Evaluation of Hausdorff Measures of Generalized Cantor Sets

Kaoru Hatano
(Received September 26, 1968)

§1. Introduction

The problem how a Hausdorff measure of a product set $A \times B$ is related to Hausdorff measures of A and B is not completely solved. This problem was first investigated by F. Hausdorff himself [3] and later by A. S. Besicovitch and P. A. P. Moran [1], J. M. Marstrand [4] and others. Their works and investigations of similar problem for capacity (e.g. [6], [7]) show that evaluation of Hausdorff measures of generalized Cantor sets supplies many clues to this problem.

In this paper we first evaluate the α-Hausdorff measure of generalized Cantor sets in the Euclidean space R^{n}. As a concequence we see the existence of a compact set in R^{n} which has infinite α-Hausdorff measure but zero α capacity $(0<\alpha<n)$. Next we estimate Hausdorff measures of product sets of one-dimensional generalized Cantor sets and then give examples which show that in case the α-Hausdorff measure of E_{1} is infinite and the β-Hausdorff measure of E_{2} is zero, the $(\alpha+\beta)$-Hausdorff measure of $E_{1} \times E_{2}$ may either be zero, positive finite or infinite. Also these examples answer M. Ohtsuka's question in [7] (p. 114) in the negative.

The author wishes to express his deepest gratitude to Professor M. Ohtsuka for his suggesting the problem and his valuable comments.

§2. Definitions and Notation

Let $R^{n}(n \geqq 1)$ be the n-dimensional Euclidean space with points $x=\left(x_{1}\right.$, x_{2}, \ldots, x_{n}). By an n-dimensional open cube (closed cube resp.) in R^{n}, we mean the set of points $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ satisfying the inequalities:

$$
a_{i}<x_{i}<a_{i}+d\left(a_{i} \leqq x_{i} \leqq a_{i}+d \text { resp. }\right) \quad \text { for } \quad i=1,2, \ldots, n,
$$

where $a_{i}(i=1,2, \ldots, n)$ are any numbers and $d>0$. We call d the length of the side, or simply the side, of the open (or closed) cube.

Let \mathfrak{A} be the family of non empty open sets in R^{n} which is determined by the following properties:
(i) any n-dimensional open cube belongs to \mathfrak{N},
(ii) if ω_{1} and ω_{2} belong to \mathfrak{N}, then so does $\omega_{1} \cup \omega_{2}$,
(iii) if ω is an element of \mathfrak{A}, then there exists a finite number of n -
dimensional open cubes $I_{\nu}(\nu=1,2, \ldots, N)$ such that $\omega=\bigcup_{\nu=1}^{N} I_{\nu}$.
Let $h(r)$ be a continuous increasing function defined for $r \geqq 0$ such that $h(0)=0$. Let E be an arbitrary set in R^{n} and ρ be any positive number. We put $\Lambda_{h}^{(\rho)}(E)=\inf \left\{\sum_{\nu} h\left(d_{\nu}\right)\right\}$, where the infimum is taken over all coverings of E by at most a countable number of n-dimensional open cubes I_{ν} with the side $d_{\nu} \leqq \rho$. Since $\Lambda_{h}^{(\rho)}(E)$ increases as ρ decreases, the limit

$$
\Lambda_{h}(E)=\lim _{\rho \rightarrow 0} \Lambda_{h}^{(\rho)}(E) \quad(\leqq \infty)
$$

exists. As is easily seen, $\Lambda_{h}(E)$ is a Carathéodory's outer measure. Hence any Borel set is measurable with respect to Λ_{h}. For a measurable set E we call $\Lambda_{h}(E)$ the h-Hausdorff measure of E.

If $h(r)=r^{\alpha}(\alpha>0)$, then we use the notation Λ_{α} instead of Λ_{h} and call it the α-Hausdorff measure.

Let μ be a positive (Radon) measure in R^{n} with support S_{μ} and α be a positive number such that $0<\alpha<n$. The α-capacity $C_{\alpha}(F)$ of a compact set F is defined by

$$
C_{\alpha}(F)=\left\{\inf \iint_{|x-y|^{\alpha}} d \mu(x) d \mu(y)\right\}^{-1}
$$

where the infimum is taken over the class of all positive measures μ with unit mass and $S_{\mu} \subset F$.

We shall define an n-dimensional generalized Cantor set. Let l be a positive number, q_{0} be a positive integer, $\left\{k_{q}\right\}_{q=1}^{\infty}$ be a sequence of integers and $\left\{\lambda_{q}\right\}_{q=q_{0}}^{\infty}$ be a sequence of positive numbers. Suppose a system $\left[l,\left\{k_{q}\right\}_{q=1}^{\infty}\right.$, $\left.\left\{\lambda_{q}\right\}_{q=q_{0}}^{\infty}\right]$ satisfies the following condition ($*$):
$(*): \quad k_{q}>1(q \geqq 1), k_{q+1} \lambda_{q+1}<\lambda_{q}\left(q \geqq q_{0}\right)$ and $k_{1} k_{2} \ldots k_{q_{0}} \lambda_{q_{0}}<l$.
Let I be a one-dimensional closed interval with the length l.
In the first step, we remove from $I\left(k_{1} k_{2} \ldots k_{q_{0}}-1\right)$ open intevals each of the same length so that $k_{1} k_{2} \ldots k_{q_{0}}$ closed intervals $I_{i}^{\left(q_{0}\right)}\left(i=1,2, \ldots, k_{1} k_{2} \ldots k_{q_{0}}\right)$
 we remove from each $I_{i}^{\left(q_{0}\right)}\left(k_{q_{0}+1}-1\right)$ open intervals each of the same length so that $k_{q_{0}+1}$ closed intervals $I_{i, j}^{\left(q_{0}+1\right)}\left(j=1,2, \ldots, k_{q_{0}+1}\right)$ each of length $\lambda_{q_{0}+1}$ remain. We set $E^{\left(q_{0}+1\right)}=\bigcup_{i=1}^{k_{1} \ldots k_{q_{0}}} \bigcup_{j=1}^{k q_{0}+1} I_{i, j}^{\left(q_{0}+1\right)}$.

We continue this process and obtain the sets $E^{(q)}, q=q_{0}, q_{0}+1, \ldots$ We define $E_{(1)}=\bigcap_{q=q_{0}}^{\infty} E^{(q)}$. Note that $E_{(1)}$ is a compact set in R^{1}. It is called the one-dimensional generalized Cantor set constructed by the system $\left[l,\left\{k_{q}\right\}_{q=1}^{\infty}\right.$, $\left.\left\{\lambda_{q}\right\}_{q=q_{0}}^{\infty}\right]$. We call the product set $E_{(n)}=E_{(1)} \times E_{(1)} \times \cdots \times E_{(1)}$ of $n(n \geqq 2)$ onedimensional generalized Cantor set $E_{(1)}$ the n-dimensional symmetric gene-
ralized Cantor set constructed by the system $\left[l,\left\{k_{q}\right\}_{q=1}^{\infty},\left\{\lambda_{q}\right\}_{q=q_{0}}^{\infty}\right]$. Evidently $E_{(n)}$ is a compact set in R^{n}. We can see that $E_{(n)}=\bigcap_{q=q_{0}}^{\infty} E^{(q)} \times E^{(q)} \times \cdots \times E^{(q)}$, where $E^{(q)} \times E^{(q)} \times \cdots \times E^{(q)}$ is a product set in R^{n} and consists of $\left(k_{1} k_{2} \ldots k_{q}\right)^{n} n$ dimensional closed cubes with the side λ_{q}. We call $E^{(q)} \times \cdots \times E^{(q)}$ the q th approximation of $E_{(n)}(n \geqq 1)$.

§3. Main theorem

Lemma 1. (P. A. P. Moran [5]) Let F be a compact set in R^{n} and let \mathfrak{U} be the family defined in $\S 2$. Assume that there exists a set function Φ on \mathfrak{A} satisfying the following conditions:
(1) $\Phi(\omega) \geqq 0$ for every set $\omega \in \mathfrak{A}$,
(2) if $\omega=\bigcup_{i=1}^{N} \omega_{i}, \omega_{i} \in \mathfrak{H}(i=1,2, \ldots, N)$, then $\Phi(\omega) \leqq \sum_{i=1}^{N} \Phi\left(\omega_{i}\right)$,
(3) if $\omega \in \mathfrak{A}$ contains F, then $\Phi(\omega) \geqq b$, where b is some positive constant,
(4) there exist positive constants a and d_{0} such that if I is any n-dimensional open cube with the side $d \leqq d_{0}$, then $\Phi(I) \leqq a h(d)$.

Then $\Lambda_{h}(F) \geqq b / a$.
Lemma 2. (M. Ohtsuka [6]) Let α be a positive number such that $0<\alpha<n$ and let $E_{(n)}$ be the one-dimensional generalized Cantor set ($n=1$) or the n-dimensional symmetric generalized Cantor set ($n \geqq 2$) constructed by the system $\left[l,\left\{k_{q}\right\}_{q=1}^{\infty},\left\{\lambda_{q}\right\}_{q=q_{0}}^{\circ}\right]$ which satisfies condition (*).

Then $C_{\alpha}\left(E_{(n)}\right)=0$ if and only if $\sum_{q=q_{0}}^{\infty}\left(k_{1} k_{2} \ldots k_{q}\right)^{-n} \lambda_{q}^{-\alpha}=\infty$.
Using Lemma 1 we shall prove the following theorem.
Theorem. Let $E_{(n)}$ be the one-dimensional generalized Cantor set ($n=1$) or the n-dimensional symmetric generalized Cantor set ($n \geqq 2$) constructed by the system $\left[l,\left\{k_{q}\right\}_{q=1}^{\infty},\left\{\lambda_{q}\right\}_{q=q_{0}}^{\infty}\right]$ which satisfies condition (*). We assume $k_{q} \leqq M_{1}(q=1,2, \cdots)\left(M_{1}: a\right.$ constant $)$. Then
(a) $\Lambda_{h}\left(E_{(n)}\right)=0$ if and only if $\lim _{q \rightarrow \infty}\left(k_{1} k_{2} \ldots k_{q}\right)^{n} h\left(\lambda_{q}\right)=0$,
(b) $0<\Lambda_{h}\left(E_{(n)}\right)<\infty$ if and only if $0<\lim _{q \rightarrow \infty}\left(k_{1} k_{2} \ldots k_{q}\right)^{n} h\left(\lambda_{q}\right)<\infty$,
(c) $\Lambda_{h}\left(E_{(n)}\right)=\infty$ if and only if $\lim _{q \rightarrow \infty}\left(k_{1} k_{2} \ldots k_{q}\right)^{n} h\left(\lambda_{q}\right)=\infty$.

Proof. If all the "if"-parts are proved, then all the "only if"-parts are immediately derived. Hence we shall prove the "if"-parts.

From the definition of the Hausdorff measure we can see that $\lim _{\bar{q} \rightarrow \infty}\left(k_{1} k_{2} \ldots\right.$ $\left.k_{q}\right)^{n} h\left(\lambda_{q}\right)=0$ ($<\infty$ resp.) implies $\Lambda_{h}\left(E_{(n)}\right)=0$ ($<\infty$ resp.). Therefore we shall prove that $\lim _{q \rightarrow \infty}\left(k_{1} k_{2} \ldots k_{q}\right)^{n} h\left(\lambda_{q}\right)>0$ ($=\infty$ resp.) implies $\Lambda_{h}\left(E_{(n)}\right)>0$ (= $=\infty$ resp.).

We put $\lim _{q \rightarrow \infty}\left(k_{1} k_{2} \cdots k_{q}\right)^{n} h\left(\lambda_{q}\right)=A>0$. Let B be an arbitrary positive number such that $0<B<A$. Then there exists $q_{1}\left(\geqq q_{0}\right)$ such that $\left(k_{1} k_{2} \ldots k_{q}\right)^{n} h\left(\lambda_{q}\right)$ $>B$ for $q \geqq q_{1}$. We choose a sequence $\left\{\lambda_{q}^{\prime}\right\}_{q=q_{1}}^{\infty}$ such that $\left(k_{1} k_{2} \ldots k_{q}\right)^{n} h\left(\lambda_{q}^{\prime}\right)=B$. Evidently $0<\lambda_{q}^{\prime}<\lambda_{q}$ and $k_{q+1}^{n} h\left(\lambda_{q+1}^{\prime}\right)=h\left(\lambda_{q}^{\prime}\right)$ for $q \geqq q_{1}$.

We show that $\lim _{q \rightarrow \infty} N_{q}(\omega) h\left(\lambda_{q}^{\prime}\right)$ exists for every $\omega \epsilon \mathfrak{Y}$, where $N_{q}(\omega)$ is the number of n-dimensional closed cubes in the q th approximation of $E_{(n)}$ which meet ω. By the construction of $E_{(n)}$, we see that

$$
N_{q+1}(\omega) h\left(\lambda_{q+1}^{\prime}\right) \leqq N_{q}(\omega) k_{q+1}^{n} h\left(\lambda_{q+1}^{\prime}\right)=N_{q}(\omega) h\left(\lambda_{q}^{\prime}\right) \quad \text { for } \quad q \geqq q_{1} .
$$

Thus $N_{q}(\omega) h\left(\lambda_{q}^{\prime}\right)$ decreases as q increases. Now we define a set function Φ on $\mathfrak{\vartheta}$ by $\Phi(\omega)=\lim _{q \rightarrow \infty} N_{q}(\omega) h\left(\lambda_{q}^{\prime}\right)$. Take $E_{(n)}$ as F in Lemma 1. We shall show that Φ satisfies conditions (1)-(4) in Lemma 1.

It is easy to see that Φ satisfies (1), (2) and (3) with $b=B$. We set $a=$ $\left(2 M_{1}\right)^{n}$ and $d_{0}=\lambda_{q_{1}}$. Let I be any open cube with the side $d \leqq d_{0}$. Then there is a uniquely determined positive integer $q\left(\geqq q_{1}\right)$ such that $\lambda_{q+1}<d \leqq \lambda_{q}$. Since $E_{(n)}$ is symmetric, we have $N_{q}(I) \leqq 2^{n}$, so that $N_{q+1}(I) \leqq k_{q+1}^{n} N_{q}(I) \leqq$ $\left(2 k_{q+1}\right)^{n} \leqq\left(2 M_{1}\right)^{n}=a$. Hence $\boldsymbol{\Phi}(I) \leqq N_{q+1}(I) h\left(\lambda_{q+1}^{\prime}\right) \leqq a h\left(\lambda_{q+1}\right) \leqq a h(d)$. Therefore Φ satisfies condition (4) in Lemma 1.

By Lemma 1 , we obtain $\Lambda_{h}\left(E_{(n)}\right) \geqq B / a$, where a is independent of the choice of B. Since B is an arbitrary number such that $0<B<A$, we have $\Lambda_{h}\left(E_{(n)}\right) \geqq A / a=\frac{1}{a} \lim _{q \rightarrow \infty}\left(k_{1} k_{2} \ldots k_{q}\right)^{n} h\left(\lambda_{q}\right)$. By this inequality, we see that $\lim _{q \rightarrow \infty}$ $\left(k_{1} k_{2} \ldots k_{q}\right)^{n} h\left(\lambda_{q}\right)>0\left(=\infty\right.$ resp.) implies $\Lambda_{h}\left(E_{(n)}\right)>0$ ($=\infty$ resp.).

Remark 1. We can easily see that $\Lambda_{\alpha}\left(E_{(n)}\right)=0\left(0<\Lambda_{\alpha}\left(E_{(n)}\right)<\infty, \Lambda_{\alpha}\left(E_{(n)}\right)\right.$ $=\infty$ resp.) is equivalent to $\Lambda_{\alpha \mid n}\left(E_{(1)}\right)=0\left(0<\Lambda_{\alpha / n}\left(E_{(1)}\right)<\infty, \Lambda_{\alpha \mid n}\left(E_{(1)}\right)=\infty\right.$ resp.). In the case of capacity, however, the analogous relations are not always true. For instance, when $n \geqq 2$ and $0<\alpha<n$, we put $l=1, k_{q}=2(q=1,2, \ldots)$ and $\lambda_{q}=\left(q^{2} 2^{-n q}\right)^{1 / \alpha}$ for $q \geqq q_{0}$, where q_{0} is a positive integer such that $2 \lambda_{q+1}<\lambda_{q}$ for $q \geqq q_{0}$ and $2^{q_{0}} \lambda_{q_{0}}<1$. Let $E_{(1)}$ be the one-dimensional generalized Cantor set constructed by the system $\left[l,\left\{k_{q}\right\}_{q=1}^{\infty},\left\{\lambda_{q}\right\}_{q=q_{0}}^{\infty}\right]$ and let $E_{(n)}=E_{(1)} \times \cdots \times E_{(1)}$, i.e., an n-dimensional symmetric generalized Cantor set. Then by Lemma 2, we can see that $C_{\alpha}\left(E_{(n)}\right)>0$ but $C_{\alpha / n}\left(E_{(1)}\right)=0$.

