Notes on Quasi-Valuation Rings

Hideki Harui

(Received September 17, 1968)

Let R be a commutative ring with a unit. Then R is said to have a few zero-divisors if the total quotient ring of R has only a finite number of maximal ideals. Non zero-divisors in R are said to be regular elements in R, and an ideal A of R is called a regular ideal if A contains a regular element. Let R have a few zero-divisors and A a regular ideal of R. Then it is known that A is generated by regular elements in $R^{(*)}$. A ring R with a few zerodivisors is called a quasi-valuation ring if for any pair (a, b) of regular elements of R we have either $a R \subseteq b R$ or $b R \subseteq a R$. Let R be a quasi-valuation ring and M the ideal of R generated by all the non-unit regular elements in R. Then M is the unique regular maximal ideal of R unless every regular element is a unit in R.

In this paper we shall prove some properties of intersection of a finite number of quasi-valuation rings. Among others we have the following result:

Let $R_{1}, R_{2}, \ldots, R_{n}$ be quasi-valuation rings with the same total quotient ring K. Then $R=\bigcap_{i=1}^{n} R_{i}$ has K as the total quotient ring.

Let s be a non-unit regular element in R. If there exists a polynomial $f(X)=1+\sum_{i=1}^{m-1} h_{i} X^{i}+X^{m}$ with integer coefficients h_{i} such that $f(s)$ is a unit in R, we call $f(s)$ a unit associated to s.

Lemma 1. Let R be a semi-local ring with a unit (not necessary Noetherian) and let a be a non-unit regular element in R. Then there exists a unit $f(a)$ associated to a.

Proof. Let $M_{1}, M_{2}, \ldots, M_{n}$ be all the maximal ideals of R. Since a is not a unit and R has the identity, there is at least one maximal ideal containing a. We denote by A_{1} the set of all the maximal ideals of R containing a. If $1+a$ is a unit, then $f(a)=1+a$ is a unit associated to a. If $x_{1}=1+a$ is not a unit, then the set A_{2} of all the maximal ideals of R which contain $1+a$ is not empty and $A_{1} \cap A_{2}=\phi$, and moreover, $0 \neq a x_{1} \in M_{i}$ for all $M_{i} \in A_{1} \cup A_{2}$. If $1+a x_{1}$ is a unit, then $f(a)=1+a x_{1}$ is a unit associated to a.

If $x_{2}=1+a x_{1}$ is not a unit, then we proceed further as above. Since R is a semi-local ring, there exists a positive integer k such that $1+a x_{1} x_{2} \cdots x_{k}$ ($x_{i}=1+a x_{1} x_{2} \cdots x_{i-1}$) is not contained in any one of maximal ideals $M_{i}(1 \leq i$ $\leq n)$. Hence $f(a)=1+a x_{1} x_{2} \cdots x_{k}$ is a unit associated to a.
(*) cf. E. D. Davis, Overrings of commutative rings II, Trans. Amer. Math. Soc. 110 (1964), 196-212.

Lemma 2. Let R_{1} and R_{2} be two non-trivial quasi-valuation rings with the same total quotient ring and let M_{1}, M_{2} be the regular maximal ideals of R_{1} and R_{2} respectively. Let r be a non-unit regular element in R_{1} such that r^{-1} is a non-unit regular element in R_{2}. Then there exists a unit associated to r in R_{1}, and moreover for any unit $f(r)$ associated to r in R_{1}, we have
(1) ${ }^{t} f\left(r^{-1}\right)=1+\sum_{i=1}^{N-1} h_{N-i} r^{-i}+r^{-N}$ is a unit associated to r^{-1} in R_{2}, where

$$
f(X)=1+\sum_{i=1}^{N-1} h_{i} X^{i}+X^{N} .
$$

$$
\begin{equation*}
r^{N} / f(r) \epsilon r R_{1} \cap R_{2}, r^{-N} / t f\left(r^{-1}\right) \epsilon r^{-N} R_{2} \cap R_{1} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left(r^{N} / f(r)\right)\left(r^{-N} / t f\left(r^{-1}\right)\right) \epsilon r^{N} R_{1} \cap r^{-N} R_{2} \subseteq M_{1} \cap M_{2} \tag{3}
\end{equation*}
$$

Proof. Since R_{i} is a quasi-valuation ring, R_{i} is a semi-local ring for $i=1,2$. By Lemma 1 for r there is a unit $f(r)$ associated to r. Let N be the degree of $f(X)$. Since r^{N} is regular in the total quotient ring K and $f(r)=$ $r^{N t} f\left(r^{-1}\right),{ }^{t} f\left(r^{-1}\right)$ is also regular in K and it is contained in R_{2}. Moreover, ${ }^{t} f\left(r^{-1}\right)$ is not contained in M_{2}, and so ${ }^{t} f\left(r^{-1}\right)$ is a unit associated to r^{-1} in R_{2} since R_{2} is a quasi-valuation ring. (2) and (3) obvious.

