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Introduction

M. Brelot [ 1] introduced relative Dirichlet problems on a metrizable com-
pactification of a Green space and L. Naim [4] obtained many results con-
cerning this type of problems. Also, T. Ikegami [ 3] studied the problems on
the Wiener compactification of a hyperbolic Riemann surface.

In this paper, we consider the relative Dirichlet problems on an arbitrary
compactification of a hyperbolic Riemann surface R. We denote by (, the
resolutivity of all finite continuous functions on the ideal boundary relative to
a positive harmonic function u (§1, 7) and first give characterizations of (@,
for Q-compactifications (Theorem 1). Then we obtain that @, is satisfied for
the Wiener compactification if and only if u is quasi-bounded (Theorem 2). As
a corollary, we improve Ikegami’s result as follows: There exists a unique
pole of a minimal positive harmonic function on the Wiener boundary if and
only if the function is bounded.

Next, in connection with Brelot’s [1] and Naim’s works [4], we define
the maximal compactification Rj, of R for which @, is satisfied for any >0
(Theorem 3). As a corollary, we obtain Brelot’s result ((17]): For the Martin
compactification of R, @, is satisfied for any »>0. Finally, we prove that
R3;, is not metrizable (Theorem 4) and we give an answer in the negative to a
question in Naim’s remark (p. 268 in [4)).

§1 Preliminaries

Let R be a hyperbolic Riemann surface. For a subset 4 of R, we denote
by 84 and A4’ the (relative) boundary and the interior of 4 respectively. We
shall call a closed subset F of R regular if 0F consists of at most a countable
number of analytic arcs clustering nowhere in R. An exhaustion will mean
an increasing sequence {R,};_, of relatively compact domains on R such that

ORn:R and each 0R, consists of a finite number of closed Jordan curves.
n=1
We denote by BC the family of all real valued bounded continuous functions
on R and by C, the subfamily of BC consisting of functions with compact
supports in R.

1. Wiener functions (cf. [27)).

For a finite continuous function f on R, we shall denote by Q9 (resp. Q)
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the family of all superharmonic (resp. subharmonic) functions s on R such
that s=>f (resp. s=f) on R—K, for some compact set K, in R. If Q9 and
Qd; are not empty, then we define %;(a)=inf{s(a); s € O} and h;(a)=sup
{s(a); s € s} (a € R). It is known that %;, h; are harmonic and h; <h; If
hy=hy, then f is said to be harmonizable. We write hy=rh;=h; if f is har-
monizable. If £, and f, are harmonizable, then min (fi, f3) is harmonizable
and s Ahg,”=Hhmins, s, A finite continuous function f on R is called a
Wiener function if | f| has a superharmonic majorant and f is harmonizable.
We denote by W the family of all finite continuous Wiener functions on R
and set BCW=BCNW. We see that W is a vector lattice with respect to the
maximum and minimum operations and also contains C, and constants.

2. Compactifications.

We follow C. Constantinescu and A. Cornea [ 27] for the definition of (Q-)
compactifications. In particular, we denote by R3; (resp. R};) the Martin com-
pactification (resp. the Wiener compactification) of R. Let R* be a compacti-
fication of R. We write 4y=R¥—R, dw=R¥—R, 49=R5—R and 4=R*—R.
We denote by C(R*) the family of all real valued continuous functions on R*.
For any subset 4 of R, we shall denote by A* (resp. 4¥, A", A°) the closure
of 4 in R* (resp. R}, R}, R}). Let R} and R} be two compactifications of R.
If there exists a continuous mapping 7= of R¥ onto R} which is reduced to the
identity on R, then we shall say that such a mapping is the canonical mapping
of R¥ onto R} and that R} is a quotient space of R¥. It is known ([2]) that
if Q1CQ., then R¥, is a quotient space of R¥,. Hence R is a quotient space
of R}.