Remark 2. Let α be a positive number and q_{0} be a positive integer >1. We assume that a system $\left[l,\left\{k_{q}\right\}_{q=1}^{\infty},\left\{\lambda_{q}\right\}_{q=1}^{\infty}\right]$ satisfies condition (*) and $k_{q} \leqq$ $M_{1}<\infty$ (M_{1} : a constant). Let $E_{(n)}\left(E_{(n)}^{\prime}\right.$ resp.) be the one-dimensional generalized Cantor set ($n=1$) or the n-dimensional symmetric generalized Cantor set $(n \geqq 2)$ constructed by the system [$\left.l,\left\{k_{q}\right\}_{q=1}^{\infty},\left\{\lambda_{q}\right\}_{q=1}^{\infty}\right]\left(\left[l,\left\{k_{q}\right\}_{q=1}^{\infty},\left\{\lambda_{q}\right\}_{q=q_{0}}^{\infty}\right]\right.$ resp.).

Then in general $E_{(n)} \neq E_{(n)}^{\prime}$, but $C_{\alpha}\left(E_{(n)}\right)$ and $C_{\alpha}\left(E_{(n)}^{\prime}\right)$ are zero simultaneously. Furthermore $\Lambda_{\alpha}\left(E_{(n)}\right)$ and $\Lambda_{\alpha}\left(E_{(n)}^{\prime}\right)$ are zero (positive finite, infinite resp.) simultaneously.

Remark 3. It is a well known result that if F is a compact set of positive α-capacity, then $\Lambda_{\alpha}(F)=\infty$, provided that $0<\alpha<n$ (cf. L. Carleson [2]). We show that the converse is not always true.

Let α be a positive number such that $0<\alpha<n$. We choose $l=1, k_{q}=2$ $(q=1,2, \ldots)$ and $\lambda_{q}=\left(q 2^{-n q}\right)^{1 / \alpha}$ for $q \geqq q_{0}$, where q_{0} is any positive integer such that $2 \lambda_{q+1}<\lambda_{q}$ for $q \geqq q_{0}$ and $2^{q_{0}} \lambda_{q_{0}}<1$. Let F be the one-dimensional generalized Cantor set ($n=1$) or the n-dimensional symmetric generalized Cantor set $(n \geqq 2)$ constructed by the system $\left[l,\left\{k_{q}\right\}_{q=1}^{\infty},\left\{\lambda_{q}\right\}_{q=q_{0}}^{\infty}\right]$. By Lemma 2 and the theorem, we can easily see that $C_{\alpha}(F)=0$ but $\Lambda_{\alpha}(F)=\infty$.

§4. Lemmas

We shall introduce an auxiliary α-Hausdorff measure Λ_{α}^{*}. Let ρ be any positive number. We put $\Lambda_{\alpha}^{(\rho) *}(E)=\inf \left\{\sum_{\nu} r_{\nu}^{\alpha}\right\}$ for an arbitrary set E in R^{n}, where the infimum is taken over all coverings of E by at most a countable number of closed convex sets with diameters $r_{\nu} \leqq \rho$. Since $\Lambda_{\alpha}^{(\rho) *}(E)$ increases as ρ decreases, the limit

$$
\Lambda_{\alpha}^{*}(E)=\lim _{\rho \rightarrow 0} \Lambda_{\alpha}^{(\rho) *}(E) \quad(\leqq \infty)
$$

exists.
There exists a positive constant M_{2}, depending only on the dimension n, such that $\left(1 / M_{2}\right) \Lambda_{\alpha}(E) \leqq \Lambda_{\alpha}^{*}(E) \leqq M_{2} \Lambda_{\alpha}(E)$ for every set E in R^{n}.

We shall deal with sets in R^{2} in what follows.
Lemma 3. Let α, β, γ and δ be positive numbers such that $\alpha<1$ and $\beta<1$. Put $l=1, k_{q}=2(q=1,2, \ldots), \lambda_{q}=q^{\gamma} 2^{-q / \alpha}$ for $q \geqq q_{0}$ and $\mu_{q}=q^{-\delta} 2^{-q / \beta}$ for $q \geqq q_{0}$, where q_{0} is any positive integer such that $2 \lambda_{q+1}<\lambda_{q}$ for $q \geqq q_{0}$ and $2^{q_{0}} \lambda_{q_{0}}<1$. Let E_{1} (E_{2} resp.) be the one-dimensional generalized Cantor set constructed by the system $\left[l,\left\{k_{q}\right\}_{q=1}^{\infty},\left\{\lambda_{q}\right\}_{q=q_{0}}^{\infty}\right]\left(\left[l,\left\{k_{q}\right\}_{q=1}^{\infty},\left\{\mu_{q}\right\}_{q=q_{0}}^{\infty}\right]\right.$ resp.). Then

$$
\Lambda_{\alpha+\beta}^{*}\left(E_{1} \times E_{2}\right) \leqq M_{3} \lim _{\bar{q} \rightarrow \infty}\left(2^{q} \lambda_{q}^{\alpha}\right)\left(2^{q} \mu_{q}^{\beta}\right), \text { where } \quad M_{3}=\sqrt{10} \max \left(1,\left(\frac{2 \alpha}{\beta}\right)^{\beta \delta}\right)
$$

