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1. Introduction

Following the terminology of F. Maeda ([ 5], p. 87) we say that a lattice
L is conditionally complete in case: (i) every nonempty subset of L with an
upper bound has a supremum and (ii) the dual of (i) holds. A conditionally
complete lattice is called conditionally upper continuous if a; 1 a implies
asN\Nb 1 aNnb for every b in L. Dually, it is called conditionally lower continu-
ous in case a; | a implies a;\Vb | a\VV/b forall b in L. If L is both conditionally
upper and lower continuous, it is called conditionally continuous. Finally, as
in [57, p. 90, we define a general continuous geometry to be a conditionally con-
tinuous, relatively complemented modular lattice with 0.

In a lattice L with 0, F. Maeda ([ 5], Definition 1.1, p. 85) writes aVVb to
denote the fact that a Ab=0 and (aVVx)Ab=xAb for every »~ in L. In a
modular lattice with 0 the relation vV is symmetric. If for each subset S of
L, SV={x: xVs for each s in s}, SV is an ideal of L. An ideal I is called
normal in case I=(IV)¥. In [5], pp. 90-92, Maeda has sketched a proof of
the fact that a general continuous geometry can be equipped with a dimen-
sion function in much the same way as is done for a continuous geometry.
One of the chief differences between the two theories is the fact that the
normal ideals of a general continuous geometry have a role analogous to that
of the central elements of a continuous geometry. Since, in an arbitrary re-
latively complemented lattice with 0, the relation v is symmetric ((47],
Corollary 1, p. 3), one can define normal ideals in such a lattice. In[4], Theo-
rem 16, p. 9, we showed that an ideal of a relatively complemented modular
lattice L with 0 is normal if and only if it is a central element of I, where L
denotes the set of ideals J of L such that JNL (0, x) is in the completion by
cuts of the interval L(0, x) for each » in L. This suggests that it might be
possible to start with a general continuous geometry L and equip I with a
dimension function whose restriction to L is precisely the dimension function
described by F. Maeda in [5]. Our goal in this paper will be to show that
this can indeed be done.

In §2 we relate subdirect sum decompositions of a conditionally upper
continuous lattice L with 0 to central decompositions of L. If L is a condi-
tionally upper continuous, relatively complemented modular lattice with 0,
we observe in §3 that L is an upper continuous complemented modular lattice.
It follows from this that L is a dimension lattice whose dimension function
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induces on L a dimension function of the type described in [5].

2. Complete ideals

First we establish some terminology. Given a lattice L with 0 we use
the symbol J(x) to denote the principal ideal generated by the element x of L.
Following [27] we call an ideal of L complete if it is closed under the formation
of arbitrary suprema whenever they exist in L. Let I(L) denote the set of
all ideals of L and K(L) the set of complete ideals with both sets partially
ordered by set inclusion. This clearly makes each of them into a complete
lattice with set intersection as the meet operation. In order to avoid con-
fusion we agree to let I+ J denote the join operation in I(L) and IV J the
one in K(L). As is shown in [17], the mapping x— J(x) embeds L into K(L) in
such a way that any existing suprema and infima are preserved. Moreover,
if L is conditionally complete, it is easy to show that an ideal J of L is com-
plete if and only if JN\J(x) is principal for each » in L. It follows that for
such a lattice K(L) coincides with the lattice I we discussed in [4], pp. 6-9.

Our goal in this section is to show the relation between direct sum de-
compositions of L and central decompositions of K(L). If L is a lattice with 0
and if (S,: a € A4) is a family of ideals of L, then L is said to be a subdirect
sum ([5], Definition 2.3, p. 87) of the ideals (S,: o€ 4), denoted L=
2¥EPS,: a€ A)in case:

(1) each x in L has a representation of the form x=\V ,x, with x, € S,
(e A).
(2) a==p implies S, < SY.

If L= *PS.: a € A) and if for any family {x.: x, € S}, Vaxq exists in L,
we call L the direct sum of the ideals (S,: « € 4) and write L= 2(6BS,: a € A).
In case 4={1, 2, ..., n} we will use the notation L=S,PS.D.--BS, to denote
a direct sum decomposition.

Tueorem 1. ((4], Theorem 1, p. 1). Let L be a lattice with 0. Then
L=S,DS:PH .- PS, if and only if {S;: i=1, 2, ..., n} is a family of pairwise
disjoint central elements of I(L) whose supremum in I(L) is L.

For the remainder of this paper L will denote a conditionally upper con-
tinuous lattice with 0.

Lemma 2. Let {S,:a € A} be a family of tideals of L. Then L=
DXDS.: € A)if and only i1f each x in L has a unique representation of the
Jform x=\ oxq with x,€ S, (@ € A).

