On the Odd Order Non-Singular Immersions of Real Projective Spaces

Teiichi Kobayashi

(Received September 20, 1969)

§1. Introduction

On the problem of finding bounds for dimensions of higher order nonsingular immersions of an *n*-dimensional C^{∞} manifold *M* in Euclidean *N*-space, Feldman (cf. [7, Theorem 6.2]) has obtained the following general result (cf. also Pohl [10, Theorem 2.4]). Suppose *p* is a positive integer. Set $C_{n+p,p}-1$ $=\nu(n, p).^{1}$

THEOREM (1.1) (Feldman) If either $N \leq \nu(n, p) - n$ or $N \geq \nu(n, p) + n$, there is a pth order non-singular immersion of M in Euclidean N-space.

For p=1, (1.1) says that if $N \ge 2n$, there is an immersion of M in Euclidean 2n-space, which is the classical Whitney's theorem [15].

Suzuki (cf. [13], [14]) has proved several results on higher order nonsingular immersions of projective spaces in Euclidean spaces. The following theorem [13, Theorem (1.2)] is obtained by making use of Stiefel-Whitney classes of higher order tangent bundles of real projective *n*-space RP^n . Integers s(n, p) and d(n, p) are defined by

$$s(n, p) = \max\left\{i \mid 0 < i \leq n, \binom{C_{n+p,p}+i-1}{i} \equiv 0 \pmod{2}\right\}$$
$$d(n, p) = \max\left\{i \mid 0 < i \leq n, \binom{C_{n+p,p}}{i} \equiv 0 \pmod{2}\right\}$$

THEOREM (1.2) (Suzuki) If p is odd, and if -d(n, p) < k < s(n, p), RP^n cannot be immersed in $(\nu(n, p)+k)$ -space without affine singularities of order p.

Theorem (1.2) shows the impossibility of improving Feldman's theorem (1.1) in many cases of real projective spaces (cf. [13, p. 270]).

The purpose of this paper is to establish some necessary conditions for the existence of odd order non-singular immersions of RP^n in Euclidean *N*space and to give non-existence theorems of the non-singular immersions by studying homotopical properties of the stunted projective spaces. We obtain

1)
$$C_{n+p,p} = {\binom{n+p}{p}} = \frac{(n+p)(n+p-1)\cdots(n+1)}{p!}$$

the following two results which are partial improvements of Suzuki's theorem (1.2). For integers m and n with $0 \le m < n$, let $\varphi(n, m)$ be the numbers of integers s such that $m < s \le n$ and $s \equiv 0, 1, 2$ or 4 (mod 8). We write simply $\varphi(n)$ instead of $\varphi(n, 0)$. Define an integer φ by

$$\begin{split} \varphi = \varphi \ (n, \ m-1) & \text{if} \quad m \equiv 0 \ (\text{mod } 4), \\ \varphi = \varphi \ (n, \ m) & \text{if} \quad m \equiv 0 \ (\text{mod } 4). \end{split}$$
 $\begin{aligned} \text{THEOREM (1.3)} \quad Suppose \ p \ is \ odd. \quad Set \ m = s \ (n, \ p). \quad If \\ C_{n+p,p} + m \equiv 0 \ (\text{mod } 8) \quad and \quad \equiv 0 \ (\text{mod } 2^{\varphi-1}), \end{aligned}$

then $\mathbb{R}P^n$ cannot be immersed in $(\nu(n, p) + m)$ -space without affine singularities of order p.

THEOREM (1.4) Suppose p is odd. Set m = d(n, p). If $C_{n+p,p} - m \equiv 0 \pmod{8}$ and $\equiv 0 \pmod{2^{p-1}}$,

then RP^n cannot be immersed in $(\nu(n, p) - m)$ -space without affine singularities of order p.

After some preparations in §2, we give in §3 some necessary conditions for the existence of odd order non-singular immersions of RP^n in Euclidean *N*-space. In §4 we establish a sufficient condition (Lemma (4.1)) and a necessary condition (Lemma (4.2)) that two stunted projective spaces RP^n/RP^{m-1} and RP^{n+k}/RP^{m-1+k} are mod 2 *S*-related. We apply the method of Adem-Gitler [2] to the proof of (4.1), and we make use of the Adams operation [1] for the proof of (4.2). Applying the results obtained in §3 and §4 to the problem of odd order non-singular immersions, we have in §5 some nonexistence theorems (Theorems (5.5)-(5.8)). In §6 we notice that James' theorem and Sanderson's theorem on the non-existence of immersions of RP^n in Euclidean space (cf. [9], [2], [11]) are also shown.

§ 2. Preliminaries

Let M be a C^{∞} differentiable manifold of dimension n and let $T_p(M)$ be the bundle of pth order tangent vectors on M. Note that $T_1(M)$ is the tangent bundle T(M) of M. The dimension of $T_p(M)$ is

$$C_{n,1}+C_{n+1,2}+\cdots+C_{n+p-1,p}=C_{n+p,p}-1,$$

which we denote by $\nu(n, p)$. Let \mathbb{R}^N be Euclidean N-space and x_1, \dots, x_N be the coordinates of \mathbb{R}^N . Define a bundle homomorphism, called the natural kth order dissection on \mathbb{R}^N , D_k : $T_{k+1}(\mathbb{R}^N) \longrightarrow T_k(\mathbb{R}^N)(k \ge 1)$ by

On the odd order non-singular immersions of real projective spaces

$$D_k(X_k + \sum a_{i_1 \cdots i_{k+1}} (\partial^{k+1} / \partial x_{i_1} \cdots \partial x_{i_{k+1}})) = X_k,$$

where $X_k \in T_k(\mathbb{R}^N)$. Set $D_1 D_2 \cdots D_{p-1} = \bigtriangledown_p$. We say that a C° differentiable map $f: M \longrightarrow \mathbb{R}^N$ is a *pth* order non-singular immersion of M in \mathbb{R}^N if the bundle homomorphism $\bigtriangledown_p T_p(f): T_p(M) \longrightarrow T(\mathbb{R}^N)$ is injective or surjective on each fiber according as $\nu(n, p) \leq N$ or $\nu(n, p) \geq N$ respectively, where $T_p(f): T_p(M) \longrightarrow T_p(\mathbb{R}^N)$ is the *p*th order differential of f. Clearly, the first order non-singular immersion is an immersion or a submersion. The following result is known (cf. [7, Proposition 8.4] or [13, Lemma (2.3)]).

LEMMA (2.1) Suppose that there is a pth order non-singular immersion of an n-manifold M in Euclidean N-space.

(1) If $N \ge \nu(n, p)$, there exists an $(N - \nu(n, p))$ -dimensional vector bundle α over M such that

$$T_p(M) \oplus \alpha = N$$
,

where \oplus denotes the Whitney sum and where N means the N-dimensional trivial bundle over M.

(2) If $N \leq \nu(n, p)$, there exists a $(\nu(n, p) - N)$ -dimensional vector bundle β over M such that

$$T_{p}(M) = \beta \bigoplus N.$$

Let ξ be (the isomorphism class of) the canonical line bundle over real projective *n*-space RP^n . The *p*th order tangent bundle $T_p(RP^n)$ of RP^n is given as follows (cf. [13, p. 274]).

LEMMA (2.2) In $KO(RP^n)$

$$T_{p}(RP^{n}) = \begin{cases} C_{n+p,p} \xi - 1 & \text{if } p \text{ is odd,} \\ C_{n+p,p} - 1 & \text{if } p \text{ is even.} \end{cases}$$

Let $w(\alpha)$ denote the total Stiefel-Whitney class of a vector bundle α .

COROLLARY (2.3) If p is odd,

$$w(T_{p}(RP^{n})) = (1+x)^{C_{n+p,p}}$$

where x is the generator of $H^1(RP^n; Z_2) \cong Z_2$.

§ 3. Necessary conditions for the existence of odd order non-singular immersions of \mathbb{RP}^n

Let p be an odd integer >0. In this section we shall give some necessary conditions for the existence of pth order non-singular immersions of real

projective *n*-space RP^n in Euclidean *N*-space. Let *m* and *n* be integers such that $0 < m \leq n$.

THEOREM (3.1) If there exists a pth order non-singular immersion of RP^n in $(\nu(n, p)+m)$ -space, then the following (a) and (b) hold.

(a) The bundle $(a \cdot 2^{\varphi(n)} - C_{n+p,p}) \notin$ has $a \cdot 2^{\varphi(n)} - C_{n+p,p} - m$ independent non-zero sections, where a is a sufficiently large integer.

(b) The bundle $(C_{n+p,p}+m)\xi$ has $C_{n+p,p}$ independent non-zero sections.

THEOREM (3.2) If there exists a pth order non-singular immersion of RP^n in $(\nu(n, p)-m)$ -space, then the following (c) and (d) hold.

(c) The bundle $C_{n+b,p}\xi$ has $C_{n+b,p}-m$ independent non-zero sections.

(d) The bundle $(a \cdot 2^{\varphi(n)} - C_{n+p,p} + m) \notin$ has $a \cdot 2^{\varphi(n)} - C_{n+p,p}$ independent non-zero sections, where a is a sufficiently large integer.

PROOF OF (3.1). (a) If there is a *p*th order non-singular immersion of RP^n in $(\nu(n, p)+m)$ -space, there exists an *m*-dimensional vector bundle α over RP^n such that

$$T_{p}(RP^{n}) \oplus \alpha = \nu(n, p) + m = C_{n+p,p} - 1 + m$$

by (2.1) (1). Since $T_{p}(RP^{n}) = C_{n+p,p}\xi - 1$ by (2.2), we have $C_{n+p,p}\xi + \alpha = C_{n+p,p}$ +*m* in $KO(RP^{n})$. $\xi - 1$ is a generator of $\widetilde{KO}(RP^{n}) \cong Z_{2^{\varphi(n)}}$ (cf. [1, Theorem (7.4)]), and so $a \cdot 2^{\varphi(n)}(\xi - 1) = 0$ for any integer *a*. Therefore we have

$$a \cdot 2^{\varphi(n)} \xi - C_{n+p,p} \xi - \alpha = a \cdot 2^{\varphi(n)} - C_{n+p,p} - m$$

in $KO(RP^n)$. If we choose a such that $a \cdot 2^{\varphi(n)} - C_{n+p,p} > n$, we obtain

$$\alpha \oplus (a \cdot 2^{\varphi(n)} - C_{n+p,p} - m) = (a \cdot 2^{\varphi(n)} - C_{n+p,p}) \xi.$$

(b) Under the assumption, there exists an *m*-dimensional vector bundle α over RP^n such that

$$C_{n+p,p} \xi \bigoplus \alpha = C_{n+p,p} + m.$$

Tensoring both sides of this equation with ξ , we have

$$C_{n+p,p} \bigoplus \alpha \otimes \xi = (C_{n+p,p} + m) \xi$$

Q.E.D.

since $\xi \otimes \xi = 1$.

PROOF OF (3.2). (c) If there is a *p*th order non-singular immersion of RP^n in $(\nu(n, p)-m)$ -space, there exists an *m*-dimensional vector bundle β over RP^n such that

$$T_p(RP^n) = \beta \bigoplus (\nu(n, p) - m) = \beta \bigoplus (C_{n+p,p} - 1 - m)$$

by (2.1) (2). Since $T_p(RP^n) = C_{n+p,p}\xi - 1$ by (2.2), we have

On the odd order non-singular immersions of real projective spaces

$$C_{n+p,p}\xi = \beta \bigoplus (C_{n+p,p}-m)$$

(d) Tensoring both sides of the above equation with ξ , we have

$$C_{n+p,p} = \beta \otimes \xi \bigoplus (C_{n+p,p} - m) \xi.$$

As $a \cdot 2^{\varphi(n)}(\xi - 1) = 0$ for any integer *a*, we obtain

$$(a \cdot 2^{\varphi(n)} - C_{n+p,p} + m) \xi = \beta \otimes \xi \bigoplus (a \cdot 2^{\varphi(n)} - C_{n+p,p})$$

for a sufficiently large integer a.

REMARK. The above proofs show that the assumption of Theorem (3.2) may be replaced by the statement: if $T_p(RP^n)$ has $\nu(n, p)-m$ independent non-zero sections.

§ 4. Mod 2 S-relations of $\mathbb{R}P^n/\mathbb{R}P^{m-1}$

Let $S^q X$ denote the q-fold suspension of a space X, where q is a nonnegative integer. It is said that two spaces Y and Z are mod 2 S-related, if for some non-negative integers r and t there is a map $S^r Y \longrightarrow S^t Z$ which induces isomorphisms of all homology groups with Z_2 coefficients. Let n and m be integers with $0 < m \leq n$. The next lemma is a generalization of Proposition 3.3 of Adem-Gitler [2].

LEMMA (4.1) Suppose $C_{m+k,m} \equiv 0 \pmod{2}$. If the bundle $(m+k) \notin$ has k independent non-zero sections, then the stunted projective spaces RP^n/RP^{m-1} and RP^{n+k}/RP^{m-1+k} are mod 2 S-related.

PROOF. If the bundle $(m+k)\xi$ has k independent non-zero sections, there is an m-dimensional vector bundle α over RP^n such that $(m+k)\xi = \alpha \bigoplus k$. For a vector bundle λ over a *CW*-complex *M* let M^{λ} denote the Thom complex of λ . By the theorems of Atiyah [3], we have

$$S^{k}(RP^{n})^{\alpha} \approx (RP^{n})^{\alpha \oplus k} = (RP^{n})^{(m+k)\xi} \approx RP^{n+m+k}/RP^{m-1+k},$$

where by $X \approx Y$ we mean that there is a natural homeomorphism of a space X onto a space Y. Let

$$h: S^k(RP^n)^{\alpha} \longrightarrow RP^{n+m+k}/RP^{m-1+k}$$

denote the composite homeomorphism. The total Stiefel-Whitney class $w(\alpha)$ of α is given by

$$w(\alpha) = (1+x)^{m+k} = \sum_{i=0}^{n} C_{m+k,i} x^{i}$$

201

Q.E.D.

Teiichi Kobayashi

where x is the generator of $H^1(\mathbb{R}P^n; \mathbb{Z}_2) \cong \mathbb{Z}_2$. Since $C_{m+k,m} \equiv 0 \pmod{2}$, $w_m(\alpha) \neq 0$. Therefore the homomorphism

$$\cup w_m(\alpha): H^{q-m}(RP^n; Z_2) \longrightarrow H^q(RP^n; Z_2)$$

which sends an element $y \in H^{q-m}(\mathbb{RP}^n; \mathbb{Z}_2)$ to an element $y \cup w_m(\alpha) \in H^q(\mathbb{RP}^n; \mathbb{Z}_2)$ is an isomorphism for each q with $m \leq q \leq n$. Thus for the inclusion map $j: \mathbb{RP}^n \longrightarrow (\mathbb{RP}^n)^{\alpha}$, defined by the zero-section of α , the induced homomorphism

$$j^*: H^q((RP^n)^{\alpha}; Z_2) \longrightarrow H^q(RP^n; Z_2)$$

is an isomorphism for any q with $m \leq q \leq n$. As $(RP^n)^{\alpha}$ is (m-1)-connected, there is a map f such that the following diagram is homotopy-commutative:

$$\begin{array}{ccc} RP^n & \xrightarrow{j} & (RP^n)^{\alpha} \\ p & \swarrow f \\ RP^n/RP^{m-1} \end{array}$$

where p is the projection. Then the induced homomorphism

$$f^*: H^q((RP^n)^{lpha}; Z_2) \longrightarrow H^q(RP^n/RP^{m-1}; Z_2)$$

is an isomorphism for each q with $0 \leq q \leq n$. Let $S^k f$ denote the k-fold suspension of f. It is easy to see that there exists a map g such that the following diagram is homotopy-commutative:

$$S^{k}(RP^{n}/RP^{m-1}) \xrightarrow{S^{k}f} S^{k}(RP^{n})^{\alpha}$$

$$g \downarrow \qquad h \downarrow$$

$$RP^{n+k}/RP^{m-1+k} \xrightarrow{i} RP^{n+m+k}/RP^{m-1+k}$$

where *i* is the inclusion. Then the map g induces isomorphisms of all cohomology groups with Z_2 coefficients, and isomorphisms of all homology groups with Z_2 coefficients (cf. [12, Chapter 5]). Q.E.D.

Let $\varphi(n, m)$ denote the number of integers s such that $m < s \le n$ and s = 0, 1, 2 or 4 (mod 8). We write $\varphi(n)$ instead of $\varphi(n, 0)$. Define an integer φ by

$$\varphi = \varphi(n, m-1)$$
 if $m \equiv 0 \pmod{4}$,
 $\varphi = \varphi(n, m)$ if $m \equiv 0 \pmod{4}$.

LEMMA (4.2) Let k be an integer such that $k \equiv 0 \pmod{8}$. If the stunded projective spaces RP^n/RP^{m-1} and RP^{n+k}/RP^{m-1+k} are mod 2 S-related, then $k \equiv 0 \pmod{2^{\varphi^{-1}}}$.

PROOF. We may assume k > 0. First, consider the case $m \equiv 0 \pmod{4}$. Then, according to [1, Theorem 7.4],

$$\widetilde{KO}(RP^n/RP^{m-1})\cong Z_{2^{\varphi}}, \varphi=\varphi(n, m-1).$$

By the assumption, for some integer $r \ge 0$ there is a map

$$f: S^{k+r}(RP^n/RP^{m-1}) \longrightarrow S^r(RP^{n+k}/RP^{m-1+k})$$

which induces isomorphisms of all homology groups with Z_2 coefficients. We may choose r such that $r \equiv 0 \pmod{8}$. The map f induces isomorphisms of all cohomology groups with Z_2 coefficients (cf. [12, Chapter 5]), and so by the arguments using the Atiyah-Hirzebruch spectral sequence (cf. [4, §2] and [1, §6]) we can see that f induces an isomorphism of the \widetilde{KO} -groups. Consider the following diagram:

where each of the vertical maps Ψ^3 is the Adams operation, and where each of the horizontal maps $I^{r/8}$ is r/8 fold composition of the isomorphism I defined by the Bott periodicity [5, Theorem 1]. According to [1, Theorem 7.4], the right-hand map Ψ^3 is the identity. Thus, by [1, Corollary 5.3], we have

$$\Psi^{3}I^{r/8} = 3^{r/2}I^{r/8}\Psi^{3} = 3^{r/2}I^{r/8}.$$

Therefore the right-hand map Ψ^3 is $3^{r/2}$. Similarly

$$\Psi^{3} \colon \widetilde{KO}(S^{k+r}(RP^{n}/RP^{m-1})) \longrightarrow \widetilde{KO}(S^{k+r}(RP^{n}/RP^{m-1}))$$

is $3^{(k+r)/2}$. Since Ψ^3 is natural for maps [1, Theorem 5.1], we have

$$3^{(k+r)/2}f^*=f^*3^{r/2}=3^{r/2}f^*.$$

Thus $(3^{(k+r)/2}-3^{r/2})(\iota)=0$, where ι is a generator of $\widetilde{KO}(S^{k+r}(RP^n/RP^{m-1}))\cong Z_{2^{\varphi}}, \varphi=\varphi(n, m-1)$. Hence $3^{k/2}-1\equiv 0 \pmod{2^{\varphi(n,m-1)}}$. Then we have $k\equiv 0 \pmod{2^{\varphi(n,m-1)-1}}$. In fact, if $k/2=(2N+1)2^l$, where N is an integer and where l is an integer with $l\leq \varphi(n, m-1)-3$, then $3^{k/2}-1\equiv 2^{l+2} \pmod{2^{l+3}}$ by [1, Lemma 8.1]. This is impossible.

In case $m \equiv 0 \pmod{4}$, according to [1, Theorem 7.4]

$$\widetilde{KO}(RP^n/RP^{m-1})\cong Z+\widetilde{KO}(RP^n/RP^m)\cong Z+Z_{2^{\varphi}}, \varphi=\varphi(n, m).$$

By the assumption, for some integer $r \equiv 0 \pmod{8}$ there is a map

Teiichi Kobayashi

$$f: S^{k+r}(RP^n/RP^{m-1}) \longrightarrow S^r(RP^{n+k}/RP^{m-1+k})$$

which induces isomorphisms of all homology groups with Z_2 coefficients. We may take f for a cellular map. It defines the map

$$f_0: S^{k+r}(RP^n/RP^m) \longrightarrow S^r(RP^{n+k}/RP^{m+k})$$

which induces an isomorphism of \widetilde{KO} -groups. The rest of the proof is similar to the above case, so we omit the details here. Q.E.D.

§ 5. pth order non-singular immersions of RP^n

We set $\nu(n, p) = C_{n+p,p} - 1$. Let p be odd >0 and let m and n be integers such that $0 < m \leq n$. From (3.1) and (4.1) we have the following two results.

THEOREM (5.1) Assume $\binom{C_{n+p,p}+m-1}{m} \cong 0 \pmod{2}$. If there is a pth order non-singular immersion of RP^n in $(\nu(n, p)+m)$ -space, then RP^n/RP^{m-1} and RP^{n+t}/RP^{m-1+t} are mod 2 S-related, where $t = a \cdot 2^{\varphi(n)} - C_{n+p,p} - m$ (a is a sufficiently large integer).

PROOF. According to (3.1) (a), the bundle $(a \cdot 2^{\varphi(n)} - C_{n+p,p}) \xi = (m+t) \xi$ has t independent non-zero sections. Since

$$C_{m+t,m} = \binom{a \cdot 2^{\varphi(n)} - C_{n+p,p}}{m} \equiv \binom{-C_{n+p,p}}{m} \equiv \binom{C_{n+p,p} + m - 1}{m} \equiv 0 \pmod{2},$$

we obtain the desired result by (4.1).

THEOREM (5.2) Assume $\binom{C_{n+p,p}+m}{m} \equiv 0 \pmod{2}$. If there is a pth order non-singular immersion of RP^n in $(\nu(n, p)+m)$ -space, then RP^n/RP^{m-1} and RP^{n+s}/RP^{m-1+s} are mod 2 S-related, where $s = C_{n+p,p}$.

PROOF. According to (3.1) (b), the bundle $(C_{n+p,p}+m)\xi = (m+s)\xi$ has s independent non-zero sections. Since $C_{m+s,m} \equiv 0 \pmod{2}$, we have the desired result by (4.1). Q.E.D.

From (3.2) and (4.1) we obtain the following two results. The proofs are similar to those of (5.1) and (5.2).

THEOREM (5.3) Assume $\binom{C_{n+p,p}}{m} \cong 0 \pmod{2}$. If there is a pth order nonsingular immersion of RP^n in $(\nu(n, p) - m)$ -space, then RP^n/RP^{m-1} and RP^{n+r}/RP^{m-1+r} are mod 2 S-related, where $r = C_{n+p,p} - m$.

THEOREM (5.4) Assume $\binom{C_{n+p,p}-1}{m} \cong 0 \pmod{2}$. If there is a pth order

204

Q. E. D.

non-singular immersion of RP^n in $(\nu(n, p) - m)$ -space, then RP^n/RP^{m-1} and $RP^{n+\nu}/RP^{m-1+\nu}$ are mod 2 S-related, where $\nu = a \cdot 2^{\varphi(n)} - C_{n+p,p}(a \text{ is a sufficiently large integer}).$

These theorems, combined with Lemma (4.2), yield non-existence theorems of odd order non-singular immersions of RP^n in Euclidean spaces. We have the following four theorems from Theorems (5.1)–(5.4) respectively.

THEOREM (5.5) Suppose

(i)
$$\binom{C_{n+p,p}+m-1}{m} \cong 0 \pmod{2}$$

(ii) $C_{n+p,p}+m \equiv 0 \pmod{8}$ and $\equiv 0 \pmod{2^{\varphi^{-1}}}$,

then RP^n cannot be immersed in $(\nu(n, p) + m)$ -space without affine singularities of order p.

Theorem (1.3) follows from Theorem (5.5) immediately.

THEOREM (5.6) Suppose

(i)
$$\binom{C_{n+p,p}+m}{m} \cong 0 \pmod{2}$$

(ii) $C_{n+p,p} \equiv 0 \pmod{8}$ and $\cong 0 \pmod{2^{\varphi^{-1}}}$,

then RP^n cannot be immersed in $(\nu(n, p) + m)$ -space without affine singularities of order p.

THEOREM (5.7) Suppose

(i)
$$\binom{C_{n+p,p}}{m} \equiv 0 \pmod{2}$$

(ii) $C_{n+p,p} - m \equiv 0 \pmod{8}$ and $\equiv 0 \pmod{2^{p-1}}$,

then RP^n cannot be immersed in $(\nu(n, p) - m)$ -space without affine singularities of order p.

Theorem (1.4) follows from Theorem (5.7) immediately.

THEOREM (5.8) Suppose

(i)
$$\binom{C_{n+p,p}-1}{m} \cong 0 \pmod{2}$$

(ii) $C_{n+p,p} \equiv 0 \pmod{8}$ and $\cong 0 \pmod{2^{\varphi-1}}$,

then $\mathbb{R}P^n$ cannot be immersed in $(\nu(n, p) - m)$ -space without affine singularities of order p.

Teiichi Ковачазні

§6. Remarks

In this section we notice that non-immersion theorems of James and Sanderson (cf. [9], [11]) follow also from (5.2) and (5.5).

It is said that the stunted projective space RP^n/RP^{m-1} is *S*-reducible, if for a sufficiently large integer t, the t-fold suspension of a generator of $H_n(RP^n/RP^{m-1}; Z_2)$ coincides with the image of the fundamental class of $H_{n+t}(S^{n+t}; Z_2)$ by the homomorphism $H_{n+t}(S^{n+t}; Z_2) \longrightarrow H_{n+t}(S^t(RP^n/RP^{m-1});$ $Z_2)$, which is induced by the natural map $S^{n+t} \longrightarrow S^t(RP^n/RP^{m-1})$. According to [8] and [1], RP^n/RP^{m-1} is *S*-reducible if and only if $n+1\equiv 0 \pmod{2^{\varphi(n-m)}}$ (cf. [9, (3.1)]).

Set $n+1=(2b+1)2^{c+4d}$, where b, c and d are integers and $0 \leq c \leq 3$. Define

$$j(n)=2^{c}+8d$$

THEOREM (6.1) Let p be an odd integer >0 and r be an integer >3 such that $2^r > p-1$. If $n=2^r-1$, RP^n cannot be immersed in $(\nu(n, p)+n-j(n))$ -space without affine singularities of order p.

PROOF. Note that

$$C_{n+p,p} = \binom{2^r - 1 + p}{p} = \binom{2^r + p - 1}{p - 1} \frac{2^r}{p}$$

Since p is odd and $2^r > p-1$, we have $C_{n+p,p} = N \cdot 2^r$ for some odd integer N > 0. Set m = n - j(n). Then $0 < m < 2^r$ as r > 3, and we get

$$\binom{C_{n+p,p}+m}{m} = \binom{N\cdot 2^r+2^r-1-j(n)}{2^r-1-j(n)} \equiv 0 \pmod{2}.$$

If there is a *p*th order non-singular immersion of RP^n in $(\nu(n, p) + m)$ -space, RP^n/RP^{m-1} and RP^{n+s}/RP^{m-1+s} are mod 2 S-related by Theorem (5.2), where $s = C_{n+p,p}$. Thus these two stunted projective spaces are both S-reducible or not S-reducible (cf. [9, Lemma (2.1)]). But by the above remark we see that RP^{n+s}/RP^{m-1+s} is S-reducible, while RP^n/RP^{m-1} is not S-reducible. This is a contradiction. Q.E.D.

For p=1, Theorem (6.1) says that if $n=2^r-1$, RP^n cannot be immersed in (2n-q)-space, where

q = 2r	if	$r \equiv 1, 2$	(mod 4),
q=2r+1	if	$r \equiv 0$	(mod 4),
q=2r+2	if	$r \equiv 3$	(mod 4),

206

which is just Theorem (1.1) of [9]. The method of the above proof is due to Adem and Gitler (cf. [2, Theorem 3.4]) who have given a simple proof of James' theorem. Next, we shall give another proof of Theorem (1.1) of [11]. James and Sanderson obtained their results by making use of axial maps.

THEOREM (6.2) (Sanderson) Let r be an integer >2. RP^n cannot be immersed in $(2^{r+1}-1)$ -space, where

$$n = 2^r + r + 2 \qquad \text{if} \quad r \equiv 1 \pmod{4},$$

$$n = 2^r + r + 3 \qquad \text{if} \quad r \equiv 1 \pmod{4}.$$

PROOF. In Theorem (5.5) we put p=1 and $n+m=2^{r+1}-1$ (r>2). If $r \equiv 1 \pmod{4}$, then $m=2^r-r-3>0$, and hence $C_{n+m,m} \equiv 0 \pmod{2}$. It is easy to see that $\varphi -1=r+2$. Thus we have $n+m+1=2^{r+1}\equiv 0 \pmod{2^{\varphi-1}}$, and so we get the desired result by (5.5). In case $r\equiv 1 \pmod{4}$, the proof is similar to the above case. Q.E.D.

References

- [1] J.F. Adams, