) \oplus \eta$. As $H^{k-1}\left(R P^{k} ; Z\right)=0, \eta$ has a non-zero crosssection over the ($k-1$)-skeleton of $R P^{k}$, and the final obstructions of the nonzero cross-section of η extending to $R P^{k}$ form a coset of

$$
\left(w_{2} \otimes 1+1 \otimes S q^{2}\right) \cdot H^{k-2}\left(R P^{k} ; Z_{2}\right)
$$

where the dot operates by η, by 4.1. But we have easily

$$
\left(w_{2} \otimes 1+1 \otimes S q^{2}\right) \cdot H^{k-2}\left(R P^{k} ; Z_{2}\right)=H^{k}\left(R P^{k} ; Z_{2}\right)
$$

by the assumption. So, η has a non-zero cross-section and the proof is completed. q.e.d.

Theorem 4.4. Let k and n be integers such that $n \geqq k+2 \geqq 7$. Suppose one of the following conditions (a) and (b) holds:
(a) $n \equiv 0(\bmod 4), \quad k \equiv 1(\bmod 4), \quad\binom{n}{k-1} \equiv 0(\bmod 2)$,
(b) $n \equiv 2(\bmod 4), \quad k \equiv 3(\bmod 4), \quad\binom{n}{k-1} \equiv 0(\bmod 2)$.

Then,

$$
\operatorname{span}\left(n \xi_{k}\right) \geqq n-k+2
$$

Moreover, if $k \geqq 8$,

$$
\operatorname{span}\left(n \xi_{k}\right) \geqq n-k+3 .
$$

Proof. By 2.9, we can write $n \xi_{k}=(n-k+1) \oplus \eta_{1}$, where η_{1} is the $(k-1)$ dimensional vector bundle over $R P^{k}$.

As $H^{k-1}\left(R P^{k} ; Z\right)$ is isomorphic to $H^{k-1}\left(R P^{k} ; Z_{2}\right)$ by the mod 2-reduction homomorphism, it follows by the assumption that the Euler class $X\left(\eta_{1}\right)$ of η_{1} is zero. By 4.1, the obstructions of the non-zero cross-section of η_{1} extending to $R P^{k}$ form a coset of

$$
\left(w_{2} \otimes 1+1 \otimes S q^{2}\right) \cdot H^{k-2}\left(R P^{k} ; Z_{2}\right)
$$

which is equal to $H^{k}\left(R P^{k} ; Z_{2}\right)$ by the assumption.
So, η_{1} has a non-zero cross-section and we can write $n \xi_{k}=(n-k+2) \oplus \eta_{2}$ where η_{2} is the ($k-2$)-dimensional vector bundle over $R P^{k}$.

Now, the Euler class $X\left(\eta_{2}\right)$ of η_{2} is zero, because $H^{k-2}\left(R P^{k} ; Z\right)=0$. So, η_{2} has a non-zero cross-section over the ($k-2$)-skeleton of $R P^{k}$, and the obstructions extending to the ($k-1$)-skeleton of $R P^{k}$ form a coset

$$
\left(w_{2} \otimes 1+1 \otimes S q^{2}\right) \cdot H^{k-3}\left(R P^{k} ; Z_{2}\right)
$$

by 4.1, where the dot operates by η_{2}, and this group is equal to $H^{k-1}\left(R P^{k} ; Z_{2}\right)$.
So, η_{2} has a non-zero cross-section over the ($k-1$)-skeleton of $R P^{k}$, and the obstructions extending to $R P^{k}$ form a coset of

$$
\left(w_{2} \otimes 1+1 \otimes S q^{2}\right) \cdot H^{k-2}\left(R P^{k} ; Z_{2}\right)=H^{k}\left(R P^{k} ; Z_{2}\right)
$$

by 4.2.
So, η_{2} has a non-zero cross-section over $R P^{k}$ and the proof is completed. q.e.d.

§5. Applications to the submersions of $\boldsymbol{P}_{\boldsymbol{k}}^{\boldsymbol{n}}$

Let M^{n} be an open C^{∞}-manifold of dimension n, and W^{p} be a C^{∞}-manifold of dimension p. Then by [7], we say a differentiable map $f: M^{n} \rightarrow W^{p}(n \geqq p)$ is a submersion if f has rank p at each point of M^{n}. In this case, we say that M^{n} submerges in W^{p}. $\quad R^{p}$ denotes the p-dimensional Euclidean space.