3. Reduced functions.

Let R* be a compactification of R and denote by 4 the ideal boundary
R*—R. Let u be a positive harmonic function on R. For a compact subset
A of 4, we consider the following class:

) superharmonic=0 on R, s=u on UNR
Fiw = {S; for some neighborhood U of 4 in R* } -
Then the function

ua(a)=inf{s(a); s € I4 p:} (a € R)

is harmonic on R and 0<Zu 4 <u.
We can easily show

Lemma 1. Let u and A be as above. Let {U,};_, be any sequence of
neighborhoods of A in R*. Then there exists a sequence {F,}:_, of regular

1) &s Ahy, is the greatest harmonic minorant of min (k;,, i/,).
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closed sets in R such that
(a) The closure F} of each F, is a neighborhood of A,

(®) U,ARDF,(n=1,2, ..)and N\F,=g,
. n=1
(¢) R—F*NFf.=¢ (=12, ..),
(d) up,? decreases to uy as n—co.
By the aid of the above lemma we can prove the following properties:
(Al) If A1<Az and ulé Uz, then (ul)Alg(uz)Az.
(A2) (w1t uz)a=(up)a+(uz)a.
(A3) If ¢c=0 is a constant, then (cu)a=cua.
(A4) If A1C Az, then uA1=(uA1)A2=(uA2)A1.
(AB) If uy increases to u as k—oo, then (u;,)a increases to us as k—oo.

Lemma 2. Let u be a positive harmonic function on R. If Fis a regular
closed set in R, then up = upwng,,.

Proor. Since v=u—ur_>0 is a continuous Wiener function on R, it can
be continuously extended over R}. We denote by »* the continuous extension
of v over R¥. For each ¢>0, we set U.={z € R};; v*(z)<e}. Since v*=0 on
F" U, is an open neighborhood of 7 "4y and uz+¢>u on U.N\R. Hence
up+e==urwny,. Since >0 is arbitrary, we complete the proof.

CororrArY 1. If {F,}7_; is a sequence of regular closed sets in R such
that F,DF,.1 (n=1,2, ...) and N\F,=¢, then up, decreases to u,, where A=
o _ n=1
NE.
n=1

CoroLLARY 2. If F is a regular closed set in R, then limur_g,=urvns,,

n—0

where {R,} ;. is an exhaustion of R.

4. Singular harmonic functions.

Let u be a non-negative harmonic function on R. If z is the limit
function of an increasing sequence of non-negative bounded harmonic func-
tions, then u is said to be quasi-bounded. If any non-negative bounded har-
monic function dominated by u is always zero, then u is said to be singular.
Hence an unbounded positive minimal harmonic function is singular. It is
known (Parreau) that any positive harmonic function is uniquely represented
as the sum of a quasi-bounded harmonic function and a singular harmonic
function.

We shall prove

Lemma 3. Suppose u is singular. For each integer n>0, we set F,=
{z€R; u(z)=n}. Then up =u on R for each n.

Proor. v=u—ur, is a bounded continuous Wiener function on R—F,.

2) See p. 43 in [2] for this notation.
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By Lemma 1.8 in [3], we see that u=0 on /'y, where /'y is the harmonic
boundary of R}, (cf. [2]). Since up, <u on R, ur, =0 on I'y. Hence we have
v=0 on (I'y—F7)UGFY. By the minimum principle (Satz 8.4 in [27), we
obtain that v=0 on R—F,. This completes the proof.

Remark: We can furthermore show the following: Let u be a positive
harmonic function. For each integer n>0, we set F,={z € R; u(z)=n}. Then
lim up, is equal to the singular part of .

n—o0

Proor. (i) Let u be quasi-bounded and A be a compact subset of 4w
such that 1,=0. Suppose u is the limit function of an increasing sequence
{uz} -, of positive bounded harmonic functions. Then, by (A5), we have u,4
=}eim (up)a. Since (up)a<(sup u,)1,=0(k=1, 2, ...), it follows that u,=0.

(ii) Let u be an arbitrary positive harmonic function. We set 4= f\FI,” .
n=1

Since 15, =(1/n)(min(u, n)) <u/n(n=1, 2, ...), it follows from Corollary 1 to
Lemma 2 that 1,=0. Hence, if u is quasi-bounded, then u,=0 by (i). Now
suppose u is not quasi-bounded. Let w be the singular part of » and 2,=
{z € R; w(z)=>n} for each integer n>0. Since 2,CF, for each n, it follows
from Lemma 3 and Corollary 1 to Lemma 2 that w,=w. By (i), we see that
(u—w)a=0, so that us=wa by (A2). This completes the proof.