We denote by $S(R)$ the set of all the regular elements in a ring R and $Q(R)$ the total quotient ring of R.

Lemma 3. Let R_{1} and R_{2} be two non-trivial quasi-valuation rings with the same total quotient ring K. Then we have the following three facts:
(1) $S(R) \subseteq S\left(R_{i}\right) \quad(i=1,2)$, where $\quad R=\bigcap_{i=1}^{2} R_{i}$.
(2) $Q(R)=K$.
(3) For any element r in $S\left(R_{1}\right)\left(\right.$ resp. $S\left(R_{2}\right)$), $r R_{1} \cap M_{2}$ (resp. $r R_{2} \cap M_{1}$) contains a regular element, where M_{1} and M_{2} are the regular maximal ideals of R_{1} and R_{2}, respectively.

Proof. First we shall show that if x is an element in R_{1}, then there exists a regular element r in K which is contained in R such that $r x \in R$. In fact, assume that $x \notin R_{2}$. Then there is a regular element a in M_{2} such that $a x \in R_{2}$. If $a \in R_{1}$, then $a \in R$ and $a x \in R$. If $a \notin R_{1}$ i.e. $a^{-1} \in M_{1}$, take a unit $f(a)$ associated to a in R_{2}.

Let N be the degree of $f(X)$. Then by Lemma $2\left(a^{N} / f(a)\right)\left(a^{-N} / t f\left(a^{-1}\right)\right)=r$ is a regular element in K and contained in R, and moreover, $r x=\left(a^{N} / f(a)\right) \cdot$ $\left(a^{-N} / t f\left(a^{-1}\right)\right) x=\left(a^{N-1} / f(a)\right)\left(a^{-N} / t f\left(a^{-1}\right)\right) a x \in R$ by Lemma 2.

Let x be an element of R. We denote by $A_{1}(x)$ the annihilators of x in R_{1} and $A(x)$ the annihilators in R. To prove (1) it is sufficient to see that if $\mathrm{A}_{1}(x) \neq 0$, then $A(x) \neq 0$. In fact, for any y in $A_{1}(x)$ there is a regular
element r in K which is contained in R such that $r y \epsilon R$ by the above remark.
Hence $0 \neq r y \in A(x)$.
Since $S(R) \subseteq S\left(R_{1}\right)$ we have $Q(R) \subseteq K$. Hence to show (2) it suffices to show $R_{1} \subseteq Q(R)$. But this is immediate from the preceding remark.

To prove (3) it is sufficient to show when r is not a unit in $R_{1}, r R_{1} \cap M_{2}$ contains a regular element. If $r \in M_{2}$, then $r \in r R_{1} \cap M_{2}$. If $r \notin R_{2}$ i.e. $r^{-1} \in M_{2}$, then by Lemma 2 there is a unit $f(r)$ associated to r in R_{1}. Let N be the degree of $f(X)$. Then $\left(r^{N} / f(r)\right)\left(r^{-N} /{ }^{t} f\left(r^{-N}\right)\right) \in r R_{1} \cap M_{2}$ by Lemma 2. The case where $r \in R_{2}-M_{2}$. Take a regular element b in M_{2}. Then if $b \in R_{1}, b r \epsilon r R_{1}$ $\cap M_{2}$. If $b \notin R_{1}$ i.e. $b^{-1} \in M_{1}$, then by Lemma 2 there is a unit $f(b)$ associated to b in R_{2} and $b^{N} / f(b) \in R_{1} \cap M_{2}$, where N is the degree of $f(X)$. Thus $\left(b^{N} / f(b)\right) r \in r R_{1} \cap M_{2}$.

Theorem. Let $R_{1}, R_{2}, \ldots, R_{n}$ be non-trivial quasi-valuation rings with the same total quotient ring K and let M_{1}, \ldots, M_{n} be regular maximal ideals of R_{1}, \ldots, R_{n}. Let us set $R=\bigcap_{i=1}^{n} R_{i}$. Then the following statements hold:
(1) $\quad S(R) \subseteq S\left(R_{i}\right)$
(2) $Q(R)=K$
(3) Let r be an element in $S\left(R_{i}\right)$. Then $r R_{i} \cap M_{i}^{\prime}$ contains a regular element, where $M_{i}^{\prime}=\bigcap_{h \neq i} M_{h}$.