Proof. The case $\alpha<\beta$. There exists a positive integer $q_{1}\left(\geqq q_{0}\right)$ such that $\lambda_{q}<\mu_{q}$ for $q \geqq q_{1}$. Let ρ be any positive number which satisfies $\rho<\lambda_{q_{1}}$. We can choose a positive integer $q_{2}\left(\geqq q_{1}\right)$ such that $\mu_{q}<\rho$ for $q \geqq q_{2}$. For each $q \geqq q_{2}$, there is a uniquely determined positive integer $p=p(q)$ such that $\lambda_{p+1}<\mu_{q} \leqq \lambda_{p}$. We can see that $p<q$.

Now we assume $q \geqq q_{2}$. Then $E_{1}^{(p+1)} \times E_{2}^{(q)}\left(\supset E_{1} \times E_{2}\right)$ consists of 2^{p+q+1} mutually congruent closed rectangles, where $E_{1}^{(q)}\left(E_{2}^{(q)}\right.$ resp.) is the q th approximation of E_{1} (E_{2} resp.). Let $r_{p+1, q}$ be the diameter of each rectangle. Then

$$
\begin{aligned}
& r_{p+1, q}=\sqrt{\lambda_{p+1}^{2}+\mu_{q}^{2}}<\sqrt{2} \mu_{q}<2 \rho \\
& r_{p+1, q} \leqq \sqrt{\lambda_{p+1}^{2}+\lambda_{p}^{2}}<\sqrt{\frac{5}{2}} \lambda_{p}
\end{aligned}
$$

By the definition of Λ_{α}^{*},

$$
\begin{aligned}
\Lambda_{\alpha+\beta}^{(2 \rho) *}\left(E_{1} \times E_{2}\right) & \leqq \Lambda_{\alpha+\beta}^{(2 \rho) *}\left(E_{1}^{(p+1)} \times E_{2}^{(q)}\right) \leqq 2^{p+q+1} r_{p+1, q}^{\alpha+\beta} \\
& =\left(2^{p+1} r_{p+1, q}^{\alpha}\right)\left(2^{q} r_{p+1, q}^{\beta}\right)<\sqrt{10}\left(2^{p} \lambda_{p}^{\alpha}\right)\left(2^{q} \mu_{q}^{\beta}\right) .
\end{aligned}
$$

Since $2^{q} \lambda_{q}^{\alpha}$ increases with q and $p<q$, we have $2^{p} \lambda_{p}^{\alpha}<2^{q} \lambda_{q}^{\alpha}$. Hence

$$
\Lambda_{\alpha+\beta}^{(2 \rho) *}\left(E_{1} \times E_{2}\right) \leqq \sqrt{10} \lim _{q \rightarrow \infty}\left(2^{q} \lambda_{q}^{\alpha}\right)\left(2^{q} \mu_{q}^{\beta}\right)
$$

Therefore we have

$$
\Lambda_{\alpha+\beta}^{*}\left(E_{1} \times E_{2}\right)=\lim _{\rho \rightarrow 0} \Lambda_{\alpha+\beta}^{(2 \rho) *}\left(E_{1} \times E_{2}\right) \leqq \sqrt{10} \lim _{q \rightarrow \infty}\left(2^{q} \lambda_{q}^{\alpha}\right)\left(2^{q} \mu_{q}^{\beta}\right) .
$$

The case $\beta \leqq \alpha$. Interchanging λ_{q} and μ_{q} in the above proof for the case $\alpha<\beta$, we observe that there is q_{2} such that

$$
\Lambda_{\alpha+\beta}^{(2 \rho) *} *\left(E_{1} \times E_{2}\right) \leqq \sqrt{10}\left(2^{q} \lambda_{q}^{\alpha}\right)\left(2^{p} \mu_{p}^{\beta}\right) \quad \text { for } \quad q \geqq q_{2}
$$

where $p=p(q)$ is determined so that $\mu_{p+1}<\lambda_{q} \leqq \mu_{p}$ and $p<q$. Obviously $2^{p} \mu_{p}^{\beta}=2^{q} \mu_{q}^{\beta}(q / p)^{\beta \delta}$. We shall prove $\varlimsup_{q \rightarrow \infty} q / p<2 \alpha / \beta$. Suppose this is not true. Then there exist sequences $\{q(m)\}_{m=1}^{\infty}$ and $\{p(m)\}_{m=1}^{\infty}$ such that $q(m) / p(m)>$ $3 \alpha / 2 \beta(m=1,2, \ldots)$. By $\mu_{p+1}<\lambda_{q}$, we see

$$
2^{\frac{q(m)}{\alpha}}<2^{\frac{p(m)+1}{\beta}}(p(m)+1)^{\delta} q(m)^{\gamma}<2^{\frac{1}{\beta}\left(\frac{2 \beta}{3 \alpha} q(m)+1\right)}\left(\frac{2 \beta}{3 \alpha} q(m)+1\right)^{\delta} q(m)^{\gamma} .
$$

Hence

$$
2^{\frac{\beta q(m)}{3 \alpha}}<2\left(\frac{2 \beta}{3 \alpha} q(m)+1\right)^{\beta \delta} q(m)^{\beta \gamma} \quad \text { for } \quad m \geqq 1
$$

