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§ 1. Introduction

On the problem of finding bounds for dimensions of higher order non-
singular immersions of an ^-dimensional C°° manifold M in Euclidean TV-space,
Feldman (cf. [7, Theorem 6.2]) has obtained the following general result (cf.
also Pohl [10, Theorem 2.4]). Suppose p is a positive integer. Set Cn+P>p — 1

THEOREM (1.1) (Feldman) / / either N<,p(n, p) — n or N~^v(n, p) + n,
there is a pth order non-singular immersion of M in Euclidean N-space.

For p=l, (1.1) says that if N^>2n, there is an immersion of M in Eu-
clidean 2ra-space, which is the classical Whitney's theorem [15].

Suzuki (cf. [13], [14]) has proved several results on higher order non-
singular immersions of projective spaces in Euclidean spaces. The following
theorem [13, Theorem (1.2)] is obtained by making use of Stiefel-Whitney
classes of higher order tangent bundles of real projective ^-space RPn. In-
tegers s(n9 p) and d(n, p) are defined by

THEOREM (1.2) (Suzuki) If p is odd, and if — d(n, p)<k<s(n, p), RPn

cannot be immersed in (v(n, p) + k)-space without affine singularities of order

P

Theorem (1.2) shows the impossibility of improving Feldman's theorem
(1.1) in many cases of real projective spaces (cf. [13, p. 270]).

The purpose of this paper is to establish some necessary conditions for
the existence of odd order non-singular immersions of RPn in Euclidean N-
space and to give non-existence theorems of the non-singular immersions by
studying homotopical properties of the stunted projective spaces. We obtain
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the following two results which are partial improvements of Suzuki's theorem
(1.2). For integers m and n with 0<^m<n, let φ(n, m) be the numbers of
integers 5 such that m<s<^n and s = 0, 1, 2 or 4 (mod 8). We write simply
φ(n) instead of <p(n, 0). Define an integer φ by

φ = φ (n, m — 1) if m ^ 0 (mod 4),

φ^=φ(n,m) if m = 0 (mod 4).

THEOREM (1.3) Suppose p is odd. Set m = s(n, p). If

Cn+p,p + m=0(mod 8) ami ^ 0 (mod 2φ~1),

then RPn cannot be immersed in (v(ra, p) + m)-space without affine singularities
of order p.

THEOREM (1.4) Suppose p is odd. Set m = d(n, p). If

8) and ^ 0 (mod 2φ~1\

then RPn cannot be immersed in (y(n, p) — m)-space without affine singularities
of order p.

After some preparations in §2, we give in §3 some necessary conditions
for the existence of odd order non-singular immersions of RPn in Euclidean
iV-space. In § 4 we establish a sufficient condition (Lemma (4.1)) and a neces-
sary condition (Lemma (4.2)) that two stunted projective spaces RPn/RPml

and RP"+k/RP™-i+k are mod 2 5-related. We apply the method of Adem-
Gitler [2] to the proof of (4.1), and we make use of the Adams operation [1]
for the proof of (4.2). Applying the results obtained in §3 and §4 to the
problem of odd order non-singular immersions, we have in §5 some non-
existence theorems (Theorems (5.5)-(5.8)). In §6 we notice that James'
theorem and Sanderson's theorem on the non-existence of immersions of RPn

in Euclidean space (cf. [9], [2], [11]) are also shown.

§ 2. Preliminaries

Let M be a C°° differentiate manifold of dimension n and let Tp (M) be
the bundle of />th order tangent vectors on M. Note that Tλ(M) is the tangent
bundle T(M) of M. The dimension of TP(M) is

^n,l~Γ (^n+1,2 ~Γ " " I Cn + p^ι>p
:= Cn + ptp 1,

which we denote by v(n,p). Let RN be Euclidean TV-space and xi, - , XN be
the coordinates of RN. Define a bundle homomorphism, called the natural kth
order dissection on RN, Dk: Tk+1 (RN) > Tk (RN) (k ;> 1) by
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where Xk e Tk(RN). Set D1D2 - DP.1=S7 P. We say that a C™ differentiate
map / : M—>RN is a pth order non-singular immersion of M in RN if the
bundle homomorphism \/pTp(f): TP(M) >T(RN) is injective or surjective
on each fiber according as v(n, p)<*N or v(n, p)^>N respectively, where
Tp(f): TP(M) > TP(RN) is the pth order differential of/. Clearly, the first
order non-singular immersion is an immersion or a submersion. The follow-
ing result is known (cf. [7, Proposition 8.4] or [13, Lemma (2.3)J).