Proor: Suppose first that each x» in L has a unique representation of
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the indicated form. If ¥ <y=V,y, then y=xV y=(V.xa)V (Vay) =
V a(%2V ¥2)=V « ¥« and by uniqueness of the representation for y, y.= y.\V 2,
>x, for each index a. If on the other hand x,<y, for every « in 4 then x
is clearly a subelement of y. It follows from this that if x=V.x, and
Y=V a¥a, then xV y=V (x.V y.) and x A\ y=V «(xa A y.). Using this fact
it is now easy to show that if x € S,, y€ Sp with a=~8 then xVv y. Hence
L=>*(PS,: a € A). The converse implication can be found in [5], Lemma
2.2, p. 88.

Lemma 8. The center of I(L) coincides with the center of K(L).

Proor: Let S be central in (L) with T as its complement. By Theorem
1, L=S@® T and by [5], Theorem 1.1, p. 86, the mapping (x, y)—xV y is an
isomorphism of Sx T onto L. It follows from this that S and 7 are com-
plete ideals of L. By Theorem 1, S is central in I(L), so for each ideal 7 of L
we have

€Y I=(INS+UNT)=T+ NI+ T).

By [17, every polynomial identity valid in I(L) is also valid in K(L). It follows
that for every complete ideal I,

) I=(INSHVUNT)=IV NIV T).

By (3], Theorem 7.2, p. 299, S is central in K(L).
Suppose conversely that S is central in K(L), and let T be its complement.
In view of Theorem 1, if we can show that L= S T, it will follow that S is

central in I/(L). Given » in L. If we let J(a)=J(x)NS and J(&)=J(x)N\T
we have

J@)=J)N(SV T)=)NHV (J(x)NT)
=J(a)V J(b)=J(a\V b).

This shows that x=a\Vb with ¢ in S and 4 in T. Uniqueness of the repre-
sentation follows from the fact that if x=cVv d with c€ S and d¢ T then

SNJ(x)=SNJ(c)V JD)=(SNJ(c)V(SNJ(d)=J(c).
Similarly, TN J(x)=J(d). By Lemma 2, L=S&HT.
Turorem 4. Let {S,: a € A} be a family of ideals of L. A necessary and

sufficient condition that L= Y*(PS,: a € A) is that {S,: « € A} be a family of
patrwise desjoint central elements of K(L) whose supremum in K(L) is L.

Proor: Let L= *PS,: a€ 4). By Lemma 2 each » in L can be re-
presented uniquely in the form x=V .x, with x, € S, (¢ € 4). Fix an index
Bandlet T={x€ L: x=V ,x, with x, € S;, x4=0}. Then each x in L can be
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represented in the form x=ux;V x, with x, € S; and x,¢e¢ 7. Suppose also
x=yV y, with y; € Sy and y, € 7. Then write y,=V .y, with y, € S, and
ys=0 and observe that x=V ,x,=y:1V(V.y.). By uniqueness of the repre-
sentation for x, it follows that x,=y, and x,= y, for a3, so x;=y.. By
Lemma 2, L=S,P T, so by Theorem 1, each S; is a central element of K(L).
Clearly a3 implies S, Sz=(0) and the fact that each x can be represented
as a join of elements from .S, shows that V.S,=L in K(L).

Suppose conversely that the ideals S, (« € 4) are pairwise disjoint central
elements of K(L) whose join in K(L) is L. Since by [17], K(L) is upper continu-
ous, we may apply [ 6], Hilfssatz 3.6, p. 29, to conclude that for each x in L,

J@)=J( )NV oSy =V o(SeNJ(2))=V aJ(x4)

where J(x,)=J(x)N\S.. It follows that x=V .x,in L. If x € S,, y€ Sz with
a==p3, the fact that S, and S; are disjoint central elements of K(L) will now
imply that ¥V y. Therefore L=} *(pS,: a ¢ A).

8. The modular case

If L is a conditionally upper continuous relatively complemented modular
lattice with 0, then by [17], K(L) is an upper continuous modular lattice and
by [8], Satz 1.4, p. 5, it is also complemented. Note now that by [4], Theorem
16, p. 9, the center of K(L) is precisely the set of normal ideals of L. By [7],
Theorem 9.1, p. 8395, K(L) can be equipped with a dimension function. The
restriction of this function to L (via the embedding x— J{x)) now provides L
with a dimension function of the type described in [57].

One can obtain a concrete example of this situation by thinking of L as
being the lattice of finite dimensional subspaces of an infinite dimensional
vector space 7. It is easily seen that K(L) is isomorphic to the lattice of all
subspaces of 7. Notice that L is a general continuous geometry but that
K(L) is not lower continuous. This shows that one cannot expect K(L) to be
a continuous geometry, even if L is a general continuous geometry.
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