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§ 1. Introduction

Extensions of the classical duality theorem in linear programming have
been investigated by many authors. We shall be particularly concerned with
the results of K. S. Kretschmer [11], K. Isii [9] and M. Ohtsuka [13]. In
[11] the program was discussed in paired spaces and the dimension of the
classical program was generalized from finite to infinite. A convex program
in paired spaces was studied in [9]. The program in [13] is a potential-
theoretic generalization of the classical one and is closely related to the
theory of capacities.

In this paper, we shall investigate duality theorems and their applica-
tions. We reformulate the program in [13] in a form as in [9] and [11]
and discuss Ohtsuka's duality theorem and sufficient conditions in it. Then
we see that many results in [13] may be interpreted as special cases of those
in [11]. We also obtain a new duality theorem in §5 which is a converse of
Kretschmer's Theorem 3 and Dieter's strong duality theorem in [4].
Ohtsuka's sufficient conditions are given in a more general form in §6. Those
conditions are free from potential theory. We also give some criteria which
are different from Kretschmer's. In §§7-11, we indicate how the theory is
applied to the potential-theoretic problems treated in [6], [8], [13], [14] and
[16].

§ 2. Preliminaries

It is assumed that the reader is familiar with the theory of linear topo-
logical spaces as developed in [1] and [2], The set of real numbers are de-
noted by R and the set of non-negative real numbers by Ro. Let X and Y be
linear spaces (over R) and (( , )) be a bilinear functional on I x Y. We say
that X and Y are paired under (( , )) or that X and Y are in duality (relative
to (( , ))) if the following two conditions are fulfilled:

(i) For any xφO, there exists γe Γsuch that ((#, y))φθ.
(ii) For any γφO, there exists x<EX such that ((x, γ))φθ.

If the linear spaces X and Y are in duality, the weak topology on X is denoted
by w(X, Y) and the Mackey topology on X is denoted by s(X, Y). For a cone
C in X, we set
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C+ = { j ; ye Γ a n d ( O , y ) ) ^ O f o r a l l x£C },

C++ = {x; xeXand((χ, y))^Oforall γβC+}.

The following two lemmas were proved in [2Γ\ and [[11].

LEMMA 1. Let X and Y be linear spaces paired under (( , )) and Cbea con-
vex cone in X. If tfi (tf2 resp.) is any topology on Y (X resp.) which is compatible
with the duality between X and Y, then C+ is tfi-closed and C++ coincides with
the &2-closure of C.

LEMMA 2. Let X and Y be linear spaces paired under (( , ))i, let Z and W
be linear spaces paired under (( , ))2, and suppose that T is a linear transforma-
tion from X into Z. In order that T be w(X, Y) — w(Z, W) continuous, it is
necessary and sufficient that there exists a transformation T7* from W into Y
such that

((Tx,w))2 = (ίx, T*w)\

for all x G X and u>eW. If Γ* exists, then it is unique and w( W, Z) — w{ Γ, X)
continuous.

We call Γ* the dual transformation of T.

§ 3. Convex program

Let X be a linear space and Z and W be linear spaces paired under (( , ))2.
A convex program is a quartet (ψ, φ, C, Q); in this quartet, C is a convex set
in X, Q is a convex cone in Z, φ is a transformation from C into Z which is
convex with respect to Q, i.e.,

for any xu x2£C and any real number t G (0,1), and φ is a real-valued convex
function defined on C. The convex program is said to be consistent if there
exists x<εC such that φ(x) G Q. The value N of the convex program is defined
by

N=inί{<p(x); x€C a n d φ(χ)eQ}

in case the convex program is consistent, and by

JV=oo

in case the convex program is not consistent.
As a dual quantity, we consider
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We have easily

THEOREM 1. It is always valid that 7V'<;7V.

PROOF. We may assume that the convex program is consistent. For
any w£Q+, we observe that

N^ inf {φ(χ) - {{φ{x\ w))2 x € C and ψ(x) e Q}

>mt{φ(x)-((φ(x\ w))2;xeC}.

By taking the supremum of the last quantity with respect to we Q+, we obtain

Let ZxR and Wx R be paired under the bilinear functional (( , )) defined
by (((*, r), (wy s)))=((z, w))2 + rs. Let Ube the set in ZxR defined by

U= {(ψ(x)-z, <p(x) + r); x e C, zβQ andr€Λ0}.

We shall prove

THEOREM 2. Let the convex program be consistent and have a finite value
N. If U is w(Zx R, Wx R)-closed, then the equality N=Nf holds.

PROOF. By our assumption that the convex program is consistent and
that N is finite, it is clear that (0, 7V+ε) e U and (0, N— ε) $ U for any number
ε>0. Let ε>0 be arbitrarily fixed. Since U is a w(Zx R, Wx i?)-closed con-
vex set, by a well-known separation theorem, there exist (w, s)E WxR and
a € R which satisfy the relation

(((0, iV-ε), (w, *)))<α^(((*, r), («;, *)))

for all (*, r)eU ([1], p. 73, Proposition 4; [2], p. 50, Proposition 1). Since
(0, N+ε)e £/, 2ε^>0 and hence s>0. Therefore we may assume 5 = 1. Thus
we have

N-ε<a<,((z, w))2 + r

for all (z, r)e U. Let us prove —weQ+. If we suppose the contrary, then
there exists zλeQ such that ((*i, t<;))2>0. For any number r such that r>N
and any positive number ί, (~tzu r) belongs to U. In fact, there is xxe C
such that Φ(X\)€LQ and φ(xi)<r. Then rι=r — φ(x1)>0 and

(-tzu r) = (φ(x1)-(ψ(x1) + tz1), φix^ + rOe U.

Thus we have

— oo < a ^ — t((zu w))2 + r.

Letting ί->oo5 we arrive at a contradiction. Thus — wβQ+. From the fact
that U contains the set {(Φ(χ\ φ(χ))\ x € C}, it follows that
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for all xeC. Therefore we have

N-ε<a<,mΐ{φ(x) + ((φ(x\ w))2; x e C} <,

By the arbitrariness of ε, we conclude N<,N'. The converse inequality was
given in Theorem 1.

THEOREM 3. Let the convex program have a finite value N. If U has a
non-empty s(ZxR, Wx R)-interior U° and ifO belongs to the s(Z, W)-interior
(Φ(C)—Q)°, then the equality N=N' holds. In this case there exists w£Q+ such
that

N' = inf {φ(x) - ((000, «,))2 xecy.

PROOF. Since (0, TV) is a boundary point of the convex set U which has a
non-empty s(Zx R,Wx i?)-interior, it follows from another separation theorem

], p. 71, Proposition 1) that there exists a non-zero (w, s)e Wx R such that

for all (z, r)e U. Since (0, 7V+ε)6 U for ε>0, we have *:>0. We show that
5>0. If 5 = 0, then ((*, w))2^>0 for all zβφ(C)—Q. By the assumption
OG(0(C)—Q)°, we have w = 0, which is a contradiction. Therefore we may
assume 5 = 1. The rest of the proof is carried out by the same argument as
in the proof of Theorem 2.