For sufficiently large m, it is contradictory. Thus we have $\varlimsup_{q \rightarrow \infty} q / p<2 \alpha / \beta$. Hence

$$
\Lambda_{\alpha+\beta}^{*}\left(E_{1} \times E_{2}\right)=\lim _{\rho \rightarrow 0} \Lambda_{\alpha+\beta}^{(2 \rho) *}\left(E_{1} \times E_{2}\right) \leqq \sqrt{10}\left(\frac{2 \alpha}{\beta}\right)^{\beta \delta} \lim _{\bar{q} \rightarrow \infty}\left(2^{q} \lambda_{q}^{\alpha}\right)\left(2^{q} \mu_{q}^{\beta}\right)
$$

Therefore we have the required inequality in any case.
Remark. This lemma is essentially due to F. Hausdorff [3].
We shall prove the following lemma by a method similar to the proof of the theorem.

Lemma 4. Under the same assumptions as in Lemma 3,

$$
\Lambda_{\alpha+\beta}\left(E_{1} \times E_{2}\right) \geqq\left(1 / M_{4}\right) \lim _{q \rightarrow \infty}\left(2^{q} \lambda_{q}^{\alpha}\right)\left(2^{q} \mu_{q}^{\beta}\right), \quad \text { where } \quad M_{4}=2^{4} \max \left(1,\left(\frac{2 \beta}{\alpha}\right)^{\alpha \gamma}\right)
$$

Proof. If $\frac{\lim }{q \rightarrow \infty}\left(2^{q} \lambda_{q}^{\alpha}\right)\left(2^{q} \mu_{q}^{\beta}\right)=0$, then the conclusion is obvious. Hence assume $A=\lim _{q \rightarrow \infty}\left(2^{q} \lambda_{q}^{\alpha}\right)\left(2^{q} \mu_{q}^{\beta}\right)>0$.

Let B be an arbitrary positive number which satisfies $0<B<A$. Then we can choose a positive integer $q_{1}\left(\geqq q_{0}\right)$ such that $\left(2^{q} \lambda_{q}^{\alpha}\right)\left(2^{q} \mu_{q}^{\beta}\right)>B$ for $q \geqq q_{1}$. Let $\left\{\mu_{q}^{\prime}\right\}_{q=q_{1}}^{\infty}$ be a sequence defined by $\left(2^{q} \lambda_{q}^{\alpha}\right)\left(2^{q} \mu_{q}^{\prime \beta}\right)=B$. Then $0<$ $\mu_{q}^{\prime}<\mu_{q}$ and $2^{2} \lambda_{q+1}^{\alpha} \mu_{q+1}^{\prime \beta}=\lambda_{q}^{\alpha} \mu_{q}^{\prime \beta}$ for $q \geqq q_{1}$.

We show that $\lim _{q \rightarrow \infty} N_{q}(\omega) \lambda_{q}^{\alpha} \mu_{q}^{\prime \beta}$ exists for every $\omega \epsilon \mathfrak{N}$, where $N_{q}(\omega)$ is the number of closed rectangles of the form $I_{1}^{(q)} \times I_{2}^{(q)}$ which meet ω. Here we denote by $I_{1}^{(q)}\left(I_{2}^{(q)}\right.$ resp.) any one of the closed intervals in the q th approximation of E_{1} (E_{2} resp.). By the construction of $E_{1} \times E_{2}$, we see that $N_{q+1}(\omega) \leqq$ $2^{2} N_{q}(\omega)$ for $q \geqq q_{0}$. It follows that

$$
N_{q+1}(\omega) \lambda_{q+1}^{\alpha} \mu_{q+1}^{\prime \beta} \leqq N_{q}(\omega) 2^{2} \lambda_{q+1}^{\alpha} \mu_{q+1}^{\prime \beta}=N_{q}(\omega) \lambda_{q}^{\alpha} \mu_{q}^{\prime \beta} \quad \text { for } \quad q \geqq q_{1} .
$$

Thus $N_{q}(\omega) \lambda_{q}^{\alpha} \mu_{q}^{\prime \beta}$ decreases as q increases. Now we define a set function Φ on \mathfrak{U} by

$$
\Phi(\omega)=\lim _{q \rightarrow \infty} N_{q}(\omega) \lambda_{q}^{\alpha} \mu_{q}^{\prime \beta} .
$$

Take $E_{1} \times E_{2}$ as F in Lemma 1. We shall show that our Φ satisfies the conditions in Lemma 1. It is easy to see that Φ satisfies conditions (1), (2) and (3) with $b=B$. Hence it is enough to show that Φ satisfies (4).

The case $\beta \leqq \alpha$. There exists a positive integer $q_{2}\left(\geqq q_{1}\right)$ such that $\mu_{q}<\lambda_{q+1}$ for $q \geqq q_{2}$. Put $d_{0}=\mu_{q_{2}}$. Let I be any 2 -dimensional open cube with the side $d \leqq d_{0}$. Then there exist uniquely determined positive integers p and q such that $\lambda_{p+1}<d \leqq \lambda_{p}$ and $\mu_{q+1}<d \leqq \mu_{q}$. Since $\lambda_{p+1}<\mu_{q}<\lambda_{q+1}$ for $q \geqq q_{2}$, we have $q<p$. The open cube I meets at most 2^{2} rectangles of the form $I_{1}^{(p)} \times I_{2}^{(q)}$ and so meets at most 2^{4} rectangles of the form $I_{1}^{(p+1)} \times I_{2}^{(q+1)}$. It follows from $p>q$ that $N_{p+1}(I) \leqq 2^{4} 2^{p-q}$. Moreover $2^{p-q} \mu_{p+1}^{\beta}<\mu_{q+1}^{\beta}$, since $2^{q} \mu_{q}^{\beta}$ decreases as q increases. Hence we have

$$
\Phi(I) \leqq N_{p+1}(I) \lambda_{p+1}^{\alpha} \mu_{p+1}^{\prime \beta}<2^{4+p-q} \lambda_{p+1}^{\alpha} \mu_{p+1}^{\beta} \leqq 2^{4} \lambda_{p+1}^{\alpha} \mu_{q+1}^{\beta}<2^{4} d^{\alpha+\beta} .
$$

