Evaluation of Hausdorff Measures of Generalized Cantor Sets

Kaoru HATANO (Received September 26, 1968)

§1. Introduction

The problem how a Hausdorff measure of a product set $A \times B$ is related to Hausdorff measures of A and B is not completely solved. This problem was first investigated by F. Hausdorff himself [3] and later by A. S. Besicovitch and P. A. P. Moran [1], J. M. Marstrand [4] and others. Their works and investigations of similar problem for capacity (e.g. [6], [7]) show that evaluation of Hausdorff measures of generalized Cantor sets supplies many clues to this problem.

In this paper we first evaluate the α -Hausdorff measure of generalized Cantor sets in the Euclidean space \mathbb{R}^n . As a concequence we see the existence of a compact set in \mathbb{R}^n which has infinite α -Hausdorff measure but zero α capacity $(0 < \alpha < n)$. Next we estimate Hausdorff measures of product sets of one-dimensional generalized Cantor sets and then give examples which show that in case the α -Hausdorff measure of E_1 is infinite and the β -Hausdorff measure of E_2 is zero, the $(\alpha + \beta)$ -Hausdorff measure of $E_1 \times E_2$ may either be zero, positive finite or infinite. Also these examples answer M. Ohtsuka's question in [7] (p. 114) in the negative.

The author wishes to express his deepest gratitude to Professor M. Ohtsuka for his suggesting the problem and his valuable comments.

§2. Definitions and Notation

Let $R^n(n \ge 1)$ be the *n*-dimensional Euclidean space with points $x = (x_1, x_2, \dots, x_n)$. By an *n*-dimensional open cube (closed cube resp.) in R^n , we mean the set of points $x = (x_1, x_2, \dots, x_n)$ satisfying the inequalities:

$$a_i < x_i < a_i + d \ (a_i \leq x_i \leq a_i + d \ \text{resp.})$$
 for $i = 1, 2, ..., n$,

where a_i (i=1, 2, ..., n) are any numbers and d>0. We call d the length of the side, or simply the side, of the open (or closed) cube.

Let \mathfrak{A} be the family of non empty open sets in \mathbb{R}^n which is determined by the following properties:

- (i) any *n*-dimensional open cube belongs to \mathfrak{A} ,
- (ii) if ω_1 and ω_2 belong to \mathfrak{A} , then so does $\omega_1 \cup \omega_2$,
- (iii) if ω is an element of \mathfrak{A} , then there exists a finite number of *n*-

dimensional open cubes I_{ν} ($\nu = 1, 2, ..., N$) such that $\omega = \bigvee_{\nu=1}^{N} I_{\nu}$.

Let h(r) be a continuous increasing function defined for $r \ge 0$ such that h(0)=0. Let *E* be an arbitrary set in \mathbb{R}^n and ρ be any positive number. We put $\Lambda_h^{(\rho)}(E) = \inf \{\sum_{\nu} h(d_{\nu})\}$, where the infimum is taken over all coverings of *E* by at most a countable number of *n*-dimensional open cubes I_{ν} with the side $d_{\nu} \le \rho$. Since $\Lambda_h^{(\rho)}(E)$ increases as ρ decreases, the limit

$$\Lambda_h(E) = \lim_{\rho \to 0} \Lambda_h^{(\rho)}(E) \qquad (\leq \infty)$$

exists. As is easily seen, $\Lambda_h(E)$ is a Carathéodory's outer measure. Hence any Borel set is measurable with respect to Λ_h . For a measurable set E we call $\Lambda_h(E)$ the *h*-Hausdorff measure of E.

If $h(r) = r^{\alpha}$ ($\alpha > 0$), then we use the notation Λ_{α} instead of Λ_{h} and call it the α -Hausdorff measure.

Let μ be a positive (Radon) measure in \mathbb{R}^n with support S_{μ} and α be a positive number such that $0 < \alpha < n$. The α -capacity $C_{\alpha}(F)$ of a compact set F is defined by

$$C_{\alpha}(F) = \{ \inf \int \int \frac{1}{|x-y|^{\alpha}} d\mu(x) d\mu(y) \}^{-1},$$

where the infimum is taken over the class of all positive measures μ with unit mass and $S_{\mu} \subset F$.

We shall define an *n*-dimensional generalized Cantor set. Let *l* be a positive number, q_0 be a positive integer, $\{k_q\}_{q=1}^{\infty}$ be a sequence of integers and $\{\lambda_q\}_{q=q_0}^{\infty}$ be a sequence of positive numbers. Suppose a system $[l, \{k_q\}_{q=1}^{\infty}, \{\lambda_q\}_{q=q_0}^{\infty}]$ satisfies the following condition (*):

$$(*): \quad k_q > 1 \ (q \geq 1), \ k_{q+1} \lambda_{q+1} < \lambda_q \ (q \geq q_0) \text{ and } k_1 k_2 \cdots k_{q_0} \lambda_{q_0} < l.$$

Let I be a one-dimensional closed interval with the length l.