LEMMA (2.1) Suppose that there is a pth order non-singular immersion
of an n-manifold M in Euclidean N-space.

(1) // N^> v (n, p), there exists an (TV— v{n, p))-dimensional vector bundle
a over M such that

where φ denotes the Whitney sum and where N means the N-dimensional
trivial bundle over M.

(2) // N<,v(n, p), there exists a (v(n, p) — N)-dimensional vector bundle
β over M such that

Let ξ be (the isomorphism class of) the canonical line bundle over real
projective rc-space RPn. The pth order tangent bundle Tp(RPn) of RPn is
given as follows (cf. [13, p. 274]).

LEMMA (2.2) InKO(RPn)

[Cn+PtPξ — l if p is odd,
TP(RP*) = \

[Cn+P>p — 1 if p is even.

Let w (a) denote the total Stiefel-Whitney class of a vector bundle a.

COROLLARY (2.3) If p is odd,

where x is the generator of Hι (RPn Z2) = Z2.

§ 3. Necessary conditions for the existence of odd order non-singular
immersions of RPn

Let p be an odd integer>0. In this section we shall give some necessary
conditions for the existence of pth order non-singular immersions of real
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projective ra-space RPn in Euclidean TV-space. Let m and n be integers such
that 0<m<;n.

THEOREM (3.1) // there exists a pth order non-singular immersion of
RPn in (y (n, p) + m)-space, then the following (a) and (b) hold.

(a) The bundle (α 2φ{n) — Cn+P>P)ξ has a*2φ(n) — Cn+P)P — m independent non-
zero sections, where a is a sufficiently large integer.

(b) The bundle (Cn+p>p + m)ξ has Cn+P>p independent non-zero sections.

THEOREM (3.2) // there exists a pth order non-singular immersion of
RPn in (v (n, p) — m)-space, then the following (c) and (d) hold.

(c) The bundle Cn+P,Pζ has Cn+PyP — m independent non-zero sections.
(d) The bundle (a*2φ(n)~Cn+p,p-±m)ξ has a-2φ(n)-Cn+p>p independent non-

zero sections, where a is a sufficiently large integer.

PROOF OF (3.1). (a) If there is a pth order non-singular immersion of
RPn in (y(n, /?) + τ?ι)-space, there exists an m-dimensional vector bundle a
over RPn such that

by (2.1) (1). Since Tp(RPH) = Cn+P,pξ-l by (2.2), we have Cn+p,pξ + a=Cn+Ptp
+ 77i in KO(RPn). ζ-1 is a generator of KO(RPn)^Z2φw (cf. [1, Theorem
(7.4)]), and so a*2ψ(n\ξ —1) = 0 for any integer a. Therefore we have

in K0(RPn). If we choose a such that a-2φ(n)- Cn+P,p>n, we obtain

a © (a-2^ - Cn+P,p - m) = (α 2^> - Cn+P,p) ξ.

(b) Under the assumption, there exists an ττι-dimensional vector bundle
a over RPn such that

Cn+p,p S © OL = Cn + pfp + 771.

Tensoring both sides of this equation with ξ, we have

since f 0 f = l. Q.E.D.

PROOF OF (3.2). (c) If there is a pth order non-singular immersion of
RPn in 0>(ra, /?) — 7τι)-space, there exists an 7τι-dimensional vector bundle β
over RPn such that

by (2.1) (2). Since Tp(RPn) = Cn+p>pξ-l by (2.2), we have
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L"n + p,pζ== P U7 \(^n+p,p ΊΊl).

(d) Tensoring both sides of the above equation with f, we have

As a-2φ{n)(ξ —l) = 0 for any integer α, we obtain

for a sufficiently large integer α. Q.E.D.

REMARK. The above proofs show that the assumption of Theorem (3.2)
may be replaced by the statement: if Tp(RPn) has v(n, p) — m independent
non-zero sections.

