Some Properties of the Kuramochi Boundary

Fumi-Yuki Maeda

(Received September 20, 1969)

Introduction

It has been shown that the Kuramochi boundary of a Riemann surface or of a Green space has many useful potential-theoretic properties (see [9], [4], [11], etc.). In this paper, we shall give a few more properties of the Kuramochi boundary.

We consider a Green space \mathcal{Q} in the sense of Brelot-Choquet [3] and denote by \mathcal{Q}^* its Kuramochi compactification of \mathcal{Q} (see [4], [9] and [14] for the definition). Let Γ be the harmonic boundary on $\mathcal{\Delta} = \mathcal{Q}^* - \mathcal{Q}$, i.e., the support of a harmonic measure $\omega \equiv \omega_{x_0}$ ($x_0 \in \mathcal{Q}$). By definition, Γ is a non-empty closed subset of $\mathcal{\Delta}$.

Let K_0 be a fixed compact ball in \mathcal{Q} . For any resolutive function φ on \mathcal{A} , let H_{φ} be the Dirichlet solution on $\mathcal{Q}-K_0$ with boundary values φ on \mathcal{A} and 0 on ∂K_0 (=the relative boundary of K_0). For the existence of H_{φ} , see e.g. [11]. If φ is a function on Γ and is the restriction of a resolutive function $\tilde{\varphi}$ on \mathcal{A} , then $H_{\tilde{\varphi}}$ is uniquely determined by φ ; we denote it also by H_{φ} . With this convention, we consider the space $\mathbf{R}_D(\Gamma)$ of functions φ on Γ which are restrictions of resolutive functions on \mathcal{A} and for which $H_{\varphi} \in \mathbf{HD}_0$. Here, \mathbf{HD}_0 is the space of all harmonic functions u on $\mathcal{Q}-K_0$ having finite Dirichlet integral D[u] on $\mathcal{Q}-K_0$ and vanishing on ∂K_0 . Identifying two functions which are equal ω -almost everywhere, we can define a norm $\|\cdot\|$ on $\mathbf{R}_D(\Gamma)$ by

$$\|\varphi\|^2 = D[H_{\varphi}]$$

for $\varphi \in \mathbf{R}_D(\Gamma)$.

In this paper, we shall show the following three properties: (1) The space $\mathbf{R}_D(\Gamma)$ is a Dirichlet space in the sense of Beurling-Deny [1] on Γ ; (2) The capacity on Γ associated with this Dirichlet space coincides with the Kuramochi capacity ([9] and [4]); (3) The solution of a boundary value problem (of Neumann type) is expressed in terms of the Kuramochi kernel.

1. Dirichlet space $\mathbf{R}_D(\Gamma)$

The following lemma is a consequence of Lemma 5.3 in [13] (also cf. [11]):

LEMMA 1. There exists a constant M>0 such that

Fumi-Yuki MAEDA

$$\int \! arphi^2 \, d\omega \! \leq \! M \|arphi\|^2$$

for all $\varphi \in \mathbf{R}_D(\Gamma)$.

Let $D[u_1, u_2]$ be the mutual Dirichlet integral of $u_1, u_2 \in HD_0$ over $\mathcal{Q} - K_0$. We define an inner product $\langle \cdot, \cdot \rangle$ on $\mathbf{R}_D(\Gamma)$ by

$$<\!arphi_1, \, arphi_2\!> =\! D ig[H_{arphi_1}, \, H_{arphi_2} ig]$$

for $\varphi_1, \varphi_2 \in \mathbf{R}_D(\Gamma)$. Then, using Lemma 1, we easily obtain (cf. the proof of Lemma 5.2 in [13] or Theorem 1 of [11]):

LEMMA 2. $\mathbf{R}_D(\Gamma)$ is a Hilbert space with respect to the inner product $\langle \cdot, \cdot \rangle$.

Also we have

LEMMA 3. If $\varphi \in \mathbf{R}_D(\Gamma)$, then $\psi \equiv \min(\max(\varphi, 0), 1) \in \mathbf{R}_D(\Gamma)$ and $||\psi|| \leq ||\varphi||$.

PROOF. Applying Lemma 4.9 in [13] to $X = \mathcal{Q} - K_0$, we have $\varphi^+ \equiv \max(\varphi, 0) \in \mathbf{R}_D(\Gamma)$ and $\|\varphi^+\| \leq \|\varphi\|$. Proposition 3.1 in [13] implies that $\psi = \min(\varphi^+, 1)$ is resolutive and H_{ψ} is the greatest harmonic minorant of $\min(H_{\varphi^+}, 1)$. It follows (cf. Lemma 4.5 in [13]) that $\psi \in \mathbf{R}_D(\Gamma)$ and $D[H_{\psi}] \leq D[H_{\varphi^+}]$, i.e., $\|\psi\| \leq \|\varphi^+\|$.

