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Introduction

It has been shown that the Kuramochi boundary of a Riemann surface
or of a Green space has many useful potential-theoretic properties (see Q9],
[_4~], C H I etc.). In this paper, we shall give a few more properties of the
Kuramochi boundary.

We consider a Green space Ω in the sense of Brelot-Choquet [3] and
denote by i2* its Kuramochi compactification of Ω (see [_4Γ\, [9J and [_14Γ\ for
the definition). Let Γ be the harmonic boundary on J = Ω* — Ω, i.e., the sup-
port of a harmonic measure ω = ωXQ (x0 e Ω). By definition, Γ is a non-empty
closed subset of Δ.

Let KQ be a fixed compact ball in Ω. For any resolutive function φ on J,
let Hφ be the Dirichlet solution on Ω—Ko with boundary values φ on Δ and 0
on dK0 ( = t h e relative boundary of Ko). For the existence of Hφ9 see e.g. [11H.
If φ is a function on Γ and is the restriction of a resolutive function φ on
Δ, then H~ψ is uniquely determined by φ we denote it also by Hφ. With this
convention, we consider the space RD(Γ) of functions φ on Γ which are
restrictions of resolutive functions on Δ and for which Hφ e HD0. Here, HD0

is the space of all harmonic functions u on Ω — Ko having finite Dirichlet
integral D[_υΓ\ on Ω — Ko and vanishing on dK0. Identifying two functions
which are equal ω-almost everywhere, we can define a norm || || on RD(Γ) by

for φeRD(Γ).
In this paper, we shall show the following three properties: (1) The

space RD(Γ) is a Dirichlet space in the sense of Beurling-Deny [1] on Γ;
(2) The capacity on Γ associated with this Dirichlet space coincides with
the Kuramochi capacity ([_9J and [_4ΓJ) (3) The solution of a boundary value
problem (of Neumann type) is expressed in terms of the Kuramochi kernel.

1. Dirichlet space RD(Γ)

The following lemma is a consequence of Lemma 5.3 in [13] (also cf. [11]):

LEMMA 1. There exists a constant M>0 such that



224 Fumi-Yuki MAEDA

\φ2dω<,M\\φ\\2

for all φeRD(Γ).

Let D[_uu 112] be the mutual Dirichlet integral of uu u2 e HD0 over Ω
Ko. We define an inner product < , > on RD{Γ) by

for φu φ2 6 RD(Γ). Then, using Lemma 1, we easily obtain (cf. the proof of
Lemma 5.2 in [13] or Theorem 1 of [11]):

LEMMA 2. RD(Γ) is a Hilbert space with respect to the inner product

Also we have

LEMMA 3. // φ € RD(Γ), then 0=min(max (<?,Ό), 1) e RD(Γ) and \\φ\\<ί

PROOF. Applying Lemma 4.9 in [13] to X=Ω —Ko, we have <p+=m&x(<p,
0) 6 RD(Π and ||<?+ | |<:|M|. Proposition 3.1 in [13] implies that 0 = min(>+, 1)
is resolutive and Hψ is the greatest harmonic minorant of min(ϋΓ(?)+? 1). It
follows (cf. Lemma 4.5 in [13]) that φ e RD(Γ) and D{_Hφ~}^D\iHψ^ i.e.,

Now, let C(Γ) be the space of all continuous functions on Γ with the uni-
form convergence topology and let CD{Γ) — C{Γ) f\RD(Γ). By Stone-Weier-
strass theorem, we have (cf. [10] and [11])

LEMMA 4. CD(Γ) is dense in C(Γ).

Next we prove

LEMMA 5. CD(Γ) is dense in RD(Γ).

PROOF. Let φ 6 RD(Γ) be given and let u = Hφ. We consider a sequence
{Kn} of compact sets in Ω, n = l, 2, ..., such that the interior of Kn contains
Kn_ι for each τz = l, 2, ... and \J^=1Kn = Ω. Let un = uKn in the notation of [4]
or [12]. Then D\jitϊ}<LD\jf\ and un = u q.p.1} on Kn. Hence D\jι — un~]<L
2DΩ_κn\jf\}) By the definition of the Kuramochi boundary, each un has con-
tinuous extension to Δ. Let φn be its restriction to Γ. It is easy to see that
HΨn is the harmonic part in the Royden decomposition of un on Ω—Ko. It
follows that HΨn e HD0, i.e., φn e CD(Γ). Since D[un, un-HφJ = D[_un-HφJ
and D\ju, un — HφrJ = 0, we have

1) q.p. (quasi-partout) means "except for a set of capacity zero".

