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The Lanczos algorithm transforming a given matrix into a tri-diagonal
form is well known in numerical analysis and is discussed in many literatures.
The possibility of this algorithm is shown in Rutishauser’s excellent paper
[8]. However it seems to the author that no further theoretical considera-
tion has been made since then.

The process starts from a pair of trial vectors x; and y;. A pair of the
i-th iterated vectors x; and j; can be constructed successively if y*x;=0
(1<j=<i—1). Hence,if y;,1*x,,1=0 for some p <n—1, we must modify the
algorithm so as to continue. This is possible in case where x,,;=0or y,,;=0,
while any method of modification is not known in case where x,,1=0 and
yp+170. We shall call the former case “lucky” and the latter “unlucky”.
The only thing for us to do in “unlucky” case is to choose new starting vec-
tors x;, y; and begin again in the hope that this case will not happen later.
Rutishauser’s result ((8] Satz 1) guarantees this possibility.

In practical computation, however, “unlucky” case may occur after re-
peated modifications in “lucky” cases. Once we encountered with “unlucky”
case, we have to abandon all the efforts made before and start again with
new trial vectors (if we stick to the old knowledge). Then a question arises
naturally: Is it actually necessary to go back to the first step? In this paper
we shall treat this problem. Roughly speaking, the answer is as follows:
It is sufficient to go back to the latest modification. As a special case of this
result, we can show that one of the initial vectors can be chosen arbitrarily
to avoid “unlucky” case. Further it will be shown that there exists a vector
x such that the algorithm starting from x;=y;=x can be continued so that
“unlucky” case may not occur. These results will be stated in Theorems 3-6
of §2 and a new procedure will be proposed at p. 279. Finally, in connec-
tion with the Lanczos algorithm, we shall give, in Appendix, some properties
concerning the location of the eigenvalues of tri-diagonal matrices.

§1. Preliminaries

1.1. Let 4 be a given (complex or real) matrix of order n. Starting
from a pair of initial vectors x; and y;, construct a sequence of iterated vec-
tors x;, y; as follows:

* This work was partially supported by a research grant of the Sakkokai Foundation.
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Ax,q = T11%1+ X2, A*y1=0'11y1+ Y2,
® t, i
Ax;= i tjin;+ %1, A¥yi= Zldfiyf+ Yir1 (=2),
i=1 i=

where * denotes a conjugate transpose and scalers t;;, d;; are determined for
each i (=1) so as to satisfy the conditions y*x;.1=x%y;,;1=0 (1<;7=0).
Clearly this is possible if y*x;=0 (1<j<{i). Then, as is easily seen, we
have

ti=0;=0 for 1<j<i—2 (i=3),

_yiYAxs v

Tio1i = 0i-1i = = )
yi-l*xi—l _’)’i—l*xi—1
and
o yf*Axi
Tii =04 = "5 —
YiT%xi

Hence the iteration (1) may be written as
xzzAxl—aclxl, yz—':A*yl—‘dlyl,

2) Xipn = Axi—a;ixi— Bi1xi—1, Y1 = A¥yi—&iyi—Bi—1yi-1,

i*A i . i* i .
w=2 e =D A= Gz

This is so-called Lanczos’ algorithm and first considered in his paper [7].

1.2. Rutishauser [ 8] showed that, if the degree of the minimal polyno-
mial of 4 is m, there exists a pair of initial vectors x, and jy; such that
y*x;7#0 (1<i<m). In this case we have x,.1= y»,1=0 and

ar B
Cllz Bz
A(xl) X2y vy xm)=(x1, X2y vy xm)' ., - . .‘8
. . m—1
1 .a,,,

However, no practical criterion for the choice of such vectors is known.
Therefore, if it happens that the selection is unsuitable, breakdown of the
algorithm will occur; namely we have y,.1*x,,,=0 for some positive integer
p=n—1, and the iteration can not be continued any more. This situation
can be divided into four cases:

Case 1. x,,1=19p,1=0,

Case 2. Xpil ’—:O, _’yj)+1#0;
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Case 3. %5170, ¥5.1=0,
Case 4. x,,170, y5.170.

For the first three cases, we can continue the process by the following
modification:

Case 1. In this case, take a non-zero vector w,.; which is orthogonal to
the vectors xi, x3, .-, x,. Then there exists a vector z,,; orthogonal to the
vectors yi, y2, ---, ¥, such that w,.1*z,,10. In fact the whole space (n-
dimensional Euclidean or unitary space) is a direct sum of the space spanned
by x1, %3, ---, x5 and the orthogonal complement of the space spanned by yi,
¥2, -+, ¥p. Thus, if we replace x5,1 by z,.1 and y,.1 by w,..1, then we can
continue the process by the formulas®

— 4
Xpi2 = Azp+1—6¥p+1zp+1

*
w Az

— =1 / p+1 p+1
Yoz = A*Wp 1 —QpraWpp1, Qg1 =— 5
Wp+1"Zp+1

Xps3 = Axp 2—Cp2%p2— 5,/>+1Zp+1,

*
o - 57 ; _ Yp+2" Xp+2
Yors = A* ypra— QpraYpra—Bpaiwpi, Bp1 = Wor1*Zpr1’
p+1 “p+1
Xp+i = Axp+i—1—ap+i—1xp+i—1_Bp+i—2xp+i—2,
Youi = A*ypri1—Apric1 Ypric1—Bprice Ypri-z (i=4).

Case 2. In this case, by similar argument, we can prove the existence
of a vector z,.; such that y*z,,;, =0 (1<7j<p) and y,,1*z5,15%0. There-
fore the modified formulas in this case are

Xpr2 = Azp1—Qp12p1— Bpip,

_ )’1>+1*Az1>+1 r_ yp+1*zz>+1

a/
p+1 ) p
yp+1*zp+1 yp*xp

b

p— !
Yo+2 = A*yp+1—ap+1yp+1,
Xpr3 = A%xpr2— ApiaXpr2— Bhi12ps1,

;o Y2 Xpen
Bp+1 - T x .