Now, let $C(\Gamma)$ be the space of all continuous functions on Γ with the uniform convergence topology and let $C_D(\Gamma) = C(\Gamma) \cap R_D(\Gamma)$. By Stone-Weierstrass theorem, we have (cf. [10] and [11])

LEMMA 4. $C_D(\Gamma)$ is dense in $C(\Gamma)$.

Next we prove

LEMMA 5. $C_D(\Gamma)$ is dense in $R_D(\Gamma)$.

PROOF. Let $\varphi \in \mathbf{R}_D(\Gamma)$ be given and let $u = H_{\varphi}$. We consider a sequence $\{K_n\}$ of compact sets in \mathcal{Q} , n=1, 2, ..., such that the interior of K_n contains K_{n-1} for each n=1, 2, ... and $\bigcup_{n=1}^{\infty} K_n = \mathcal{Q}$. Let $u_n \equiv u^{K_n}$ in the notation of [4] or [12]. Then $D[u_n] \leq D[u]$ and $u_n = u$ q.p.¹⁾ on K_n . Hence $D[u - u_n] \leq 2D_{\mathcal{Q}_{-K_n}}[u]^{2}$. By the definition of the Kuramochi boundary, each u_n has continuous extension to \mathcal{A} . Let φ_n be its restriction to Γ . It is easy to see that H_{φ_n} is the harmonic part in the Royden decomposition of u_n on $\mathcal{Q} - K_0$. It follows that $H_{\varphi_n} \in \mathbf{HD}_0$, i.e., $\varphi_n \in C_D(\Gamma)$. Since $D[u_n, u_n - H_{\varphi_n}] = D[u_n - H_{\varphi_n}]$ and $D[u, u_n - H_{\varphi_n}] = 0$, we have

$$0 \leq D \left[u - H_{\varphi_n} \right] = D \left[(u - u_n) - (u_n - H_{\varphi_n}) \right]$$

224

¹⁾ q.p. (quasi-partout) means "except for a set of capacity zero".

²⁾ $D_{\mathcal{Q}-K_n}[u]$ is the Dirichlet integral of u over $\Omega - K_n$.

$$= D[u - u_n] - D[u_n - H_{\varphi_n}]$$
$$\leq 2D_{\varrho - K_n}[u] \to 0 (n \to \infty).$$

Therefore $\|\varphi - \varphi_n\| \to 0 \ (n \to \infty)$.

THEOREM 1. The space $\mathbf{R}_D(\Gamma)$ is a Dirichlet space with respect to the measure ω .

PROOF. By Lemmas 1, 2, 4 and 5, we see that $\mathbf{R}_D(\Gamma)$ is a regular functional space with respect to ω (see [5] and [8]). Lemma 3 shows that the unit contraction operates on $\mathbf{R}_D(\Gamma)$. Thus, by Theorem 2 in [8], we see that $\mathbf{R}_D(\Gamma)$ is a Dirichlet space.

2. Capacity on the Kuramochi boundary

2.1. In case Ω is a Riemann surface, Kuramochi himself defined a capacity on his boundary ([9]), which coincides with the capacity defined by Constantinescu-Cornea [4]. According to [4] (p. 185), the Kuramochi capacity $\tilde{C}(\delta)$ of a closed set δ on Δ is defined by

$$\tilde{C}(\delta) = \sup \Big\{ \mu(\delta); \begin{array}{l} \mu \text{ is a canonical measure on } \mathcal{A} \text{ such that} \\ \int_{\mathcal{A}} N(\xi, a) d\mu(\xi) \leq 1 \quad \text{for all } a \in \mathcal{Q} - K_0 \Big\}, \end{array}$$

where $N(\xi, a)$ ($\xi \in \Delta, a \in \Omega - K_0$) is the Kuramochi kernel relative to K_0 (cf. [9] and [14]). This definition is also valid in case Ω is a Green space (cf. [12]) and the whole theory in section 17 of [4] can be verified for a Green space (cf. the results and methods in [2], [7], [10] and [12]). Note that $\varphi_a(\xi) = N(\xi, a)$ is a continuous function on Δ for each $a \in \Omega - K_0$ and in fact $\varphi_a \in C_D(\Gamma)$. For a non-negative measure μ on Δ , we denote by u_{μ} the N-potential of μ :

$$u_{\mu}(a) = \frac{1}{c_d} \int_{\mathcal{A}} N(\xi, a) d\mu(\xi) \quad (a \in \mathcal{Q} - K_0),$$

where c_d is the constant given in [13]. The set of all *N*-potentials is denoted by \mathcal{P}_b (see [12] for this notation).