In the first step, we remove from $I(k_1k_2...k_{q_0}-1)$ open intevals each of the same length so that $k_1k_2...k_{q_0}$ closed intervals $I_i^{(q_0)}$ $(i=1, 2, ..., k_1k_2...k_{q_0})$ each of length λ_{q_0} remain. Set $E^{(q_0)} = \bigvee_{i=1}^{k_1k_2...k_{q_0}} I_i^{(q_0)}$. Next in the second step, we remove from each $I_i^{(q_0)}(k_{q_0+1}-1)$ open intervals each of the same length so that k_{q_0+1} closed intervals $I_{i,j}^{(q_0+1)}$ $(j=1, 2, ..., k_{q_0+1})$ each of length λ_{q_0+1} remain. We set $E^{(q_0+1)} = \bigvee_{i=1}^{k_1...k_{q_0}} \bigvee_{i=1}^{k_{q_0+1}} I_{i,j}^{(q_0+1)}$.

ralized Cantor set constructed by the system $[l, \{k_q\}_{q=1}^{\infty}, \{\lambda_q\}_{q=q_0}^{\infty}]$. Evidently $E_{(n)}$ is a compact set in \mathbb{R}^n . We can see that $E_{(n)} = \bigcap_{q=q_0}^{\infty} E^{(q)} \times E^{(q)} \times \cdots \times E^{(q)}$, where $E^{(q)} \times E^{(q)} \times \cdots \times E^{(q)}$ is a product set in \mathbb{R}^n and consists of $(k_1k_2\cdots k_q)^n$ n-dimensional closed cubes with the side λ_q . We call $E^{(q)} \times \cdots \times E^{(q)}$ the qth approximation of $E_{(n)}$ $(n \geq 1)$.

§3. Main theorem

LEMMA 1. (P. A. P. Moran [5]) Let F be a compact set in \mathbb{R}^n and let \mathfrak{A} be the family defined in §2. Assume that there exists a set function \mathcal{O} on \mathfrak{A} satisfying the following conditions:

- (1) $\Phi(\omega) \ge 0$ for every set $\omega \in \mathfrak{A}$,
- (2) if $\omega = \bigvee_{i=1}^{N} \omega_i, \omega_i \in \mathfrak{A} \ (i=1, 2, ..., N), \text{ then } \Phi(\omega) \leq \sum_{i=1}^{N} \Phi(\omega_i),$
- (3) if $\omega \in \mathfrak{A}$ contains F, then $\Phi(\omega) \geq b$, where b is some positive constant,

(4) there exist positive constants a and d_0 such that if I is any n-dimensional open cube with the side $d \leq d_0$, then $\Phi(I) \leq ah(d)$.

Then $\Lambda_h(F) \geq b/a$.

LEMMA 2. (M. Ohtsuka [6]) Let α be a positive number such that $0 < \alpha < n$ and let $E_{(n)}$ be the one-dimensional generalized Cantor set (n=1) or the n-dimensional symmetric generalized Cantor set $(n \ge 2)$ constructed by the system $[l, \{k_q\}_{q=1}^{\infty}, \{\lambda_q\}_{q=q_0}^{\infty}]$ which satisfies condition (*).

Then
$$C_{\alpha}(E_{(n)})=0$$
 if and only if $\sum_{q=q_0}^{\infty}(k_1k_2\cdots k_q)^{-n}\lambda_q^{-\alpha}=\infty$.

Using Lemma 1 we shall prove the following theorem.

THEOREM. Let $E_{(n)}$ be the one-dimensional generalized Cantor set (n=1)or the n-dimensional symmetric generalized Cantor set $(n \ge 2)$ constructed by the system $[l, \{k_q\}_{q=1}^{\infty}, \{\lambda_q\}_{q=q_0}^{\infty}]$ which satisfies condition (*). We assume $k_q \le M_1 (q=1, 2, \cdots) (M_1: a \text{ constant})$. Then

(a)
$$\Lambda_h(E_{(n)})=0$$
 if and only if $\lim_{q\to\infty}(k_1k_2\cdots k_q)^nh(\lambda_q)=0$,

(b)
$$0 < \Lambda_h(E_{(n)}) < \infty$$
 if and only if $0 < \lim_{q \to \infty} (k_1 k_2 \dots k_q)^n h(\lambda_q) < \infty$,

(c)
$$\Lambda_h(E_{(n)}) = \infty$$
 if and only if $\lim_{q \to \infty} (k_1 k_2 \cdots k_q)^n h(\lambda_q) = \infty$.

PROOF. If all the "if"-parts are proved, then all the "only if"-parts are immediately derived. Hence we shall prove the "if"-parts.