Isii [9] proved

PROPOSITION 1. Any one of the following conditions assures that U has a
non-empty s(Zx R, Wx R)-interior and 0 G (Ψ(C)—Q)° :

(A) Q° Φφ and 0G (φiQ—Q)0, where φ is the empty set,
(B) There exist an s(Z, W)-neighborhood V of ΰ in Z and a constant k such

that h(z)>k in V, where h(z) is defined by

h(z) = inf {<p(x) xβC and φ(x)-zβQ}.

Note that condition (B) is closely related to Rockafellar's stability condi-
tion in [15]. We remark here that Rockafellar's method is also useful in our
case and that a duality theorem of his type is valid.

In the rest of this section, we assume that C is a convex cone P, that φ
is a convex function which is positively homogeneous (of order 1) and that
φ(x) = Ax — zo, where A is a linear transformation from X into Z and z0 is an
element of Z.

LEMMA 3. If Nr > — oo, then we have

N' = sup{((*<» w))2; w£Q+ and <p(χ)~^>((Ax, w))2 for all xβP}.

PROOF. For a fixed w e Q+, we have
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mί{φ(x)-((φ(x),w))2',xeP)

= inΐ{φ(x)-((Ax, w))2; xβP}+((z0, w))2.

If φ(x) — ((Ax, w))2<0 for some xeP, then

φ(tx)-((A(tx), w))2 = t[_φ(x)-((Ax, w))2~]

for any positive number t. Since P is a convex cone, we have
inf {φ(χ)~((Ax, w))2; xeP} = — °°. Such w can be neglected in the calcula-
tion of N'. Hence we can restrict weQ+ to those satisfying φ(x) — ((Ax, w))2

:>0 for all xβP.
Since A(P) and Q are convex cones, we see that

(A(P)-Q)°CA(P)-Q°

if the s(Z, JF)-interior Q° is non-empty ([11], Lemma 1). Thus condition (A)
implies

Q°ΦΦ and zoeA(P)-Q°.

Making use of Theorem 3, Proposition 1 and Lemma 3, we have

THEOREM 4. Assume that N is finite and that there exists x G P such that
Ax — zo<EQ°. Then we have

inf {φ(χ) x e P and Ax — z0 e Q}

= max{((ZQ, W))2;weQ+ and ((Ax, w))2<;φ(x) for all x e P}.

We shall prove

THEOREM 5. If Nf is finite and zQe.Q°, then there exists x<EP such that
Ax-zo£Q°.

PROOF. Obviously Q° and A(P) — z0 are non-empty convex sets. We show
(A(P)—zo)Γ\Q° φφ. If we suppose the contrary, then we see by a separation
theorem that there exist non-zero wλeWand ae R such that

sup{((s, wλ)h; z£A(P)-zo}^a^inf{((z, Wl))2; zeQ°}.

Making use of the fact that the w(Z, ΪF)-closure of Q is equal to the s(Z, W)-
closure of Q° ([1], p. 50, Corollaire 2 and [2J, p. 67, Proposition 4), we have
((z, wιj)2^>a for all z£Q. Since Q is a cone, wχ<E.Q+ and hence we may take
α = 0. From the relation ((Ax, wι))2^((zQ, wι))2 for all x G P and the fact that
P is a cone, it follows that ((Ax, wι))2<^0 for all x E P. Let w be an element
of Q+ such that φ(χ)^((Ax, w))2 for all x^P. Then w-\-twι^Q+ and φ(x)
~^>((Ax, w + twι))2 for any teR0 and for all x£P. On the other hand, since
zoeQ°, wχeQ+ and wi=7^0, we see that (Cz0, ^0)2 > 0 and
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by Lemma 3. Letting ί->oo5 we have N' = °o5 which contradicts our as-
sumption. Thus (A(P)-z0)r\Qoφφ.

§ 4. Linear programs in paired spaces

Let X and Y be linear spaces paired under ( ( 5 ) \ and Z and IF" be linear
spaces paired under (( , ))2. A linear program for these paired spaces is a
quintuple (A, P, Q, y0, *<>). In this quintuple, A is a linear transformation
from X into Z which is w{X, Y) — w{Z, W) continuous, P is a convex cone in X
which is w(X, Y)-closed, Q is a convex cone in Z which is w(Z, ίF)-closed, y0 is
an element of F, and z0 is an element of Z. In the rest of this paper, a pro-
gram will always be a linear program unless otherwise stated. The program
is said to be consistent if there exists x G P such that Ax — z0 G Q. Such an x
is called feasible. The mίwe M of the program is defined by

M = inf {((*, jo))i xeP and ^ x - z 0 e Q }

in case the program is consistent, and by

M= oo

in case the program is not consistent. The program is said to be convergent
if it is consistent, has a finite value and there is a feasible x such that

The dual program is the program (̂ 4*, @+, — P + , — z0, jo) for ίF and Z
paired under 2(( , )) and for F and X paired under i(( , )). The bilinear func-
tionals 2(( , )) and i(( , )) are defined by 2((w, z))=((z, w))2 for all we. W and
z e Z and χ(( j , χ)) = ((χ9 γ)\ for all jG Y and # e X The dual transformation
A* is determined by Lemma 2. It is easily seen that the dual program is
well-defined. The value of the dual program is denoted by M. The dual
program is consistent if and only if there exists weQ+ such that
jo — A*w£ P+. In this case, we have

M' = -swp{((zo,w))2;weQ+ and γo-A*weP+}.

We have easily

THEOREM 6.1} (a) It is always valid that —M'<
(b) The dual of the dual program is equal to the program itself

PROOF, (a) By our convention, it suffices to show the inequality in the
case where both the program and the dual program are consistent. Let x and
w fulfill the following conditions: xeP, Ax — zoeQ; weQ+, γo — A*weP+.

1) [11], Theorem 1, p. 225.
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Then we have

((*, yo))i^((*, A*w))1 = ((Ax, «0)2^((*o, w))2.

The proof of (b) is easily seen.

REMARK 1. By taking φ(x) = Ax — z0 and φ(x)=((x, jo))i, we see that
the linear program (A, P, Q, j 0 , *o) is the convex program (0, φ9 P, Q) in §3
and M=N. Noting that ((x, yo))ι>((Ax, w))2=((χ, A*w)\ for all xeP is
equivalent to j 0 — A*wζ P + , we have by Lemma 3 that —M=Nr.

