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Modules over (qa)-rings
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Let R be a commutative ring with unit. When the total quotient ring Q
of R is an Artinian ring we call R a (ga)-ring. In this paper we are mainly
concerned with the theory of modules over such a ring. In §1, some pre-
liminary results are summarized. In §2 we shall prove the following (Theo-
rem 2. 10): Let R be a (ga)-ring with the self-injective total quotient ring,
and let M be an h-divisible R-module such that M/:(M) is an injective R-
module. Then ¢(M) is a direct summand. Some applications of the preced-
ing result will be discussed in §3.

The author wishes to express his sincere gratitude to Professor Y. Nakai
who gave him many valuable suggestions.

1. Preliminaries

Let R be a commutative ring with 1 and let S be the set of all non zero-
divisors in R. The total quotient ring Rs is denoted by Q, and K will denote
the quotient module Q/R. Let M be a module (always assumed to be unitary)
over the ring R. An element x in M is torsion if there is an element sin S
such that sx =0, and torsion-free otherwise. M is called a torsion module if
every element in M is torsion, and a torsion-free module if every element in
M is trosion-free. Let M be an R-module. Then as is easily seen there is
the unique maximal submodule which is torsion. This submodule will be de-
noted by ¢(M) and will be called the torsion submodule of M. An R-module
M is torsion-free if and only if #(4)=0.

ProrosiTion 1.1. Let M be an R-module. Then we have t(M)~Tor¥ (K, M).

Proor. From 0—> R—>Q—K—0, we have the following exact sequence:
0— Torf(Q, M)— Tor¥(K, M)—>M—>QXrK. But Tor¥(Q, M)=0 since Q is a
flat R-module, and by Proposition 1.4 Tor? (K, M) is torsion. Thus TorZ(K, M)
—t(M) is monomorphic. On the other hand, if N is a torsion-free module,
then we have a canonical map: N—>Q&®xzN is monomorphic. Therefore
Tor® (K, M)— (M) is an onto R-homomorphism. Thus ¢(M)=~Tor}(K, M).

CoroLLARY 1. 2. For any R-module M we have the following exact se-
quence:

0> M/t(M)—QRrM—>KQQrM— 0.
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DerintTON.  Let M be an R-module. Then M is called a divisible R-module
i case sM=M for any s in S, i.e., for any x in M and s is S there exists y in
M such that sy=x.

From the definition it follows immediately that for any R-module there
is the unique maximal divisible submodule.

Lemma 1.3. (1) If M is o divisible R-module, then Homgz(M, N) is a
torsion-free R-module for any R-module N.

(2) If M 1is a torsion-free, divisible R-module, then Homgz(M, N) is also a
torston-free, divisible R-module for any R-module N.

Proor. (1) Let f € Homz(M, N) and assume that sf=0 for some s in S.
For any x in M, there is y in M such that sy=x, and so f(x)=f(sy)=sf(y)=0.
Therefore f=0.

(2) By (1), Homg(M, N) is torsion-free. In order to show Homgz(M, N)
is divisible, let us take se S and 0 f ¢ Homg(M, N). Define g: M— N by
g(x)=f(x/s) for all x in M (x/s is well defined because M is torsion-free and
divisible). It is easily seen that ge Homg(M, N) and sg=/f. Hence
Hompz(M, N) is divisible.

ProrosiTioN 1.4. (1) If M s a torsion-free, divisible R-module, then
Exti(M, N) is also a torsion-free, divisible R-module for any R-module N and
for all : =0.

(2) Let M and N be two R-modules. Then if M or N is torston, Tor¥(M, N)
s torsion, and if M or N is a torsion-free, divisible R-module, Tor®(M, N) 1s
torsion-free and divisible, for all i 0.