As a corollary, we obtain:

a) u s quasi-bounded if and only if lim ur =0 (M. Nakai: Proc. Japan
Acad., 41(1965), 215-217). "

b) u is singular if and only if ur,=u on R for each n (cf. Lemma 3).

5. Poles on the ideal boundary.

For b € 4y,=R%—R, let k; be the Martin kernel (cf. p. 135in[27). Let 4,
be the set of all minimal points of 4. It is known ([4]) that if 4 € 4, and if
F is a closed set in R, then (k;)r is either equal to %, or a Green potential; in
fact (ky)r is a Green potential if and only if F is thin® at &.

Let b be a point in 4; and R* be a compactification of R. Then we know
that there exists at least one point z on 4 such that (k;)., =%k, (Lemma 2.2 in
[3]. We call such a point z a pole of b on 4. If (ky)r=Fk;, for some closed
set F in R, then there exists at least one pole of 5 on 4 which is contained in
F*Nn4. The set of all poles of b on 4y is denoted by @(b). It is known
(Theorem 2.1 in [ 37]) that a)(b)=E QEW where F,={ECR; R—E is thin at b}.
If U is a neighborhood of 4 in R}k;, then it follows form Hilfssatz 13.2 in [ 2]
that UNR ¢ F,.

LemMma 4. Let b be a point in 4, and F be a regular closed set in R. Then
F is thin at b if and only if F" NO(b)=¢.

3) See p. 201 of [4]; this is called effilé.
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Proor. We set a=F"Ndy. It suffices to prove that F is thin at & if
and only if an@(b)=¢. Let {R,};_; be an exhaustion of R. First suppose
F is thin at 6. Then F—R, is thin at b for each n. Hence (k;)r_z, is a Green
potential. Thus, by Corollary 2 to Lemma 2, we obtain that (k;),=0. This
shows that an@(b)=¢. Conversely, suppose aN@(b)=g¢. Since @(b)zEQEW,
for each z €, we can find a regular closed set F, in R such that FV ibs a
neighborhood of z in R} and F, is thin at 5. Since « is compact, we can

choose a finite number of points {z;}%_; in a such that \njF ¥ is a neighborhood
n k=1
of a. If we set Fy=\JF.,, then F, is thin at 4. Since F—R, CF, for suffici-
k=1
ently large m, we see that F is thin at b.

CoroLLArY. Let @;={GCR; R—G is a regular closed set in R and thin
at b}.
(i) For any Ge @b, there exists a neighborhood U of @(b) in R3 such that

UNRCG.
(i) For any neighborhood U of @(b) in R, there exists a G € G, such that
GCUNR.
(iii) @(b)=NG".
GEeGy
For each b € 4,, we set @,={GCR; R—G is a closed set in R and thin at
b}. Then @;C @, for each be 4,. For a function f in BC, we define F(f)=

{b € 4;; Nf(G) is one point}, where f(G) means the closure of f(G) in the

real nurgf)grs (see p. 147 in [27]). It is known ([2]) that J(f) is a Borel set.
The following properties are easy to prove:
(Bl) Let f be a function in BCW. Then b€ J(f) if and only if £ can
be continuously extended over @(b) by a constant.
(B2) If a function f in BC can be continuously extended over Rj;, then

6. Relative Dirichlet problems.

Let R* be an arbitrary compactification of R and » be a positive har-
monic function on R. Given a function f (extended real valued) on 4, we
consider the following classes:

superharmonic on R, s/u is bounded below,

; lim [s(a)/u(a)]= f(z) for any z € 4

a=-z

d?,R*:‘ s U{oo}

and

é}‘-,R*:{'—‘S; S € dﬁf,R*}‘

We define @f,u(a)zinf {s(a); s € I p} and Dy .(a)=sup{s(a); s € J% p}(a € R).
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It is known (Perron-Brelot) that D, (resp. D;.,) is either harmonic, = + oo
or =—oo, If O;,=D;, and are harmonic, then we say that f is u-resolutive
and Dy, =D =Dy, is called the u-Dirichlet solution of f (with respect to
R*). In case u=1, a u-resolutive function is called resolutive. If any finite
continuous function on 4 is resolutive, then we shall say that R* is resolutive.

The following properties are easy to see:

(C1) If fis the characteristic function of a compact subset 4 of 4, then
qu@f,u- _

(C2) If fis a finite continuous function, then (-max|f|)u <D; . <D, . <
(max| f|)u.