From the definition of the Hausdorff measure we can see that $\lim_{q\to\infty} (k_1k_2\cdots k_q)^n h(\lambda_q) = 0$ ($<\infty$ resp.) implies $\Lambda_h(E_{(n)}) = 0$ ($<\infty$ resp.). Therefore we shall prove that $\lim_{q\to\infty} (k_1k_2\cdots k_q)^n h(\lambda_q) > 0$ ($=\infty$ resp.) implies $\Lambda_h(E_{(n)}) > 0$ ($=\infty$ resp.).

Kaoru Hatano

We put $\lim_{q\to\infty} (k_1k_2\cdots k_q)^n h(\lambda_q) = A > 0$. Let B be an arbitrary positive number such that 0 < B < A. Then there exists $q_1 (\geq q_0)$ such that $(k_1k_2\cdots k_q)^n h(\lambda_q) > B$ for $q \geq q_1$. We choose a sequence $\{\lambda'_q\}_{q=q_1}^\infty$ such that $(k_1k_2\cdots k_q)^n h(\lambda'_q) = B$. Evidently $0 < \lambda'_q < \lambda_q$ and $k_{q+1}^n h(\lambda'_{q+1}) = h(\lambda'_q)$ for $q \geq q_1$.

We show that $\lim_{q\to\infty} N_q(\omega)h(\lambda'_q)$ exists for every $\omega \in \mathfrak{A}$, where $N_q(\omega)$ is the number of *n*-dimensional closed cubes in the *q*th approximation of $E_{(n)}$ which meet ω . By the construction of $E_{(n)}$, we see that

$$N_{q+1}(\omega)h(\lambda_{q+1}') \leq N_q(\omega)k_{q+1}^n h(\lambda_{q+1}') = N_q(\omega)h(\lambda_q') \quad \text{for} \quad q \geq q_1.$$

Thus $N_q(\omega)h(\lambda'_q)$ decreases as q increases. Now we define a set function \mathcal{O} on \mathfrak{A} by $\mathcal{O}(\omega) = \lim_{q \to \infty} N_q(\omega)h(\lambda'_q)$. Take $E_{(n)}$ as F in Lemma 1. We shall show that \mathcal{O} satisfies conditions (1)–(4) in Lemma 1.

It is easy to see that \mathcal{O} satisfies (1), (2) and (3) with b=B. We set $a=(2M_1)^n$ and $d_0=\lambda_{q_1}$. Let I be any open cube with the side $d \leq d_0$. Then there is a uniquely determined positive integer $q(\geq q_1)$ such that $\lambda_{q+1} < d \leq \lambda_q$. Since $E_{(n)}$ is symmetric, we have $N_q(I) \leq 2^n$, so that $N_{q+1}(I) \leq k_{q+1}^n N_q(I) \leq (2k_{q+1})^n \leq (2M_1)^n = a$. Hence $\mathcal{O}(I) \leq N_{q+1}(I)h(\lambda'_{q+1}) \leq ah(\lambda_{q+1}) \leq ah(d)$. Therefore \mathcal{O} satisfies condition (4) in Lemma 1.

By Lemma 1, we obtain $\Lambda_h(E_{(n)}) \ge B/a$, where a is independent of the choice of B. Since B is an arbitrary number such that 0 < B < A, we have $\Lambda_h(E_{(n)}) \ge A/a = \frac{1}{a} \lim_{\overline{q \to \infty}} (k_1 k_2 \dots k_q)^n h(\lambda_q)$. By this inequality, we see that $\lim_{\overline{q \to \infty}} (k_1 k_2 \dots k_q)^n h(\lambda_q) > 0$ (= ∞ resp.) implies $\Lambda_h(E_{(n)}) > 0$ (= ∞ resp.).

REMARK 1. We can easily see that $\Lambda_{\alpha}(E_{(n)})=0$ $(0 < \Lambda_{\alpha}(E_{(n)}) < \infty$, $\Lambda_{\alpha}(E_{(n)}) = \infty$ resp.) is equivalent to $\Lambda_{\alpha/n}(E_{(1)})=0$ $(0 < \Lambda_{\alpha/n}(E_{(1)}) < \infty$, $\Lambda_{\alpha/n}(E_{(1)}) = \infty$ resp.). In the case of capacity, however, the analogous relations are not always true. For instance, when $n \ge 2$ and $0 < \alpha < n$, we put l=1, $k_q=2$ (q=1, 2, ...) and $\lambda_q = (q^2 2^{-nq})^{1/\alpha}$ for $q \ge q_0$, where q_0 is a positive integer such that $2\lambda_{q+1} < \lambda_q$ for $q \ge q_0$ and $2^{a_0}\lambda_{q_0} < 1$. Let $E_{(1)}$ be the one-dimensional generalized Cantor set constructed by the system $[l, \{k_q\}_{q=1}^{\infty}, \{\lambda_q\}_{q=q_0}^{\infty}]$ and let $E_{(n)} = E_{(1)} \times \cdots \times E_{(1)}$, i.e., an *n*-dimensional symmetric generalized Cantor set. Then by Lemma 2, we can see that $C_{\alpha}(E_{(n)}) > 0$ but $C_{\alpha/n}(E_{(1)}) = 0$.