J— ~ Q7
Yp+3 = A*yp+2_ap+2yp+2"'ﬂp+1yp+1, o ,
Vo417 Zp+1

Xp+i = Axp+i—1”‘ap+i—1xp+i—1— Bp+i—zxp+i—z,

Vori = A*Ypric1—Qpiic1 Ypri-1—Bpri-2 Ypri-z I=4).

1) For detailed discussion, see [3].
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Case 3. This case is similar to Case 2.

For Case 4, however, any method of such modification is not known.
The only thing to do in this case is to choose new starting vectors x; and 1y,
and begin again in the hope that this case will not happen later.

1.38. We note that, even if we modify the procedure for Cases 1-3 so as
to continue, Case 4 may occur at the later step. For example, let

5/9 —2/9  4/9  0)
49 2/9 5/9 0
4= —2/9  8/9 2/9 0
/3 2/3 2/3 1

and choose a pair of initial vectors x,="2/3, 1/3, —2/3, 0) and y; =
‘1/8, 1/6, —1/3, 1). Then, by simple computation we have x,=0 and
y.="(2/3,1/3,5/6, 1); namely Case 2 occurs. Hence, according to Causey
and Gregory’s proposal [ 3], take a new vector

Y9y
22 =2 yl*xl X1 ( 2/33 1/37 13/63 1)
which satisfies y2*z,50 and y,*2,=0. Then Case 4 will occur and the algo-
rithm fails there. In fact we have

xs ='(—18/9, —2/9, 4/9, 2/3),

ys="(—2/9, 8/9,2/9, —1/3),
and
yg*xg == O.

Therefore, if we obey the old principle, we shall have to go back to the first
step and start again from new vectors x; and y;. However, this is not only
inefficient, but also unnecessary. For, as is easily seen, if we take another
vector z,="(—1/3, —2/3,7/3,1) and start again from there with a pair of
vectors zj and y,, the algorithm® can be well continued to completion.” The
above fact is true in general. The purpose of this paper is to show this and
give an improved procedure for the Lanczos algorithm.

1.4. Notations and definitions. Throughout this paper, we consider

2) In the following, a term “the (Lanczos) algorithm” stands for the procedure according to the
modification mentioned above when Cases 1-3 occurred.

3) Namely, in the sense of footnote 2), the algorithm can be continued so that Case 4 may not oc-
cur. In the following we shall often use this expression.
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complex (or real) matrices and certain notational convensions will be observed.
For a matrix 4, A* (*A) stands for a conjugate transposed (transposed) matrix
of 4. A(i:i=:ir) denotes an r-square submatrix obtained from the iy, i5, ---, i, th
rows and ji, ja, ---, j» th columns. A square matrix 4 is called non-derogatory
if its minimal polynomial is the same as its characteristic polynomial, and
otherwise called derogatory. A square matrix 4=(a;,) is of an upper Hessen-
berg type if a;;=0 for i —j=2. For an n-square matrix 4 and an n-dimen-
sional vector x, there exists a number p(<n) such that a set of vectors
%, Ax, ..., A?~'x is linearly independent and a set of vectors x, Ax, ..., A” 'x,
A?x is linearly dependent. The number p is called the grade of x with respect
to 4.2 Clearly «x is a vector of grade p with respect to 4 if and only if
¢(A)x=0 for a unique monic polynomial ¢(2) of degree p and ¢(A)x 0 for
any polynomial ¢(2) of degree less than p. Let xi, x5, ---, x,, be a set of m
vectors. Then we denote by [ %1, xs, -+, xn ] and [ x1, %2, ---, x, ]~ the vector
subspace spanned by xi, x2, ---, ., and the orthogonal complement of the sub-
space [ %1, %9, ---, %, ] respectively. Finally, for vectors a;="(a11, aiz, -+, a15),
ar="(az, az, -, azp), -+, as="as1, ass, -+, as,), the notation a1 PaPH---Pa; or
~Zs:1@ai means a vector t(an, A12, -y Q1py A21y A22, -5y A2gy -y Asly A2y -+ as,).

S_imilarly, for submatrices 4,, 4, -.., 4,, we shall use the notation 4,H 4,P
.. A or i} @ 4; in place of a matrix
i=1

v
A4,

‘As

§2. The possibility of Lanczos’ algorithm

2.1. We begin with

Tueorem 1. Let A be a given matrixz of order n. Then, by the Lanczos
algorithm starting from appropriate vectors x, and y,, we can always get a
Jordan normal form.

Proor. Take a non-singular matrix 7 such that 7-'4 T is a Jordan nor-
mal form;ie., T-'AT= > @ J; where J; are of order n; and
=1

A
J={ LA )

14,

4) By definition, it is clear that the grade of any vector with respect to 4 does not exceed the
degree of its minimal polynomial. Hence we note here that, if 4 is derogatory, the breakdown of the
algorithm (i.e., Cases 1-4) will certainly occur.
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Let ¢; and u; be the i-th columns of 7 and T* ' respectively. Then, by the
Lanczos algorithm starting from x,=¢, and y;=u,, we get x;=¢; and y,=0.
Thus, according to the modification mentioned in §1, we can choose u. as the
vector w;. Repeating the similar modification, the algorithm can be con-
tinued to completion as follows:

Xi=1; (G#=ni+1, ni+n+1, -, ni+--+ns21+ 1),
Xy e tng+l = 0, Zpypeetng+l = Uppein+1 (1I=i<s—1),

yi=0, wi=u; 2=i=<n),
and
B:;i=0 AKi<n—1).

Hence the result is

A(wyy -y Xnys Eny+ls Xny+2s ~-'s Xnytnys Sng+ny+ls **°s %)
=(x1, " Xnys Bny+ls Xng+25 " xn)'(]l@]Z@@Js)

This proves Theorem 1.

The above proof shows that theoretically a Jordan normal form can be
obtained by executing the Lanczos algorithm, using only the modification for
Case 1. If 4 is a real matrix and all the eigenvalues of A are real, then T,
or t; and u;, may be taken to be real. Therefore, in such a case we can ob-
tain a Jordan normal form by using the algorithm in the realm of real num-
bers. In practical computation, however, it is difficult to find the initial
vectors ¢, u, etc. Hence we are to seek for other properties which assure
the possibility of the algorithm.