§ 5. Duality theorems

Let XxR and F x R be paired under the bilinear functional (( , )) defined
by (((x, r), ( j , S))) = ((Λ;, j))i + rs. Let G be the set in Fx R defined by

G={(A*w+y, r-((*<>, w))2); J ^ ^ +

? ^€(? + and rGi?o}

Kretschmer proved

THEOREM 7.2) Lei the program (A, P9 Q, j 0 , ^o) be consistent and have a
finite value M. If G is w(Yx R, Xx R)-closed, then the dual program (A*, Q+,
— P+

5 —zo, jo) is convergent and has —M as its value.

We shall apply Theorem 2 in §3 to the present case. Let Zx R and Wx R
be paired under the bilinear functional (( , )) defined by (((*, r), (w, s)))
= ((*, w))2 + rs. Let iϊ"be the set in Zx R defined by

H={(Ax-z, r + ((x, jo))i); x £ P, z eQ and r€ i?0}

By Remark 1, the set U in §3 can be written as follows:

U={(Ax-z-zo, ((*, jo))i + r); xβP, zβQandrβRo}

= H-(z o,O).

On account of Theorem 2 and Remark 1, we have

THEOREM 8. Let the program (A, P, Q, j 0 ? *o) be consistent and have a
finite value M. If H is w(Zx R, Wx R)-closed, then the dual program (A*, Q+,
— P + , — £0? jo) is consistent and has —M as its value.

This theorem seems to be new in the theory of linear programs.
By means of Theorem 6 (b), we have the dual statements of the above

theorems:

THEOREM 7*. Let the dual program (A*, Q+, — P + , — z0, jo) be consistent

2) [11], Theorem 3, p. 226. Cf. [4], p. 110.
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and have a finite value M. If the set H is w{Zx R, Wx R)-closed, then the pro-
gram (A, P, Q, jo, £o) is convergent and has — M as its value.

THEOREM 8*. Let the dual program (A*, Q+, — P + , — z0, j 0 ) be consistent
and have a finite value M'. If G is w(YxR, XxR)-closed, then the program
(A, P, Q, jo, *o) is consistent and has —M as its value.

Combining Theorem 7 with Theorem 8*, we have

THEOREM 9. Let the dual program (A*, Q+, — P+ , — 20, Jo) be consistent
and have a finite value Mr. If G is w(Yx R, Xx R)-closed, then the dual pro-
gram is convergent.

Similarly we have

THEOREM 9*. Let the program (A, P, Q, j 0 ) z0) be consistent and have a
finite value M. If H is w(Zx R, Wx R)-closed, then the program is convergent.

REMARK 2. The condition that G is w(Yx R, Xx i?)-closed does not neces-
sarily imply that H is w(Zx R, Wx i?)-closed. This will be shown by Example
1 in §7.

§ 6. Sufficient conditions

When one intends to make use of duality theorems in the preceding sec-
tion, one may pose the following problems:

When is the set G w(Yx R, Xx #)-closed?
When is the set Hw(ZxR, WxR)-closed?

In order to study these problems, we define condition (K) and condition (K*)
as follows:

(K) Q has a non-empty s(Z, W)-interior Q° and there exists x€P such
that Ax — zoeQ°.

(K*) P + has a non-empty s(Y, X)-interior (P+)° and there exists w£Q+

such that γo — A*w£(P+)°.

Kretschmer gave the following useful criteria.

THEOREM 10.3) // condition (K) is fulfilled, then G is w(YxR, XxR)-
closed.

THEOREM 10*. // condition (K*) is fulfilled, then H is w(ZxR, WxR)-
closed.

3) [11], Lemma 5 and Theorem 3. It should be observed that the proof of Lemma 5 in [11] is

not complete in case ((* 0, y))x = 0 for all xQ e PΓ\T-\Q°) (p. 223, I. 11 from below). In this case by

taking Λ ^ = ( ( Γ Λ ; 0 , w))2xa + x0 a n d z'a = ((TxQ, w))2za with xoc PΓ\T~1(Q°) a n d we Q + , wφO, we can

complete the proof.
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For simplicity, we denote by Γ and Γ* the totalities of feasible elements
of the program and the dual program respectively:

Γ={xβP; Ax-zo€Q}, Γ* = {wβQ+; yo-A*weP+}.

We have

PROPOSITION 2. Any one of the following conditions (C. 1) and (C. 2) im-
plies condition (K):

(C.I) -z,eQ\
(C. 2) there is xxePsuch that AxλeQ°.

PROOF. Condition (C. 1) obviously implies condition (K). Assume condi-
tion (C. 2). Then there exists a number t>0 such that Axι — tzo<aQ°. Tak-
ing x2 = χι/t, we see x2€P and Ax2 — zo=(Ax1 — tzo)/t €QC ([Γ], p. 51, Corol-
laire 2).

COROLLARY. // z0 € Q° and Γφφ, then condition (K) is fulfilled.

PROOF. Since Γφφ, there exists xλeP such that Axx — z0 € Q. We have

A(xx/2) = (Ax1-zo)/2 + zo/2 e Q°

([1], p. 51, Proposition 15). Thus (C. 2) is fulfilled.

By Theorem 5, we have

PROPOSITION 3. The following condition (C. 3) implies condition (K):

(C. 3) Γ*φφ, - 00 <jkf< 00 and zQeQ°.

REMARK 3. In general, the condition z0 £ Q° is not enough to ensure condi-
tion (K). This will be shown in Example 2 in §7.

For a locally convex Hausdorff topological linear space (E, <g\ we denote
the strong dual of (E, <g) by £*. It is clear that E and £* are paired under
the bilinear functional ((, ))i defined by ((e, e*))i = e*(e) and that £* and E
are paired under the bilinear functional i(( , )) defined by i((e*, e)) = e*(e).

Observe that s(E, E*) = tf if (E, V) is a disk space4) ([2], p. 70, Proposition
5) or metrizable (C2H, p. 71, Proposition 6).

We shall prove

PROPOSITION 4. Assume that Z is a disk space and W—Z^. If Γ* is a
non-empty w(W, Z)-compact set and Q° φφ, then condition (K) is valid.

PROOF. If condition (K) is not valid, then we see by the same argument
as in the proof of Theorem 5 that there exists wιeQ+ such that wiΦO and
((#, A*wι))i = ((Ax, wi))2<:0for all xeP. Hence -A*w1eP+. Taking

4) =espace tonnele.
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we have w+tw\ G /"* for all t G Ro. Since Q° φφ, this contradicts our assump-
tion that Γ* is w( W, Z)-compact.

We have some criteria of another type. In case Q+ = {0}, the equality
G=P+xR0 holds and hence G is w(YxR, Xx7?)-closed. In the rest of this
section, we always assume that Q+φ {0}.

PROPOSITION 5. Let Z be a normed space, let W=Z*, and assume that
{w;weQ+ and |\w\| = 1}5) is w{ W, Z) compact. If Γ* is non-empty and w( W, Z)-
compact, then G is w(YxR, Xx R)-closed.