Proof. We shall prove the Theorem by induction on n. The case $n=2$ is proved in Lemma 3. We shall set $R_{1}^{\prime}=\bigcap_{j \neq i} R_{j}$ and $M_{\substack{\prime \\ \prime}}^{\substack{h \rightarrow i, j \\ i \neq j}} \mid M_{h}$. Then by induction assumotion we have
(1)' $S\left(R_{i}^{\prime}\right) \subseteq S\left(R_{j}\right)$ for any pair i, j such that $i \neq j$.
(2) $\quad Q\left(R_{i}^{\prime}\right)=K$
(3) $)^{\prime}$ For any regular element r in $R_{i}, r R_{i} \cap M_{i j}^{\prime}$ contains an element which is regular in K.

We shall first prove:
(0) Let x be an element in R_{i}. Then there is a regular element c in K contained in R such that $c x \in R$.

Without loss of generalities we assume $x \in R_{1}$. If $x \in R_{1}^{\prime}$ we have nothing to prove. If $x \notin R_{1}^{\prime}$, take a regular element a in R_{1}^{\prime} such that $a x \in R_{1}^{\prime}$. By (2)' a is also regular in K. Hence by (3)' there is a regular element a_{i} in $a R_{i} \cap M_{1 i}^{\prime} \subseteq R_{1}^{\prime}$, for $i \geq 2$. Let us set $b=\prod_{j \geq 2} a_{j}$. We have $b \in M_{1}^{\prime}$. Moreover $b x=$ $\left(\prod_{j \geq 2} a_{j}\right) x \in R$ because $a_{i} x \in R_{i}$ and a_{j} and $a_{j} \in R_{i}$ for any $i \geq 2$ and $j \geq 2$ such that $j \neq i$. Now assume that $b \in R_{1}$. Then $b \in R_{1} \cap M_{1}^{\prime} \subseteq R$, and b answers the
question. If $b \notin R_{1}$ we have $b^{-1} \in M_{1}$ since b is regular in K. Take a unit $f\left(b^{-1}\right)$ associated to b^{-1} in R_{1}. Then by Lemma $2 c=b^{N} / t f(b) \epsilon R_{1} \cap b R_{i}$ for any i, where N is the degree of $f(X)$. Hence $c \in R$. Moreover we have $c x=$ $(b x) r_{i} \in R_{i}\left(r_{i} \in R_{i}\right)$ for any $i \geq 2$. Since $c x \in R_{1}$ we have $c x \in R$. Thus the assertion (0) is completely proved.

On account of the assertion (0) the proof of (1) and (2) is literally the same as the proof of Lemma 3. (1) and (2), and will be omitted. To prove (3) let r be an element in $S\left(R_{1}\right)$. Without loss of generalities we can assume that $r \in M_{1}$. By (3^{\prime}) there is a regular element $a \in r R_{1} \cap M_{12}^{\prime}$. If $a \in M_{2}$, then $a \in r R_{1} \cap M_{1}^{\prime}$ and the assertion is proved. If $a \notin R_{2}$, then $a^{-1} \in M_{2}$. We shall again use Lemma 2, i.e., take a unit $f\left(a^{-1}\right)$ associated to a^{-1} in R_{2}. Then we have $c=\left(a^{-N} / f\left(a^{-1}\right)\right)\left(a^{N} / t f(a)\right) \epsilon a R_{1} \cap a^{-1} R_{2} \subseteq r R_{1} \cap M_{2}$. Moreover $\left(a^{-N} / f\left(a^{-1}\right)\right)$. $\left(a^{N} /{ }^{t} f(a)\right)=\left(1 /{ }^{t} f(a)\right)\left(a^{N} / t f(a)\right) \in M_{12}^{\prime}$. Hence $c \in r R_{1} \cap M_{1}^{\prime}$. Finally assume that a is a unit in R_{2}. Take an arbitrary regular element b in M_{2}, and a regular element c in $b R_{2} \cap M_{12}^{\prime}$. If $c \in R_{1}$, then $c a$ answers the question. If $c \notin R_{1}$, i.e., $c^{-1} \in M_{1}$, take a unit $f\left(c^{-1}\right)$ associated to c^{-1} in R_{1}. Then we see as before the element $\left(c^{N} /{ }^{t} f(c)\right)$ is contained in $c R_{2} \cap R_{1}$ where N is the degree of $f(X)$. Then $\left(c^{N / t} f(c)\right) a \in a R_{1} \cap c R_{2} \subseteq r R_{1} \cap b R_{2} \subseteq r R_{1} \cap M_{2}$. This element is also contained in M_{12}^{\prime} hence contained in $r R_{1} \cap M_{1}^{\prime}$. The proof for other indices $i \geq 2$ is the same.