2.2. The following lemma plays a fundamental role throughout this
paper.

Lemma 1. Let A and A be matrices such that A= T AT with a non-
singular matriz T. If we denote by X, ¥: (x:, y:) the iterated vectors obtained
by Lanczos’ algorithm for A (A4) with initial vectors %1, 5 (x1=T%1, n=T*""3),
then we have x;=T%;, yi=T* '%. Hence x,.1=0 (y,,1=0) for some p if and
only if %p.1=0 (7,1=0). Further, if we take a modified vector z,,,> (#,.1)
for A, then z, 1= T3p.1 (wp1=T* 'W,.1) 18 @ modified vector for A.

Proor. The following relations hold:

7T AT §i¥ %
~ — ~ 1 7~ 1 1 -~
Fin=(TrAT)%;— Y ~ %= xX;— y*~ Xi-1,
YiTxi Yi-1" %i-1

and

5) Namely; 2p-}-l € [71,“‘,71;] + and 7p+1*2p+1 5&0 (lf 7p+1 '4:0), etc.
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~ =1 a ~ ~
FAT*AXT* 5 %™y
~ -~ 1 ~
Ty Fi—1* ¥io1

Fi1 = T*AXT* " 5;—

which may be written as

(T* ' 3)*A(T%,)
(T*7 )T

(T*7 ¥)%(T%:)
(T* " 5o )M (T%i-1)

T%;-1,

TD‘E,'Jrl = A( Tf?i)— T%i—
and
(Tx)*AX(T* ' %)
(Tz)XT* " 7)
(T )
(Ti—)*(T* li’i—l)

T+ 'y

TH ' §p = AX(T* " 5)—

T* " 5 1.

This implies that T%; and 7* ' is the i-th iterated vectors for A starting
from initial vectors 7%, and 7* '%. Similarly the remaining part can be
verified easily. Q.E.D.

2.8. The following Lemmas 2,3 and Theorem 2 are due to Rutishauser
[8]. But we give here purely algebraic proofs of Lemma 2 and Theorem 2 for
the sake of completeness.

LemMA 2. Let A be a matrix of order n and m be the degree of the mini-
mal polynomial for A. If we put

y*x y*Ax y*Ai_lx
Pl gy dy— | YAx yAx A

y*Ai_lx y*Aix y*AZi 'x

with n-dimensional vectors x and vy, then there exist two vectors x, and y, such
that fi(x1, y1, A)F0 A =i <m).

Proor. Let T be a non-singular matrix such that 7-'4 T= 4, 4,, where
A, is of order m, A4, of order n—m, and

Ay
14

14

4 1 2 (A4 for i ).

12
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(Note that 4; is non-derogatory, and that A4, does not appear if and only if
A is non-derogatory.) For any fixed i with 1<{i <{m, consider an i-square
matrix 4=A4,(131). Then A is non-derogatory. Therefore we can find an
i-dimensional vectors %( %) such that a set of vectors %, A%, .., 4''% (3, A*¥,
.., A¥"' %) is linearly independent. For such vectors we have

[z, ¥, A)= ‘| &, A%, ..., A% | 0.

Let x=T-'C%,0,...,0) and y=T* "/('5, 0 , 0), then we have y*A*x=
y*A4*x for any k In fact, because of a spe01al form of A, we have

y* APy = yH(AD(3:DE = y*{4:(5DME =
Hence we obtain
fi(x) Y A) zfi(-%) 5/3 J)#O,

which implies that fi(x, y, 4)5=0 considering as a function of the components
of vectors x and y. Obviously a union of the roots of the non-trivial equa-
tions fi(x, y, 4)=0 does not spann the whole space since they are equal to a

set of all the roots of a non-trivial single equation ﬁ fi(z, y, A)=0. Thus we
i=1
can find two vectors x3, y, such that fi(x1, y1, )01 <i<m). Q.E.D.

Lemma 3. Let A be a matrix of order n, and m be the degree of its mini-
mal polynomial. Then there exist two trial vectors xi, y; such that x;, Yy
A =i=<m) are well defined, i.e., y*x; 0 1=i<m) and y*x;,=0 (i+#)). In
this case we have always xm.1= ym,1=0.

Proor. This follows from Lemma 2 by noting that
fi(xla ¥1, A) :j]:Z(yj*xj) (lglém)

(see [6]or [8]). Q.E.D.

Tueorem 2 (Rutishauser). Let A be a matrix given as in Lemma 8. Then
there exists a pair of initial vectors x, and y, such that the algorithm can be
continued to final step using only the modifications in Case 1 and

A(xla Ty xn):(xla ) ) (L1 D L DD L)

Jfor some s, where
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i1 Bin
1 aiz.ﬁiz‘
3 L= 1_.--....-.&’1‘_1 (B;; =0 for any i, j)

and m=n,>ny,=>...=>n,°
Proor. Considering a Jordan normal form, there exists a non-singular

matrix T such that 74 T= Zs} @ A;, where 4; are non-derogatory of order n;
i=1

(m=n,=ns = =ng, ZS} n;=n) and the characteristic polynomial for 4; co-
i=1
incides with the minimal polynomial of i P A4; 1<i<s). Then, by Lemma
i=i

3, we can find two n;-dimensional vectors x;, y;; such that y;1*x;, 50 and the
j-th iterated vectors x;;, y;; for 4; starting from x;;, y;1 satisfy

=0 (j+k)
yik*xij ¢! g], kéni),
0 (j=Fk)

and
Xing+1 = Ying+1 = 0

for each i (1<i<s). Therefore, by Lemma 1, if we apply the algorithm to
A with initial vectors

n—ni n—ni

-1
X1 = T't(txlb 0> Tty 0)9 n= T* 't(t}’u, 0) S O))
the iterated vectors x;, y; must have the form
xXj= T't(txlj) 0, L) 0)) :)’J':T*_l't(tylb O: ) O) (]-g]gnl)

and

Xpy+1 = Yny+1 = 0.

