Schwarz Reflexion Principle in 3-Space

Makoto Оhtsuka
(Received September 20, 1968)

Introduction

The Schwarz reflexion principle is well-known in the theory of harmonic functions in a plane. In the three dimensional euclidean space ($=3$-space), however, it seems that some problems remain to be discussed. ${ }^{1)}$ In this paper, we shall show that any harmonic function h, defined in a domain D within an open ball V and having vanishing normal derivative on a part E of $\partial D \cap \partial V$, can always be continued across E but in general only radially.
J. W. Green [2] treated the case where D coincides with V. He showed that h is continued harmonically through E to the entire outside of V if and only if $\int_{0}^{R} h(r, \theta, \varphi) d r$ is constant as a function of (θ, φ) on the set $\{(\theta, \varphi)$; $(R, \theta, \varphi) \in E\}$, and that there is a case where h cannot be continued harmonically to the entire outside of V.
§1. First we explain notation. Throughout this paper, V means the open ball with center at the origin 0 and radius R in the 3 -space, $S=\partial V$ its boundary, D a subdomain of $V, \partial D$ its boundary, E a two dimensional open set on $\partial D \cap S$ which contains no point of accumulation of $\partial D-E, h$ a harmonic function in D, and, for a point $P \in D, P^{\prime}$ the symmetric point of P with respect to S. This point is called also the point of reflexion or the mirror image of P.

The case when h vanishes on E is known and stated as
Proposition. If h is continuous on $D \cup E$ and vanishes on E, then h is extended through E to a harmonic function in the domain D^{\prime} which is the reflexion of D with respect to S.

Proof. Choose any $Q \in S$ and let Σ be the spherical surface with center Q and radius R_{0}. Invert the space with respect to Σ and denote by P^{*} the image of P by the inversion. The image of S is a plane, and P^{*} and P^{*} are symmetric with respect to the plane. Define a function $h^{*}\left(P^{*}\right)$ by $\overline{O Q} \cdot h(P) / R_{0}$

[^0]on the image of $D \cup E$ and by $-\overline{O Q} \cdot h(P) / R_{0}$ on the image of D^{\prime}. The function is harmonic on the image of $\hat{D}=D \cup E \cup D^{\prime}$. Therefore, if h is extended to $P^{\prime} \in D^{\prime}$ by $h\left(P^{\prime}\right)=\left(R_{0} / \overline{Q P}^{\prime}\right) h^{*}\left(P^{*}\right)=-(\overline{Q P} / \overline{Q P}) h(P)=-\overline{O P} \cdot h(P) / R$, then h is harmonic in \hat{D}.
§2. Our interest in the subject of the present paper lies in the case where the normal derivative $\partial h / \partial n$ vanishes on E. The situation is less simple in this case than in the case where h vanishes.

The case where $\partial h / \partial n=$ const. c on E is reduced to the case $c=0$ if h is replaced by $h+c R^{2} / r$ in $D-\{0\}$. However, in case D coincides with V and $\partial h / \partial n=c \neq 0$ on E, h can never be continued through E to the entire outside of V as is shown in Theorem 3 of [2].

We begin with
Lemma 1 ([2]). The function $r \partial h / \partial r$ is harmonic in D.
Proof. If the origin is not included in D, we have, with polar coordinates,

$$
\begin{aligned}
r^{2} \Delta\left(r \frac{\partial h}{\partial r}\right)= & \frac{\partial}{\partial r}\left(r^{2} \frac{\partial(r \partial h / \partial r)}{\partial r}\right)+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial(r \partial h / \partial r)}{\partial \theta}\right) \\
& +\frac{1}{\sin ^{2}}-\frac{\partial^{2}(r \partial h / \partial r)}{\partial \varphi^{2}}=r \frac{\partial}{\partial r}\left(r^{2} \Delta h\right)=0 .
\end{aligned}
$$

If the origin is included in D, it is a removable singularity for $r \partial h / \partial r$.
Hereafter we assume that h is continuous on $D \cup E$ together with its partial derivatives $\partial h / \partial x, \partial h / \partial y, \partial h / \partial z$ and that $\partial h / \partial n=0$ on E. Denote by D_{E}^{\prime} the set of points of D^{\prime} which can be connected to points of E radially by segments lying on $D^{\prime} \cup E$, and by \hat{D}_{E} the domain $D \cup E \cup D_{E}^{\prime}$. We shall prove

Theorem 1. One can continue h to a harmonic function in \hat{D}_{E}.