REMARK 2. Let α be a positive number and q_0 be a positive integer >1. We assume that a system $[l, \{k_q\}_{q=1}^{\infty}, \{\lambda_q\}_{q=1}^{\infty}]$ satisfies condition (*) and $k_q \leq M_1 < \infty$ (M_1 : a constant). Let $E_{(n)}$ ($E'_{(n)}$ resp.) be the one-dimensional generalized Cantor set (n=1) or the *n*-dimensional symmetric generalized Cantor set $(n \geq 2)$ constructed by the system $[l, \{k_q\}_{q=1}^{\infty}, \{\lambda_q\}_{q=1}^{\infty}]$ ($[l, \{k_q\}_{q=1}^{\infty}, \{\lambda_q\}_{q=q_0}^{\infty}]$ resp.).

Then in general $E_{(n)} \neq E'_{(n)}$, but $C_{\alpha}(E_{(n)})$ and $C_{\alpha}(E'_{(n)})$ are zero simultaneously. Furthermore $\Lambda_{\alpha}(E_{(n)})$ and $\Lambda_{\alpha}(E'_{(n)})$ are zero (positive finite, infinite resp.) simultaneously.

REMARK 3. It is a well known result that if F is a compact set of positive α -capacity, then $\Lambda_{\alpha}(F) = \infty$, provided that $0 < \alpha < n$ (cf. L. Carleson [2]). We show that the converse is not always true.

Let α be a positive number such that $0 < \alpha < n$. We choose l=1, $k_q=2$ (q=1, 2, ...) and $\lambda_q = (q2^{-nq})^{1/\alpha}$ for $q \ge q_0$, where q_0 is any positive integer such that $2\lambda_{q+1} < \lambda_q$ for $q \ge q_0$ and $2^{q_0}\lambda_{q_0} < 1$. Let F be the one-dimensional generalized Cantor set (n=1) or the *n*-dimensional symmetric generalized Cantor set $(n\ge 2)$ constructed by the system $[l, \{k_q\}_{q=1}^{\infty}, \{\lambda_q\}_{q=q_0}^{\infty}]$. By Lemma 2 and the theorem, we can easily see that $C_{\alpha}(F)=0$ but $\Lambda_{\alpha}(F)=\infty$.

§4. Lemmas

We shall introduce an auxiliary α -Hausdorff measure Λ_{α}^{*} . Let ρ be any positive number. We put $\Lambda_{\alpha}^{(\rho)*}(E) = \inf \{\sum_{\nu} r_{\nu}^{\alpha}\}$ for an arbitrary set E in \mathbb{R}^{n} , where the infimum is taken over all coverings of E by at most a countable number of closed convex sets with diameters $r_{\nu} \leq \rho$. Since $\Lambda_{\alpha}^{(\rho)*}(E)$ increases as ρ decreases, the limit

$$\Lambda_{\alpha}^{*}(E) = \lim_{\rho \to 0} \Lambda_{\alpha}^{(\rho)*}(E) \qquad (\leq \infty)$$

exists.

There exists a positive constant M_2 , depending only on the dimension n, such that $(1/M_2)\Lambda_{\alpha}(E) \leq \Lambda_{\alpha}^*(E) \leq M_2\Lambda_{\alpha}(E)$ for every set E in \mathbb{R}^n .

We shall deal with sets in R^2 in what follows.

LEMMA 3. Let α , β , γ and δ be positive numbers such that $\alpha < 1$ and $\beta < 1$. Put l=1, $k_q=2$ (q=1, 2, ...), $\lambda_q=q^{\gamma}2^{-q/\alpha}$ for $q \ge q_0$ and $\mu_q=q^{-\delta}2^{-q/\beta}$ for $q \ge q_0$, where q_0 is any positive integer such that $2\lambda_{q+1} < \lambda_q$ for $q \ge q_0$ and $2^{q_0}\lambda_{q_0} < 1$. Let E_1 (E_2 resp.) be the one-dimensional generalized Cantor set constructed by the system $[l, \{k_q\}_{q=1}^{\infty}, \{\lambda_q\}_{q=q_0}^{\infty}]$ ($[l, \{k_q\}_{q=1}^{\infty}, \{\mu_q\}_{q=q_0}^{\infty}]$ resp.). Then

$$\Lambda^*_{lpha+eta}(E_1 imes E_2)\!\leq\! M_3\! \lim_{\overline{q o\infty}}\!(2^q\lambda^lpha_q)(2^q\mu^eta_q), \;\; where \;\;\;\; M_3\!=\!\sqrt{10}\max\Bigl(1,\Bigl(rac{2lpha}{eta}\Bigr)^{eta\delta}\Bigr).$$