(C3) If f and g are finite continuous functions, then D_,) . <Dy ,—
Dywand Dy =Dy <Dis-gy,u-

We shall prove

ProrositionN 1. Let u be a positive harmonic function on R and R* be a
compactification of R. Then a continuous function f on R* is u-resolutive if
and only if fu is @ Wiener function. Furthermore, in this case, Ds ,=hy,.

Proor. Since Oy, C I p., we obtain that z;, =D, .. Let s be any func-
tion in J% p.. For ¢>0, there exists a neighborhood U of 4 in R* such that
s/u=f—eon UNR. Hence we have s+eu € Ods,. Thus s+eu =>4y, for any
>0, so that s=#%,. It follows that @y ,=>ky,, and hence D, ,=hs,. Simi-
larily, we can show that A;, =Dy ,. Hence f is u-resolutive if and only if fu
is harmonizable. Since fu has a superharmonic majorant (sup|f|)u, we com-
plete the proof.

CororLary (Hilfssatz 8.2 in [2]). f is resolutive if and only if it is a
Wiener function.

7. Brelot’s axioms.

Let R* be a compactification of R and u be a positive harmonic function
on R.
Brelot [17] considered the following axioms:

Axiom A,: Any finite continuous function on 4 is u-resolutive.

Axtom @}): (uwa)a,=0 for any mutually disjoint compact subsets A, and
Az Of 4.

The following lemma is due to Brelot [1]:
Lemma 5. In case R* is metrizable, @, is equivalent to Q..
We can easily obtain

Lemma 6. Let Rf and R¥ be two compactifications of R. Suppose R¥ is a
quotient space of R¥. If @) is satisfied for R¥, then so is for R¥.
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§ 2 Main results

8. W"-compactifications.

For a positive harmonic function z on R we set
W*={fe€BC; fue W}.

We see that W* is a vector lattice with respect to the maximum and mini-
mum operations and also contains C, and constants. If u is bounded, then
BCWC W™

We can easily prove

LemMmA 7. If b € 4, is a singular point, i.e., k, is bounded, then BCW C W .

Lemma 8 (Satz 14.2 in [2]). Let f be a function in BC and ung kydp(b)

1
be a positive harmonic function. Then fu is a Wiener function if and only if

/z(Al—g(f))=0.
ProrosiTioN 2. Let b be any point in 4,. Then W={f€ BC; b e F(f)}.
We shall prove

Turorem 1. Let u be a positive harmonic function on R and Q be a non-
empty subfamily of BC. Then the following conditions are mutually equivalent.

a) QC W™

b) @, is satisfied for R}.

c) @) 1is satisfied for RY.

Proor. a)=b): We set Q'=C(R})"\W*. Then Q' is a vector lattice
with respect to the maximum and minimum operations and contains C, and
constants. Since QCQ’, we see that Q" separates points of R}. By Proposition
1, (C2) and (C3), we can show that Q" is closed with respect to the uniform
convergence topology on Rj. Hence, by Stone-Weierstrass’ theorem (cf. [2]]),
we obtain that Q'=C(R¥). Therefore C(RFC W*. It follows from Proposi-
tion 1 that (@, is satisfied for R¥.

b)=c¢): Let 4; and 4, be mutually disjoint compact subsets of 4,. Then
there exist two open neighborhoods U; and U, of 4; and A4, respectively such
that UiN\RONU,NR°=¢ in R}. We can choose f, € C(R}) (k=1, 2) such that
0<f+<1, fr=1on U, (k=1, 2) and min (f1, f2)=0. It is easy to see that
ua, <hs.(k=1,2). Hence we obtain that

(wa)a, =l Nhgu=hming,, 70 =0

c)=>a): Let f, be any function in Q and set Qo={fo}. Then &, is
satisfied for R§ by Lemma 6 and R}, is metrizable. It follows from Lemma
5 that {, is satisfied for R}. Hence, by Proposition 1, we see that f, belongs
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to W*. Therefore QC W™

CoroLLARY 1. If u=Fky(b € 4,), then one of the above conditions a), b)
and c) 1s equivalent to the following condition :
b) There exists a unique pole of b on 4dq.