Next we set

ni n—n1—n2
———

—_——
Zny+l = T't(og Ty 03 tlea 0: ) 0))
wn1+1 = T*-‘J(O, ] 0) tyzla Oy Ty 0)
and begin again with them, since

Zn 41 € [}’1; AT) ynle, Wy, +1 € [x1, - xnljla

6) More precise results will be given later as Theorems 5 and 6.
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and

wnl+1*zn1 +1 =+ 0.
Then the iterated vectors x;, y; satisfy

yi*¥x%; 70 (n+1<j< ni+ns)
and

Xny+ny+l = Yoyj+ny+1 = 0.

Continuing this process, the algorithm is complete after s—1 modifications in
Case 1 and the result is

AX=XL,B LD DL,
where
X=(x1, -, Xnys Bng+ls Xny+2s o5 Xpgtewtng gy Bngtetng_g+1s =005 Xn)s

— t t
Zny g+l = T (O, ttty 0) Xit1ls Oa ] 0)’
———— ~———

Attt PG
— t t .
Xy 4oty +i — (0, -, 0, Xitljs 0,..,0) (2§]§ nii1),

and L; is a non-derogatory tri-diagonal matrix shown in (3) with

Yij iXij Yij+1" Xij+1
=0, B=""r—"—=0.

Yii* % i ¥is %

The proof is complete.”

2.4. We now turn to the problems raised in §1. The following theorem
assures the possibility of the algorithm in Case 1.

Turorem 3. Let us apply the Lanczos algorithm to A with initial vectors
x1 and yi, and assume that Case 1 occurs after several modifications due to
Cases 1-3.  Namely let

X1y vy Xpyy Bpi+ly Xpi+2y =05 Xpyy Zp,4ly o0y Xpy Xp,41 =0,
Vs > Yoy Way+ly Yay+2s o Yap Waysls -5 Yoy Yar1 =0,
x7#0 (A=iZp,iFp+l, ..., p,1+1),

%70 (A=j=¢sjFqa+l, -, g1t

tp1 =Y =0 (Q=i<r1<j=s),

7) The similar proof for this theorem is found in [6], but there it is not clear whether there are
VECOrs Zp 11, Wpy1 (Wpr1¥2,11 5 0) such that they have a common grade and y*z,.1 = % *w,1 =0
(1<j=<p),in case where x,,1=y,.,=0.
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and
Pr=4(s ZP(Sa’y)
Then there exists a pair of vectors z, .1, wy,1 With a common grade such that

(i> Zp+l € [}’1, s Yoy Wayr1s Y425 <005 Yayps qu—(-ls Tty ybjla

(li) Wpi1 € Exh ciry Xprs Zpr4ly Xp 42y <0y Xpys Tpytly =0 xb]J—’

(i) wpi1*zp1540,
and

(iv) the algorithm starting again from z,., and wy 1 can be well continued
so that Case 1 occurs, i.e., so that, for some integer p,.., we have

xp,+1+1=yp,+,+1=0, and yi*xi#o, (P+2§igpr+l)'

Namely, under the above situation, the algorithm can be well continued to com-
pletion using only modifications due to Case 1.

Proor. Let
w:[xla trs Xpys Bpy+ls Xpyi+2y 05 Xpyy Bpy+ly ooy xﬁ])
sz [3’1, oy Yags wa+1, Ya+25 - yqz) qu+1a Tty yP])

and uy, -y Up_p (V1, -, Ua_p) be a basis of U+(P*). Then the subspace WY+ is
invariant under 4. In fact we have

yH o)=Ly =0 (A=i=p)
and
W H(Av) = (AFwg Yo =0 (A=j=s—1)
for any vector » € Q0+ since
A%y Awg e P A=<i<p,1=<j<s—1).
Thus we may write

n—b
Av; = 2 bjiv; AZiZn—p)
i=1

for some scalar b;;. Let B be a matrix of order n—p constructed from the
coefficients b;;;

bn—pl bn—pZ bn—p n—p
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Then, by virtue of Theorem 1 or 2, we can find a pair of n—p dimensional
vectors Z,,; and @,,, such that B is well transformed into a block tri-diagonal
matrix L, P ---P L, by the Lanczos algorithm starting from the pair. Let
the order of L, be n; and put p,,1=p+n:. If we denote the iterated vectors
for B by %:, %, we have

Wp1*2p 1750, 75 %, 70 @=j=n1), Zp,, ,1=5¥p,,+1=0,

Vi € [Zpi1, Rpaay o5 Xic1 ]y
and
Xi € [Wpi1, Fpios s Yir]m (pH2=i=p,1).
Let
X:(xh Tty Xpys Bpi+ly Xpy42s o0y Xpy Uly ooy Uﬂ—P))
YZ(yh s Yaps Waiv1s Ya+25 005 Yoy ULy ooy Un-p)s
and
( ul*vl ul*vz lL]_*Unfp
C— us*vy us*v, s U2XUup
Unp™01 Un_p V2 - Upp V4

Then the matrix C is non-singular since X and Y are non-singular and
yi¥* e f

Y*X = ‘.yp*xpi

L L c |

Now we shall show that a pair of vectors z,.1=(v1, -, Vs-p)Zp,1 and wy,1=
(w1, -y un_p)C* 'iw,,, is what we seek. It is clear that the conditions (i) and
(ii) are satisfied since z,,; and w,,, are linear combinations of v, ---, v,_, and
u1, -+, Uy—p respectively. Further we have

Wpi1¥2p41 = Wp1¥Zp 170,

Next, to prove the condition (iv), we denote by x;, y; (i =p+2) the iterated
vectors which are obtained by applying the algorithm to 4 with the modified
vectors z,,1, wy,1. Then they satisfy the relations

xi = (01, -, vn—pﬁi, yz=(u1, EERP) un_p)C*_lj‘q (P+2§i§]7r+1)a

and



On Lanczos’ Algorithm for Tri-Diagonalization 271

Xp, 1= Yoy +1 =0,
as is easily verified using induction on i =p+2. Let
Z = (%1, -y Xpyy Bpyely Xpi12y ooy Xpy Zpils Xpsy 5 Xp e
Then, by noting that A(vy, -, v, ) =(v1, -- v.-p)B, We obtain
AZ = Z(L/DLY)
where L, is a (block) tri-diagonal matrix of order p such that
A(x1y ooy Xpys Zpya1y Xpyazs -5 %p) = (X1, 5 Hps Zp, 415 Xpy225 -5 %p) Lo,
and its concrete form will be shown below. This completes the proof.