PROOF. The case $\alpha < \beta$. There exists a positive integer $q_1 (\geq q_0)$ such that $\lambda_q < \mu_q$ for $q \geq q_1$. Let ρ be any positive number which satisfies $\rho < \lambda_{q_1}$. We can choose a positive integer $q_2 (\geq q_1)$ such that $\mu_q < \rho$ for $q \geq q_2$. For each $q \geq q_2$, there is a uniquely determined positive integer p=p(q) such that $\lambda_{p+1} < \mu_q \leq \lambda_p$. We can see that p < q.

Now we assume $q \ge q_2$. Then $E_1^{(p+1)} \times E_2^{(q)}$ $(\supset E_1 \times E_2)$ consists of 2^{p+q+1} mutually congruent closed rectangles, where $E_1^{(q)}$ $(E_2^{(q)}$ resp.) is the *q*th approximation of E_1 (E_2 resp.). Let $r_{p+1,q}$ be the diameter of each rectangle. Then

Kaoru Hatano

$$egin{aligned} &r_{p+1,q} = \sqrt{\lambda_{p+1}^2 + \mu_q^2} < \sqrt{2} \ \mu_q < 2
ho, \ &r_{p+1,q} \leq \sqrt{\lambda_{p+1}^2 + \lambda_p^2} < \sqrt{rac{5}{2}} \ \lambda_p. \end{aligned}$$

By the definition of Λ_{α}^{*} ,

$$\begin{split} \Lambda^{(2\rho)*}_{\alpha+\beta}(E_1 \times E_2) &\leq \Lambda^{(2\rho)*}_{\alpha+\beta}(E_1^{(p+1)} \times E_2^{(q)}) \leq 2^{p+q+1} r_{p+1,q}^{\alpha+\beta} \\ &= (2^{p+1} r_{p+1,q}^{\alpha})(2^q r_{p+1,q}^{\beta}) < \sqrt{10} (2^p \lambda_p^{\alpha})(2^q \mu_q^{\beta}). \end{split}$$

Since $2^q \lambda_q^{\alpha}$ increases with q and p < q, we have $2^p \lambda_p^{\alpha} < 2^q \lambda_q^{\alpha}$. Hence

$$\Lambda^{(2
ho)*}_{lpha+eta}(E_1 imes E_2) \leq \sqrt{10} \lim_{\overline{q o\infty}} (2^q \lambda^{lpha}_q) (2^q \mu^{eta}_q).$$

Therefore we have

$$\Lambda_{\alpha+\beta}^*(E_1\times E_2) = \lim_{\rho\to 0} \Lambda_{\alpha+\beta}^{(2\rho)}(E_1\times E_2) \leq \sqrt{10} \lim_{q\to\infty} (2^q \lambda_q^{\alpha}) (2^q \mu_q^{\beta}).$$

The case $\beta \leq \alpha$. Interchanging λ_q and μ_q in the above proof for the case $\alpha < \beta$, we observe that there is q_2 such that

$$\Lambda^{(2\,\rho)*}_{\alpha\,+\,\beta}(E_1 \times E_2) \leq \sqrt{10} (2^q \lambda^{\alpha}_q) (2^p \mu^{\beta}_p) \qquad \text{for} \quad q \geq q_2,$$

where p = p(q) is determined so that $\mu_{p+1} < \lambda_q \leq \mu_p$ and p < q. Obviously $2^p \mu_p^{\beta} = 2^q \mu_q^{\beta} (q/p)^{\beta\delta}$. We shall prove $\overline{\lim_{q \to \infty}} q/p < 2\alpha/\beta$. Suppose this is not true. Then there exist sequences $\{q(m)\}_{m=1}^{\infty}$ and $\{p(m)\}_{m=1}^{\infty}$ such that $q(m)/p(m) > 3\alpha/2\beta$ (m=1, 2, ...). By $\mu_{p+1} < \lambda_q$, we see

$$2^{\frac{q(m)}{\alpha}} < 2^{\frac{p(m)+1}{\beta}} (p(m)+1)^{\delta} q(m)^{\gamma} < 2^{\frac{1}{\beta} \left(\frac{2\beta}{3\alpha}q(m)+1\right)} \left(\frac{2\beta}{3\alpha}q(m)+1\right)^{\delta} q(m)^{\gamma}.$$

Hence

For sufficiently large *m*, it is contradictory. Thus we have $\lim_{q\to\infty} q/p < 2\alpha/\beta$. Hence

$$\Lambda_{\alpha+\beta}^{*}(E_{1}\times E_{2}) = \lim_{\rho\to 0} \Lambda_{\alpha+\beta}^{(2\rho)*}(E_{1}\times E_{2}) \leq \sqrt{10} \left(\frac{2\alpha}{\beta}\right)^{\beta\delta} \lim_{\overline{q\to\infty}} (2^{q}\lambda_{q}^{\alpha})(2^{q}\mu_{q}^{\beta}).$$

Therefore we have the required inequality in any case.