PROOF. Let {(yα, ra); aeD} be a net in G which w(YxR, XxR)-con-
verges to (y, r) e Yx R. We prove (y, r) G G. There exists wa G Q+ such that
ya — A*wa G P + and ((2:0, w α ) ) 2 ^ —ra. Then there exists a subnet {wa; αG Do}
such that {\\wa\\ αE Do} is bounded. In fact, if we suppose the contrary,
then there exists a subnet {wa\ a^D'} such that ||wα||-*°o along D'. We
set w'a = wα/| \wa 11 and choose a «< ?Γ, Z)-convergent subnet of {w'a a G D'}. We
shall denote it again by {w'a <x G ^ } and let w'o be the limit. Then for any
x G P, we have

and hence —A"w^eP+. Take weΓ*. Then we see easily that w+tw'oeΓ*
for all ί G i?o. Since ||w£|| = 1 and wr

0 G Q+, there is z G Z such that ((*, ^o))2>O.
Therefore we have

((*, w; + tw'Q))2 = ((z, w))2 + K(z, wf

Q))2 -> 00 as ί -> 005

which means that Γ* is not w( W, Z)-bounded. This is a contradiction (£2Γ], p.
65, Theoreme 1). We choose a subnet {wa ;a€D;} of {wa α G Do} which
w(W, Z)-converges to w£Q+. Then it follows that

((zo, w))2 = lim ((zo, wa))2 ΞS 1™ ( — fa) = — T

and

c, Ύα))i — lim((^Λ;, wα))2
D' " D'

for all x G P. Consequently y— A*w eP+ and hence ( j , r)e G.

We define condition (C. 4) as follows:

5) For w e W=Z*, \w\ is defined by sup{|(Cz, w))z\ z e Z and ||.8r|| = 1}.
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(C. 4) Γ*φφ, -oo<M'<oo ?p^{0} and -A*wβ(P+)°

for all w£Q+, wφO.

We shall prove

PROPOSITION 6. Assume that Y and Z are normed spaces, that X= F * and
W=Z* and that {x; x£P and | H | = 1} and {w; wβQ+ and \\w\\ = l} are
w(X, Y)-compact and w(W, Z)-compact respectively. If we further assume
condition (C. 4), then G is w(YxR, XxRyclosed.

REMARK 4. Condition (C. 4) does not necessarily imply condition (K).
This will be shown by Example 3 in §7.

We prove the following lemma under the same assumptions as in Pro-
position 6.

LEMMA 4. Let weQ+ satisfy y—A*weP+. Then we can find w'eQ+

such that w-w' e Q+, ||fl>'||<: -β(y)/δ(A\ ((*<,, w))2>((z0, w))2 and y- A*w' e P + ,
where δ(A) and β(y) are given by

δ(A) = inf inf I ((Ax, w))2 \, β(y) = min(0, inf ((*, j))i).
1*11 = 1 ιw\\=l 1*1 = 1

PROOF. Since ((Ax, w))2 is continuous on {xeP; \\x\\ = l}x{w£Q+ \\w\\ = l}
which is the product of a w(X, F)-compact set and a w( W, Z)-compact set,
it is clear by condition (C. 4) that £(^)>0. We may assume wφO. Suppose
that there is wλeQ+ such that ((z0, wi))2>0. Taking w€Γ*, we see that
w + twi e Γ* for all t G Ro and hence

-M^((zo, w+twx))2 = ((zOi w))2 + t((z0,

Letting t —> oo? we have M' — — oo5 which contradicts our assumption. There-
fore ((z0, w))2<,0 for all weQ+ and hence — zoeQ++=Q by Lemma 1. If
j E P + , then w=0 satisfies the conditions. If γ&P+, then we set

γ = sup ((x, A*w)\ and /?= inf ((x, y)\.
XtΞP X<BP

l* . . = l Γ* - 1

It is easily seen that /9(y) = /9<JO and

-γ='mί((x, -
P

If r^>& then β<: —δ(A)\\w\\ and w itself satisfies the conditions. If γ<β,
we consider w=wβ/γ. We see that w — wfeQ+ and \\w\\<L—β/δ(A). It is
not difficult to verify that y—A*weP+. Since — zoeQ, we have ((z0, w>))2<Ξ
((zo, w))2. Thus w satisfies all the requirements.

PROOF OF PROPOSITION 6. Since G is convex, it suffices to show that G is
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s(YxR, Xxi?)-closed ([2], p. 67, Proposition 4). Let {(yn, rn)} be a sequence
in G which s(YxR, Xxi?)-converges to (y,r)eYxR. Then there exists
wne Q+ such that yn — A*wneP+ and ((z0, wn))2^ —rn> For every wm we take
Wn by Lemma 4. Since s(Y, X)-topology is the topology induced by the norm
on F, {β(yn)} are bounded. Consequently {||fi>ί||} are bounded. Choose a
w( JF, Z)-convergent subsequence, denote it by {wή} again and let w be the
limit. Then we have

((so, w))2 = lim(Cz0, ivή))2^>lim((z0, wn))2

((*, A*tfyh = {{Ax, w'))2 = lim((Ax, w'n))2

for all x e P and hence y-A*wβP+. This means (y,r)e G.
In case Q= {0}, we can not apply some of the above criteria. In this case,

we have

PROPOSITION 7. Let Y and Z be normed spaces, X=Y* and W=Z*. If
z0 € A(P)°, then Gisw(YxR,Xx R)-closed.

PROOF. It suffices to show that G is s(Yx R, Xx 7?)-closed. Let {(yn, rn)}
be a sequence in G which s(YxR, Xxi?)-converges to (y, r)e YxR. Then
there exists wn£Q+ such that yn — A*wneP+ and ((z0, wn))2^>—rn. If we
prove that {wn} is relatively w{W, Z)-compact, then we see (y,r)£G by the
same argument as in the proof of Proposition 6. Let x0 be an element of P
such that Axo = zo. Then we have

— rw<^((z0, wn))2 = ((Axo, wn))2 = ((xo, A*wn))i<>((xo9 yn))

and hence {(( 0̂, wn))2} are bounded. Since z0e.A{P)0, it is easily seen that
{((#, wn))2} are bounded for every z € Z.

The dual statements of the results in this section are also valid.

§ 7. Potential-theoretic linear program

In this section, we shall study how the preceding theory is applied to
the potential-theoretic duality problem treated in [13]. Let E and F be com-
pact Hausdorff spaces, M(E) be the totality of Radon measures of any sign
on E, M+(E) be the totality of non-negative Radon measures on E, C(E) be the
totality of finite real-valued continuous functions on E and C+(E) be the sub-
set of C(E) which consists of non-negative functions. We use this notation
in the rest of this paper.
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We set

X=M(E\ Y=C(E\ Z=C(F) and W=M(F).