Typical diagram of L, in case of p;<q:1< - <q.-1<p, (=¢;=p)
far B

1 -
Bs,-1

1 Qp, Bl/h

4 /
a‘ls—1+1 .qu—ﬁ'l
1 -
By-1

1 ‘al,

i
1

2.5. We shall now consider the possibility of the algorithm after the
modification in Case 2 or 3. First we show the following:

Lemma 4. Let 4; (1<i<s) be s Jordan block matrices of order n;
(3 ni=n) such that
i=1

> li#lj (l#]%
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and let A=A, D---P A,. Corresponding to this matrix A, let v=v:P - Pv,
be an n-dimensional vector such that each subvector v; is n;-dimensional. Then
v has the grade n with respect to A(A*) 1f and only .f the first (last) component
of each v; is different from zero.

Proor. Let v; ='(vi1, viz, ---, vin,). If, for instance, we assume that
v1;=0, then the first row of a matrix (v, Av, ..., 4”7 1) consists of only zero
elements. Hence a set of n vectors v, Av, ..., A" v is linearly dependent, and
v can not be of grade n with respect to 4; namely, if v has the grade n with
respect to 4, we must have v,,+0 for every i (1<i<s). In this case a
simple computation on determinant shows that

a1(0) a,(1) ... ay(n—1)

as(0) as(1) -+ as(n—1)

where a;(j) stand for n,-dimensional column vectors whose components con-
sist of the first column of Ai. (4? is an identity matrix of order n;) Hence
the value of the determinant on the right, denoted by 4, is non-vanishing®.
From this it follows that det (v, v, ..., A" ')==0 if v;; 520 (1<{i<5), since
4 1s independent of the components of ». This proves the assertion.

Lemma 5. Let us assume that Case 2 occur at the p+1-th step (it may
occur at the p'(<p) th step), and modify the algorithm choosing a mew vector
Zpe1 €Lyt oy ¥t Lf fizpi1, i1, )0 A =1 <k), then a sequence of the
iterated vectors x;, y; (p+2=i<p+k) is well defined by this modification, and
we have

p+k
fk(zp+1, Yp+1s A) = (yp+1*zp+1)‘,:];2(yi*x£)

where f} 1s defined as in Lemma 2.

Proor. Induction on k. Since the lemma is trivial for =1, we suppose
that it holds for k—1. Then x;, v; (p+2=<i<p+k—1) are well defined and

8) Ifn;=n,=---=n, we can show that
4 =11 (4;—Aymni
i>j

by noting that
det (ay(n —ny), a(n—ng+1), -, a(n—1)) = A2s(n=ns)
and
a4
02; la;=1y
considering as a function of 4,. Hence Lemma 4 follows from this fact. But such calculations are not
necessary for our purpose.

=0(1=v=nin;—1,i>)),
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fk—l(zﬂ+1> Yo+1s A)= (9’p+1*zﬁ+1) Z]:(ym*xw)# 0.
Hence x,.1, ¥,.+ can be constructed and we have
Bpe; = Qi(Azp1— A%y,
Iori = oA ypr1 C=j=<h),

where ¢;(2) is a monic polynomial of degree j—1 and ¢;(4) is a polynomial of
degree j—2. Since x,,1=0 by assumption, we have A4%x, €[ xy, ---, x5 ] for
any q and y,,;¥¢i(A)x,=0 for any ¢ and j (2<;<k). This implies that

yﬁ+j*xp+i = yp+/‘*¢i(14)zp+1~

Moreover, y,.*¢i(A)z,,1 is a linear combination of y,,*zp.1, ¥p:i*A2p11, -+
ypri* A" 2,1 With coefficient one over the last term. Thus, by elementary
calculation on determinant, we have

Yoe1®2pi1 o Ypi1*%pes
* k * _ yp+2*zi>+1 yp+2*xlz+k
(y1:+1 z.b+1)’]72<y17+j Xpej) =
e
Yok Zpr1 o Vork Xpk
E-1
yp+1*zp+1 Yo Azpn - y1>+1*A Zp+1l
2 k
Yoer¥Azpir Ypur*Azp o yp* Az
-1 k 2k
Vo1 ¥ A T zpi1 ypr1* A zpin Yor1* A" Czpia

= filzp115 Ypr15 A)- Q.ED.

LemMa 6. If x(y) 18 a given vector of grade p with respect to A (A*), then
we hawve

considering as a function of the components of a vector y(x).

Proor. Obviously, we may assume that 4 = i p 4; with
i=1

A
L )
12
A= & NERETIET)
no(7)
14
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Then we put
2 =x(D)D- D), y=y1D-D y(s),
where x(7), y(i) correspond to 4;, and
1) ="(En(@), §12(0); -+, E1n, (@ En(D -, Eam, (D), ),
y (@) ="(u@); 112(D)s -5 M1, @)y 122Dy 5 D2myix(Ds ).

In order to prove the lemma, it is sufficient to show that, for any & with 1<
k= p, we can construct a vector y such that fi(x, y, 4)7%0. Now, given i,
define an integer 4,(i) for each j, as follows:

g if &,.0)#0 and ¢&,(i)=0 for g,
hi(@) = )

0 if &:G)=0.

Next, let
d; = max {n,;(i) —h;()}
7
and
N;= A;—:1;

where I; is an identity matrix of the same order as of A4;. Then, for any k&
such that 1<t < p, we have

k< p=rank(x, Ax, ---, A*"'x)

gz rank (x(i), 4;x(), .-, A2~1x(i))

I
MV)

1rank(x(i), Nix(@), -y NI7'2(2))

1

Il
M'ﬂ

d;.