Proof. By the proposition, $r \partial h / \partial r$ is extended to a harmonic function H in $\hat{D}=D \cup E \cup D^{\prime}$. It is equal at $P^{\prime} \in D^{\prime}$ to the value of $-r^{2} R^{-1} \partial h / \partial r$ at P. Define \hat{h} in \hat{D}_{E} by

$$
\hat{h}(r, \theta, \varphi)=h\left(r_{0}, \theta, \varphi\right)+\int_{r_{0}}^{r} \frac{H}{r} d r
$$

where $\left(r_{0}, \theta, \varphi\right) \in D$ is chosen so that the segment between this point and (r, θ, φ) is contained in \hat{D}_{E}. The definition of \hat{h} is independent of the choice of r_{0} and $\hat{h}=h$ at $\left(r_{0}, \theta, \varphi\right)$. Let us show that h is harmonic in \hat{D}_{E}.

Denote by Δ_{\otimes} the operator

$$
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta-\frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}} .
$$

This is not defined on the axis $\theta=0, \pi$ but the values $\Delta_{\odot} f$ for any C^{2} function f are independent of the choice of an axis, because

$$
\Delta_{\otimes} f=r^{2} \Delta f-\frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right) .
$$

We have

$$
\begin{aligned}
r^{2} \Delta \hat{h} & =\left.\Delta_{\Theta} h\right|_{r=r_{0}}+\int_{r_{0}}^{r} \Delta_{\Theta}\left(\frac{H}{r}\right) d r+\frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\left(\int_{r_{0}}^{r} \frac{H}{r} d r\right)\right) \\
& =\left.\Delta_{\Theta} h\right|_{r=r_{0}}+\int_{r_{0}}^{r} \frac{1}{r}\left(-\frac{\partial}{\partial r}\left(r^{2} \frac{\partial H}{\partial r}\right) d r\right)+\frac{\partial}{\partial r}(r H) .
\end{aligned}
$$

Since

$$
\frac{\partial}{\partial r}\left(r^{2} \frac{\partial H}{\partial r}\right)=r \frac{\partial^{2}(r H)}{\partial r^{2}},
$$

we have

$$
\begin{aligned}
r^{2} \Delta \hat{h} & =\left.\Delta_{\Theta} h\right|_{r=r_{0}}+\left.\frac{\partial}{\partial r}(r H)\right|_{r=r_{0}}-\frac{\partial}{\partial r}(r H)+\frac{\partial}{\partial r}(r H) \\
& =\left.\Delta_{\Theta} h\right|_{r=r_{0}}+\left.\frac{\partial}{\partial r}\left(r^{2} \frac{\partial h}{\partial r}\right)\right|_{r=r_{0}}=\left.r^{2} \Delta h\right|_{r=r_{0}}=0 .
\end{aligned}
$$

Thus \hat{h} is harmonic in \hat{D}_{E}.
Being different from the case in plane, \hat{h} is not always symmetric with respect to S. Actually, if $\hat{h}\left(r^{\prime}, \theta, \varphi\right)=h(r, \theta, \varphi)$ with $r^{\prime}=R^{2} / r>R$, then

$$
0=r^{\prime 2} \Delta \hat{h}=\frac{\partial}{\partial r^{\prime}}\left(r^{\prime 2} \frac{\partial h}{\partial r^{\prime}}\right)+\Delta_{\oplus} h=-\frac{\partial}{\partial r^{\prime}}\left(r^{\prime 2} \frac{\partial h}{\partial r^{\prime}}\right)-\frac{\partial}{\partial r}\left(r^{2} \frac{\partial h}{\partial r}\right) .
$$

By a simple computation we see that the right hand side is equal to $-2 r \partial h / \partial r$. It follows that h is independent of r in D.