It is easily seen that X and Y are paired under the bilinear functional (( , ))i
defined by

(((7, ^ ))1 = \ gdσ for allσeXand gβY,

and Z and W are paired under the bilinear functional (( , ))2 defined by

((/, Γ))2 = \fdv for all fe Z and rβW.

Let Φ(u, v) be a continuous kernel, i.e., a finite real-valued continuous func-
tion on Ex F and let A be a linear transformation from X into Z given by

= φ(σ9 •) = \ 0(H, -)dσ(u).

The linear transformation A is w{X, Y)—w(Z, W) continuous and A* is given
by

A*r = Φ( , r) = \ Φ( , v)dτ(υ).

Let g o be an element of C(E) and f0 be an element of C(F).
Set

It is clear that P is a w(X, F)-closed convex cone in X and that Q is a w(Z, j^)-
closed convex cone in Z. In this way, the program (A, P, Q, go, /o) is well-
defined.

Following [1SJ, we introduce two families of measures:

Λ = {//•; μβM+(F) and Φ(u, μ )<,go(u) on E}9

Jί' = {v v β M+(E) and Φ(v, v) >fo(v) on F}.

Then it is valid that Jί = Γ* and Jί'=Γ. The program (̂ 4, P, ^, go, f0) is con-
sistent if and only if Jί1 Φφ. The value of the program is equal to

M = M ' 0 = i n f |\ g o d v ; v β a

The dual program (̂ 4*, Q+, — P+, — /0, go) is consistent if and only if
The value of the dual program is equal to

6) As to notation, note that g0 (/„ resp.) and MQ (MO resp.) in this section play the roles of g (f
resp.) and M' (M resp.) in [13].
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The sets G and Hin §5 are written as follows:

H=\(φ(v, •)-/, r+ \ godv) v β M\E\ fe C\F) and reR0}

By Theorem 9, there exists μE.^ such that Mo — \fodμ provided that

Jίφφ, —oo<ikf0<oo and that G is w(YxR, Xκiϋ)-closed. This is a gene-
ralization of Theorem 2 in [13].

From Theorems 7* and 8*, we derive an extension of Theorem 3 in [13],

THEOREM 11. Assume that Jΐφφ and —oo<M0<oo. If we further as-
sume either that G is w(Yx R, XxR)-dosed or that His w(ZxR, WxR)-closed,
then we have Jί>' φφ and MO = M'O.

Next we are concerned with sufficient conditions given in §6. The topo-
logy s(Z, W) is the topology induced by the norm on Z defined by ||/|| =
sup {\f{v)\;υ€F}. Conditions (K) and (K*) may be stated as follows:

(K) There is v e M\E) such that Φ(», )-/o>O.

(K*) There is μ € M+(F) such that g0 - Φ(-, μ) > 0.

In order to complement the remarks in §5 and §6, we give some examples.

EXAMPLE 1.7) Let F= {1} and E— {TV, ω} be the Alexandroff one point
compactification of the discrete space N of all natural numbers. Let /0(l) = l,
go(n) = l/n2, go(ω)^O and define Φ by Φ(n, ΐ)=l/n, Φ(ω, l)=0. Then we have
M0 = MΌ = 0. We see by Theorem 10 and Proposition 3 that G is w(YxR, Xx in-
closed. Since the program (A, P, Q, gθ9 f0) is not convergent, we see by Theo-
rem 9* that ϋΠs not w(ZxR, WxR)-closed.

EXAMPLE 2. Let E and F be the compact interval [Ό, 1] in the real line,
0 = 0, /o = l and go = l. Then we see that Φ(v, •)— /o=— 1&Q° for any veP.

EXAMPLE 3. Let E and F be the same as in Example 2, Φ— — 1, / 0 = 0
and #> = 1. Then uT={0}, Jί = M^{F) and Φ{v, )~/o= -v(E)$Q° for all

As in [[13], we consider the following conditions relative to Φ, f0 and g0:
(i) / 0 > 0 o ^ F ,

7) [17], Example 3.
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(ii) there is uo£E such that Φ(u0, )>0 on F,

(iii) f0<0onF,

(iv) Φ<0 on ExF,

(v) g0<0onE,

(vi) there is vo£F such that Φ( , vo)<O on E,

(vii) go > 0 on E,

(viii) Φ>0 on ExF.

Clearly any one of conditions (ii), (iii) and (viii) implies condition (K), and

any one of conditions (iv), (vi) and (vii) implies condition (K*) (Proposition 2).

In case Jίφφ and — oo<M0<c>o? condition (C. 3) is equivalent to condition (i)

and hence condition (K) follows from condition (i) by Proposition 3. In case

Jίφφ and — oo<M0<c>o5 condition (C. 4) is led by condition (iv) and hence

condition (iv) implies that G is w(YxR, Xxi?)-closed (Proposition 6). Condi-

tion (K*) is derived from Jίφφ and condition (v). This is the dual result of

the corollary of Proposition 2.

Thus we have

PROPOSITION 8. Assume that Jίφφ and — oo<M0<oo. If one of condi-

tions (i)-(viii) is satisfied, then Jί1 Φφ and M0 = MQ.

PROPOSITION8*. Assume that Jί'Φφ and —oo<M'Q<oo. If we assume

one of conditions (i)-(viii), then we have Jί φφ and Mo = M'o.

REMARK 5. In the case where E—F, the following condition (ix) also im-

plies condition (K):

(ix) 0^>0 on ExF and Φ(u, u)>0 for every U€LE.

This is an immediate consequence of Kishi's existence theorem in QIO] and
Proposition 2 (cf. §11).

§ 8. Lower semicontinuous kernel

In this section, we extend Proposition 8* in a form similar to Ohtsuka's
duality theorem in [13].

Let Φ be a lower semicontinuous kernel on ExF, i.e., a lower semicontinu-

ous function on ExF which takes values in ( —oo5 ocQ. Let g0 be a bounded

Borel function on E and f0 an upper semicontinuous function on F which does

not take the value + oo. We define ^#, Jίf, Mo and Mf

Q in the same way as in

§7. It is easily verified that M0<1MQ.

We shall prove

THEOREM 12. Assume that Jί''φφ and — OO<MQ<OO. / / there exists
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ι>o eM+(E) such that Φ(v0, v)— fo(υ)>O on F, then Jίφφ and M'0 = M0

= \fodμ for some μ e Jί.

PROOF. First we consider the case where Φ and f0 are continuous. Let
X, Z, ΪF, P, Q, *o, A and ( ( , ))2 be the same as in §7. Take for Y the class
B(E) of all bounded Borel functions on E and take g0 for j o Then X and Y
are linear spaces paired under the bilinear functional ( ( , ))x defined by

((<r5 g)\= \ gdσ for all σe X and geY.