Now, we consider the problem of submersions in R^{p}. Our results are based on the following theorem of [7]:

Theorem 5.1. $\quad M^{n}$ submerges in R^{p} if and only if span $M^{n} \geqq p$.
By $R P^{n} \subseteq R^{n+k}$, we mean that $R P^{n}$ is immersible in R^{n+k}.
Theorem 5.2. $\quad R P^{n+k}-R P^{k-1}$ submerges in R^{n} if and only if $R P^{n} \subseteq R^{n+k}$.
Proof. By [2, Theorem 1.1], $\operatorname{span}(n+k+1) \xi_{n} \geqq n+1$ if and only if $R P^{n} \subseteq R^{n+k}$. So, the proof follows from 2.4 and 5.1. q.e.d.

By 2.4 and 5.1, we have also
Lemma 5.3. If $R P^{n+k}-R P^{k-1}$ submerges in R^{n}, then $R P^{n+k}-R P^{k}$ submerges in R^{n} and $R P^{n+k+1}-R P^{k}$ submerges in R^{n}.

We denote by $s(n, k)$ the number s such that $P_{k}^{n}=R P^{n}-R P^{k-1}$ submerges in R^{s} and not in R^{s+1}. Then, we have the following results, using 2.8, 2.9, 2.10, 4.3 and 4.4:
(5.4) Let k and n be integers such that $n \geqq k+2$.
(a) If $\binom{n}{k} \equiv 1(\bmod 2)$, then $s(n-1, n-k-1)=n-k-1$.
(b) If k and n are even integers, then the inverse of (a) holds.
(5.5) Let n be an even integer, k be an odd integer such that $n \geqq k+2$, then $s(n-1, n-k-1) \geqq n-k$. Moreover, if $\binom{n}{k-1} \equiv 1(\bmod 2)$, then $s(n-1, n-k-1)=n-k$.
(5.6) Let l, m and n be integers, and $d=2,4$ or 8 . Then $s(d l+m-1$, $d l+m-n-1)=d l-1$ for $0 \leqq m \leqq n \leqq d-1$.
(5.7) Under the assumptions of $4.3, s(n-1, n-k-1) \geqq n-k+1$.
(5.8) Under the assumptions of 4.4, $s(n-1, n-k-1) \geqq n-k+1$ for $k \geqq 5$ and $s(n-1, n-k-1) \geqq n-k+2$ for $k \geqq 8$.

By 5.3 and (5.4)-(5.6), $s(n, k)$ are determined partially as follows:

$$
\begin{array}{lll}
s(n+8, k+8)=8+s(n, k) & \text { for } & n-7 \leqq k \leqq n \tag{5.9}\\
s(n+8, k)=s(n, k) & \text { for } & 0<k \leqq l \leqq 6 \quad \text { where } \quad n=8 m+l .
\end{array}
$$

Moreover, we have the following table of $s(n, k)$ for $n \leqq 30=2^{5}-2$, which is a partial improvement of the table of [7, p. 201]. The symbols in the table are used in the following sense:

* comes from 5.2 and the known results concerning the immersion of $R P^{n}$.
\bigcirc is a consequence of (5.8).
\dagger comes from [4, Th. 1, (vi) and Prop. 3].
\triangle comes from K-theory as in [7].

References

[1] J. F. Adams: Vector fields on spheres, Ann. of Math., 75 (1962), 603-632.
[2] J. Adem and S. Gitler: Non-immersion theorems for real projective spaces, Bol. Soc. Math. Mex., 9 (1964), 37-50.
[3] I. James and E. Thomas: An Approach to the Enumerations Problem for Non-Stable Vector Bundles, J. Math. Mech., 14 (1965), 485-506.
[4] Kee Yuen Lam: Construction of nonsingular bilinear maps, Topology, 6 (1967), 423-426.
[5] M. Mahowald: On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc., 110 (1964), 315-349.
[6] J. Milnor: Lectures on characteristic classes (mimeo. notes), Princeton University, 1958.
[7] A. Phillips: Submersions of open manifolds, Topology, 6 (1967), 171-206.
[8] J.-P. Serre: Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comm. Math. Helv., 27 (1953), 198-232.
[9] E. Thomas: Seminer on fiber spaces, Springer-Verlag, 1966.
[10] E. Thomas: Postnikov invariants and higher order cohomology operations, Ann. of Math., 85 (1967), 184-217.
[11] W. T. Wu: Les i-carrés dans une variété grassmannienne, C. R. Acad. Sci, Paris, 230 (1950), 918-920.

Department of Mathematics, Faculity of Science, Hiroshima University

[^0]: 1) Our original proof for the case $n \equiv 15(\bmod 16)$ is based on K-theory (and [1], [2]) which is due to Dr. T. Kobayashi, and the above simple proof was suggested by Dr. B. Steer, to whom the author wishes to thank.