On the other hand, if the Kelvin transform $\overline{O P} \cdot h(P) / R$ is the harmonic continuation, its normal derivative must vanish on E. On E we have

$$
\begin{aligned}
& \left.\frac{1}{R} \frac{\partial}{\partial r^{\prime}}(r h(r, \theta, \varphi))\right|_{r=R}=-\left.\frac{R}{r^{2}} \frac{\partial}{\partial r}(r h)\right|_{r=R} \\
& \quad=-\left.\frac{R}{r^{2}}\left(h+r \frac{\partial h}{\partial r}\right)\right|_{r=R}=-\frac{h}{R}=0 .
\end{aligned}
$$

Thus h vanishes on E. Therefore $-\overline{O P} \cdot h(P) / R$ is the harmonic extension into D^{\prime} as was seen in the proof of the proposition. Thus $\overline{O P} \cdot h(P)=-\overline{O P} \cdot h(P)$ for every $P \in D$ and hence $h \equiv 0$ in D.

It is not always possible to extend h harmonically to the entire symmetric domain of an arbitrary domain D as an example will show it later. However, we have

Theorem 2. Let H be the harmonic extension of $r \partial h / \partial r$ in \hat{D}. Let $P_{0}^{\prime}=$ $\left(r_{0}^{\prime}, \theta_{0}, \varphi_{0}\right)$ be in D^{\prime}, and h^{\prime} be a function harmonic in a neighborhood U of P_{0}^{\prime} such that $\left.r^{\prime} \partial h^{\prime} \partial r\right|_{r=r^{\prime}}=H\left(r^{\prime}, \theta, \varphi\right)$ in U. Let P_{1}^{\prime} be a point of D^{\prime} such that the segment $P_{0}^{\prime} P_{1}^{\prime}$ is included in D^{\prime} and lies on a ray issuing from the origin. Then h^{\prime} is defined harmonically in a neighborhood of $P_{0}^{\prime} P_{1}^{\prime}$.

Proof. Define h^{\prime} in a neighborhood of $P_{0}^{\prime} P_{1}^{\prime}$ by

$$
h^{\prime}\left(r^{\prime}, \theta, \varphi\right)=h^{\prime}\left(r_{0}^{\prime}, \theta, \varphi\right)+\int_{r_{0}^{\prime}}^{r^{\prime}} \frac{H}{r} d r
$$

where $\left(r_{0}^{\prime}, \theta, \varphi\right)$ is in U. As in the proof of Theorem 1 we have $r^{\prime 2} \Delta h^{\prime}=0$.
Corollary. If h is extended harmonically to $P^{\prime} \in D^{\prime}$, then it is extended harmonically to P_{1}^{\prime} so far as $P^{\prime} P_{1}^{\prime}$ is included in D^{\prime} and lies on a ray issuing from the origin.

We give a condition for extensibility in a special case. First we give a lemma which is similar to Lemma 1 of [2].

Lemma 2. Let $\left(r_{0}, \theta, \varphi\right) \in D$ and suppose h is extended harmonically to the point $\left(R^{2} / r_{0}, \theta, \varphi\right)$. Denote the extension of h by \hat{h}. Then

$$
\Delta_{\circledast}\left(R \hat{h}\left(r_{0}^{\prime}\right)-r_{0} h\left(r_{0}\right)\right)=\left.r_{0}^{2} \frac{\partial h}{\partial r}\right|_{r=r_{0}}
$$

where $h(r, \theta, \varphi)$ is written simply as $h(r)$ and $\hat{h}(r, \theta, \varphi)$ as $\hat{h}(r)$.
Proof. We have

$$
\begin{equation*}
\partial \hat{h}(r) / \partial r^{\prime}=-r^{3} R^{-3} \partial h(r) / \partial r \tag{1}
\end{equation*}
$$

Hence

$$
\begin{align*}
\hat{h}\left(r^{\prime}\right) & =\hat{h}\left(r_{0}^{\prime}\right)+\int_{r_{0}^{\prime}}^{r^{\prime}} \partial \hat{h} \\
& =\hat{h}\left(r_{0}^{\prime}\right)+\frac{r}{R} h(r)-\frac{r_{0}}{R}-h(r)-\frac{1}{R} \int_{r_{0}}^{r} h d r \tag{2}
\end{align*}
$$