Proor. It suffices to prove the equivalence between c¢) and d).

¢)=>d): Suppose there exist two distinct poles zi, z, of b on 4. Then
((ko)z3)rzp=Fks. This is a contradiction. Hence d) is valid.

d)=c): Suppose ((k;)a)a,=ks for mutually disjoint compact subsets 4,
and A, of 4. Since (k;)a,=ks(i=1, 2), there exists a pole z;(i=1, 2) of b on
A;(i=1,2). ANA,=¢ implies z;5~z,. This is a contradiction. Hence c) is
valid.

CoroLLARY 2. Let b be any point of 4,. Then there exists a unique pole
of b on dy if and only if BCWC W'. In particular, if k, is bounded, then
there exists a unique pole of b on dw.

CoroLLARY 3. A compactification R* of R is resolutive if and only if
(14)4,=0 for any mutually disjoint compact subsets A, and A, of 4=R*—R.

Remark. (i) Corollary 1 is a generalization of a part of Théoréme 21 in

(1.
(ii) The last half of Corollary 2 was obtained by Ikegami [37].

9. A characterization of A, for R}.
Tueorem 2. @, 1s satisfied for R} if and only if u is quasi-bounded.

Proor. (i) Suppose u is quasi-bounded and is the limit function of an
increasing sequence {u;}5-; of positive bounded harmonic functions. Let A4,
and A; be compact subsets of 4y such that 4, 4,=¢. Then, by (A5), we see
that ((wr)a,)a, increases to (w4 )a, as k—>oo. Since (ur)a,)a,=(sup u;)(14)a,=0
by Corollary 3 to Theorem 1, we have (u4)s,=0. Hence @)’ is satisfied for
R}¥%. Thus, by Theorem 1, we see that (, is satisfied for R} and BCWC W™

(ii) Next suppose u is singular. For each integer n >0, we set F,=
{z € R; u(z)=n}. Since u is a continuous Wiener function, for each n, there
exists a function ¢, in BCW such that 0<¢, <1, ¢,=0 on (R— Fi,_))\UFs,,,

=1 on 0F,, and ¢, is harmonic in Fi, —F,,,.,—0F;, If we set f,,ZZn:gbk,
k=1

then f, is a function in BCW and tends to a function f in BC on R as n—co.
We shall prove that £ is contained in BCW. Since f, <f=<f,+u/(2n+1) on
R(n=1, 2, ...), we obtain that

0§7zf—l_zf§u/(2n+l) on R(n:l, 2, ).

By letting n—oo, we have i;=h;. Since |f| is bounded, it follows that £ is a
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function in BCW. For each a(0<a<1), we set
Ron=A2€Fo_1; fR)=a}UF,,
and
Co={z € R; f(z)=a}.

Then 2., and C, are regular closed and 02,,CC,. Since u, ,=u on R by
Lemma 3, use, ,=u on R—£2,,. Hence uc,=u on R—2, , for each @ and n.
This shows that uc,=u on R for each «. We set 4,=Cl N4y. By Corollary
2 to Lemma 2, we see that u, =u on R for each a. Since f is a continuous
Wiener function, 4, NA4.,=¢ if a1~a,. Since (ua,)a, =u on R, it follows
that @) is not satisfied for R}. Hence, by Theorem 1, we see that @, is not
satisfied for R}, and BCW{ W*.

(iii) Let u be an arbitrary positive harmonic function which is not
quasi-bounded. Then u is uniquely decomposed into a quasi-bounded part u.
and a singular part u,. Since u;>0, it follows from (ii) that there exists a
function fin BCW such that fu. ¢ W. Since fu, € W by (i), we see that fu ¢ W.
Hence BCWd W* and @, is not satisfied for R} by Theorem 1. Therefore
we complete the proof.

CoroLrary 1 (ef. Corollary 2 to Theorem 1). Let b be a point in 4.
Then there exists a unique pole of b on 4w if and only if ks is bounded.

CoroLLARY 2. For each b€ 4, either @(b) consists of only one point or
contains an uncountable number of points according as b is a singular point or
not.

Proor. Let u=k;(b € 4,) be unbounded. Then u is a singular harmonic
function. In the proof of the theorem we see that there exists a pole z ()
of b on 4, for each € (0,1). If ay5as, then 4, NA4,,=¢, so that z(a1)#
z(az). Hence @(b) contains an uncountable number of points. By the above
corollary, we complete the proof.