§ 4. Mod 2 S-relations of RPn/RPm J

Let SQX denote the q-ίold suspension of a space X, where q is a non-
negative integer. It is said that two spaces Y and Z are mod 2 S-related, if
for some non-negative integers r and t there is a map SrY >StZ which
induces isomorphisms of all homology groups with Z2 coefficients. Let n and
m be integers with 0<m<=n. The next lemma is a generalization of Pro-
position 3.3 of Adem-Gitler [2].

LEMMA (4.1) Suppose Cw+^,OT^0(mod 2). // the bundle (m + k)ξ has k
independent non-zero sections, then the stunted projective spaces RPn/RPm~1

and Rpn+^jipm-i+k a r e m o d 2 S-related.

PROOF. If the bundle (m + k)ξ has k independent non-zero sections, there
is an tfi-dimensional vector bundle a over RPn such that (m-\-k)ξ=a@k. For
a vector bundle λ over a CJF-complex M let Mx denote the Thorn complex of
λ. By the theorems of Atiyah [3], we have

ok/ npn\a ^, / Όpn\a®k __ / Dpn\(m + k)ξ^^ npn+m +

where by X^ Y we mean that there is a natural homeomorphism of a space
X onto a space Y. Let

h: Sk(RPn)a

 >Rpn+™ + k/Rpm-l + k

denote the composite homeomorphism. The total Stiefel-Whitney class w(a)
of a is given by
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where x is the generator of Hι(RPn\ Z2) = Z2. Since Cm+k,m^0 (mod 2),
wm(a) =V 0. Therefore the homomorphism

\jwm(a):H«-m(RPn; Z2) >Hq(RPn; Z2)

which sends an element ye Hqm(RPn; Z2) to an element y\Jwm(a) c Hq(RPn;
Z2) is an isomorphism for each q with m^q^n. Thus for the inclusion map
j : RPn >{RPn)a, defined by the zero-section of α, the induced homomor-
phism

j*:Hq((RPn)a; Z2) >Hq(RPn; Z2)

is an isomorphism for any q with m^q^n. As (RPn)a is (ττι —l)-connected,
there is a map / such that the following diagram is homotopy-commutative:

Λ
Rpn/Rpm-l

where p is the projection. Then the induced homomorphism

/ * : Hq((RPn)a; Z2) >Hq(RPn/RPml; Z2)

is an isomorphism for each ^ with 0 <] ^ ^ π-. Let 5*/ denote the A -fold suspen-
sion of /. It is easy to see that there exists a map g such that the follow-
ing diagram is homotopy-commutative:

S\RPn/RPm~ι) -^-£-+ Sk(RPnY

4 . Λ
ΊD ~nn + k I ΊD jym-l + k I D pn + m + k / ΊD pm—l + k

where i is the inclusion. Then the map g induces isomorphisms of all coho-
mology groups with Z2 coefficients, and isomorphisms of all homology groups
with Z2 coefficients (cf. [12, Chapter 5]). Q.E.D.

Let φ(n, m) denote the number of integers s such that m<s^n and S Ξ
0, 1, 2 or 4 (mod 8). We write φ(n) instead of φ(n9 0). Define an integer ψ
by

φ = φ(n, m — 1) if m^O (mod 4),

φ = φ(n,m) if m Ξ 0 (mod 4).

LEMMA (4.2) Let k be an integer such that k=0 (mod 8). // the stunted
projective spaces RPn/RPml and Rpn+k^Rpm~ι+k a r e m o d 2 S-related, then
k^O (mod 2φ-1).
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PROOF. We may assume k>0. First, consider the case m^=0 (mod 4).
Then, according to [1, Theorem 7.4],

By the assumption, for some integer r 2> 0 there is a map

/ : Sk+r(RPn/RPm-1) >Sr(RPn+k/RPm~ι+k)

which induces isomorphisms of all homology groups with Z2 coefficients. We
may choose r such that r = 0 (mod 8). The map / induces isomorphisms of
all cohomology groups with Z2 coefficients (cf. [12, Chapter 5]), and so by
the arguments using the Atiyah-Hirzebruch spectral sequence (cf. Q4, §2]
and [1, §6]) we can see that / induces an isomorphism of the XO-groups.
Consider the following diagram:

K0(RPn+k/RPm-1+k) — ^ U KO(Sr(RPn+k/RPm~1+k))