REMARK. This lemma is essentially due to F. Hausdorff [3].

We shall prove the following lemma by a method similar to the proof of the theorem.

LEMMA 4. Under the same assumptions as in Lemma 3,

$$\Lambda_{\alpha+\beta}(E_1 \times E_2) \geq (1/M_4) \lim_{q \to \infty} (2^q \lambda_q^{\alpha}) (2^q \mu_q^{\beta}), \quad where \quad M_4 = 2^4 \max\left(1, \left(\frac{2\beta}{\alpha}\right)^{\alpha\gamma}\right).$$

PROOF. If $\lim_{q\to\infty} (2^q \lambda_q^{\alpha})(2^q \mu_q^{\beta}) = 0$, then the conclusion is obvious. Hence assume $A = \lim_{q\to\infty} (2^q \lambda_q^{\alpha})(2^q \mu_q^{\beta}) > 0$.

Let *B* be an arbitrary positive number which satisfies 0 < B < A. Then we can choose a positive integer $q_1 (\geq q_0)$ such that $(2^q \lambda_q^{\alpha})(2^q \mu_q^{\beta}) > B$ for $q \geq q_1$. Let $\{\mu_q'\}_{q=q_1}^{\alpha}$ be a sequence defined by $(2^q \lambda_q^{\alpha})(2^q \mu_q'^{\beta}) = B$. Then $0 < \mu_q' < \mu_q$ and $2^2 \lambda_{q+1}^{\alpha} \mu_{q+1}'^{\beta} = \lambda_q^{\alpha} \mu_q'^{\beta}$ for $q \geq q_1$.

We show that $\lim_{q\to\infty} N_q(\omega)\lambda_q^{\alpha}\mu_q^{\prime\beta}$ exists for every $\omega \in \mathfrak{A}$, where $N_q(\omega)$ is the number of closed rectangles of the form $I_1^{(q)} \times I_2^{(q)}$ which meet ω . Here we denote by $I_1^{(q)}$ ($I_2^{(q)}$ resp.) any one of the closed intervals in the *q*th approximation of E_1 (E_2 resp.). By the construction of $E_1 \times E_2$, we see that $N_{q+1}(\omega) \leq 2^2 N_q(\omega)$ for $q \geq q_0$. It follows that

$$N_{q+1}(\omega)\lambda_{q+1}^{lpha}\mu_{q+1}^{\,\prime\,eta}\!\leq\!N_q(\omega)\!2^2\lambda_{q+1}^{lpha}\mu_{q+1}^{\prime\,eta}\!=\!N_q(\omega)\lambda_q^{lpha}\mu_q^{\prime\,eta}\qquad ext{for}\quad q\!\geq\!q_1.$$

Thus $N_q(\omega)\lambda_q^{\alpha}\mu_q^{\prime\beta}$ decreases as q increases. Now we define a set function $\boldsymbol{\Phi}$ on \mathfrak{A} by

$$\boldsymbol{\varPhi}(\omega) = \lim_{q \to \infty} N_q(\omega) \lambda_q^{\alpha} \mu_q^{\prime \beta}.$$

Take $E_1 \times E_2$ as F in Lemma 1. We shall show that our $\boldsymbol{\emptyset}$ satisfies the conditions in Lemma 1. It is easy to see that $\boldsymbol{\emptyset}$ satisfies conditions (1), (2) and (3) with b=B. Hence it is enough to show that $\boldsymbol{\emptyset}$ satisfies (4).

The case $\beta \leq \alpha$. There exists a positive integer $q_2 (\geq q_1)$ such that $\mu_q < \lambda_{q+1}$ for $q \geq q_2$. Put $d_0 = \mu_{q_2}$. Let *I* be any 2-dimensional open cube with the side $d \leq d_0$. Then there exist uniquely determined positive integers *p* and *q* such that $\lambda_{p+1} < d \leq \lambda_p$ and $\mu_{q+1} < d \leq \mu_q$. Since $\lambda_{p+1} < \mu_q < \lambda_{q+1}$ for $q \geq q_2$, we have q < p. The open cube *I* meets at most 2^2 rectangles of the form $I_1^{(p)} \times I_2^{(q)}$ and so meets at most 2^4 rectangles of the form $I_1^{(p+1)} \times I_2^{(q+1)}$. It follows from p > q that $N_{p+1}(I) \leq 2^4 2^{p-q}$. Moreover $2^{p-q} \mu_{p+1}^\beta < \mu_{q+1}^\beta$, since $2^q \mu_q^\beta$ decreases as *q* increases. Hence we have

$$\varPhi(I) \leq N_{p+1}(I) \lambda_{p+1}^{\alpha} \mu_{p+1}^{\prime \beta} < 2^{4+p-q} \lambda_{p+1}^{\alpha} \mu_{p+1}^{\beta} \leq 2^{4} \lambda_{p+1}^{\alpha} \mu_{q+1}^{\beta} < 2^{4} d^{\alpha+\beta}.$$

Therefore $\Phi(I) < 2^4 d^{\alpha+\beta}$.