Proor. (1) Let I:0—>N(=Il)—»>IL,—>I,—>---—1I,—-- be an injective
resolution of N. Then Exti(M, N)=~ H(Hom(M, I)) for each value of i. As
Homgz(M, I,) is torsion-free and divisible for all » >0 by Lemma 1.3, we have
H(Hom(M, I)) is torsion-free and divisible for all i=>0. Thus Exti(M, N)
is torsion-free and divisible for all ; =>0.

(2) Assume that M is torsion-free and divisible, and that P: --- — P, —
-++—> Py— P, —> N(=P,;)— 0 be a projective resolution on N. Then Tor®(M, N)
~ H(M&P) for each value of i. Since MQrP, is torsion-free and divisible,
H(M&P) is also torsion-free and divisible for all i==0. Thus Tor®(M, N) is
torsion-free and divisible for all ; =>0. If M is a torsion R-module, it is easy
to see that Tor®(M, N) is torsion since TorX(M, N)=~ H,(MKQP) for a projective
resolution P of N and for all i =0, and MQxP, is torsion for n=1, 2, ....

CororrArY 1.5. Ext3(Q, M) is a torsion-free, divisible R-module and
TorX(K, M) is a torston R-module for any R-module M and for all n =>0.

DeriniTioN. We say that an R-module M has the property (D) in case
there are a torsion-free, divisible R-module N and an R-homomorphism f: N—M
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such that f(N)=M.

ProrosiTioN 1.6. For any R-module M there exists the unique maximal
submodule which has the property (D) (this submodule is denoted by D(M) and
called the D-submodule of M).

Proor. If D, and D, are two submodules of M having the property (D),
then D,+ D, also has the property (D). Thus the union of all submodules of
M having the property (D) is the unique maximal submodule of M with the
property (D).

ProrpositioNn 1.7. Let M be an R-module. Then we have the following
exact sequence: 00— Homz(K, M)—Hompz(Q, M)— D(M)—0.

Proor. From 0—>R—>Q—>K—0, we have an exact sequence:
0— Homz(K, M) Homz(Q, M) M.
Since Homg(Q, M) is torsion-free and divisible, S(Homz(Q, M))S D(M).

Conversely, since D(M) is a D-module there is a torsion-free, divisible
R-module N such that D(M) is a homomorphic image of N under an R-homor-
phism f. For any 0= x € D(M), there is y in N such that f(y)=x. Define
g: R—>Nby g(1)=y. Then there exists a unique 4 € Homg(Q, N) such that
the restriction of & to R is g because N is a torsion-free, divisible R-module,
and so fA(1)=f(y)=x. Thus x € fS(Homg(Q, M)).

CoroLLARY 1.10. For any R-module M we have the following exact sequ-
ence: 0— M/D(M)—Exti(K, M)—Exti(Q, M)—0.

DerINITION. A R-module M s called an h-reduced R-module in case
Homz(Q, M)=0, M a cotorsion R-module in case Exti(Q, M)=0 for i=1, 2,
and M a strongly cotorsion R-module tn case Exti(Q, M)=0 for all i=0. A
torsion R-module T is satid to be of bounded order if sT=0 for some s in S.

Prorosition 1.8.  If a torsion R-module T is of bounded order, then T is
a strongly cotorsion R-module.

Proor. Ext{(Q, T) is a torsion R-module of bounded order because T is
of bounded order, for all i==0. On the other hand, by Proposition 1.4
Exti(Q, T) is torsion-free and divisible for all i=0. Thus Exti(Q, T)=0
for all i =>0.

DeriNiTION.  An R-module M is called an h-divisible R-module i f there are
an ingective R-module I and a surjective R-homomorphism f: I— M, and a co-
torsion-free R-module 1f M has no non-zero cotorsion factor modules.

Prorosition 1.9. (1) Ewery h-divisible R-module M has the property (D).
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(2) Ewvery R-module M with the property (D) is cotorsion-free.
(8) Ewvery cotorsion-free R-module M is divisible.

