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Introduction

In order to extend Fatou’s and Beurling’s theorems to arbitrary Riemann
surfaces, Z. Kuramochi introduced ([4]; also see [5]and [7]) two notions
of function-theoretic separative metrics, i.e., H. B. and H. D. separative met-
ries.

Since extended Fatou’s and Beurling’s theorems are stated in terms of
compactifications of an open Riemann surface, we shall define separative
compactifications rather than separative metrics. In this paper we shall give
necessary and sufficient conditions for a compactification to be H. B. or H. D.
separative, in terms of the Wiener or the Royden compactification, respec-
tively. Our characterizations are given in a simple form compared with the
original definition by Z. Kuramochi and may make it easier to comprehend
the meaning of these notions.

In §1, we shall discuss compactifications of a hyperbolic Riemann sur-
face R. §2 (resp. §3) is devoted to the study of harmonic measures (resp.
capacitary potentials) which were defined by Z. Kuramochi ((8]). We shall
investigate their properties on the Wiener or the Royden boundary of R. In
§4 (resp. §5), we shall give our main theorems on H. B. (resp. H. D.) separa-
tive compactifications and study the relation between H. B. and H.D. separa-
tive compactifications (§5).

As an application, we shall show in §6: 1) for Fatou’s theorem, Kura-
mochi’s result (4], [57], [7]) and Constantinescu and Cornea’s result (Satz
14.4 in [ 27]) are equivalent; 2) for Beurling’s theorem, Kuramochi’s result
(47, (57, [7) is independent of a similar result by Constantinescu and Cor-
nea (Satz 18.1 in [ 27]).

Notation and terminology

Let R be a hyperbolic Riemann surface. For a subset 4 of R, we denote
by 04 and A’ the (relative) boundary and the interior of A4 respectively. We
shall call a closed subset F of R regular if 0F consists of at most a countable
number of analytic arcs clustering nowhere in R.

An exhaustion will mean an increasing sequence {R,};_, of relatively
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compact domains on R such that QR,,zR and each AR, consists of a finite

n=1
number of closed analytic Jordan curves.

A subset 4 of R is called polar if there is a positive superharmonic func-
tion s on R such that s(a)= + o at every point @ of 4. A polar set is locally
of Lebesgue measure zero. We shall say that a property holds ¢.p. on a set
E if it holds on E except for a polar set.

Let u be a harmonic function on R such that ir}gf ©=0 and sgp u=1. For

each a (0<a<l), weset ,={z€ R; u(z)=a}. If Fis a regular closed set
in R, then there is a set E of at most a countable number of « in (0, 1) such
that FN\ 2, is a regular closed set in R for each « in (0, 1)—E.

§1. Compactifications

1.1 Definition of compactification

If R* is a Hausdorff compact space and if there is a homeomorphism of
R into R* such that the image of R is open and dense in R*, then we may
identify the image of R with R and call R* a compactification of R. 4=R*—R
is called an ideal boundary of R.

Let Q be a family of bounded continuous (real valued) functions on R.
If a compactification R* of R satisfies:

1) every f € Q can be continuously extended over R*,

2) (Q separates points of 4=R*—R,
then R* is called a Q-compactification of R. It is known (cf.[2]) that a Q-
compactification always exists and is unique up to a homeomorphism. Thus,
it will be denoted by R} and its ideal boundary by 4.

We refer to [ 2] for the definitions and properties of the Martin compacti-
fication R}, the Kuramochi compactification R¥, the Wiener compactification
R}, the Royden compactification R} and harmonic boundaries 7w, I'p.

For any subset 4 of R, we shall denote by A™ (resp. AY, 4", A”) the
closure of 4 in R* (resp. R}, R}, R}).

Let R} and R} be two compactifications of R. If there is a continuous
mapping of RF onto R¥ whose restriction on R is the identity mapping, then
we shall say that R} is a quotient space of R¥. It is known ([2]) that, if
Q:CQ, then R} is a quotient space of Rf,. Hence R}, R} and R} are quoti-
ent spaces of R}. Furthermore, R} is a quotient space of R}.

1.2 Dirichlet problems

Let R* be a compactification of R. Given a function f (extended real
valued) on 4, we consider the following classes:
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superharmonie, bounded below on R,
Ir=1s; U{eol,
lim s(a) = f(£) for any ée€ 4

a—~E

éf: {s; _Sea—f}9

where oo means the function which is equal to 4 oo everywhere on R. We
define Hy(a)=inf{s(a); s € 3;} and Hi(a)=sup{s(a); s€ I;}. It is known
(Perron-Brelot) that A, (resp. H,) is either harmonic, =+ o or =—oco. If
H;= H; and are harmonic, then we say that f is resolutive and H;=H;=H;
is called the Dirichlet solution of f (with respect to R*).

If any finite continuous function on 4 is resolutive, then R* is called re-
solutive. It is known that a Q-compactification R} of R is resolutive if and
only if Q consists of bounded continuous Wiener functions (cf. [2]). Hence
R¥, R¥, R}, and R} are resolutive. We denote by w=w, the harmonic mea-
sure on 4y at a € R and note that the support of o is equal to I"w.

1.3 Some special examples of Q-compactifications

Example 1. Let R be the unit disk {z; |z] <1} in the complex plane. Let
wq be the harmonic measure of the half circle {e’’; || <r/2} with respect
to Ratae R. We take {w,} for Q. Then

a) R} is a metrizable resolutive compactification,
b) R¥ is not a quotient space of R3.

Example 2. Let R be a Riemann surface which belongs to Oxp—Opys.
Then it follows from Folgesatz 11.5 in [27] that I'p consists of only one point,
say b, and I'w contains at least two distinct points, say a, and a;. Then there
is a bounded continuous Wiener function f on R such that limf(e)=1 and

a—a;

limf(a)=0. Now we set g=3max(min(f, 2/3), 1/3)—1 and take {g} for Q.
Then
a) R} is a metrizable resolutive compactification,

b) R% is not a quotient space of R}.

§2. Harmonic measure and Wiener boundary

2.1 Dairichlet problems on an open set

Let R* be the one point compactification of R. Let G be a domain on R.
Given a function f (extended real valued) on 9G, we define the function f* on
G*—G which is equal to £ on 9G and 0 on G*— R if G is not relatively compact
in R. We may consider G* as a compactification of G and set Af=H, and
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H¢=Hp. If Hf=H¢ and are harmonic, then we say that f is resolutive with
respect to G and call H¢=Hf = H¢ the Dirichlet solution of f. If G is an open
subset of R, then we decompose G into connected components {G;}. Given a
function f (extended real valued) on 9G, we denote by f; the restriction of f
on 9G; and define Hf=H¢ and Hf=HE: on G;. If each f; is resolutive with
respect to G;, then we call f resolutive with respect to G and write H?:FIfG
=Hf. If {f.,};-, is a monotone sequence of resolutive functions with respect
to G and {Hf} converges, then the limit function f=lim f, is resolutive with

respect to G and Hf =lim Hf. -

N—o0

2.2 Reduced functions

Let F be a closed set in R and let s be a non-negative superharmonic
function on R. We consider the following function

sp=inf {v; superharmonic =0 on R, v=>s q.p. on F}.
Then sr is superharmonic on R and 0 <sp<s.
The following properties are known (cf. [2]):

(Al) sp=HEFon R—F and sr=s on F except for irregular boundary
points of R—F.

(A2) If FiCF, and s;<s,, then (s))r, =(s2)r,.

(A3) If FiCF,, then sp, =(sp,)r,=(sr,)r,.

(A4) (ays1+azse)r=ai(s1)r+as(se)r (a1, az=0).

(A5) sp,ur,+Sp,Ar,=sp,+5F,

2.3 Prorosition 1. Let {F,}7-, be a sequence of closed sets in R such
that F,OFp (n=1,2, ...) and f\lﬁ‘nsz. Set u=1lim1s, and 2,={z€R;

u(z)=za} (0<a<l). Then
(a) 4f F s a closed set in R such that F> F, for some no,then up=u on R,
(b) tf u s positive, them supu=1 for each n,
Fn

(¢) lim1p,_g=0 for each c,

(d) ’:!; =u on R for each .

Proor. (a) Since FOF, for n_>n,, it follows from (A3) and (Al) that
1p, = Hﬁ;f on R—F (n = ny).

Since 15, decreases to u as n— oo, we have u=HF ¥ on R—F. Since the set
of irregular boundary points of R—F is polar (cf. Satz 4.7 in [27]), we have
ur=u q.p. on R by (Al). Hence ur=u on R.
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(b) Set K,=supu for each n. Then K, decreases with n. Since u is
Fan
positive, K, is positive. By (a), we have
u = uFmgKmlpmgKnlpm on R

for m>n. By letting m — oo, we have v <K,u on R. u>0 implies K,=1.
(¢) We may assume that u is positive. Set v,=1lim1r _,:. Suppose v,

Nn—o0

is positive for some a. Then, by (b),

1=supv,<supu<a<l.

Fa— 2% Fn—0%

This is a contradiction. Thus v,=0 for each a.

(d) We may assume that u is positive. We note that limur o <
lim1lp _g,=0by (c). Since u=up, o, =ug,+ur, o, —>ug, a8 n—>oo for each
N—o0
a, we have u < ug, =u on R for each a.

Remark. This proposition is a generalization of a result given by Z.
Kuramochi ([37).

2.4  Harmonic measure on Wiener boundary

Let R* be a compactification of R. Let u be a non-negative superharmo-
nic function on R. Given a closed subset 4 of 4, we consider the following
class:

superharmonic >0 on R, v=>u on UNR
I rr = {03
for some neighborhood U of A4 in R*
Then the function
us=1inf {v; v € 3% p:}
is harmonic on R and 0 <u, < u.

The following lemma is due to M. Brelot [17]:

Lemma 1. A metrizable compactification R* of R is resolutive if and only
1f (14)p=0 for any mutually disjoint compact subsets A and B of 4=R*—R.

Lemma 2. If A is a closed subset of dw, then 1,=w(A).

Proor. It is easy to see that 1,=H,, where ¢, is the characteristic
function of 4. On the other hand, it follows from Hilfssatz 8.3 in [2] that
Hy =w(4). Hence 1,=w(A).

LemMa 3. For any closed subset A of dw, there exists a sequence {F,};,
of regular closed sets in R which has the following properties:
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a) each FY is a neighborhood of A in R},

b) F,OF.(n=12,..) and N\F,=0,
n=1

c) 1p, decreases to w(A) as n—> oo.

Proor. Let a be a fixed point in R. Then there exists a sequence
{sn}p-1 in JY gy such that s,(e¢) >14(a) as n— . Each s, dominates 1 on
U,NR for some neighborhood U, of 4 in R}. We can choose a sequence
{F,};_, of regular closed sets in R which satisfies a), b) and F,CU,N\R for
each n. Set u=Ilim1ly. Then u is harmonic and z =1, on R by the defini-

N—oo

tion of 1,. Since s,—=1r on R for each n, we see that

14(a) = lims,(a) =1im 1z (a) = u(a) =14(a).

Hence u=1, on R. Therefore c¢) is valid by Lemma 2.

CoroLLARY 1. If {F,}7_; is a sequence of regular closed sets in R such

that F,OF,.,(n=1,2,...) and f\Fan), then 1y, decreases to w(F\F’ZV) as n—oco,
n=1 n=1

CorROLLARY 2. If F s a regular closed set in R, then

thI) = w(FWf\Aw) =lim ]'F‘Rn’

nrem
where {R,}7_, is an exhaustion of R.

Proor. It follows from the above corollary that the second equality is
valid. By Hilfssatz 8.7 in [ 2], we obtain that &, < H;, where f is the charac-
teristic function of #" N\ 4y. Hence hy, <o(F" Nd4w) by Hilfssatz 8.3 in [2].
Since (1r)r-r,=1r-z,, by letting n — co, we have

h]Fz lim 1F—R" = CD(FWf\Aw).

This completes the proof.

Remark. The functions in Corollary 2 are denoted by w(FN\B, z) in [ 3],
[47], [5] and by w(B(F), z) in [7].

Lemma 4. If Fis a regular closed set in R, then 1p can be continuously
extended over RY. Furthermore, 1,=1on F" and 1;=0 on I'y—F".

Proor. Since 17 is a bounded continuous Wiener function on R, it can be
continuously extended over R}, so that 1;=1on F”. Since 1p=hi,+p (p:a
continuous Green potential), it follows from Corollary 2 to Lemma 3 and
Folgesatz 9.2 in [2] that 1p=h;, =w(F" N\dy)=0 on I'y—F".

1) See p. 55 in [2] for this definition.
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LemMma 5. If F is a regular closed set in R, then
w(F~Q£Wf\Aw) =0
for each a in (0, 1), where 2,={z € R; 0, (F" Ndy)=a} (0<a<).

Proor. Let {R,};-, be an exhaustion of R such that each F—R, is a
regular closed set in R. We assume that F— 2% is a regular closed set in R
for each « in (0, 1)— E, where E is a set of at most a countable number of «
in (0, 1). By Corollary 2 to Lemma 3 and (c¢) in Proposition 1, we obtain that

o(F— 25" Ndw)=0

for each a in (0, 1)—E. Since F— 2% " CF—2i" if au<a, and (0, 1)—E is
dense in (0, 1), o(F— 2.7 N 4y)=0 for every a € (0, 1).

2.5 Let K, be a closed disk in R and let Ry=R—K,. Given a closed sub-
set 4 of 4w, we consider the following class:

superharmonic >0 on Ry, v=1 on UNR,
P71 for some neighborhood U of 4 in K%
Then the function
w¥o(4)=inf {v; v € 34}
is harmonic on Ry and 0 <w¥o(4)<1.
We shall prove

Lemma 6. If A is a closed subset of dw, then
w%o(A) = w(A)— HR,, on R,.

Proor. By a discussion similar to the proof of Lemma 8, we can choose
a sequence {F,};_; of regular closed sets in R which has the following pro-
perties:

a) each FY is a neighborhood of 4 in R},
b) F,DFy1(n=12, ...)and N\F,=0,

n=1
¢) 1p\o(4) and Hf: P\ 0¥(4) as n— oo,

where f,=0 on 0K, and 1 on 9F,. Let {R,}7_; be an exhaustion of R. We
may assume that F,N\R,=0 for each n. Let g, be the continuous function
on 0F,\U0K, such that g,=0 on 0F, and =1 on 0K, Obviously,

HEo~Fr =1, — HRo—F on Ry—F,.

By an elementary discussion, we can show that HX:~F»— HE:,, on R, as n—>co.
Hence, by letting n — o in the above equality, we complete the proof.
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CoroLLARY. o(A4)=0 if and only 1.f w%(4)=0.

§3. Capacity on Royden boundary
Let K, be a closed disk in R and let Ry=R —K,.

3.1 Dairichlet principle

Let f be a Dirichlet function® on R and let F be a non-polar closed set in
R. Then there exists a uniquely determined Dirichlet function f* which
minimizes the Dirichlet norm ||g|| among Dirichlet functions g such that
g=/ a.p. on F and which is equal to /' on F and is harmonic on R—F.

The following properties are known ([27]):

BL I I<ZIAl, and (fF, g—fF)=0 for any Dirichlet function g such
that g=f q.p. on F.

B2) (aifitazfo)f =ai( ) +as f2)F (a1, as: real).

(B3) If f=-constant, then f"=f.

(B4) If f=0, then ngo

(B5) If FyCF,, then ffi=(f)f2=(fF)F,

(B6) If G is a component of R—F, then f©=£°% on G.

(B7) If f=0, then f*=H?F on R—F.

The following property is an immediate consequence of (B4):

(B8) If =0 on F, then f¥=0.

Lemma 7. If f is a bounded continuous Dirichlet fumction on R, then
fF(a)— f(b) as a in R—F tends to every regular boundary point b of R—F.

Proor. Suppose |f|<<M<oo. Then we have
HE I —M<fF<HEf+M on R—F
by (B2), (B3) and (B7). Hence we have the lemma.

3.2. A continuous function on an open set G in R will be called piecewise
smooth if it is continuously differentiable in an open subset G’ CG such that
G—G' locally consists of a finite number of points and open analytic arcs. Let
F be a regular closed set in R and let ¢ be a given continuous function on 9F.

We denote by Dr_r(4) the family of piecewise smooth functions f on
R—F with boundary values ¢ on 0F and with finite Dirichlet norm || f||z-.
Any function in Dy_r(¢) is a Dirichlet function on R—F.

The following formulation of Dirichlet principle is due to M. Ohtsuka

2) This is called eine Dirichletsche Function in [2].
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(8D:

Let F be a regular closed set in R and let ¢ be a given continuous function
on OF. If Drp_p(¢)=~Q, then there exists a uniquely determined function ¢r in
Dr_#(p) such that

a) ¢r 18 harmonic on R—F,

b) lgrllz-r=IIgllz-F Sfor any g in Dr-r(¢).

Furthermore, if {R,}»-, 18 an exhaustion of R, then there is a uniquely deter-
maned harmonic function h, on R,— F with boundary values h,=d¢ on the closure
of OFNR, and 0h,/0y =0 on the rest of the boundary. h, tends to ¢r locally uni-
formly on R—F and in Dirichlet norm as n— oo.

We shall prove

Lemma 8. Let F be a regular closed set in R. If f is a bounded continuous
Dirichlet function on R, then ¢p=f" on R—F, where ¢ is the restriction of f on
oF.

Proor. By Lemma 7, we see that f7e Dz p(¢). Hence ||gr|lr-r=<
Il f¥|lz—r. Conversely, let g=¢r on R—F and =f on F. Then we can show
that g is a Dirichlet function on R. Hence, by (B1), we have (¢r—f", fr-r
=0. Thus

£ —=8pllz-r = llgrllz-r— /T ll5-5 =O.

Since both fF and ¢y are harmonic on R — F and take the same boundary values
¢ on OF, it holds that ¢r=f" on R—F.

3.3  Full-superharmonic functions

Let s be a non-negative (K,-) full-superharmonic function® on R, and
let F be a closed set in R. We consider the following function

full-superharmonic =0 on R,,
sfg=1nf {v;
v=>5 q.p. on FNR,

Then the function sz is full-superharmonic on Ry and 0 sz <Cs.
The following properties are known ([ 27]):

(C1) sp=s on F except for irregular boundary points of R,—F and sz is
harmonic on Ry— F.

(CZ) If F1CF2 and SléSz, then (SI)FI g(SZ)FZ.
(C3) If FiC Fy, then sz =(s¢ )r,=(s7,)F,
(C4) (arsi+azs)r=ai(s1)r+as(s2)r (a1, az=0).

3) This is called superharmonic by Z. Kuramochi ([3]) and “positive vollsuperharmonisch” in [2].
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(C5)  spoF+SrF =55, + 57,

(C6) If sis a Dirichlet function on R, s=0 on K, and s is non-negative
full-superharmonic on R,, then

sg = sTVko on R,—F.

3.4 Prorosition 2. Let {F,}7_, be a sequence of regular closed subsets
of Ry such that F,DF,.(n=1,2, ...) and F\F,,z@. Then 15, converges locally
n=1

uni formly on Ry and in Dirichlet norm as n— co. Furthermore, setting u=
limly and 2.,={z € Ro; u(z)=a} (0<a<1), we have

N—oco

(@) af F s a regular closed subset of R, such that F D F, for some no, then
up=u on R,

(B) f u 1is positive, then sup u=1 for each n,
Fa

(r) lim 17> =0 for each a,
(0) ugz,=u on R, for each c.

Proor. Let D be an open disk in R such that D > K, and FyN\(D\UoD)=@.
Let » be the harmonic function on D— K, with boundary values 0 on 0K, and
1on @D. We extend v over R by 0 on K, and by 1 on R—D and denote by f
the extended function. Then f is a continuous Dirichlet function on R and
is full-superharmonic on R,. By (C6), we see that

KoUF, — 1~
f [\9) n_an.

It follows from (B1) that {1z }5_, is a Cauchy sequence in Dirichlet norm.
Hence 17, tends to u locally uniformly on R, and in Dirichlet norm as n — co.
Note that » vanishes on 0K,, so that

wfooF =y p,
(a) By (B5) and (B1), we have

”uf-—uH’: limHuF.._lF"H: limHuKoUF_fKoUFnll
_ limn(u__fKo\JFn)Kn\JFH
< lim [ju — 007 = lim |u =17, | = 0.

Since every boundary point of R,— F is regular, we have uz=u on R, by (C1).
(B) can be proved by a discussion similar to the proof of (b) in Proposi-
tion 1.
(r) We may assume that u is positive. Set v,=lim1; >:. Then

n-—>o0

F,— 2% is a regular closed subset of R, except for a set E of at most a count-
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able number of « in (0, 1). Suppose v, is positive for some « in (0, 1)—E.
Then, by (8),

1=supv,<supu<a<l.
Fr—2% Fn— 21

This is a contradiction. Since v,, <wv,, if &;<a; and (0, 1)—E is dense in
(0, 1), we have v,=0 on R for each .

(6) can be proved by a discussion similar to the proof of (d) in Proposi-
tion 1.

3.5 Let G be an open set in R with piecewise analytic boundary. Let F

be a closed subset of G such that R—G°N\F?=@. Then there is a bounded
continuous Dirichlet function on R such that /=0 on R—G and 1 on F. Since
FE=VF does not depend on the choice of £, we shall denote it by 1£.9 If F
is a regular closed set, then 1Z is continuous on G. Let {F,}»_; be a sequence

of regular closed subsets of G such that F,DF,,; (n=1,2,...) and ﬁFn:Q.

Suppose R—G°N\FP=@. Then 1% tends to a function, say z, on R locally
uniformly and in Dirichlet norm as n— oo and u is harmonic on G.
Let 2.,={z2€G; u(z)=a} 0<a<).

The following lemma is known ([77]):

Lemma 9. If us20, then

S Ou gs—|lullz  for almost all a, 0<a<1.
o8, 0y

By Lemma 3 in [ 7] and Lemma 8, we have

Lemma 10. If f is a bounded continuous Dirichlet function on R, then

R-G Ou
Sagaf By B

18 a constant for almost all o, 0<a<1.
We shall prove

ProrosiTion 8. Let G, {F,} -, and u be as above. Suppose u==0. Let F
be a regular closed subset of G such that R—F'°N\FP=@. Then (R—G)UF,”N

2,—FP=0 for every a (0<a<l)and n, and 1%7" tends to 0 locally uni-
Jormly on G—F, and in Dirichlet norm as a—1 for each n. Furthermore,
12<=F" tends to 0 locally uniformly on G and in Dirichlet norm as o — 1.

Proor. By the assumption on F, there is a bounded continuous Dirichlet

4) This function is denoted by w(0F, z, G—F) in [3], [7].
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function f on R such that f=0on F, and 1 on R—F’. Then g=min(1&, f)
is a bounded continuous Dirichlet function on R. Since g=0 on (R—G)UF,

and 1on 2,—F', (R—G)\UF,’NQ2,—F?=0 for every a (0<a<1) and n.
Now fix an integer » >0 arbitrarily. By (B1), we see that

118 P lle ZN18H, Nlo-r, <Nl glle< oo

and 12«7 (resp.12< ") tends to a harmonic function, say v (resp.v,), locally

uniformly on G—F, (resp.G) and in Dirichlet norm as a—1, so that |jvoll¢ =

llvllc-r,. Suppose v==0. We set 0,={z¢G—F,;v(z)=a} (0<a<1). Then,
by Lemma 9, we obtain that

v

)., o

for almost all o, 0<a<1. We can show that u®-9“Fa=y on G—F, by a dis-
cussion similar to the proof-of («) in Proposition 2. Hence, by Lemma 10,

ds =|lv[lz-r,

is a constant, say m, for almost all o, 0<a<1. Since 0=<"u<1 on G, we have

. 0v v _ 2
0<m=| gy ds<| 5% ds=lplr,

Let B (0<By<1) be a real number such that m<polv||2-r,. On the other
hand, since uF-Fr=y on G—F,, uB OV 2F)—y on G—F, Since
g=u/a on (R—G)UF,U(2,—F’), we have 183" = g RO A 2-F) 4 /oy on
G—F, by (B8). Hence v<u on G—F,. Thus

2 = v <S v o _
Bllvl[&-p, gaaﬁv oy ds< asﬁu By ds=m

<BollvllE -7,

for almost all B, 0<B<1. This is a contradiction. Therefore, v=0 and
hence v,=0.

CoroLLARY. Let {F,}7_, be a sequence of regular closed subsets of R, such
that F,O>F,,, (n=1,2, ...) and ﬁF,,:@. Set 2.=1{z € Ro; lim15,() =}
(0<a<l). If R—Fi?NF2, =0 for each n, then 15 % tends to 0 locally uni-
Jormly on R, and in Dirichlet norm as cc— 1 for each n.

This is proved easily by the aid of the identity 18=".=17"%: on R, for
each n.

Remark. The above Proposition and Corollary are essentially due to Z.
Kuramochi [47] and [6].
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3.6 Capacity on Royden boundary
Given a closed subset 4 of 4p, we consider the following class:
- full-superharmonic =0 on Ry, v=1 on UNR,
Fa= {v, for some neighborhood U of 4 in R}
Then the function
B(A) = d(4) =inf {v(a); v € Ss}  (a€Ry)

is full-superharmonic, harmonic on R, and 0 <a&(4)<1. The following lem-
ma will show that ||@(4)]| < oo.

Lemma 11.  For any closed subset A of 4p, there is a sequence {F,} -, of
regular closed subsets of R, which has the following properties:
a) each F? is a neighborhood of A in R},

b) F,OF,(n=1,2, ..)and N\F,=0,
n=1
c) 1z \®(4) and |1z, —d(A)||—0 as n — co.

Proor. By a discussion similar to the proof of Lemma 3, we can choose
a sequence {F,};_, of regular closed subsets of R, which satisfies a), b) and
17\ @(A4) as n—oo. By Proposition 2, we see that 17 tends to #(4) as n—co
in Dirichlet norm.

CoroLLARY 1. If {F,}7-, ©s a sequence of regular closed subsets of R, such

that F, O F,,;1 (n=1,2, ...) and /.:\F,,zﬁ, then 17, decreases to @(F\F’ﬁ’),
n=1 n=1

s, —a(N\FD)—>0  as n—>co
n=1
and ||17 || decreases with n.

CoroLLARY 2. If F is a regular closed set in R, then

B(FP N 4p) = im 17,
N—o0

where {R,} -, 1s an exhaustion of R.

Remark. The functions in Corollary 2 are denoted by w(FNB, z) in
(37, (41, (5] and by w(B(F), z) in [7].

For any closed subset 4 of 4p, we define

10 a4
() = o SaKO A g

We call C(A) the capacity of 4 (with respect to K;). Let {F,};-, be a sequ-
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ence which has the properties in Lemma 1. By Lemma 9 and Green’s formula,
we have

1 01]‘" ~ |12
ggm DFa s = o |17, %

Since 017,/0v tends to 0@(A)/dy uniformly on 0K, and [|17 ||* tends to ||a(4)|®
as n— oo by ¢) in Lemma 11, we see that C(4)=(2r)~||a(A4)|/%

We see that both 4— @,(4) and 4— C(A4) are Choquet’s capacities.

Lemma 12.  Let F be a regular closed set in R and let 2 ,={z€Ry; &.(F’Ndp)
Za} (0<a<1). Then

C(F—2i°Ndp)=0
Jor each .

Proor. By the aid of Corollary 2 to Lemma 11 and () in Proposition 2,
we can prove the lemma in a way similar to the proof of Lemma 5.

Lemma 18. Let {F,};-; be a sequence of regular closed subsets of R, such
that F,OF,1 (n=1,2,...) and f\F,,z@ and let 2.,= {z € Ry; &)z([RF’,’,’)L;

ay (0<a<l). If R— F’Df\FnH—@for each n, then C(2,—F:°’N\4p) tends to
0 as «—1 for each n.

Proor. Each £,—F: is a regular closed subset of R, for a € (0, 1)—E,
where E is a set of at most a countable number of « in (0, 1). By the aid of
Corollary 2 to Lemma 11, we have

C(Ra—Fi°Ndp)= 5= ||a(2,—FiPNdp)|?

2
< o
for each « € (0, 1)— E and each n. It follows from the Corollary to Proposi-
tion 3 that
C(R,—F;PNdp)—0
as «—1 (a €(0,1)—E) for each n. Since C(2,,—Fi’N\dp)=C(2,,—FiPN4p)

if a;<a, and (0, 1)— E is dense in (0, 1), C(2,—F:’N\4p)—0 as «— 1 for each
n.
We can show

Lemma 14. If F,, F, are regular closed sets in R, then

0B (FY NFY N dyw) < d(FPNFY N dp) on R,
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and
CFPNFR N dp) < C(FY NFY Ndy),
where C is the Kuramochi capacity® on 4y (with respect to Ko).
CororLLARY. C(I'p) is positive for any hyperbolic Riemann surface.

Proor. By Satz 8.6 in [2], we see that w*(I'y)<<a&(I'p) on R,. By the
aid of Lemma 6, we can show that w¥o(I"y)>0. Therefore C(I'p)>0.

Remark. Let 7 be the continuous mapping of R} onto R% whose restric-
tion on R is the identity mapping. If X is a closed subset of 4y, then
C(z~ Y (X))=C(X).

§4. H.B. separative compactification

In this section we shall denote by A the closure of any subset 4 of R in

4.1 Definition of H.B. separative compactification

Definition. A compactification R* of R is said to be H.B. separative if
the following Condition B is satisfied:

Condition B: If Fy, F, are regular closed sets in R such that F¥N\Ff=0
in R*, then

o [\ C.NFoNdw)=0,

0<a<ll
where 0,={z € R; 15 (z) =a} (0<a<1l).

By virtue of the remark in 2.4, we see that the above definition is equi-
valent to that introduced by Z. Kuramochi in [77]; also see [4] and [5].

4.2 ProrositioN 4. If Fi, F, are regular closed sets in R, then

U)( /\ .Qaﬂsz\Aw)=w( /\ 6af\sz\Aw)
o<all 0<all

= a)(F1f\F'2f\Aw),
where 2,={z € R; 0 (FiNdy)=a} and 0,={z € R; 15 (z) =a} (0<a<]).
Proor. By Lemma 4, we see that

F’J\FW: /\ éamrw.
0<a<1

Since w.(FN\4w) <15 (z) on R by Corollary 1 to Lemma 3, 2,7, for each a.

5) See [2] and [3] for this definition.
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Hence we have

o( Q.NFoNdy) < o 0. NFoNdy)

o<all o<a<ll

gw(F&f\sz\Aw).

Since F\NF,C(FiNR2,NF)UF,—2i and o(F,—2iN4y)=0 by Lemma 5,
we see that

a)(F’lf\sz\Aw)éa)( <[\ gamEszf\Aw).
0<a<1

Next we shall prove /\ 2. "F,NF,C [\ 2.NF,. We may suppose that

0<a<ll o<al1

o(FyN4dw) is not a constant. Then 2,0 and 2, R for each « by Lemma
3 and (b) in Proposition 1. Let a be an arbitrary point of /\ Q.NFiNF,.

0<a<l1
Suppose there is an «, such that a ¢ .anf\Fz. Then there is a neighborhood
U of a in R}, such that UN2, NF,=0. Since {z € RY; w.(FiNdw)=a,} is
a neighborhood of @ in R}, and its restriction on R is £,, we may assume
that UNRC 2., Hence UNF,=@. This shows that « does not belong to

F,. This is a contradiction. Thus N\ .Qa/\Flf\FzC /\ 2,NF, There-

o<a
fore we have

o(F\NFondw) < o( N\ 2aNFNdy).
0<all

This completes the proof.

CororrarY 1. Condition B is equivalent to that o(FiNF)=0 for any
regular closed sets Fi, F; in R such that F¥NF}=@.

CoroLLARY 2. Let R¥ and R¥ be two compactifications of R. Suppose R¥
18 a quotient space of R¥. If R¥ is H.B. separative, then so is R¥.

4.3 Main theorem on H.B. separative compactifications

Tureorem 1. A compactification R* of R is H.B. separative if and only
1.f 1t 18 resolutive.

Proor. Let Fy, F; be regular closed sets in R. If R* is resolutive, then
F¥NF}f=0Q implies F1N\F,=0. Hence R* is H.B. separative by Corollary 1
to Proposition 4.

Conversely, suppose R* is H.B. separative. First we assume that R* is
metrizable. Let 4, B be any mutually disjoint compact subsets of 4. Then
there are two regular closed sets Fi, F» in R such that F} is a neighborhood
of 4, Fy is a neighborhood of B and F}fN\F}=0. We set u=w(F,N4dy),
Re={z€¢R; u(z)>a} (0<a<1l)and 0,=R—2%. Then there is a set E of at
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most a countable number of « in (0, 1) such that each F,N\2, is a regular
closed set in R for ¢ € (0, 1)—E. We obtain that 1, <<u and

Qs =Qa)r,-r, =ur, r,=Llo,nr,-r,t Us,
where {R,};_, is an exhaustion of R. By letting n — oo, we have

<1A)B§a)(.9af\sz\Aw)+ Us,

on R for each e (0,1)—E by Corollary 2 to Lemma 3. Let 0<a<p<1
(@€ (0,1)—E). Then ug,=u on R by (d) in Proposition 1 and u;, <1;,. Hence
us, =min(1,,, lo,). Since 6.N\2;=0, us, vanishes on I'y by Lemma 4. It
follows from the minimum principle (cf. Satz 8.4 in [2]) that

<1A)B§w(.9af\F2f\Aw)

on R for each a € (0, 1)—E. Since w(2,, NFandw) = (2., NF2ndw) if ar<ay
and (0, 1)— E is dense in (0, 1), we obtain that

Aa)p=0(LoNF:Ndw)
on R for each « in (0, 1). Thus

(1A)B§w( /\ .Qaf\Fzmdw) =0
o<all

by Proposition 4 and Condition B. Therefore R* is resolutive by Lemma 1.

Next we consider the case where R* is not necessarily metrizable. We
can find a family Q of bounded continuous functions on R such that R*=R}.
Let f, be any function in Q and set Qo={f,}. It follows from Corollary 2 to
Proposition 4 that R} is H.B. separative. Since R} is metrizable, by the
above discussion, we see that R} is resolutive. Hence, it follows from
Hilfssatz 8.2 in [2] that f, is a Wiener function on R. Thus any function
in Q is a Wiener function. Therefore R*=R} is resolutive (cf. Satz 9.3 in

(2.

CororLLarY 1 (Z. Kuramochi [4], [7]). The Martin and Kuramochi com-
pactifications are H.B. separative.

CorROLLARY 2. A compactification R* of R s resolutive if and only if
o(FyNF)=0 for any regular closed sets Fy, Fy in R such that FfNFf=0 in
R*,

§5. H.D. separative compactification

In this section we shall denote by A the closure of any subset 4 of R in
R}. Let K, be a closed disk in R and let Ry=R—K,.
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5.1. Definition of H.D. separative compactification

Definition. A compactification R* of R is said to be H.D. separative if the

following Condition D is satisfied:
Condition D: 1If F,, F, are regular closed sets in R such that F¥N\Ff=0

in R*, then there is an increasing sequence {V,}-, such that
a) each ¥, is a relatively open subset of F, such that F,— ¥, is a regular

closed set in R,

b) C(F,—V,Ndp)—0 as n— oo,

c) FinV,JoV,=0 for each n.

Remark. (i) The property b) does not depend on the choice of K.

(ii) The property c) is equivalent to the fact that there is a bounded con-
tinuous Dirichlet function f, on R such that f,=0 on F; and 1 on V,\JoV,.

By virtue of the first remark in 3.6, we see that the above definition is
equivalent to that defined by Z. Kuramochi in [47] and [5] (cf. [7], §3; in
particular footnote 4) and Lemma 5).

5.2 Prorosition 5. If Fy, F, are regular closed sets in R, then

C( /\ .Qaf\Fz): C(F1/-\F2mAD),
o<a<l

where £,={z € Ry; &,(FiNdp)=a} (0<a<]).

Proor. By a discussion similar to the proof of Proposition 4, we can
prove that

C(FiNFyNdp) < C( /\< 2,NF,)
0<a<l

by using Lemma 12. Now we shall prove the converse inequality.
For A=F,NF;N4p (resp. A=F,N4p), there is a sequence {2,}7-, (resp.
{0.}7-,) of regular closed subsets of R, which satisfies a), b) and ¢) in Lemma

11. Since R} is a normal space, we may assume that R—0,N0,,.:1=@ and
0xN\Fodp CR2,MN4p for each n. Since 2,NF, C0,NF;\UR2,—05, we have

C(2.NF2Ndp) < C(6,NFandp)+ C(2,— 05N 4dp).
It follows from Lemma 13 and the definition of capacity that
«( <[\< 2.NFy) < C(0,NFyN4p) < C(6,NFa 4p)
o<aLl

5 1
< 111z I~
SCE@Ndp) =5 11z,

By letting n— oo, we have C( N\ 2.NF,)< CF,NFy;N4p) and thus we com-
0<a<l1
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plete the proof.

5.8 Main theorems on H.D. separative compactifications

TueorEM 2. A compactification R* of R ts H.D. separative if and only
1f C(F1N\F3)=0 for any regular closed sets Fy, F» in R such that F¥N\Ff=0 in
R*,

Proor. Let F), F, be regular closed sets in R such that F¥N\F% =0 in
R*. Suppose R* is H.D. separative. Let {V,}»-; be a sequence which satis-

fies a), b) and ¢) in Condition D. Since Fy\N\F,C F,—V,, we see that
C(Flf\Fz)éC(Fz— an\AD)ﬁO

as n— oo,

Conversely, suppose C(F1NFy;)=0. We set A=F\NF,. If A=, then
we can take F; for V, (n=1, 2, ...) and see that R* is H.D. separative. Hence
we may assume that 4=+0. Let {0,}--, be a sequence for 4 which satisfies
a), b) and ¢) in Lemma 11. Then V,=F,—7, is a relatively open subset of F,
and increases with n. We may assume that each 7, is a regular closed set

in R. It is easy to see that

Fnv,uoVv,=0 for each n.

Since F,— V, 0, for each n, we see that

CF= VN d) = COuN 40 = o 115 )

> o (A = CF ) = 0

as n—co. Therefore R* is H.D. separative.

Tueorem 3. If a compactification R* of R is a quotient space of R}, then
it 18 H.D. separative. The converse is not true.

Proor. Theorem 2 shows that if R* is a quotient space of R}, then it is
H.D. separative. Now we shall prove that the converse is not true. Let R
be a unit disk {z; |z] <1} in the complex plane. We take R} which is de-
fined in Example 1 in 1.3. Then R} is not a quotient space of R}. We shall
prove that R} is H.D. separative. We take {z € R; |z|<1/2} for K,. We
may identify the Kuramochi compactification of R with the closed disk
{z; | 2] <1} (see p. 167 in [27]). We denote by C the Kuramochi capacity on
{z; |z| =1} with respect to K,. Let F,, F, be regular closed sets in R such
that F¥NF¥=0 in R}. Then we can show that

Fle\FéVC {emlz, 6—11/2}‘
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Hence
CFNF) < CEYNFY) < C{e'™"?, ™) =0

by Lemma 14. Therefore R} is H.D. separative by Theorem 2.

CoroLLARY (Z. Kuramochi [4],[7]). The Kuramochi compactification of
R is H.D. separative.

Tueorem 4. If a compactification R* of R is H.D. separative, then it is
resolutive. The converse is not true.

Proor. Let Fy, F, be regular closed sets in R such that F¥N\F}f=0@ in
R*. Then

o (FVNFY) < d(F1NF2) =0
by Lemma 14 and Theorem 2. It follows from the Corollary to Lemma 6 that
o(FYNFY)=0. Hence R* is resolutive by Corollary 1 to Proposition 4. Now
we shall prove that the converse is not true. Let R be a Riemann surface
which belongs to Oup—Ogs. We take R¥ which is defined in Example 2 in
1.3. Then R} is resolutive. Let Fi={z€ R; g(z)=2/3} and F,={z € R; g(z)
<1/8}. Then FfNF§=0 in R}. We may assume that both F, and F, are

regular closed sets in R. Since F}(k=1, 2) is a neighborhood of a, (k=1, 2)
in R}, it follows from Satz 8.6 in [2] that b€ F;\F,. Hence we have

0< C({b}) < C(FL N Fy)

by the Corollary to Lemma 14. Therefore R} is not H.D. separative by Theo-
rem 2.

§6. Remarks on Fatou’s and Beurling’s theorems

Let ¢ be an analytic mapping of an open Riemann surface R into another

open Riemann surface R’. Suppose R’ is hyperbolic. Let 4, (resp. 4;) be the
set of all minimal points of the Martin (resp. Kuramochi) boundary of R.

For each b € 4, (resp. b € 4,), we denote by ®, (resp. ®;) the system of fine
neighborhoods of & (resp. ).® Let R’* be a metrizable compactification of R’
and consider the following sets:

FHp) = {b € 4y; GE@ #(G)* is one point}

and
FHp)={b € 4y; N\ &) is one point},
GE®F

where ¢(G)* means the closure of #(G) in R’*. It is known (cf. [2], [4], [6],

6) See p. 145and p. 221 in [2]; also see §2in [7].
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[77) that both F($) and F(¢) are Borel sets.

6.1 Fatow’s theorem

We shall denote by x the harmonic measure on R}, —R.

Tuaeorem F1 (Z. Kuramochi [4],[6],[7])). If R'* is H.B. separative, then
24— FH)=0.

Tureorem F2 (C. Constantinescu and A. Cornea; Satz 14.4 in [2]). If R'*
18 resolutive, then

24, —Fg))=0.
The following theorem is an immediate consequence of Theorem 1:

Tureorem 5. Theorems F1 and F2 are equivalent.

6.2 Beurling’s theorem

We shall denote by C the Kuramochi capacity on R% — R with respect to
a fixed closed disk K.

Tueorem Bl (Z. Kuramochi[4], [6], [7]). If R'*is H.D. separative and
é 1s an almost finitely sheeted mapping,” then

C(4,—F@)=0.
Turorem B2 (C. Constantinescu and A. Cornea; Satz 18.1 in [27]). If R'*
18 a quotient space of Rp* and ¢ 1s a Dirichlet mapping,® then
C(4—Fp)=0.
We shall prove

Tueorem 6. Theorems Bl and B2 are independent.

Proor. First we take R=R'={z; |z| <1}, w=¢(z)=z and R*=R,* in
Example 1in 1.3. By the proof of Theorem 3, we see that the conditions of
Theorem Bl are satisfied by this example. However, the assumptions in
Theorem B2 are not satisfied.

Next we set

i T

Rz{z;z=x+i% —1<x<1’0<y<m+ﬁ},

R ={w; e '<|w|<e}l, w=¢(z) = e* and R'* = Ry*.

7) See [4], [6] and [7] for this definition.
8) This is called eine Dirichletsche Abbildung in [2].
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It follows from Folgesatz 10.3 in [27] that ¢ is a Dirichlet mapping. On the
other hand, we can show that ¢ is not a finitely sheeted mapping. Hence the
conditions of Theorem Bl are satisfied but the conditions of Theorem B2 are
not. Thus we complete the proof.
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