In this way, the program (A, P, Q, j 0 ? z0) is well-defined. Since condition (K)
is fulfilled by our assumption, our assertion follows from Theorems 7 and 10.

Secondly we consider the case where f0 is continuous but Φ may not be
continuous. Let D be the directed set of continuous functions not greater
than Φ. We use the notation JtΨ^ Ji'ψ, MΨ = M0Ψ and Mψ = M'oΨ when ΨeD
is taken as a kernel. If Ψ,ΨfeD and Ψ <; ¥\ then Jί C Jίw C ΛΨ and Jί'ψ C
Jt'ψ-CJί'. Hence {MΨ} and {Mψ} are decreasing along D and lim M^^MQ.

D

We can show that there exists ¥o<ED such that Φ(»o, v)—fo(v)>O on F for

all ΨeD, ¥^¥0. In fact, wri t ing V¥= {v vβF and ¥(v0, v)-fo(v)>O} for

¥£D,we see that VΨ is open, that VΨCVΨ> \ί¥<,¥f and that F - w { F r ΨeD}.

Since F is compact, there is a finite subset Do of Z) such that F= \j { VΨ SΓGi)o}.

It suffices to take the upper envelope of Do for ¥0. Thus we see that Jt'ψφφ,

-oo<7k^<oo and condition (K) is satisfied for ¥eD, ¥^¥0. Then it fol-

lows from the first step that Jίψφφ and Mψ = Mψ=\fodμΨ for some

We show that {μΨ(F)\ ¥eD, ¥^¥0} is bounded. Suppose that
along a subdirected set Dr of D. We set \ψ = μΨ/μr(F) and choose a vaguely
convergent8) subnet of {XΨ *̂ e D'}. We denote it again by {\r ¥ e D'} and
let λ0 be the limit. We have

Ψ'(u9\ψ)<L\

for all Ψ9 ¥' e D'9 ¥' <; ¥. Hence

Φ(u, λ0) =

and

[f0d\0 = lim( \fodμΎ) / μΨ(F) = limMΨ/μΎ(F) = 0.

We have

8) The topology w{M{F\ C(F)) is the vague topology on M{F). Gf. [3].
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(h v)d\0(v)

which is a contradiction. Now we choose a subnet {μΨ Ψ e Df} of
{μΨ\ ΨeD, ¥^>Ψ0} which converges vaguely to μoeM+(F). We observe
that μ^eJί and

Ώ'
ψ= \im\fodμψ=

and hence M'o = Mo = \fodμo.

Finally we consider the general case where f0 may not be continuous. We
consider the directed set H of continuous functions h not smaller than f0 and
use the notation f̂Λ) u?'h, Mh = MOh and M'h = M'^h when heH is taken as / 0 .
{Mh} and {Mf

h} are decreasing along H and the inequalities Mh^>M0 and
M'h I> Mr

0 hold. By the same argument as in the second step, we see that there
ishoeH such that Φ(v0, υ) — h(v) > 0 on F for all h e H, h ̂  h0. Hence for Λ, e H,

h<;ho, we infer that JthΦΦ and M/

h = Mh = \hdμh for some μhe^. We can

prove as in the second step that {μh(F)\ heH, h<,h0} is bounded. Choose a
subnet {^ heH'} of {μ Λ; Λ G # , h^h0} which converges vaguely to
μ0 e M+(F). Then it follows that μ0 e Jί and

Mo <J lim \Λ<i/χ.Λ ^ lim \hfdμh = \hrdμQ

H' J H' J J

for every A/ G if, and hence

This completes the proof.

Making use of Theorems 8* and 10 and Proposition 3 in the first step of
the above proof, we can prove

PROPOSITION 9. Assume that Jίφφ and — oo<M0<c>o. If we assume

that /o>0 on F, then Jίf Φφ and M'0 = M0= \fodμ for some μe Jί.

This is an extension of Theorem 4 in

§ 9. Duality theorems of the Minkowski type

Hustad [β~] obtained duality theorems of the Minkowski type and showed
some applications of them. We here give a simple proof for his theorems.
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Let μ0 be an element of M+(E\ g be an element of C(E) and P be a convex
cone in C(E). Hustad gave

THEOREM 13. Suppose that one of the following conditions is true:
(1) g>0onE,
(2) P contains a strictly negative function.

Then the following equality holds:

*wp{μo(f);feP,f<ίg}= mm {μ(g); μeM\E\ μ^μ0 on P}.

PROOF. Let us take

X=Z=C(E\ W=M(E\ Q = C+(E) and zo=-g.

Then Z and W are linear spaces paired under the bilinear functional (( , ))2

defined by ((/, μ))2 = μ(f) for all feZ and μ£ W. Let A be a linear trans-
formation from X into W defined by Af=—f, ψ(f)=Af—z0 and φ(f) =
— μo(f). In this way, the convex program (0, φ9 P, Q) is well-defined. It is
easily seen that N= inf {φ(f); feP, Af-zoeQ} and Nf = sup {((*<,, w»2;
w<EQ+, ((Af, w))2^φ(f) on P} are finite. By condition (1), we have Af—z0

= gβQ° for / = 0 . By condition (2), there exists / 0 G P such that / 0 < 0 .
Since Eis compact, there is a positive number t satisfying ί(max{/0(iί); ueE})
<min{g (ιθ; ueE}. We have ί/ o eP and A(tfo)-zo=-tfo+g€Q°. Since
Q+ — M+{E\ our assertion follows from Theorem 4.

§ 10. Application to the theory of capacities

Recently Ohtsuka [14] showed that Kretschmer's duality theorem is ap-
plied to the theory of capacities in the potential theory. We follow these
lines and apply our duality theorem to a problem similar to the one in [14].

Let E and F be compact Hausdorff spaces, B(E) the metric space of
bounded Borel functions on E given the distance sup|/— g\ for / , g£B(E),
and B+(E) the subset of B(E) which consists of non-negative functions. The
strong dual of B(E) is denoted by £(£)*. Note that B(E)* contains the set
M(E). Let Φ(u, v) be a lower semicontinuous kernel on ExF and m be a non-
negative Radon measure on E.

We assume the following two potential-theoretic conditions:

(PT. 1) Um(v) = J0(H, v)dm(u) β C(F\

(PT. 2) [φ(u, υ)f(u)dm(u)eC(F) for every fe B(E).

We shall prove
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THEOREM 14. Let gbe an element of C(F) such that g>0. If the value

sup I \ gdv \> e M+(F\ \ Uvdm<L m(e) for every Borel set e C E\ is finite, then
U J e )

we have

maxj\ gd\>\ veM+(F), \ Uvdm<,m(e) for every Borel set eCE>
U J e )

= inf l\fdm;feB+(E\ \Φ(u, v)f(u)dm(u)^ g(u) on

where

Uv(u)= {φ{u, υ)dv{v).