KO(RPn+k/RPml+k)~—> KO(Sr(RPn"k/RPm~uk))

where each of the vertical maps Ψ3 is the Adams operation, and where each
of the horizontal maps Γ18 is r/8 fold composition of the isomorphism / defined
by the Bott periodicity [5, Theorem 1]. According to [1, Theorem 7.4], the
right-hand map Ψ3 is the identity. Thus, by [1, Corollary 5.3], we have

Therefore the right-hand map ¥3 is 3 r/2. Similarly

Ψ3:KO(Sk+r(RPn/RPm-1)) >KO(Sk+r(RPn/RPm~1))

is 3^+r)/2. Since Ψ3 is natural for maps [1, Theorem 5.1], we have

g(k + r)l2X#_ S*grl2 = grl2j**^

Thus (3 (*+ r ) / 2-3 r / 2)(0 = 0, where c is a generator of KO(Sk+r(RPn/RPm-1))^
Z2φ, φ = φ(n,m-l). Hence 3* / 2 -l-0 (mod 2φ(n>m~1)). Then we have k=0
(mod 2φin>m-1)-1). In fact, if k/2 = (2N+l)2ι, where N is an integer and where
I is an integer with l<:<p(n9m-ϊ)-S9 then 3*/2-1^2'+2(mod 2/+3) by [1,
Lemma 8.1]. This is impossible.

In case m^Q (mod 4), according to [1, Theorem 7.4]

By the assumption, for some integer r^O (mod 8) there is a map
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/ : Sk+r{RPn/RPm~ι) >Sr(RPn+k/RPm~1+k)

which induces isomorphisms of all homology groups with Z2 coefficients. We
may take / for a cellular map. It defines the map

/o: Sk+r(RPn/RPm) >Sr(RPn+k/RPm+k)

which induces an isomorphism of KO-groups. The rest of the proof is similar
to the above case, so we omit the details here. Q.E.D.

§ 5. jpth order non-singular immersions of RPn

We set v (n, p) = Cn+p,p — l. Let p be odd > 0 and let m and n be integers
such that 0<m<;n. From (3.1) and (4.1) we have the following two results.

THEOREM (5.1) Assume (Cn+p>p + m~1)^0 (mod 2). // there is a pth
\ 771 /

order non-singular immersion of RPn in (v(n, p) + m)-space, then RPn/RPml

and Rpn+t/Rpml+t a r e m o d 2 S-related, where t = a-2φ{n) — CnΛP,p — m {a is a
sufficiently large integer).

PROOF. According to (3.1) (a), the bundle (a-2φ(n) - Cn+P,p) ξ = (m + t)ξ has
t independent non-zero sections. Since

n _ (a 2φ n —Cn + PΛ (' —Cn+p,p\ = (Cn+p^ + m —

we obtain the desired result by (4.1). Q.E.D.

THEOREM (5.2) Assume (Cn+^^ + m) ^ 0 (mod 2). // there is a pth order
\ 771 /

non-singular immersion of RPn in (v(n, p) + m)-space, then RPn/RPml and

Rpn+s/Rpm-ι+s α r β m o ( j 2 β-related, where s = Cn+p>p.

PROOF. According to (3.1) (b), the bundle (Cn+p>p

Jmί)ξ = (mJrs)ξ has s
independent non-zero sections. Since Cm+s>m^0 (mod 2), we have the desired
result by (4.1). Q.E.D.

From (3.2) and (4.1) we obtain the following two results. The proofs are

similar to those of (5.1) and (5.2).

n+p,p \ ^ Q ( m o c [ 2). // there is a pth order non-

771 j771

singular immersion of RPn in (v(n, p) — m)-space, then RPn/RPm~1 and RPn+r

/RPm~ι+r are mod 2 S-related, where r = Cn+p,p — 7n.

THEOREM (5.4) Assume (Cn+i>>p~*-\ Ξ^O (mod 2). // there is a pth order
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non-singular immersion of RPn in (v(n, p) — m)-space, then RPn/RPm~1 and

Rpn+v/Rpm-ι+v a r e m o d 2 S-related, where v = a-2φ(n)-Cn+p,p(a is a sufficiently
large integer).

These theorems, combined with Lemma (4.2), yield non-existence theo-
rems of odd order non-singular immersions of RPn in Euclidean spaces. We
have the following four theorems from Theorems (5.1)-(5.4) respectively.