2) ^Ω-κnί
ul i s t n e Dirichlet integral of u over Ω — Kn.



Some Properties of the Kuramochi Boundary 225

Therefore \\φ — φn\\^»0 (n^>°°).

THEOREM 1. The space RD(Γ) is a Dirichlet space with respect to the
measure ω.

PROOF. By Lemmas 1, 2, 4 and 5, we see that RD(Γ) is a regular func-
tional space with respect to ω (see [5] and [8]). Lemma 3 shows that the
unit contraction operates on RD(Γ). Thus, by Theorem 2 in [8], we see that
RD (Γ) is a Dirichlet space.

2. Capacity on the Kuramochi boundary

2.1. In case Ω is a Riemann surface, Kuramochi himself defined a ca-
pacity on his boundary (PΓ|), which coincides with the capacity defined by
Constantinescu-Cornea [_4Γ\. According to [ΊQ (p. 185), the Kuramochi ca-
pacity C(δ) of a closed set δ on A is defined by

β is a canonical measure on Δ such that]
for all α c i 2 - i d

where N(ζ, a) (ξ e i , a e Ω — Ko) is the Kuramochi kernel relative to Ko (cf.
and C14]). This definition is also valid in case Ω is a Green space (cf.

and the whole theory in section 17 of Q4] can be verified for a Green
space (cf. the results and methods in pΓ), [JΠ, Q10] and PL2]). Note that
<Pa(ξ) = N(ξ, a) is a continuous function on A for each α e Ω — Ko and in fact
φa £ CD(Γ). For a non-negative measure ^ on J, we denote by z^ the N-
potential of β:

^[ , a)dβ(ξ) {a C Ω-Ko\

where cd is the constant given in C13]. The set of all iV-potentials is denoted
by °Pb (see \Λ2Γ\ for this notation).

We know that C is a Choquet capacity and C(A — Γ) = 0 (see Folgesatz
17.24 of [4]). Also, by Satz 17.3 and statements in p. 188 of [4], we have

LEMMA 6. If β is a non-negative canonical measure such that uμ 6 JHD0,
then C((j) = 0 implies β(σ) = 0 for <5<ZA\ in particular^ the support of β is con-
tained in Γ.

2.2. As we have shown that RD CO is a Dirichlet space, we have another
notion of capacity on Γ through the theory of Dirichlet space (cf. Ql], [ΊΓ],
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and [8]): For a closed set δ in Γ,

; φ e CD{Γ\ φ^l on δ}.

Now, let & (Γ) be the set of all signed Radon measures v o n ί such that
the mapping φ^\φdv is continuous on CD(Γ) with respect to the norm || ||.
For each v e <8(Γ), there exists a unique element ρv in RD(Γ) such that

= {φ dv

for all φ eCD(Γ). pv is called the potential of v in the theory of Dirichlet
space (see [1] and [6]). The following results are generally known (see [5]
and [8]):

LEMMA 7. Let δ be a closed subset of Γ. Then there exists a unique non-
negative measure v δ e § C Γ ) such that v s(/") = vδ((ϊ) = | |p v J | 2 = C(£). Further-

more, 0<;pV(ϊ<ίl(ω-α.e.) and there exists a sequence {φn} in CD(Γ) such that
0 < ^ w < ; i on Γ, φn = l on δ for each n and \\φn — PVJ|—•0(^->oo).

LEMMA 8. // C (δ) = 0, then ω (δ) = 0.

3. Equality of C and C

First we prove

PROPOSITION 1. // v e & (Γ), then

, a)dv(ξ) (α 6 Ω-Ko).

PROOF. It is easy to see that Ua=HΨa(a 6 Ω — Ko) is the reproducing
function defined in [12] (=ua in [4] ; cf. [11], Th. 10). Therefore

As a converse, we have

PROPOSITION 2. If μ is a non-negative canonical measure on A such that
uμ 6 HD0, then β e S (Γ) in fact

for any φ e CD(Γ).
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PROOF. By Lemma 6, β is a measure on Γ. Since the set of irregular

points on Δ has C-capacity zero (Folgesatz 17.26 in [4]), the extension of Hφ

by φ on Γ (and arbitrary on Δ — Γ) is quasi-continuous (with respect to C) on

Ω* for each ψ eCD(Γ). Hence, by Hilfssatz 17.3 in [4], \φdβ = D\_Hφ, uμ~].