It follows that

$$
\begin{aligned}
\Delta_{\odot} \hat{h}\left(r^{\prime}\right) & =\Delta_{\odot} \hat{h}\left(r_{0}^{\prime}\right)+\frac{r}{R} \Delta_{\oplus} h(r)-\frac{r_{0}}{R} \Delta_{\odot} h\left(r_{0}\right)-\frac{1}{R} \int_{r_{0}}^{r} \Delta_{\odot} h d r \\
& =\Delta_{\odot} \hat{h}\left(r_{0}^{\prime}\right)-\frac{r_{0}}{R} \Delta_{\odot} h\left(r_{0}\right)-\frac{r}{R} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial h}{\partial r}\right)+\frac{1}{R} \int_{r_{0}}^{r} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial h}{\partial r}\right) d r
\end{aligned}
$$

On the other hand, we have by (1)

$$
\Delta_{\otimes} \hat{h}\left(r^{\prime}\right)=-\frac{\partial}{\partial r^{\prime}}\left(r^{\prime 2} \frac{\partial \hat{h}\left(r^{\prime}\right)}{\partial r^{\prime}}\right)=-\frac{r^{2}}{R} \frac{\partial}{\partial r}\left(r \frac{\partial h(r)}{\partial r}\right)
$$

Hence

$$
\begin{aligned}
& \Delta_{\oplus} \hat{h}\left(r_{0}^{\prime}\right)-\frac{r_{0}}{R} \Delta_{\odot} h\left(r_{0}\right) \\
& \quad=-\frac{r^{2}}{R} \frac{\partial h}{\partial r}-\frac{r^{3}}{R} \frac{\partial^{2} h}{\partial r^{2}}+2 \frac{r^{2}}{R} \frac{\partial h}{\partial r}+\frac{r^{3}}{R} \frac{\partial^{2} h}{\partial r^{2}}-\frac{r^{2}}{R} \frac{\partial h}{\partial r}+\left.\frac{r_{0}^{2}}{R} \frac{\partial h}{\partial r}\right|_{r_{0}} \\
& \quad=\left.\frac{r_{0}^{2}}{R} \frac{\partial h}{\partial r}\right|_{r_{0}} .
\end{aligned}
$$

§3. In this section we assume that $\partial D \cap S$ contains a two dimensional open set $B \supsetneqq E$ which has no point of accumulation of $\partial D-B$, that every point P of B can be connected with a point in D radially by a segment which is contained in D except for P, and that $\partial h / \partial x, \partial h / \partial y, \partial h / \partial z$ are continuously extended to $D \cup B$. Assume furthermore that $\partial^{2} h / \partial \theta^{2}$ and $\partial^{2} h / \partial \varphi^{2}$ can be continuously extended to $D \cup B$.

Suppose that h is extended harmonically to a function \hat{h} in $D \cup E \cup D_{B}^{\prime}$, where D_{B}^{\prime} is defined in the same way as D_{E}^{\prime}. Then $\partial^{2} \hat{h} / \partial \theta^{2}$ and $\partial^{2} \hat{h} / \partial \varphi^{2}$ are also continuously extended to B from D_{B}^{\prime} by (2). By Lemma 2 we obtain immediately

Lemma 3. $\quad \Delta_{\odot}(\check{h}-h)=R \frac{\partial h}{\partial r} \quad$ on B, where $\check{h}(R, \theta, \varphi)=\lim _{r^{\prime} \downarrow R} \hat{h}\left(r^{\prime}, \theta, \varphi\right)$.

Theorem 3. h can be continued to a harmonic function \hat{h} in $D \cup E \cup D_{B}^{\prime}$ if and only if there is a solution g of $\Delta_{\oplus} g=R \partial h / \partial n$ on B such that g vanishes on E.

Proof. Suppose such a g exists. Set $p=g+h$ on B and

$$
h^{\prime}(r, \theta, \varphi)=p(R, \theta, \varphi)+\int_{R}^{r^{\prime}} \frac{H}{r^{\prime}} d r^{\prime} \quad \text { in } D_{B}^{\prime}
$$

On $E, p=h$ and hence h^{\prime} is the harmonic extension of h into D_{E}^{\prime}. Let us show that h^{\prime} is harmonic in D_{B}^{\prime}. For $\left(r^{\prime}, \theta, \varphi\right) \in D_{B}^{\prime}$ we have by the same computation as in the proof of Theorem 1

$$
\begin{gathered}
r^{\prime 2} \Delta h^{\prime}=\Delta_{\odot} p+\left.\frac{\partial}{\partial r^{\prime}}\left(r^{\prime} H\right)\right|_{r^{\prime}=R}=\left.R \frac{\partial h}{\partial r}\right|_{r=R}+\left.\Delta_{\Theta} h\right|_{r=R}+\left.R \frac{\partial}{\partial r}\left(r \frac{\partial h}{\partial r}\right)\right|_{r=R} \\
=\left.R \frac{\partial h}{\partial r}\right|_{r=R}-\left.\frac{\partial}{\partial r}\left(r^{2} \frac{\partial h}{\partial r}\right)\right|_{r=R}+\left.R^{2} \frac{\partial^{2} h}{\partial r^{2}}\right|_{r=R}+\left.R \frac{\partial h}{\partial r}\right|_{r=R}=0 .
\end{gathered}
$$

Thus h^{\prime} is harmonic in D_{B}^{\prime}.
Conversely, suppose \hat{h} is a harmonic extension of h in $D \cup E \cup D_{B}^{\prime}$. Denote $\lim _{r^{\prime} \downarrow R} \hat{h}\left(r^{\prime}, \theta, \varphi\right)$ by $\check{h}(R, \theta, \varphi)$ as before and set $g(R, \theta, \varphi)=\check{h}(R, \theta, \varphi)-h(R, \theta, \varphi)$. Then, on account of Lemma 3, g satisfies $\Delta_{\oplus} g=R \partial h / \partial n$ on B and vanishes on E. Our theorem is now proved.

Corollary. Consider the case that D coincides with V. In order that h be extended across E to a harmonic function outside V, it is necessary and sufficient that there exists a solution g of $\Delta_{\oplus} g=R \partial h / \partial n$ on S such that g vanishes on E.

This condition must be equivalent to the already quoted Green's condition in [2] that $\int_{0}^{R} h d r$ is constant on E. Actually one can show the equivalence directly as follows: ${ }^{2)}$

If there exists g satisfying $\Delta_{\oplus} g=R \partial h / \partial n$ on S and $g=0$ on E, then $\int_{0}^{R} h d r=$ const. on E because
$\Delta_{\odot}\left(\int_{0}^{R} h d r+R g\right)=\int_{0}^{R} \Delta_{\oplus} h d r+R^{2} \frac{\partial h}{\partial n}=-\int_{0}^{R} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial h}{\partial r}\right) d r+R^{2} \frac{\partial h}{\partial n}=0$ on $S^{3)}$
and hence $\int_{0}^{R} h d r=-R g+$ const. $=$ const. on E. Conversely, assume $\int_{0}^{R} h d r=c$ (=const.) on E. Then $g=-\frac{1}{R}\left(\int_{0}^{R} h d r-c\right)$ satisfies $\Delta_{\oplus} g=R \partial h / \partial n$ on S and $g=0$ on E.

Finally, we shall prove a theorem by means of which we can show that Theorem 1 is the best possible in case the (two dimensional) boundary of E is smooth.

Theorem 4. Suppose there is a C^{4} function f on S with the following properties:
(i) $\quad \int_{S} \Delta_{\oplus} f d S=0$,
(ii) $\Delta_{\oplus} f=0$ on E,
(iii) there exists no two dimensional domain $B \subset S$ which satisfies $B \not \subset E$ and $B \cap E \neq \emptyset$, and on which a function f_{1} is defined so that $\Delta_{\oplus} f_{1}=0$ on B and $f_{1}=f$ on $B \cap E$.
Then the solution h of the Neumann problem in $D=V$ for the boundary condition $\partial h / \partial n=R^{-1} \Delta_{\odot f}$ can never be continued harmonically to any point of $\hat{D}-\hat{D}_{E} .{ }^{4)}$

[^1]Proof. It is known that the partial derivatives of second order of h have limits on S; see [5]. Suppose h is extended harmonically to a point $P^{\prime} \in \hat{D}-\hat{D}_{E}$. Then, by the corollary of Theorem 2, there exists a two dimensional domain B on S such that $B \nleftarrow E, B \cap E \neq \emptyset$ and h is continued harmonically to $D \cup E \cup D_{B}^{\prime}$. Theorem 3 implies that there exists g on B such that $\Delta_{\oplus} g=R \partial h / \partial n$ on B and $g=0$ on E. The function $f_{1}=f-g$ satisfies $\Delta_{\otimes} f_{1}=0$ on B and $f_{1}=f$ on E. This contradicts (iii).

Let us see that a function like f exists actually in case E is a two dimensional subdomain of S bounded by a finite number of closed analytic curves. Let ψ be a sufficiently smooth function which is defined on the boundary ∂E of E and which is nowhere analytic with respect to the defining parameter of ∂E, and f_{0} be the function which satisfies $\Delta_{\odot} f_{0}=0$ in E and $f_{0}=\psi$ on ∂E. It follows that f_{0} is of C^{4} class on $E \cup \partial E$; see [5]. Extend f_{0} to a function f of C^{4} class on S so that condition (i) is satisfied. If there exist B and f_{1} with the properties as decribed in (iii), then f_{1} as a solution of $\Delta_{\oplus} f_{1}=0$ is analytic in B and hence on $\partial E \cap B$. This contradicts our assumption that, on $\partial E \cap B$, $f_{1}=f=\psi$ is nowhere analytic with respect to the defining parameter of ∂E. Thus (iii) is satisfied too.

To the contrary, if a part F of $S-E$ is small, e.g., if F is a closed set of logarithmic capacity zero such that $S-E-F$ is closed, then h can be continued harmonically to the set A consisting of points of $\hat{D}-D$ which can be connected to F radially in \hat{D}. This follows from the fact that A is of Newtonian capacity zero (cf. [1], p. 92) and hence removable for the extension of h in \hat{D}_{E}.

References

[1] J. Deny and P. Lelong: Étude des fonctions sousharmoniques dans un cylindre ou dans un cône, Bull. Soc. Math. France, 75 (1947), 89-112.
[2] J. W. Green: A property of harmonic functions in three variables, Bull. Amer. Math. Soc., 44 (1938), 548-557.
[3] O. D. Kellogg: Fundations of potential theory, Berlin, 1929.
[4] L. Lichtenstein: Neuere Entwicklung der Potentialtheorie. Konforme Abbildung, Enzyklopädie Math. Wiss., Band II, Heft 3, Leipzig, 1919.
[5] L. Nirenberg: Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math., 8 (1955), 648-674.

Department of Mathematics,
Faculty of Science, Hiroshima University

[^0]: 1) O. D. Kellogg suggested to "derive results similar to (the result in the case where $h=0$ on E), where \cdots it is assumed that the normal derivative of U vanishes on that portion" in Exercise 4 at p . 262 of [3]. It is stated at p. 244 in Lichtenstein [4] that "... (plane case) Analoge Sätze gelten im Raume." However, this turns out not to be the case.
[^1]: 2) The author owes this remark to Professor H. Lewy.
 3) Let f be a function on S which is twice continuously differentiable with respect to θ and φ and satisfies $\Delta_{\Theta} f=0$. Then the extension f^{*} of f by $f^{*}(r, \theta, \varphi)=f(R, \theta, \varphi)$ to the whole space is harmonic because $r^{2} \Delta f^{*}=\Delta_{\odot} f^{*}+\partial\left(r^{2} \partial f^{*} / \partial r\right) / \partial r=0$. By the maximum principle it is concluded that f^{*} is constant.
 4) cf. Theorem 1.