Proor. (1) Since M is a homomorphic image of an injective R-module
N, there is a torsion-free, injective R-module which has M as a homomorphic
image. In fact, let F be a free R-module which has N as a homomorphic
image under an R-homomorphism x. Then since N is injective, x# can be
extended to an R-homomorphism of E(F) to N, that is onto homomorphism.
On the other hand, any injective R-module is divisible. Thus M has the pro-
perty (D).

(2) Let M have the property (D) and N a submodule of M. Then M/N
also has the property (D), and so it is sufficient to show that M is not cotorsion.
Since M has the property (D), there is a torsion-free, divisible R-module G
such that G has M as a homomorphic image under a homomorphism x. For
0=~ x € M, take ye G such that u(y)==x. Define f ¢ Homz(R, G) by f(1)=y.
As G is a torsion-free, divisible R-module there is a unique g in Homz(Q, G)
such that the restriction of gto R is f. Thus 0+ #g ¢ Homg(Q, M). Hence
M is not cotorsion.

(8) Assume that sM=~=M. Then M/sM is a torsion R-module of bounded
order, and so M is not cotorsion-free. This contradicts the hypothesis.

Remarks. 1. For any R-module M the dual module M* is defined as fol-
lows. Let us set E=E(},@®R/P), >, runs through all the maximal ideals P
of R. We shall set M*=Hompz(M, E). Then for M* the above three condi-
tions are equivalent though they are not known in general.

2. When R is an integral domain, E. Matlis proved the following fact.
For an R-module M, M*is cotorsion (cotorsion-free) if and only if M is torsion
(torsion-free) ([ 6], Proposition 1.3). But this fact is also true even when R
is not domain.

2. Some conditions for the torsion submodule to be a direct summand

Let M be a torsion-free, divisible R-module. Then M can be regarded as
a Q-module, and so the following lemma is well defined.

LemMA 2.1. Let M be a torsion-free, divisible R-module. Then M is in-
jective as an R-module if and only 1f M is injective as a Q-module.

Proor. Assume that M is injective as an R-module. Let 2’ be any ideal
of Q, 0~f € Homo(A', M), and A=A'"R. Then since M is torsion-free and
A’/A is torsion as an R-module, the restriction of f to 2 is not zero, and so
there is a unique g € Homz(R, M) such that the restriction of g to %€ is f on
A because M is a torsion-free, injective R-module.

g can be extended to a unique Q-homomorphism 4: Q — M because M is a
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torsion-free, divisible module. Furthermore it is easy to see that the restric-
tion of & to A" is f. Thus M is injective as a Q-module.

Conversely, let £ be any ideal of R, f € Homz(2, M) and &' =Q%8. Since M
is a torsion-free, divisible R-module, f can be extended uniquely to g: & — M,
and g can be regarded as a Q-homomorphism. Thus g can be extended to
h € Homo(Q, M) since M is an injective Q-module. Moreover the restriction
of h to &is fand Q2 R. Hence M is injective as an R-module.

CoroLLARY 2.2. Let R be a ring with the Noetherian total quotient ring.
Then a direct sum M= Y, DM; of torsion-free, divisible R-modules is injective
i€]

1f and only if each direct summand M; is injective.

Proor. Since Q is Noetherian, M is injective as a Q-module if and only
if M; is injective as a Q-module for each i. Thus by Lemma 2.1 we have the

result.

ProposiTioN 2.3.%) If R is a ring with the Noetherian total quotient ring
Q, then the following conditions are equivalent.

(1) Q is h-divisible.

(2) For any R-module M, M is h-divisible t1f and only ©f M has the pro-
perty (D).

Proor. If M has the property (D), then there is a free Q-module F which
has M as a homomorphic image because M is a torsion-free, divisible R-module.
On the other hand, since Q is A-divisible, there is a torsion-free, injective R-
module H having Q as a homomorphic image. As Q is Noetherian and H can
be regarded as a Q-module, by Corollary 2.2 a direct sum of any number of
H's is injective as an R-module, and so F is hA-divisible. Hence M is A-divi-
sible. The converse case is trivial.