1]

i=1

Hence it is possible to select non-negative integer k; so that k;<<d; and

3 ki=k. Without loss of generality we may assume that
=1

di=m@)—hG) QA<i<s).

Then, putting A;=h,() in order to simplify the notation, we define k;-dimen-
sional vectors (i), ¥(i) and k;-square matrices A; as follows:

%(l) = t(flhi+1<i), $1h¢+2(i), ) Slhi+ki(i))a

y@) = t(ﬂlhiu(i), 771hi+2(i)3 BT 771hi+ki<i))a

1. — hitlohi+ 2, hith
A= A;GET gk,
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Now, for the vector x given above, consider a vector y such that
740)=0  (j%1l,or j=1and :>h;+k)
and
Pin+e D) F0.
Then this vector y satisfies fi(x, y, 4)=0. In fact, if we put
=3 Dxs), y=yDLD - DFs),
and
A=4P - DA.”

then, by Lemma 4, a set of k-dimensional vectors %, 4%, ..., A*'%(y, A*¥, -,
A*7'%) is linearly independent since the first (last) component &, .1(i)
(p1n,+2,(3)) of the vector (i) (7(2)) is different from zero for each i. Also it
is clear that y*A'x= ¥*4'x for any non-negative integer i. Thus we obtain

fk(x, Y A) :fk(&$ 5’, /I)

7k

<

= | 7, am, o, 5|0,
y*A'k—l
ie, fulx, y, H)==0 (A<E<p),
which establishes the assertion. Q.E.D.
We are now in a position to prove the following:

Tueorem 4. Let us apply the Lanczos algorithm to an n-square matrix A
with initial vectors x1 and y,. And assume that Case 2 occurs after several
modifications due to Cases 1-3. Namely, let the iterated vectors be obtained as
JSollows:

X1y wovy Xpys Bpyialy Xpi42s -y Xpyy Tpyals o0y Xpoy Xpotl =03

€)) Yis oo Yays Wai+1s Yay+25 o5 Yayo Waytls w05 Yap _’qu+17&0,
2 =0 A=i<r), y,1=0(A<j<s—1),

where p,=q,. Then there exists a vector z, ., such that

3 L
(1) 2p,+1 € [}’1, sy Vs We 1, Ya,+25 s qu_1+1’ ] ,'yﬂ,:l 5

(ii) ypr+1*zﬁr+1#05

9) If d;=0 for some i, then k;=0 and %(i), #(i) and A; do not appear.
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and

(iii) the algorithm starting again from z, .1 and y, ., can be well con-
tinued to completion.

In particular, if A and the vectors in (4) are all real, the vector z, ., can
be taken as a real vector.

Proor. For convenience sake, let p,=¢,=p and let ¥, 9 be defined as in
the proof of Theorem 8. Then it is clear that there exists a vector z,,; such
that zp,1 € V" and y,,1%2,,170, since the union of a set of the vectors xi,
oy Xpy Zp41s -5 %p AN @ basis of Q0+ spanns the whole space. If either one
of Cases 1-3 occurs after starting again from a pair of vectors z,.; and y;,1,
we can continue the process by the modification as is explained in §1. There-
fore, in order to prove the theorem, it is sufficient to show that a vector z,.,
satisfying (i) and (ii) can be chosen so that Case 4 does not occur. On the
contrary, suppose that Case 4 occurs for any choice of a vector z,.; satisfying
the condition (i)}and (ii). Then there exists a positive integer t=£k(z,.,) (=2)
depending on z,,; such that

) Yori %5 F0 Q= j<k—1),
Yorr*xp0 =0, Xp 70 and  y,,, 50,

where x,.;, y5.; (2= j=<k) denote the iterated vectors obtained by the algo-
rithm starting again from the vectors z,,; and y,,;. Since k<n—p,

g = max k(zp.1)
zp+167/“L
Yp+172p 4170

exists and we can find a vector z,,; such that the situation (5) happens at
k=gq. Then the grade of y,.; with respect to 4* is not less than ¢ since

g =r1ank(yy,1, -5 ¥pig) =rank(ypi1, A*ypi1, - A yp00).
Hence, by Lemma 6, we have
filxs yp01, )FE0 (1=i=q)

considering as a function of the components of x. This implies the existence
of a vector z such that

fiz, ypi1, AHF0 A=i=g).

Since the whole space is the direct sum of the space 7/ and 99, the vector z
can be written uniquely in the form

z=u+v (uel, ve@).
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We put z,,1=v. Since, as is easily seen, the space ¥ is invariant under 4,
we have for any positive integer A

A'uw €U, vy *A"u =0,

and

A _ A
yp+1*14 Zp+1 = yp+1*14 z.

Therefore we have

filzpins your, A) =iz, ypi1, HF0 (I=i=q).

On the other hand, since the vector z,,; satisfies the conditions (i) and (ii),
we can continue the process starting again from a pair of the vectors z,.: and
yp+1.  Then, by Lemma 5, the following holds: )

q
fq(zp+1, Yo+15 A)= (yp+1*zp+1)' ]72(yp+j*xp+j>
iz

where x,.;, y».; represent the iterated vectors constructed by this algorithm.
Hence we must have y,,,*x,,,5 0, which contradicts to the maximality of q.
Thus there exists a vector z,,; such that z,,; € 0", y,,1%z,,:%0 and Case 4
does not occur. Especially, if 4 and the iterated vectors in (4) are all real,
it is clear that the vector z,,, can be chosen as a real vector. The proof is
complete.

As a special case of Theorem 4 we have

TurorEM 5.  For a given non-zero vector x(y), there exists a vector y(x)
such that the Lanczos algorithm starting from x,=x and y,= y can be well con-
tinued to completion. Especially, in Theorem 2, one of the vectors xi, y, can
be chosen arbitrarily as long as it has the grade m.