We know that \tilde{C} is a Choquet capacity and $\tilde{C}(\varDelta - \Gamma) = 0$ (see Folgesatz 17.24 of [4]). Also, by Satz 17.3 and statements in p. 188 of [4], we have

LEMMA 6. If μ is a non-negative canonical measure such that $u_{\mu} \in HD_0$, then $\tilde{C}(\sigma) = 0$ implies $\mu(\sigma) = 0$ for $\sigma \subset \Delta$; in particular, the support of μ is contained in Γ .

2.2. As we have shown that $\mathbf{R}_D(\Gamma)$ is a Dirichlet space, we have another notion of capacity on Γ through the theory of Dirichlet space (cf. [1], [5], [6]

and [8]): For a closed set δ in Γ ,

$$C(\delta) = \inf\{ \|\varphi\|^2; \varphi \in C_D(\Gamma), \varphi \ge 1 \text{ on } \delta \}.$$

Now, let $\mathscr{E}(\Gamma)$ be the set of all signed Radon measures ν on Γ such that the mapping $\varphi \to \int \varphi d\nu$ is continuous on $C_D(\Gamma)$ with respect to the norm $||\cdot||$. For each $\nu \in \mathscr{E}(\Gamma)$, there exists a unique element ρ_{ν} in $\mathbf{R}_D(\Gamma)$ such that

$$<\!
ho_{
u},\,arphi\!>\!=\!\int\!\!arphi\,\,d
u$$

for all $\varphi \in C_D(\Gamma)$. ρ_{ν} is called the potential of ν in the theory of Dirichlet space (see [1] and [6]). The following results are generally known (see [5] and [8]):

LEMMA 7. Let δ be a closed subset of Γ . Then there exists a unique nonnegative measure $\nu_{\delta} \in \mathfrak{E}(\Gamma)$ such that $\nu_{\delta}(\Gamma) = \nu_{\delta}(\delta) = ||\rho_{\nu_{\delta}}||^2 = C(\delta)$. Furthermore, $0 \leq \rho_{\nu_{\delta}} \leq 1$ (ω -a.e.) and there exists a sequence $\{\varphi_n\}$ in $C_D(\Gamma)$ such that $0 \leq \varphi_n \leq 1$ on Γ , $\varphi_n = 1$ on δ for each n and $||\varphi_n - \rho_{\nu_{\delta}}|| \rightarrow 0$ ($n \rightarrow \infty$).

LEMMA 8. If $C(\delta) = 0$, then $\omega(\delta) = 0$.

3. Equality of C and \tilde{C}

First we prove

PROPOSITION 1. If $\nu \in \mathfrak{E}(\Gamma)$, then

$$H_{\rho_{\nu}}(a) = \frac{1}{c_d} \int_{\Gamma} N(\xi, a) d\nu(\xi) \quad (a \in \mathcal{Q} - K_0).$$

PROOF. It is easy to see that $U_a \equiv H_{\varphi_a}(a \in \mathcal{Q} - K_0)$ is the reproducing function defined in [12] (= u_a in [4]; cf. [11], Th. 10). Therefore

$$c_{d}H_{\rho_{\nu}}(a) = D[H_{\rho_{\nu}}, U_{a}]$$

$$= D[H_{\rho_{\nu}}, H_{\varphi_{a}}]$$

$$= \langle \rho_{\nu}, \varphi_{a} \rangle = \int \varphi_{a} d\nu = \int_{\Gamma} N(\xi, a) d\nu (\xi).$$

As a converse, we have

PROPOSITION 2. If μ is a non-negative canonical measure on Δ such that $u_{\mu} \in HD_0$, then $\mu \in \mathfrak{E}(\Gamma)$; in fact

$$\int \varphi \, d\mu = D \left[H_{\varphi}, \, u_{\mu} \right]$$

for any $\varphi \in C_D(\Gamma)$.

226

PROOF. By Lemma 6, μ is a measure on Γ . Since the set of irregular points on Δ has \tilde{C} -capacity zero (Folgesatz 17.26 in [4]), the extension of H_{φ} by φ on Γ (and arbitrary on $\Delta - \Gamma$) is quasi-continuous (with respect to \tilde{C}) on Ω^* for each $\varphi \in C_D(\Gamma)$. Hence, by Hilfssatz 17.3 in [4], $\int \varphi d\mu = D[H_{\varphi}, u_{\mu}]$. Thus $|\int \varphi d\mu| \leq \sqrt{D[u_{\mu}]} \cdot ||\varphi||$, and hence $\mu \in \mathfrak{E}(\Gamma)$.