The case $\alpha < \beta$. There exists a positive integer $q_2 (\geq q_1)$ such that $\lambda_q < \mu_{q+1}$ for $q \geq q_2$. For any positive number d which satisfies $0 < d < \lambda_{q_2}$, there exist uniquely determined positive integers p=p(d) and q=q(d) such that $\lambda_{p+1} < d \leq \lambda_p$ and $\mu_{q+1} < d \leq \mu_q$. Since $\lambda_q < \mu_{q+1} < \lambda_p$, it follows that p < q.

Kaoru Hatano

We can prove $\overline{\lim_{d\to 0}} q/p < 2\beta/\alpha$ as we did in the proof of Lemma 3. Accordingly we can choose a positive integer $q_3(\geq q_2)$ such that $q/p < 2\beta/\alpha$ for $q \geq q_3$.

Put $d_0 = \lambda_{q_3}$. Let *I* be any 2-dimensional open cube with the side $d (\leq d_0)$. We can choose *p* and *q* as above for this *d*. The open cube *I* meets at most 2^2 rectangles of the form $I_1^{(p)} \times I_2^{(q)}$ and so meets at most 2^4 rectangles of the form $I_1^{(p+1)} \times I_2^{(q+1)}$. Hence $N_{q+1}(I) \leq 2^{q-p}2^4$ and

$$\frac{2^{q+1}\lambda_{q+1}^{\alpha}}{2^{p+1}\lambda_{p+1}^{\alpha}} = \left(\frac{q+1}{p+1}\right)^{\alpha\gamma} < \left(\frac{2\beta}{\alpha}\right)^{\alpha\gamma}.$$

Then we have

$$\begin{split} \varPhi(I) &\leq N_{q+1}(I) \lambda_{q+1}^{\alpha} \mu_{q+1}^{\prime\,\beta} < 2^{4+q-p} \lambda_{q+1}^{\alpha} \mu_{q+1}^{\beta} \\ &= 2^{4} \lambda_{p+1}^{\alpha} \mu_{q+1}^{\beta} \frac{2^{q+1} \lambda_{q+1}^{\alpha}}{2^{p+1} \lambda_{p+1}^{\alpha}} < 2^{4} \Big(\frac{2\beta}{\alpha} \Big)^{\alpha\gamma} \lambda_{p+1}^{\alpha} \mu_{q+1}^{\beta} < 2^{4} \Big(\frac{2\beta}{\alpha} \Big)^{\alpha\gamma} d^{\alpha+\beta}. \end{split}$$

Therefore

$${\it I}\hspace{-.1in} 0(I) < 2^4 \hspace{-.1in} \left(rac{2eta}{lpha}
ight)^{lpha\gamma} d^{lpha+eta}.$$

Thus \mathscr{O} satisfies conditions (1), (2), (3) and (4) in Lemma 1. It follows from Lemma 1 that $\Lambda_{\alpha+\beta}(E_1 \times E_2) \ge B/M_4$, where $M_4 = 2^4 \max\left(1, \left(\frac{2\beta}{\alpha}\right)^{\alpha\gamma}\right)$. Since B is an arbitrary number such that 0 < B < A, we have $\Lambda_{\alpha+\beta}(E_1 \times E_2) \ge (1/M_4) \varinjlim(2^q \lambda_q^{\alpha})(2^q \mu_q^{\beta})$.

By Lemmas 3 and 4, we obtain

COROLLARY. Under the same assumptions as in Lemma 3, $\Lambda_{\alpha+\beta}(E_1 \times E_2)$ is zero, positive finite or infinite if and only if $\lim_{q\to\infty} (2^q \lambda_q^{\alpha})(2^q \mu_q^{\beta})$ is zero, positive finite or infinite, respectively.

§5. Examples

In this section we denote by z=(x, y) a point of R^2 . Let α and β be positive numbers such that $\alpha \leq 1$ and $\beta \leq 1$. Let Z be a set in R^2 and X be a set in the x-axis. Denote by Z_x the intersection of Z with the line parallel to the y-axis passing through z=(x, 0). J. M. Marstrand [4] proved that if M is a positive number such that $\Lambda_{\beta}(Z_x) \geq M$ for all $x \in X$, then there exists a positive constant c such that

$$\Lambda_{\alpha+\beta}(Z) \ge c M \Lambda_{\alpha}(X)$$
 for all $\alpha > 0$.

From this relation we derive immediately

$$\Lambda_{\alpha+\beta}(X\times Y) \ge c\Lambda_{\alpha}(X)\Lambda_{\beta}(Y).$$

If $\alpha < 1$ and $\beta < 1$, then we shall show by examples that there exist compact sets E_1 and E_2 satisfying the following conditions:

- 1) $\Lambda_{\alpha}(E_1) = \infty$ and $\Lambda_{\alpha'}(E_1) = 0$ for all $\alpha' > \alpha$,
- 2) $\Lambda_{\beta}(E_2) = 0$ and $\Lambda_{\beta'}(E_2) = \infty$ for all $\beta' < \beta$,

3) $\Lambda_{\alpha+\beta}(E_1 \times E_2) = 0 \text{ or } 3') 0 < \Lambda_{\alpha+\beta}(E_1 \times E_2) < \infty \text{ or } 3'') \Lambda_{\alpha+\beta}(E_1 \times E_2) = \infty.$

Before constructing examples we observe that if

1') $C_{\alpha}(E_1) > 0$ and $C_{\alpha'}(E_1) = 0$ for all $\alpha' > \alpha$

is true, then 1) is true. In fact, $C_{\alpha}(E_1) > 0$ implies $\Lambda_{\alpha}(E_1) = \infty$ and $\Lambda_{\alpha'}(E_1) = 0$ is true for all $\alpha' > \alpha$ if $C_{\alpha'}(E_1) = 0$ for all $\alpha' > \alpha$ (cf. [2]).

We shall construct examples which satisfy 1', 2) and 3) or 3') or 3'').

EXAMPLES. Let $0 < \alpha$, $\beta < 1$. Put l=1, $k_q=2$, $\lambda_q=(q^{2}2^{-q})^{1/\alpha}$ and $\mu_q^{(j)}=(q^{-j}2^{-q})^{1/\beta}$ (j=1, 2, 3) for q=1, 2, ... Note that $2\mu_{q+1}^{(j)} < \mu_q^{(j)}$ is always true. Choose a positive integer q_0 such that $2\lambda_{q+1} < \lambda_q$ for $q \ge q_0$ and $2^{q_0}\lambda_{q_0} < 1$. Let $E_1(E_2^{(j)}$ resp.) be the one-dimensional generalized Cantor set constructed by the system $[l, \{k_q\}_{q=1}^{\infty}, \{\lambda_q\}_{q=q_0}^{\infty}]([l, \{k_q\}_{q=1}^{\infty}, \{\mu_q^{(j)}\}_{q=q_0}^{\infty}]$ resp.).

First we show that 1') and 2) are satisfied. By Lemma 2, we see that $C_{\alpha}(E_1) > 0$ and $C_{\alpha'}(E_1) = 0$ for all $\alpha' > \alpha$. Using the theorem for each j we infer that $\Lambda_{\beta}(E_2^{(j)}) = 0$ and $\Lambda_{\beta'}(E_2^{(j)}) = \infty$ for all $\beta' < \beta$. Finally it follows from the corollary of Lemma 4 that $\Lambda_{\alpha+\beta}(E_1 \times E_2^{(j)})$ is infinite, positive finite, zero according as j=1, 2, 3 respectively.

REMARK. Let α , β be positive numbers such that $0 < \alpha < n$, $0 < \beta < n$. M. Ohtsuka raised the following question in [7]: Let E_1 and E_2 be compact sets in \mathbb{R}^n . Suppose that $C_{\alpha}(E_1) > 0$ and $C_{\beta'}(E_2) > 0$ for all $\beta' < \beta$. Then is $C_{\alpha+\beta}(E_1 \times E_2)$ always positive? Now it is easy to see that our E_1 and $E_2^{(2)}$ (or $E_2^{(3)}$) answer this question in the negative in the 2-dimensional case.

References

- [1] A. S. Besicovitch and P. A. P. Moran: The measure of product and cylinder sets, J. London Math. Soc., 20 (1945), 110-120.
- [2] L. Carleson: Selected problems on exceptional sets, Van Nostrand Math. Studies, 1967.
- [3] F. Hausdorff: Dimension und äusseres Mass, Math. Ann., 79 (1919), 157-179.
- [4] J. M. Marstrand: The dimension of Cartesian product sets, Proc. Cambridge Philos. Soc., 50 (1954), 198-202.
- P. A. P. Moran: Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philos. Soc., 42 (1946), 15-23.
- [6] M. Ohtsuka: Capacité d'ensembles de Cantor généralisés, Nagoya Math. J., 11 (1957), 151-160.
- [7] M. Ohtsuka: Capacité des ensembles produits, Nagoya Math. J., 12 (1957), 95-130.

Department of Mathematics, Faculty of Science, Hiroshima University