Tueorem 2.4.%%)  Let R be a (qa)-ring with the sel f-injective total quotient
ring Q, and M a torston-free, divisible R-module. Then M is injective as an R-
module 1.f and only if M is projective as a Q-module.

Proor. Assume that M is projective as a Q-module. Then M is a direct
sum of a free Q-module F. Since Q is a self-injective and Noetherian ring, F
is an injective Q-module. Thus M is injective as an R-module because M is a
direct summand of the injective Q-module F, hence injective R-module by

Lemma 2.1.

Conversely, assume that M is an injective R-module. Then M is an in-
jective Q-module by Lemma 2.1.

*) If Q is h-divisible, then Q is injective.
*%)  This result is contained in Theorem 18 of [7]. But since R is a commutative ring, we can give
here a simple proof based on a different principle.
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Since Q= f DQ; as a ring, where Q; is an Artinian local ring for i=1, 2,
i=1

..., n, we can write M= i P M;, where M;=Q;M for i=1, 2, ..., n. Moreover
M; is injective as a Qi-mio?dlule because M; is injective as a Q;-module and Q=
Zn] Q; as a ring, for i=1,2, ..., n.

o By Theorem 2.5 and Theorem 3.1 of [4], we have Mi:agr@E(Qi/Pi)a,

where P; is the maximal ideal of Q; and E(Q;/P;).=FE(Q:/P;) for each ae€ I,
for i=1,2, ..., n. On the other hand, since Q; is a self-injective Noetherian
local ring, Q; is an indecomposable injective Q;-module, and so by Theorem 3.1
of [4] Q;=E(Q;/P)) as a Q;-module, for all i. Thus M; is a free Q-module for
i=1,2,...,n. From this M is a projective Q-module.

If R is a local ring any projective R-module is free. Then we have:

CoroLLARY 2.5. Let R be a sel f-injective Artinian local ring. Then any
R-module M is injective 1f and only tf M 1is free.

The following Corollary was given by I. Levy in 1963 (see Theorem 16
in p. 172 of [9]). Now we can give here an easy proof, using Theorem 2.4.

CorOLLARY 2.6. The following statement are equivalent.
1) Q is a semi-stmple ring.
(2) Ewvery torsion-free, divisible module is injective.

Proor. (1)—(2). Since Q is semi-simple, every Q-module is Q-projective.
Thus from Theorem 2.4 every torsion-free, divisible R-module is an injective
R-module.

(2)>(1). As every torsion-free, divisible R-module is injective as an R-
module, by Lemma 2.1 every Q-module is injective as a Q-module. Thus Q is
semi-simple.

CoroLLARY 2.7. Let R be a (ga)-ring and let us set Q= f} BQ;. Assume
i=1

that the set of all ideals of Q; is linearly ordered for all i, and that M is a tor-
ston-free, divisible R-module. Then M is injective as an R-module i1f and only
if M is projective as a Q-module.

Proor. If the set of all ideals of Q; is linearly ordered, then Q; is a self-
injective ring for i=1, 2, ..., n. Thus the result follows from Theorem 2.4.

Lemma 2.8%%  If R is a Noetherian ring with the self-injective total quo-
tient ring Q, then R is a (qa)-ring.