CoroLLARY 3. If R* is a resolutive compactification of R, then @, is
satisfied for R* for any positive quasi-bounded harmonic function w.

Proor. By the aid of (A5) and Corollary 8 to Theorem 1, we have the
corollary.

10. Wi-compactifications.
We define a class

W1=[>\W”= {f € BC; fu € W for any positive harmonic function u}.
u>0

By definition, we see that W1, CBCW. By Lemma 7, fe W, if and only if
J(f)=4:. Hence, by Proposition 2 and (B1), we have
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Prorosition 8. Wi="\W"={fe BC;F(f)=4,} ={f € BC; f can be con-

bed
tinuously extended over each @(4) by a constant for any b € 4:}.
CoroLLarY. (i) R}, is a quotient space of Rj.
(i) R ts a quotient space of R ..

Proor. Since W, CBCW, we have (i). By (B2), we see that (ii) is valid.

The following theorem is an immediate consequence of Theorem 1, Corol-
lary 1 to Theorem 1 and Proposition 3.

Tureorem 8. Let Q be a non-empty subfamily of BC. Then the following
conditions are mutually equivalent.

a) (?(: Wi.

b) @, is satisfied for RY for any u>0.

c) Q@) is satisfied for RE for any u>0.

d) For any b e 4,, there exists a unique pole of b on 4,.

CororLarY 1 (Brelot [17]). For the Martin compactification of R, (0, is
satisfied for any u>0.

CoroLLARY 2. Let R* be a compactification of R. Suppose R* is a quo-
tient space of R¥, and R} is a quotient space of R*. For each b € 4., we denote
by z, the unique pole of b on dg. Then b—z, is a one to one mapping of 4,
wnto dq.

Remark. The equivalence between b) and d) in the theorem is a gener-
alization of Théoréme 24 in [17].
We shall prove

Turorem 4. Rj, is not metrizable.

Proor. We shall prove that any point z of 4w, never has a countable
system of basis for neighborhoods. Let 7 be the canonical mapping of R},
onto R}. Suppose z has a countable system {U,};_, of basis for open neigh-
borhoods and set 7 (z)=b6. We may assume that 7 (U,)C {a € RY;; d(a, b)<
1/n}(n=1, 2, ...), where d is a Martin’s metric on R¥. Furthermore, we may

assume that U,> U,,;,\R"'(n=1, 2, ...). For each n, we take a compact disk

K, in (U,— U,,1N\R")NR with center at a,. Let f, be a function in BC such

that 0<f, <1, f,(a,)=1and f,=0 on R—K,. If weset f=3 f,, then fisa
n=1

function in BC.
First we assume that b € 4;. Then we can choose {K,};-, in such a way

that p= i(k,,),(n is a potential. If we set F=OK,,, then F is a regular closed
n=1 n=1

set in R and (k;)r <p. Hence F is thin at 6. It follows that b € F(f). Obvi-
ously, &' € H(f) for b’ € 4,—{b}. Thus F(f)=4; and hence fe W1. Next if
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b € 4y —4,, then obviously J(f)=4,. Hence fe W.. It follows that ﬂUn
n=1

contains an uncountable number of points. This is a contradiction. There-
fore we complete the proof.

CoroLLARrY 1. If 7 is the canonical mapping of RY, onto R}, then, for
each b € 4y, n=Y(b) contains an uncountable number of points.

CoroLLARY 2. R}, is not homeomorphic to R3;.

11. On Naim’s remark.

By the aid of Corollary 2 to Theorem 4, we shall give an answer in the
negative to a question in Naim’s remark ((4], p. 268): Suppose a metrizable
compactification R* of R satisfies

a) @, is satisfied for R* for any u >0
and

B) For each b€ 4,, we denote by z, the unique pole of b on 4=R*—R.
Then 6—z, is a one to one mapping of 4, into 4.

Then is R* homeomorphic to R},?

By Corollary 2 to Theorem 4, we see that there exists a function f in 7
which can not be continuously extended over R}. If we set Q=MU{f}*,
then R} is metrizable and satisfies «) and B) by Corollary 2 to Theorem 3.
However, it is not homeomorphic to R}
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