2.6. Asis well known, if 4 is hermitian (or real symmetric), the algo-
rithm is well continued to completion, starting from any common initial vector
x1=1y=x. This is not true in general, even for normal matrices as the
following simple example shows:

Consider a normal matrix

i i 0
A=|i i 0
0 0 vy3+i

If we choose a vector x='(v2/3, 0, 1/Y3) as a common initial vector, then we
have

o= Adx—2A% . (23, iV2/3, 2/3),

x*x
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)y = A*x_szz =(—\2/3, —iN2/3, 2/3),

and
¥ xe = 0.

This example raises a question whether, for a given matrix 4, there always
exists a vector x such that the algorithm starting from x,= y;=x can be well
continued to completion. Fortunately the answer is affirmative. Namely,
as another refinement of Theorem 2 (Rutishauser), we obtain

TueOREM 6. In Theorem 2, x, and y, can be taken as the same vector.
Namely we can find a vector x of grade m with respect to both A and A* so that
the algorithm starting from x;= y,=x may be well continued to completion
using only modifications due to Case 1. If A is real, the vector x may be taken
as a real vector and the algorithm is possible in the realm of reals.

Proor. Let T and A4, be the matrices defined in the proof of Lemma 2.
We denote by J; (1 <i<s) the i-th Jordan block matrices of order n; appeared

in 4;;ie., 41= > @®J. Then it will be shown that
i=1

6) fulx, T*Tx, T'AT)#0  (1<k<m)

considering as a function of the components of a vector x. To prove this, we
take a positive integer £ with 1<kt <<m and r (<s) positive integers %; such

that £; <n, and Zr ki=k. Further we put
i=1

x—(Z@x(t))EB’(O 0), T*Tx= (Z@y(t))@‘(* m *),
where x(z), y(i) are n;-dimensional vectors and
=90, .., 0, &0, -y Eiy)  (A=i=r)
=0, ., 0)  (+1=i=Zs),
y@ =106 oyt iy s i) Q=i =),

Since T* T is positive definite, each component 7;; is a non-trivial function of
€11, -5 &1y -5 &4y -+, Erp,. Hence we can find £ numbers &, such that ;50
(1<i<r,1<j<k;). Byan ordinary argument of continuity, we may as-
sume that &,0 A1 <h<r, 1<I<k;. Then, in the same way as in the
proof of Lemma 6, we obtain fi(x, T*Tx, T'AT)=fu(%, 5, A)=0, where

1t
&= (511, ] Slklg Tty 5713 AR Srk,)’

x(7)

5}: t(77113 s Mikys oo Mrls ooy 77rk,>,
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and
{ S i—kit1oni—ki+2 i
A= Zl@ N FCamt i 58 )N
P

Since k is an arbitrary integer such that 1<k <m, this establishes (6). There-
fore we can find a vector % such that f,(%, T*T% T 'AT)+0 A1=<k=<m).
Then the grade of # with respect to T-'AT is clearly m and the algorithm
for T-'AT starting from initial vectors ;=% and y = T"* T% can be continued
to the m-th step:

971'*761'750 (1 g i gm)a %m-rl = 5’m+1 =0

where %; and ¥ denote the i-th iterated vectors applied to 7-'4T. There-
fore, by Theorem 3, the algorithm can be well continued to completion. By
Lemma 1, this implies that the algorithm for A starting from common initial
vectors x;= y;= T'%, can be well continued to completion using only modifica-
tions for Case 1. Evidently the vector T'%, has the grade m with respect to
both A4 and 4*. The remaining part is clear. Q.E.D.

2.7. Computational procedure. So far, we discussed the possibility of
the Lanczos algorithm from theoretical point of view. Now, according to the
results obtained there, a computational procedure of the algorithm can be
formulated as follows:

Step 1. Let x; and y; be a pair of vectors which is chosen arbitrarily or
according to any criterion, and start the algorithm.

Step 2. If Case 4 first occurs on the way, we choose a new vector x; and
begin again with a pair of vectors x{ and y.

Step 3. If either one of Cases 1-3 occurs on the way, we modify the
procedure according to the rule stated in §1, and continue the iteration.

Step 4. Proceeding in this way, if Case 4 occurs after several modifica-
tion due to Cases 1-3, we go back to the latest modification and begin again
from there replacing the modified vector by a new one. Namely, if the latest
modification is due to Case 1 at the p+1-th step, we may replace only one of
the vectors z,.; and w,,; by a new vector; similarly, if it is due to Case 2 (3)
at the p+1-th step, it is sufficient to replace the vector z,.:1(w,.1) by a new
vector z;,1(wj.1).

In the above procedure, if A4 is a real matrix, the algorithm can be done
in the realm of real, i.e., vectors xi, y1, zp.1, wp.1, €te. may be taken as real
vectors. At any rate, theoretically, the algorithm is always possible by the
above procedures as Theorems 3,4 and 5 guarantee. Further, by Theorem 6,
we may replace “Step 1” by the following:

Step 1’. Choosing any non-zero vector x, start the algorithm from

x1=y1=x.
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2.8. Geometric interpretation. Let 4 be a non-derogatory matrix of
order n, and S be an n-dimensional (complex or real according as A is com-
plex or real) affine space. For each positive integer %, let ¥, be an algebraic
variety defined by the equation f.(x, y, 4)=0. Considering an n-dimensional
vector as a point of the space S, we shall call a pair of the initial vectors
leading to one of Cases 1-4 as a breakdown point in a space Sx S. Then a

set of all the breakdown points forms an algebraic variety V= \n/ V,in Sx S
k=1

defined by ]n] fiu(x, y, A)=0 since
E=1

fk(x, Y 4) =i]j71(yi*xi)

or

%
f}(zp+b }%+1,14)=:(Zp+1*}%+1)ﬂ]l(9%+j*xp+j%
j=

etc. by Lemma 5. Thus the results (Theorems 2-6 and Lemma 6) suggest
the following geometric interpretation for the possibility of the Lanczos al-
gorithm.