Proor. By the assumption Q is Noetherian, and so (0) has a irredundant
irreducible primary decomposition: (0)=ging2n---ng». By Theorem 2.3 of 4],
the canonical imbedding of Q into Q/q:DQ/7.D--- D Q/q, can be extended to
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an isomorphism of Q onto E(Q/7.) D EQ/7:)P--- D EQ/3.). But Q/q:DQ/7-
@B - PDQ/q. is an essential extension of Q and EQ/q1)D.--D EQ/g,) an es-
sential extension of Q/q:P--- P Q/g,. Thus the canonical imbedding of Q into
Q/3:®---DQ/7, is onto. Hence it is sufficient to show that Q/g; is Artinian
local. On the other hand, Q/g; is an indecomposable injective R-module.
Thus by Proposition 2.2 of [4] Q/q;=E(R/q:), where g;=RNg;. Let p; isa
prime ideal of Q such that g; is p-primary, and set p,=RNp;. Then Q/7;~
E(R/pi) by Proposition 3.1 of [4]. In order to prove that Q/g; is Artinian
local, it is sufficient to show that for any x € Q/g—p;/q:, % is unit in Q/g..
Let x be an element of Q such that z is a representation of x in Q/g;. Then
sx € R—p; for some s in S. By Lemma 3.2 of [4] the homomorphism: Q/g7,—
Q/g: defined by y—(sx)y is an automorphism of Q/7;. Thus sx is unit in
Q/g:;. Therefore x is unit.

TuroreM 2.9. If R is a Noetherian ring, then the following conditions are
equivalent.

1) Q 1is a sel f-ingective ring.

(2) For any torsion-free, divisible R-module M, M is injective as an R-
module 1f and only ©f M is projective as a Q-module.

Proor. (1)->(2). By Lemma 2.8, R is a (ga)-ring. Hence the result
follows from Theorem 2.4. The converse is immediate.

TueorEM 2.10. Assume that R is a (qa)-ring such that Q is a sel f~injective
ring. Lf an R-module M is h-divisible and M/t(M) is an injective R-module,
then t(M) is a direct summand of M.

Proor. Since M/t(M) is a torsion-free, injective R-module, by Theorem
2.4 M/t(M) is a projective Q-module. Thus we may write M/:(M)=M, D M.

@D M,, where M;=Q;M/t(M) (0= 3. DQ;) for i=1,2, ..., n, and so M; is a
i=1

projective Q-module for all ;. Hence M; is a free Q;-module because Q= i“ BQ:
i=1
as a ring and Q; is a local ring for i=1, 2, ..., n.

Therefore we have M/t(M)= Za B Q;a, where Q;,=Q; as a Q;-module for
each «, for i=1,2, ..., n. o

By the hypothesis that M is an A-divisible R-module, there exists an in-
jective R-module D such that M is a homomorphic image of D. Moreover we
may assume that D is a torsion-free, injective R-module. In fact, for the in-
jective module D there is a free R-module F such that D is a homomorphic
image of F under a homomorphism x. Since D is injective, # can be extended
to an R-homomorphism g of E(F) to D. Thus M is a homomorphic image of
a torsion-free, injective R-module E(F).

As D is a torsion-free, injective R-module, by Theorem 2.4 we can write
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D=} &P D;, where D; is a free Q;-module for i=1, 2, ..., n.
i=1

Let % be the given surjection of D to M and g the given surjection of M
to (ZL)@Q,‘a.
By Lemma 2 of [ 3] it is sufficient to show that (M) is a direct summand
of each B;,= g_l(Qia).
Since D and ) PQ:, are torsion-free, divisible R-modules, gh can be
(7,a)

regarded as a Q-homomorphism.

Let e;, be a generator of Q;, as a Q;-module. Then there is y in D such
that gh(y)=e;.. Moreover, if y= Zn,‘ y; (y;€D; for i=1, 2, ..., n), then
i=1
gh(y)=1;gh(y)=e;,, where 1, is the identity of ;. Thus we have gh(y:;)=e,.

Consider Q;y; in D;. Then gh is an isomorphism on Q;y; as Q;-homomor-
phism and A(ry;) =0 for any ry; in Q:y: because of g(h(ryi)): gh(r y;)=r gh(y;)
=re;a70. Thus Q;y; = h(Q:y:;)=(Q; as an R-module.

As gh(Q:iyi)=Qia, MQiy)=B;.. From the facts that g: A(Q;y:) —Qi. is
surjective and gh: Q;y; = Qi, is isomorphic, we have A(Q;y;)+(M)=B;, and
hQiy)Nt(M)=0. Thus B;,=mQ;y:)P (M) for each (i, ). Therefore :(M)
is a direct summand of M.