PROOF. We set

X=B(E\ Y=B(E)*, Z=B(F\ W=B(F)*, P=B+(E\ Q=B+(F).

Then X and Y (Z and W resp.) are linear spaces paired under the natural
bilinear functional (( , ))i ((( , ))2 resp.) mentioned in §6. Define Af for f€X
by

Af{y) = \ Φ{u, v)f(u)dm(u).

Take 77i for γoeY and g for z0 e Z. Then the quintuple (A, P, Q, yθ9 z0) is a

program by our assumption. In case ΰ£M(F\ ((A, σ))2 signifies \ hdύ for

every he B{F). For every we W=B(F)*9 there exists a unique Radon meas-

ure σ such that ((A, w))2 is equal to \hd(j for all AG C(F). If a measure be-

longs to <2+, then it is non-negative, i.e., M(F)Γ\Q+ = M+(F). We have by

condition (PT. 2)

, A*w)\ =

(w, v)f(u)dm(u)dσ(v) = [fUσdm

for all / e 5(£). Since zo = ge C(F)r\Q° and the value

- M = sup {((so, w))2 w 6 Q+, ((/, jo - ^*w))i :> 0 for all / e P} is finite by
our assumption, our assertion follows from Theorems 8*, 9 and 10 and Pro-
position 3.

We consider the case where E—F is a compact set K in R3 and Φ is the
Newtonian kernel, i.e., Φ(u, v) = l/\u — v\. Let m be the restriction of
Lebesgue measure in R3 onto K. Then conditions (PT. 1) and (PT. 2) are
fulfilled (cf. [14]). We have
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COROLLARY. If the value sup {*<£); vβM+(K\ UV<1 a.e. on K}2) is
finite, then

max {v(K); v e M+(K\ Uv <: 1 a.e. on K}

= inf {μ(K); μζ M+(K\ μ is absolutely continuous, Uμ^>l on K}.

Next we shall consider another application of our results to the theory
of capacities. Let l<Sp^°° and l/p + l/q = l. Assume that there exists
me M+(E) whose support is equal to E. We use usual norms || \\p and || \\q

on L\E, m) and LQ(E, m).
Fuglede [βj proved the following theorem by making use of a generalized

minimax theorem.

THEOREM 15. Assume that Φ is a non-negative lower semicontinuous kernel
on ExF which satisfies the condition that for every vζF there exists u€E such
that Φ(u9 v)>0. Then

max

= mί{\\f\\p;feL;(E, m\ Φ(fm, ) ^ 1 on F}.

We remark here that this theorem can be proved by a generalized duality
theorem. We only consider the case where Φ is a continuous kernel. For
the general case, we may repeat the same argument as in §8. We set

W=M(F\ P=L+

p(E,m\ Q=C\F),

<p(f)=\\f\\p and

where Af=Φ(fm, •) and z0 is an element of C(F) such that zo(v)=l for every
v e F. Z and W are linear spaces paired under the bilinear functional ((, ))2

defined in §7. Thus the convex program (0, <p, P, Q) in §3 is well-defined.
Since N'= sup{//•(£); μeM+(F) and ||0( , μ)\\Q<,l} is finite and zoeQ°, we
have the desired equality by Theorems 4 and 5.

Note that the hypothesis on the kernel assures that Nf is finite.

§ 11. Existence theorems in potential theory-

Let 2? and Fbe compact Hausdorff spaces, G(u, u'\ Φ(u, v\f(u) and g(υ)

be real-valued continuous functions on ExE, ExF, E and F respectively. A

measure will always be a non-negative Radon measure on E or F. For a

measure μ, we denote the support of μ by Sμ. In this section, we shall be

concerned with the following two problems:

9) a.e. = almost everywhere with respect to m.
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PROBLEM I. Do there exist measures μ on E and v on F satisfying

(I. 1) G(u, μ) + Φ(u, p)^>f(u) on E,

(I. 2) G(u, μ) + Φ(u, v)<,f(u) on Sμ,

(1.3) @(μ, v)<Lg(v) on F,

(I. 4) Φ(μ, v) = g(v) on Sv ?

Let E consist of a finite number of mutually disjoint compact sets {Ek},
k = l, ••, n, h be a real-valued continuous function on Fand {ί̂ } be numbers.
We define hk by hk = h on £Λ and hk = 0 on the complement of I?* in £.

PROBLEM II. Do there exist a measure μ on E and numbers {r*} satisfy-
ing

(II. 1) G(u, μ)+ ΣϊMu)^f(u) on E9

n

(II. 2) G(w, ŷ  )~l~ Σϊkhk(u)^f(u) on »S/z ,

(II. 3) \hkdμ = tk (k = l, ' ,n) ?

These problems are closely related to the conditional Gauss variational
problem treated in [12], [14] and [16]. In the case where G is symmetric,
i.e., G(u, u')=G(u\ u) for all u, u'eE, Problems I and II (in a more general
form as in Remark 8 below) were studied by Ohtsuka [14] by means of the
Gauss variational method. However this method can not be applied to our
problems, since G is not symmetric. We use Glicksberg-Fan's fixed point
theorem and generalized duality theorems obtained in §5 and §6 in the pre-
sent paper.

First we study Problem I. Let Jt be the set of measures λ on E satisfy-
ing

Φ(λ, v)<Lg(υ) on F.

We have

THEOREM 16. Assume that g>0 on F and that Jί is vaguely compact.
Then Problem I is solvable.

PROOF. It is easily seen that Jί is a non-empty vaguely compact convex
set. For a measure μ on E, we set

fμ(u)=f(u)-G(u,μ).

We define a point-to-set mapping φ: μ -> φ(μ) on Jί by
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fμdλ = MΛ, where Mμ = sup\\fμdr; τ £ -

Since G(u, uf) is continuous, φ(μ) is non-empty and convex, and the mapping
φ is closed in the following sense: If nets {μa aeD} and {λa;aeD} (D is
a directed set) converge vaguely to μ and λ respectively and λaeφ(μa) for
any aeD, then λe φ(μ). Consequently by Glicksberg-Fan's fixed point theo-
rem ([5], [7J) there exists a measure μ0 € ^f such that μ0 € φ(μo).

Since #>0 on Fand M^ is finite, there exists a measure v0 on F such

that Φ(u, vo)7>fμΌ(u)on E and M^ 0=(grdv 0=min|\^;(ί(M, v)^fμQ{u) on £ j .

In fact, we see that //io and g play the roles of f0 and g 0 in the programs in
§7. Since the condition that g>0 on F implies condition (K*), our assertion
follows from Theorems 7* and 10*. By the relation

we see easily that μ0 and v0 satisfy (I. 1)-(I. 4).

REMARK 6. Let μ and v be a solution of Problem I. If g>0 on F and
there exists u0 G E such that f(uo)>O, then μφO by (I. 1) and (I. 4).

In the case where F={v}, g(v) = l and f(u) = Φ(u, v)=l for every u<EE,
the assumptions in the above theorem are satisfied. If G(u, uf)^0 and
G(u, u)>0 for every u, u £E, then we see easily by Theorem 16 and Remark
6 that there exists a measure μ on E such that

G(u, μ)>l on E,

G(u, μ)<:l on Sμ.

We shall call this result Kishi's existence theorem see [10].

REMARK 7. We shall show by an example that Problem I has not always
a solution if we omit the condition g*>0 on F. Let E and F be the interval
[0, 1] in the real line, G=l, f(u)=u + l, Φ(u9 v)=uv and g(v) = v2. If there
exist measures μ and v which satisfy (I. 1)-(I. 4), then μ=ae0 and v = bε0 with
α^>0 and ό^O by (I. 3) and (I. 4), where ε0 is the unit point measure at x = 0.
This contradicts (I. 1) and (I. 2).

We can weaken the compactness condition for Jί as follows:

PROPOSITION 10. Assume that G>0, />0, g>0 and Φ^>0. Then Problem
I is solvable.

Next we shall study Problem II.
We have

THEOREM 17. Assume that h>0 on E and tk>0 for every k. Then Prob-



Duality Theorems in Mathematical Programmings and Their Applications 353

lem II is solvable.

PROOF. Let & be the set of measures μ on E satisfying \hkdμ = tk for

every k. Then & is vaguely compact and convex. By the same argument as
in the proof of Theorem 16, we see that there exists a fixed point μoE^ of
the point-to-set mapping φ: μ -> φ(μ) on & defined by

where Mμ=msx\\fμdv; vβ^y and fμ(u)=f(u) — G(u, μ).

We shall show that there exist numbers {rk} such that

Σrkhk(u)^f(u) on E and \fμdμo=Σ1rk\hkdμo.

Set X=M(E\ Y=C(E\ Z= W=R\ P=M+(E\ Q= {0}, γo= -fμo and zo = (-tu

.., — tn). X and Y are paired under the natural bilinear functional (( , ))i (cf.
§7). Z and W are paired under the bilinear functional (( , ))2 defined by
((*, w))2 = zw, where zw means the inner product of z e Rn and weRn. Let A
be the linear transformation from X into Z defined by

dμ, ..., —\hndμ).

Thus the program (A, P, Q, y0, ô) is well-defined. Since the value of the

program is equal to MμQ=\fμQdμ0 and zoeA(P)°, our assertion follows from

Theorem 7 and Proposition 7. It is easily seen that μ0 and {rk} satisfy (II. 1)-
(II. 3).

COROLLARY. There exist a measure μ on E and a real number r satisfying
(1) G(u, μ) + r^f(u) on E, (2) G(u, μ) + r<ίf(u) on Sμ and (3) μ(E) = l.

REMARK 8. It is easily seen that Problem II is a special case of the
following problem which was discussed in \Jί4Γ\ in the case where G is sym-
metric :

PROBLEM IΓ. DO there exist a non-negative Radon measure μ on E and
a signed Radon measure v on F satisfying

(IΓ. 1) G(u, μ) + Φ(u, v)^f(u) on E,

(IΓ. 2) G(u,μ) + Φ(u,»)<;f(u) on Sμ,

(IΓ. 3) Φ(μ, v) = g(υ) on F ?

This problem seems however to be beyond the application of the duality theo-
rems in this paper. In fact, if we study Problem IΓ by the same method as
in the proof of Theorems 16 and 17, then we need a new duality theorem
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which is valid in the case where the constraints are given by equalities.
Though we can transform equality constraints into inequality constraints as
in the classical case, we can not apply most of the criteria in §6 to this case.
Needless to say, equality constraints correspond to the condition Q= {0} or
p+={0} in the programs. The answer to Problem IΓ in [14Γ\ is not there-
fore yet complete, a remark with which Professor Ohtsuka has been kind
enough to say that he agrees.

§ 12. Appendix

As remarked in the introduction, our main theorem is a converse of
Kretschmer's duality theorem. In this section, we give a converse of Dieter's
strong duality theorem in [4].

Let X be a real locally convex linear space and X* be the strong dual of
X. Let C and D be convex sets in X, f(x) a convex function on C and g(χ)
a concave function on D. We recall some definitions in Q4Γ|.

[/, CD = {(r, x);xβC, r^f(x)}CRxX,

/*(**) = sup {χ*(χ)-f(χ); x e C}9

C* = {x* e X* /*(**)<«>},

[#, D~]= {(r, x); xeD, r^g(x)}CRxX,

g*(x*) = inf {**(*)- gtol * € D},

D*={x*eX*; #*(**)>-°o}.

It is well-known that/*(#*) is a convex function on C* and g*(χ*) is a con-
cave function on D*.

We set

V= sup {g(χ)-f(χ); x e CίΛD} if CίλDφφ,

V=-oo if cr\D = φ,

V*=mfif*(x*)-g*(x*);x*€C*Γ\D*y if C*Γ\D*φφ,

F*=oo if

Dieter proved

THEOREM 18 (strong duality theorem). Let Q/, C] and [^g, D] be closed.
If V is finite and if the set S is weak* closed, then V— V*= min {/*(Λ*)
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We shall prove

THEOREM 19. Let [_f, C~] and £g9 D~] be closed. If V* is finite and if the
set S is weak* closed, then the equality V= V* holds.

PROOF. Since V* is finite, we see that (F* + ε, 0)6 S and (F*-ε ,
for every ε>0. Let ε be an arbitrarily fixed positive number. Since S is
weak* closed and convex, there exist (si, x{)€RxX and ctiER, by a well-
known separation theorem, which satisfy

for all (r, χ*)e 5. From the fact (F* + ε, 0)6 5, we derive si>0. Writing
a=ctι/sι and χ=—χi/su we have

V* —ε<α:<> — x*(x)

for all (r, **)6S. By the relation {(/*(*?)-#*(*?), Λ?-Λ;J); ^
Λ:̂  6 X)*} C 5, we have

for all x* 6 C* and Λ;̂  6 D*. Making use of the fact that

/(*) = sup {*?(*)-/*(*?); ^?

and

([4], p. 99, Hilfssatz 7), we have a+f(χ)<^g(χ\ which implies xeCίλD.
Consequently V* — ε<a^g(χ)— /(#)<! V. By the arbitrariness of ε, we
have V* <ί V. The converse inequality is always valid ([4], p. 102).

COROLLARY. Let Q/, C] and Qg , Z>] 6β closed. If V* is finite and if the
set S is weak* closed, then there exists x*ζC*Γ\D* such that V*=f*(χ*)
-g*(χ*).
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