TueorREM. Let A, S, and V; be defined as above.
(i) A set of all the breakdown points forms an algebraic variety

V= \n/ Viin Sx S. And there exists a point P of Sx S such that P¢ V.
i=1
(ii) For any point x(5=(0)) € S having the grade p with respect to A, we
b 4
have xx SE\ JV; and certainly xxSCV,... Analogously we have Sx yZ\ JV;
i=1 i=1
and Sx yS V.1 for any point y(7(0)) € S having the grade p with respect to
A*,
(iil) The diagonal in Sx S is not contained in V.

Appendix. The eigenvalues of tri-diagonal matrices

In this appendix, we investigate some properties concerning the eigen-
values of tri-diagonal matrices, in connection with the Lanczos algorithm.
Let 4=(a;;) be an upper Hessenberg matrix of order n. If a;,,;,=0 for some
i, the eigenvalue problem for A is reduced to that of lower order. Hence
there is no loss of generality even if we assume that a;.;;~0 for any ;. Then
the following lemma is clear from the theory on elementary divisors since
the elementary divisors e; satisfy e;=1 (1<i<n—1). But we give here
another elementary proof for the sake of completeness.

LEmMA. Let A=(a;) be an upper Hessenberg matric with a;,1;>0
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(A<i<n—1). Then the eigenvalues of A are distinct vf and only if A4 1is dia-
gonalizable.

Proor. let 1y, 22, ---, 4; be k£ numbers and consider a matrix
A= (A—=2I)(A—2.D) - -(A— 2. 1),
where I denotes the identity matrix of order n. If k<n, then A=~0 since,

.k
as is easily seen, the (k+1, 1) element of 4 is //a;.1;#0. Therefore the
i=1

degree of the minimal polynomial for 4 must be n. Hence the eigenvalues
of A are distinct if 4 is diagonalizable. The converse is clear. Q.E.D.

Since a tri-diagonal matrix is a special case of the Hessenberg matrix,
we obtain from the lemma

TurorEMm A.l. Let
bl C1
ax bz Co
€)) A= o T,
Ap-2 bn—l Cp-1
Ap-1 bn
where a; and c; are real and a;c;>0 (1<i <n—1). Then we have the following:

(i)  The tmaginary part of any eigenvalue 2 of A satisfies

min Im(4;) <Im(2)=< max Im(b;).

1=i=n 1si=

(ii) If b; are real, the eigenvalues of A are real and simple.
(iii) If b; are all real, exactly one eigenvalue of A(3%:221) lies between any
two etgenvalues of A.

(REmark. The properties (ii) and (iii) are well known in connection with
Sturm sequence, but, as is shown below, we can give a unified treatment.)

Proor. Asis well known, by diagonal matrix D, we can transform A
into
( bl \/a101

D~1AD \/rcl bz \/azcz

\/an—zcn—z bn—l \/an—lcn—l

\/an—lcn—l bn /

Hence, if b; are real, D~'4D is real symmetric and diagonalizable. There-
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fore the eigenvalues of D~'4D (and A) are real and distinct by the lemma.
This proves (ii). (iii) is a consequence of a direct application of the separation
theorem for the real symmetric matrix D-'4D. Now we shall show (i). Let
x="(¢,, .-, &) be a unit eigenvector for D~ 4D corresponding to an eigenvalue
A. Then we have

A=x*D'ADx = élbi |&;] 2+j§ Vaici(Ei€is1+EiEi).
Hence we obtain
Im(1) = Im(5 0119 = X Im@)] 1%
Thus the inequality (i) follows. Q.E.D.

As a dual for Theorem A.l, we obtain

TueoreMm A.2. In the tri-diagonal matrix (1), let a;, c; be real and a;c;<0
1<i<n—1). Then we have the following:
(1)  The real part of etgenvalue 2 of A satisfies
min Re(d;)<<Re(1)< max Re(d;).
1si=n l1=si=n
(i) If b;,=0 (1<{i<n), the eigenvalues of A are pure imaginary (ad-
mitting zero) and simple.

Proor. It is sufficient to consider a diagonal matrix D=diag<1, J—ai/cy,
D ]/nf]l(— ai/C{)) and D-'4D. Q.E.D.
i=1

CoroLLARY (Arscott [17]). If the matriz A in (1) is real and a;c;<0
A <i<n-—1), then all the real eigenvalues of A lie between the least and gre-
atest of the b;, these values included.

The similar results hold for a certain type of infinite tri-diagonal matrix.
Let X be a separable infinite dimensional complex Hilbert space. And let 4
be a linear operator of X into itself. If 4 admits an infinite tridiagonal mat-
rix representation

(b1 ¢
a bz Co
2 R
Ap-1 bn Cn

!
(

with respect to some orthonormal basis of X, and a,, b,, ¢c,—0 (n — =), then
A is compact. Hence all the eigenvalues of 4 are approximated by the eigen-
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values of finite matrix

bl C1 )
a1 by ¢
An = e, T, e,
". ". Cp—1
Ap-1 bn J

([4] Lemma XI. 9.5). On the other hand, let 2,(n) (|2:(n)| =|22(n)|=---) be
the eigenvalues of 4,, each arranged according to a certain rule. Then, for
every i, any limit point of {1,(n)};-; is a point of the spectrum of 4 (see[12]).
Therefore Theorems A.1 and A.2 are transformed respectively as follows:

TueoreMm A.1'. Let A be an operator of X into itself and admit a matrix
representation (2) with respect to some orthonormal basis of X. If a; and c;
are real and a;c; >0 for every i, then we have the following:

(1) The imaginary part of any eigenvalue 2 of A satisfies

inf Im(6;) <Im(2) <sup Im(b;).

(i) If b; are real, the eigenvalues of A are real.

Tueorem A.2'. Let A be an operator defined as in Theorem A.l'. If a;
and c; are real and a;c; <0 for every i, then we have the following:
(i)  The real part of any eigenvalue A of A satisfies

inf Re(b;) <Re (1) =sup Re(b)).

(ii) If b;=0 for every i, the eigenvalues of A are pure imaginary (ad-
mitting zero).
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