PROPOSITION 3. Any non-negative $\mu \in \mathfrak{E}(\Gamma)$ is a canonical measure.

PROOF. By Proposition 1, $H_{\rho_{\mu}} = u_{\mu} \in \mathcal{P}_{b}$. Hence there exists a non-negative canonical measure μ' on \mathcal{A} such that $u_{\mu'} = H_{\rho_{\mu}}$ (see [4], [9], [12] or [14]). By the above proposition, $\mu' \in \mathfrak{E}(\Gamma)$ and

$$\int \varphi \, d\mu' = D \left[H_{\varphi}, \, H_{\rho_{\mu}} \right] = \langle \varphi, \, \rho_{\mu} \rangle = \int \varphi \, d\mu$$

for all $\varphi \in C_D(\Gamma)$. Since $C_D(\Gamma)$ is dense in $C(\Gamma)$ (Lemma 4), it follows that $\mu' = \mu$ on Γ . Since both measures belong to $\mathfrak{E}(\Gamma)$, we conclude that $\mu = \mu'$, so that μ is a canonical measure.

THEOREM 2. $C(\delta) = \tilde{C}(\delta)$ for any closed subset δ of Γ .

PROOF. Let x_{δ} be the non-negative canonical measure on δ such that $\tilde{C}(\delta) = x_{\delta}(\delta) = D[u_{\chi_{\delta}}]$ (satz 17.6 in [4]). Let ψ_{δ} be the extension of $u_{\chi_{\delta}}$ to Δ in the sense of [4]. Then, by the definition of $x_{\delta}, \psi_{\delta} = 1$ q.p. (with respect to \tilde{C}) on δ . On the other hand, the non-negative measure ν_{δ} given in Lemma 7 is canonical by Proposition 3 and $u_{\nu_{\delta}} \in HD_0$ by Proposition 1. Hence, by Hilfssatz 17.3 in [4], we have $D[u_{\chi_{\delta}}, u_{\nu_{\delta}}] = \int \psi_{\delta} d\nu_{\delta}$. Since $\psi_{\delta} = 1$ q.p. on δ , Lemmas 6 and 7 imply that $\int \psi_{\delta} d\nu_{\delta} = \nu_{\delta}(\delta) = C(\delta)$. Hence

$$C(\delta) = D[u_{\chi_{\delta}}, u_{\nu_{\delta}}].$$

On the other hand $\alpha_{\delta} \in \mathfrak{S}(\Gamma)$ by Proposition 2 and Proposition 1 implies $H_{\rho_{\chi_{\delta}}} = u_{\chi_{\delta}}$ as well as $H_{\rho_{\nu_{\delta}}} = u_{\nu_{\delta}}$. Hence

$$D[u_{\chi_{\delta}}, u_{\nu_{\delta}}] = <\rho_{\chi_{\delta}}, \rho_{\nu_{\delta}}>.$$

Now, by Lemma 7, there exist $\varphi_n \in C_D(\Gamma)$, n=1, 2, ..., such that $0 \leq \varphi_n \leq 1$ on Γ , $\varphi_n = 1$ on δ for each n and $||\varphi_n - \rho_{\nu_\delta}|| \rightarrow 0$ $(n \rightarrow \infty)$. Then

$$<\!\rho_{\chi_{\delta}}, \rho_{\nu_{\delta}}\!> =\!\lim_{n\to\infty}<\!\rho_{\chi_{\delta}}, \varphi_n\!> =\!\lim_{n\to\infty}\!\int\!\varphi_n d\varkappa_{\delta}\!=\!\varkappa_{\delta}(\delta)\!=\!\tilde{C}(\delta).$$

Thus, we have the theorem.