THEOREM (5.5) Suppose

(i) (CH+P'PM
 m~~V)^0 (mod 2)

(ii) Cn+PtP + m= 0 (mod 8) and ^ 0 (mod 2^ 1 ),

then RPn cannot be immersed in (»(n, p) + m)-space without affine singularities
of order p.

Theorem (1.3) follows from Theorem (5.5) immediately.

THEOREM (5.6) Suppose

\ Til J

(ii) Cn+p>p=0 (mod 8) and ^ 0 (mod 2*"1),

then RPn cannot be immersed in (v(n, p) + m)-space without affine singularities
of order p.

THEOREM (5.7) Suppose

(i) ( C ^ ) ^ 0 ( m o d 2 )

(ii) CΛ +^-τn=0(mod8) and ^ 0 (mod 2φ~1),

then RPn cannot be immersed in (v(n, p) — m)-space without affine singularities
of order p.

Theorem (1.4) follows from Theorem (5.7) immediately.

THEOREM (5.8) Suppose

Til /

(ii) Cn+p,p=0 (mod 8) and ^ΞO (mod 2*5-1),

then RPn cannot be immersed in (v(n, p) — m)-space without affine singularities
of order p.
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§ 6. Remarks

In this section we notice that non-immersion theorems of James and
Sanderson (cf. [9], [11]) follow also from (5.2) and (5.5).

It is said that the stunted protective space RPn/RPml is S-reducible,
if for a sufficiently large integer t, the ί-fold suspension of a generator of
Hn(RPn/RPml; Z2) coincides with the image of the fundamental class of
Hn+t(Sn+t; Z2) by the homomorphism Hn+t(Sn+t; Z2) >Hn+t{S\RPn/RPm-ι)\
Z2), which is induced by the natural map Sn+t > St{RPn/RPm~1). Accord-
ing to [8] and [1], RPn/RPml is 5-reducible if and only if n + l=Q (mod
2*o-»θ) (Cf. [9, (3.1)]).

Set n + l = (2b + l)2c+4d, where b, c and d are integers and 0 ^ c ^ 3 .
Define

THEOREM (6.1) Let p be an odd integer > 0 and r be an integer > 3 such
that 2r>p — l. If n = 2r — l, RPn cannot be immersed in (v(n,p) + n—j(n))-
space without affine singularities of order p.

PROOF. Note that

Sincep is odd and 2r>p — 1, we have Cn+p,p = N-2r for some odd integer 7V>0.
Set m = n—j(n). Then 0<m<2r as r > 3 , and we get

If there is a p t h order non-singular immersion of RPn in (^(
RPn/RPml and RP"+*/RP>»-I+S are mod 2 5-related by Theorem (5.2), where
s = Cn+p>p. Thus these two stunted protective spaces are both 5-reducible or
not 5-reducible (cf. [9, Lemma (2.1)]). But by the above remark we see that

Rpn+s/Rpm-ι+s i g 5_reducible, while RPn/RPm'1 is not 5-reducible. This is
a contradiction. Q.E.D.

For p = l, Theorem (6.1) says that if n = 2r — 1, RPn cannot be immersed
in (2n — q)-space, where

q = 2r if r = l, 2 (mod 4),

if r=0 (mod 4),

if r ^ 3 (mod 4),
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which is just Theorem (1.1) of [9]. The method of the above proof is due to
Adem and Gitler (cf. [2, Theorem 3.4]) who have given a simple proof of
James' theorem. Next, we shall give another proof of Theorem (1.1) of P-l].
James and Sanderson obtained their results by making use of axial maps.

THEOREM (6.2) (Sanderson) Let r be an integer >2. RPn cannot be im-
mersed in (2 r + 1 — l)-space, where

if r*«=l (mod 4),

if r ^

PROOF. In Theorem (5.5) we putjo = l and n + m = 2r+1--l(r>2). If r ^
1 (mod 4), then m = 2r — r — 3>0, and hence Cn+m>m^0 (mod 2). It is easy to
see that φ — l = r + 2. Thus we have n + m + l = 2r+1^0 (mod 2φ'1), and so we
get the desired result by (5.5). In case r = l (mod 4), the proof is similar to
the above case. Q.E.D.
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