CoroLLARY 2.11. Let R be a Noetherian ring such that Q is a sel f-injective
ring and let M be an h-divisible R-module such that M/t(M) is an injective R-
module. Then t(M) is a direct summand of M.

CororLLARY 2.12. If R is a ring with a semi-simple total quotient ring Q,
then the torston submodule of every h-divisible R-module is a direct summand.

Proor. Since Q is semi-simple, every torsion-free, divisible R-module
is injective by Corollary 2.6. Thus we have the result by Theorem 2.10.

Lemma 2.13. Let C be a cotorsion R-module. Then Exti(M, C)=0 for
i=1, 2, for any torsion-free, divisible R-module M.

Proor. Since M is a torsion-free, divisible R-module, M can be regarded
as a Q-module. Consider the following exact sequence of Q-modules:

0>N->F—>M—0,

where F is a free Q-module.
From this we have the following exact sequence:

0—>Homz(M, C)—>Homxz(F, C)—Homz(N, C)— Exti(M, C)
— Ext}(F, C)— Ext}(N, C).

Since € is cotorsion, Homgz(F, C)=0 and Exti(F, C)=0. Thus we have
Homz(M, C)=0 and Homz(N, C)=~Exti(M, C). In the same way, we have
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Hompg(N, C)=0. Therefore Exti(M, C)=0.

TueoreMm 2.14. If M is an R-module such that t(M) 1is cotorsion and
M/t(M) is divisible, then t(M) is a direct summand of M.

Proor. It is sufficient to show that Exti(M/:(M), t(M))=0 because t(M)
is a direct summand of M if Exth(M/¢(M), (M))=0. Since M/¢(M) is a
torsion-free, divisible R-module and (M) is cotorsion by Lemma 2.13
Exty(M/t(M), t(M))=0.

CoroLLARY 2.15. Let R be a ring and M be a divisible R-module such
that t(M) is cotorsion. Then t(M) is a direct summand of M.

CoroLLARY 2.16. Let R be a (qa)-ring such that Q= i‘ Q; s a sel f-ingective
i=1

ring and let N be an R-module such that M/t(M) is injective and Q(M/t(M))=+0
for all i. Then the following conditions are equivalent.
i) (M) is cotorsion.
i) (M) is a direct summand of M and h-reduced.
Proor. By the assumption, we have M/it(M)= Y, B Qi,, where Q;, = Q;
(1,a)

as a Q;-module for each «, for i=1, 2, ..., n (see in the proof of Theorem 2.4.)
Thus Exti(M/t(M), t(M))=0 if and only if // Ext}(Q:., t(M))=0 if and only
(i,q)

if (M) is cotorsion since ¢(M) is h-reduced and Q;M/¢(M)=0 for all i.
CoroLLARY 2.17 If R is a ring with the semi-simple total quotient ring

0= Z”] B Q;, then the following conditions are equivalent for any divisible R-
i=1

module M such that Q(M/t(M))+0 for all i.
i) (M) is cotorsion.
i) (M) is a direct summand of M and h-reduced.

Proor. Since Q is semi-simple, M/t(M) is injective by Corollary 2.6.

Hence this corollary follows from the preceding one.

8. (qa)-rings with the self-injective total quotient rings

Prorosrtion 8.1.  If R is a Noetherian (qa)-ring and the total quotient
ring Q is a sel f-injective ring, then an R-module M is torsion if and only if
Homz(M, Q)=0.

Proor. If Mis a torsion module, then since a homomorphic image of a
torsion module is torsion and Q is a torsion-free module, Homz(M, Q)=0.