4. Remarks on normal derivatives on the Kuramochi boundary

In [13], we said that a signed measure ν on \varDelta is a normal derivative of

 $u \in HD_0$ on \varDelta in the weak sense if

$$D \llbracket u, H_{\varphi}
rbracket = - \int \varphi \, d\nu$$

for all $\varphi \in C(\varDelta)$ such that $H_{\varphi} \in HD_0$. It is easy to see that in this case ν is a measure on Γ and $\nu \in \mathfrak{S}(\Gamma)$, so that $\int \varphi \, d\nu = \langle \rho_{\nu}, \varphi \rangle = D[H_{\rho_{\nu}}, H_{\varphi}]$ for any $\varphi \in C_D(\Gamma)$. Hence Proposition 1 can be interpreted as follows (cf. Satz 17.26 and Satz 17.27 in [4]):

THEOREM 3. If $u \in HD_0$ has a normal derivative ν on Δ in the weak sense, then $\nu \in \mathfrak{E}(\Gamma)$ and

$$u(a) = -rac{1}{c_d} \int_{\Gamma} N(\xi, a) d\nu(\xi) \quad (a \in \Omega - K_0).$$

Conversely, if $\nu \in \mathfrak{E}(\Gamma)$, then there exists a unique $u \in HD_0$ having a normal derivative ν on Δ in the weak sense; in fact u is given by the above formula.

COROLLARY 1. If $u \in HD_0$ has a normal derivative ν on Δ in the weak sense and if $\nu \leq 0$, then $u = u_{-\nu} \in \mathcal{P}_b$.

Conversely, using Proposition 2, we have

PROPOSITION 4. Any function in $\mathcal{P}_b \cap HD_0$ has a non-positive normal derivative on Δ in the weak sense.

An ω -measurable function γ on Δ (or on Γ) is called a normal derivative of $u \in HD_0$ if

$$D[u, H_{\varphi}] = -\int \varphi \gamma \, d\omega$$

for all $\varphi \in \mathbf{R}_{BD}(\Gamma)$ (= { $\varphi \in \mathbf{R}_D(\Gamma)$; bounded}) (see [13]). Using Lemma 5, we can easily show that if $\gamma d\omega$ is a normal derivative of u on Δ in the weak sense then γ is a normal derivative of u on Δ (see Remark in p. 113 of [13]; cf. the proof of the corollary to Theorem 4.1 in [13]). Thus Theorem 3 and Proposition 4 have the following consequences:

COROLLARY 2 to Theorem 3. If γ is an ω -measurable function on Δ such that $\gamma d\omega \in \mathfrak{E}(\Gamma)$, then there exists a unique $u \in HD_0$ having a normal derivative γ on Δ ; in fact u is given by

$$u(a) = -\frac{1}{c_d} \int_{\Gamma} N(\xi, a) \gamma(\xi) d\omega(\xi).$$

COROLLARY to Proposition 4. If $u \in \mathcal{P}_b$ has a (function-valued) normal derivative on Δ , then it is non-positive (ω -a.e.).

228

REMARK. The condition $\gamma d\omega \in \mathfrak{S}(\Gamma)$ coincides with condition (Γ) in [13] (p. 126).

References

- [1] A. Beurling and J. Deny, Dirichlet spaces, Proc. Nat. Acad. Sci., 45 (1959), 208-215.
- [2] M. Brelot, Étude et extensions du principe de Dirichlet, Ann. Inst. Fourier, 5 (1955), 371-419.
- [3] M. Brelot and G. Choquet, Espaces et lignes de Green, Ibid., 3 (1952), 199-263.
- [4] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer Verlag, Berlin-Göttingen-Heidelberg, 1963.
- [5] J. Deny, Théorie de la capacité dans les espaces fonctionnels, Sém. Th. Pot., 9^e année (1964/65), 13 pp.
- [6] J. Deny, Principe complet du maximum et contractions, Ann. Inst. Fourier, 15 (1965), 259-271.
- [7] J. L. Doob, Boundary properties of functions with finite Dirichlet integrals, Ibid., 12 (1962), 573-621.
- [8] M. Itô, Condenser principle and unit contraction, Nagoya Math. J., 30 (1967), 8-28.
- [9] Z. Kuramochi, Potentials on Riemann surfaces, J. Fac. Sci. Hokkaido Univ., Ser. I, 16 (1962), 5-79.
- [10] F-Y. Maeda, Notes on Green lines and Kuramochi boundary of a Green space, J. Sci. Hiroshima Univ., Ser. A-I, 28 (1964), 59-66.
- [11] F-Y. Maeda, Normal derivatives on an ideal boundary, Ibid., 28 (1964), 113-131.
- [12] F-Y. Maeda, On full-superharmonic functions, Kuramochi boundaries of Riemann surfaces, Lecture Notes in Math., Springer-Verlag, 58 (1968), 10-29.
- [13] F-Y. Maeda, Boundary value problems for the equation $\Delta u qu = 0$ with respect to an ideal boundary, J. Sci. Hiroshima Univ., Ser. A-I, **32** (1968), 85-146.
- [14] M. Ohtsuka, An elementary introduction of Kuramochi boundary, Ibid., 28 (1964), 271-299.

Department of Mathematics Faculty of Science Hiroshima University