Therefore $\Phi(I)<2^{4} d^{\alpha+\beta}$.
The case $\alpha<\beta$. There exists a positive integer $q_{2}\left(\geqq q_{1}\right)$ such that $\lambda_{q}<\mu_{q+1}$ for $q \geqq q_{2}$. For any positive number d which satisfies $0<d<\lambda_{q_{2}}$, there exist uniquely determined positive integers $p=p(d)$ and $q=q(d)$ such that $\lambda_{p+1}<d \leqq \lambda_{p}$ and $\mu_{q+1}<d \leqq \mu_{q}$. Since $\lambda_{q}<\mu_{q+1}<\lambda_{p}$, it follows that $p<q$.

We can prove $\varlimsup_{d \rightarrow 0} q / p<2 \beta / \alpha$ as we did in the proof of Lemma 3. Accordingly we can choose a positive integer $q_{3}\left(\geqq q_{2}\right)$ such that $q / p<2 \beta / \alpha$ for $q \geqq q_{3}$.

Put $d_{0}=\lambda_{q_{3}}$. Let I be any 2 -dimensional open cube with the side $d\left(\leqq d_{0}\right)$. We can choose p and q as above for this d. The open cube I meets at most 2^{2} rectangles of the form $I_{1}^{(p)} \times I_{2}^{(q)}$ and so meets at most 2^{4} rectangles of the form $I_{1}^{(p+1)} \times I_{2}^{(q+1)}$. Hence $N_{q+1}(I) \leqq 2^{q-p} 2^{4}$ and

$$
\frac{2^{q+1} \lambda_{q+1}^{\alpha}}{2^{p+1} \lambda_{p+1}^{\alpha}}=\left(\frac{q+1}{p+1}\right)^{\alpha \gamma}<\left(\frac{2 \beta}{\alpha}\right)^{\alpha \gamma}
$$

Then we have

$$
\begin{aligned}
\mathscr{(}(I) & \leqq N_{q+1}(I) \lambda_{q+1}^{\alpha} \mu_{q+1}^{\prime \beta}<2^{4+q-p} \lambda_{q+1}^{\alpha} \mu_{q+1}^{\beta} \\
& =2^{4} \lambda_{p+1}^{\alpha} \mu_{q+1}^{\beta} \frac{2^{q+1} \lambda_{q+1}^{\alpha}}{2^{p+1} \lambda_{p+1}^{\alpha}}<2^{4}\left(\frac{2 \beta}{\alpha}\right)^{\alpha \gamma} \lambda_{p+1}^{\alpha} \mu_{q+1}^{\beta}<2^{4}\left(\frac{2 \beta}{\alpha}\right)^{\alpha \gamma} d^{\alpha+\beta}
\end{aligned}
$$

Therefore

$$
\Phi(I)<2^{4}\left(\frac{2 \beta}{\alpha}\right)^{\alpha \gamma} d^{\alpha+\beta} .
$$

Thus Φ satisfies conditions (1), (2), (3) and (4) in Lemma 1. It follows from Lemma 1 that $\Lambda_{\alpha+\beta}\left(E_{1} \times E_{2}\right) \geqq B / M_{4}$, where $M_{4}=2^{4} \max \left(1,\left(\frac{2 \beta}{\alpha}\right)^{\alpha \gamma}\right)$. Since B is an arbitrary number such that $0<B<A$, we have $\Lambda_{\alpha+\beta}\left(E_{1} \times E_{2}\right) \geqq$ $\left(1 / M_{4}\right) \lim _{q \rightarrow \infty}\left(2^{q} \lambda_{q}^{\alpha}\right)\left(2^{q} \mu_{q}^{\beta}\right)$.

By Lemmas 3 and 4, we obtain
Corollary. Under the same assumptions as in Lemma 3, $\Lambda_{\alpha+\beta}\left(E_{1} \times E_{2}\right)$ is zero, positive finite or infinite if and only if $\lim _{q \rightarrow \infty}\left(2^{q} \lambda_{q}^{\alpha}\right)\left(2^{q} \mu_{q}^{\beta}\right)$ is zero, positive finite or infinite, respectively.

§5. Examples

In this section we denote by $z=(x, y)$ a point of R^{2}. Let α and β be positive numbers such that $\alpha \leqq 1$ and $\beta \leqq 1$. Let Z be a set in R^{2} and X be a set in the x-axis. Denote by Z_{x} the intersection of Z with the line parallel to the y-axis passing through $z=(x, 0)$. J. M. Marstrand [4] proved that if M is a positive number such that $\Lambda_{\beta}\left(Z_{x}\right) \geqq M$ for all $x \in X$, then there exists a positive constant c such that

$$
\Lambda_{\alpha+\beta}(Z) \geqq c M \Lambda_{\alpha}(X) \quad \text { for all } \quad \alpha>0
$$

From this relation we derive immediately

$$
\Lambda_{\alpha+\beta}(X \times Y) \geqq c \Lambda_{\alpha}(X) \Lambda_{\beta}(Y)
$$

If $\alpha<1$ and $\beta<1$, then we shall show by examples that there exist compact sets E_{1} and E_{2} satisfying the following conditions:

1) $\Lambda_{\alpha}\left(E_{1}\right)=\infty$ and $\Lambda_{\alpha}\left(E_{1}\right)=0$ for all $\alpha^{\prime}>\alpha$,
2) $\Lambda_{\beta}\left(E_{2}\right)=0$ and $\Lambda_{\beta^{\prime}}\left(E_{2}\right)=\infty$ for all $\beta^{\prime}<\beta$,
3) $\Lambda_{\alpha+\beta}\left(E_{1} \times E_{2}\right)=0$ or $\left.3^{\prime}\right) 0<\Lambda_{\alpha+\beta}\left(E_{1} \times E_{2}\right)<\infty$ or $\left.3^{\prime \prime}\right) \Lambda_{\alpha+\beta}\left(E_{1} \times E_{2}\right)=\infty$.

Before constructing examples we observe that if
1') $\quad C_{\alpha}\left(E_{1}\right)>0$ and $C_{\alpha^{\prime}}\left(E_{1}\right)=0$ for all $\alpha^{\prime}>\alpha$
is true, then 1) is true. In fact, $C_{\alpha}\left(E_{1}\right)>0$ implies $\Lambda_{\alpha}\left(E_{1}\right)=\infty$ and $\Lambda_{\alpha}\left(E_{1}\right)=0$ is true for all $\alpha^{\prime}>\alpha$ if $C_{\alpha^{\prime}}\left(E_{1}\right)=0$ for all $\alpha^{\prime}>\alpha$ (cf. [2]).

We shall construct examples which satisfy 1^{\prime}), 2) and 3) or 3^{\prime}) or $3^{\prime \prime}$).
Examples. Let $0<\alpha, \beta<1$. Put $l=1, k_{q}=2, \lambda_{q}=\left(q^{2} 2^{-q}\right)^{1 / \alpha}$ and $\mu_{q}^{(j)}=$ $\left(q^{-j} 2^{-q}\right)^{1 / \beta}(j=1,2,3)$ for $q=1,2, \ldots$. Note that $2 \mu_{q+1}^{(j)}<\mu_{q}^{(j)}$ is always true. Choose a positive integer q_{0} such that $2 \lambda_{q+1}<\lambda_{q}$ for $q \geqq q_{0}$ and $2^{q_{0}} \lambda_{q_{0}}<1$. Let $E_{1}\left(E_{2}^{(j)}\right.$ resp.) be the one-dimensional generalized Cantor set constructed by the system $\left[l,\left\{k_{q}\right\}_{q=1}^{\infty},\left\{\lambda_{q}\right\}_{q=q_{0}}^{\infty}\right]\left(\left[l,\left\{k_{q}\right\}_{q=1}^{\infty},\left\{\mu_{q}^{(j)}\right\}_{q=q_{0}}^{\infty}\right]\right.$ resp.).

First we show that 1^{\prime}) and 2) are satisfied. By Lemma 2, we see that $C_{\alpha}\left(E_{1}\right)>0$ and $C_{\alpha}\left(E_{1}\right)=0$ for all $\alpha^{\prime}>\alpha$. Using the theorem for each j we infer that $\Lambda_{\beta}\left(E_{2}^{(j)}\right)=0$ and $\Lambda_{\beta^{\prime}}\left(E_{2}^{(j)}\right)=\infty$ for all $\beta^{\prime}<\beta$. Finally it follows from the corollary of Lemma 4 that $\Lambda_{\alpha+\beta}\left(E_{1} \times E_{2}^{(j)}\right)$ is infinite, positive finite, zero according as $j=1,2,3$ respectively.

Remark. Let α, β be positive numbers such that $0<\alpha<n, 0<\beta<n$. M. Ohtsuka raised the following question in [7]: Let E_{1} and E_{2} be compact sets in R^{n}. Suppose that $C_{\alpha}\left(E_{1}\right)>0$ and $C_{\beta} \cdot\left(E_{2}\right)>0$ for all $\beta^{\prime}<\beta$. Then is $C_{\alpha+\beta}\left(E_{1} \times E_{2}\right)$ always positive? Now it is easy to see that our E_{1} and $E_{2}^{(2)}$ (or $\left.E_{2}^{(3)}\right)$ answer this question in the negative in the 2-dimensional case.

References

[1] A. S. Besicovitch and P. A. P. Moran: The measure of product and cylinder sets, J. London Math. Soc., 20 (1945), 110-120.
[2] L. Carleson: Selected problems on exceptional sets, Van Nostrand Math. Studies, 1967.
[3] F. Hausdorff: Dimension und äusseres Mass, Math. Ann., 79 (1919), 157-179.
[4] J. M. Marstrand: The dimension of Cartesian product sets, Proc. Cambridge Philos. Soc., 50 (1954), 198-202.
[5] P. A. P. Moran: Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philos. Soc., 4.2 (1946), 15-23.
[6] M. Ohtsuka: Capacité d'ensembles de Cantor généralisés, Nagoya Math. J., 11 (1957), 151-160.
[7] M. Ohtsuka: Capacité des ensembles produits, Nagoya Math. J., 12 (1957), 95-130.

> Department of Mathematics, Faculty of Science, Hiroshima University