Conversely, assume that Homz(M, Q) =0. If 0s%4x € M is not torsion,
then there is ' € Homg(M, Q) such that f(x)=~0. In fact, since R is a Noe-
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therian (ga)-ring and Q is a self-injective ring, we may write Q= i‘ B,
i=1

where Q; is a self-injective Artinian local ring associated to minimal prime
ideal P; for i=1, 2, ..., n, and so we have that Q; is an indecomposable injec-
tive R-module for all ;. Thus Q;=~ E(R/P;) by Proposition 2.2 of [ 4], for i =1,
2, ..., n.

On the other hand, 0(x) (order ideal of x in R) < P; for some j because x
is not torsion. Define f: Rx —Q, by f(x)=y(50)€ 4,, where A,={t € Q;/P;t
=0} 0 by Theorem 3.4 of [4]. Since Q is injective, there is g€ Homz(M, Q)
such that the restriction of g to Rx is f. This is the contradiction to
Homz(M, Q)=0.

ProrosiTion 3.2. Assume that R is a ring with the semi-simple total quo-
tient ring Q. Then E(M) is a torsion module for any torsion module M.

Proor. Since Q is semi-simple, by Corollary 2.12 E(M)=t(E(M))D N,
where N is torsion-free and divisible. From the facts that N is torsion-free
and E(M) is an essential extension of M, N=0.

Tureorem 3.3. Let R be a (qa)-ring with the self-injective total quotient
ring Q. Then the following conditions are equivalent.

(1) Q is a semi-simple ring.

(2) E(M)/M is a torsion module for any R-module M.

Proor. (1)—(2). For any R-module M, by Corollary 2.12 E(M)=¢(E(M))
@ N, where N is a torsion-free, divisible R-module. It is easily seen that the
class of element in ¢(E(M)) is torsion in E(M)/M.

Since N is torsion-free and divisible, we can write N=N, B N.:PH---PBN,,
where N;=Q;N(Q= ij P00, is a vector space over Q; for i=1,2, ..., n. For
i=1

0£x€eN x= f} x{x; € N;), and since E(M) is an essential extension of M,

i=1
Rx;N\M==0. Thus there is an ideal ;= P;,, where P; is the minimal prime
divisor of (0) in R, associated to Q;, such that %;x; =M for all i.

Since 2; properly contains P;, there exists an element s; € 9;— P; such that

six;e Mand s; € P;if i+, for :=1,2, ..., n. Put s= f}s,-. Then sx= Z":s,'x,'
i=1 i=1

€ M. Thus x is torsion modulo M because s € S.
Conversely, assume that Q is not semi-simple. By the assumption

Q= Zn} B Q:, where Q; is a self-injective Artinian local ring with the maximal
i=1

ideal M; for i=1, 2, ..., n. Thus there is at least one j such that Q; is not a
field because Q is not semi-simple, and so Q;/M; is a torsion free R-module.
But since Q; is a self-injective local ring, Q; is an indecomposable, injective
R-module. Hence by Proposition 2.2 of [4] E(I,)=Q;, and so E)/M,;=
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Q;/M; is torsion-free. This contradicts the hypothesis.
Using Theorem 3.3 we can give the generalizations of Theorem 1.2 and
Theorem 1.3 of [57].

CoroLLARY 3.4. Let R be a ring with the semi-simple total quotient ring
Q. Suppose that for any divisible R-module M, t(M) is a direct summand.
Then hdzQ=1 1f R=~Q.

Proor. Let N be any R-module. Then E(N)/N is a torsion module by
Theorem 3.3. Using this fact, we can prove the result by the similar method
used in the proof of Theorem 1.2 of [57].

CoRrOLLARY 3.5. Let R be a ring with the semi-simple total quotient ring
Q. Suppose that Q is countably generated as an R-module. Then every divi-
sible R-module is h-divisible, and so hdgQ=1 if R=Q.

Proor. Since Q is injective and Noetherian, a direct sum of any number
of Q’s is injective as an R-module by Corollary 2.2. From this we can prove
the result, modifying the proof of Theorem 1.3 of [57].
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