Thus I \φdβ\^4WΰJ]-\\<p\\> and hence μ e S C O -

PROPOSITION 3. Any non-negative β e S (Γ) is a canonical measure.

PROOF. By Proposition 1, HPfi = uμ e §>h. Hence there exists a non-nega-
tive canonical measure β' on Δ such that u/ = HPβ (see [4], [9], [12] or [14]).
By the above proposition, μ' e <8 (Γ) and

for all φ e CD(Γ). Since CD(Γ) is dense in C(Γ) (Lemma 4), it follows that
βf = β on Γ. Since both measures belong to &(Γ), we conclude that β — β\ so
that β is a canonical measure.

THEOREM 2. C(δ) = C(δ) for any closed subset δ of Γ.

PROOF. Let x8 be the non-negative canonical measure on δ such that
C (δ) = x8 (δ) = D[_uxJ (satz 17.6 in [4]). Let φs be the extension of uXs to Δ
in the sense of [4]. Then, by the definition of %δ, Ψ* = 1 q.p. (with respect
to C) on δ. On the other hand, the non-negative measure vδ given in Lemma
7 is canonical by Proposition 3 and uUδ e HD0 by Proposition 1. Hence, by
Hilfssatz 17.3 in [4], we have D[_uXΰ, uvj = \ψ8dv8. Since φ8

 = l q P on ί,
Lemmas 6 and 7 imply that \φ8 dv8 = vδ (δ) = C(δ). Hence

On the other hand %δ e § (Γ) by Proposition 2 and Proposition 1 implies
HPχδ=uXδ as well as HPvΰ = uVδ. Hence

DLuxδ> uvJ=<ρXδ, ρVδ>.

Now, by Lemma 7, there exist φn e CD{Γ), n = l9 2, ..., such that 0^^?w

on Γ, φn — ^- on δ for each ^ and ||̂ » — pyJ|->0 (Λ->OO). Then

Thus, we have the theorem.

4. Remarks on normal derivatives on the Kuramochi boundary

In [13], we said that a signed measure v on Δ is a normal derivative of
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u 6 HD0 on ά in the weak sense if

for all ψ e C(Δ) such that Hφ e HD0. It is easy to see that in this case v is a
measure on Γ and v e β ( Γ ) , so that ίφdv = <pv, φ>=D\JIPit, Hφ~] for any
φ e CD(Γ). Hence Proposition 1 can be interpreted as follows (cf. Satz 17.26
and Satz 17.27 in [4]):

THEOREM 3. If u € HD0 has a normal derivative v on Δ in the weak sense,
then v e &(Γ) and

u(a)=- — [ N(ξ,ά)dp(ξ) (aeΩ-K0).

Conversely, if v 6 SCO, then there exists a unique u e HD0 having a normal
derivative v on Δ in the weak sense; in fact u is given by the above formula.

COROLLARY 1. If u e HD0 has a normal derivative v on Δ in the weak
sense and if v <Ξ0, then u = u-u e §>b.

Conversely, using Proposition 2, we have

PROPOSITION 4. Any function in Φbf\HD0 has a non-positive normal
derivative on Δ in the weak sense.

An ω-measurable function γ on Δ (or on Γ) is called a normal derivative
of u 6 HD0 if

for all φ e RBD(Γ) ( = {φ e RD(Γ) bounded}) (see [13]). Using Lemma 5, we
can easily show that if γdω is a normal derivative of u on Δ in the weak
sense then γ is a normal derivative of u on Δ (see Remark in p. 113 of [13];
cf. the proof of the corollary to Theorem 4. 1 in [13]). Thus Theorem 3 and
Proposition 4 have the following consequences:

COROLLARY 2 to Theorem 3. // γ is an ω-measurable function on Δ such
that γdω 6 &(Γ), then there exists a unique u 6 HD0 having a normal deriva-
tive γ on Δ; in fact u is given by

u(a) = -—\ N(ξ, a) γ(ξ)dω(ξ).

COROLLARY to Proposition 4. If u e °Ph has a (function-valued) normal
derivative on Δ, then it is non-positive (ω-a.e.).
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REMARK. The condition γdω e S(Γ) coincides with condition (Γ) in [13]
(p. 126).
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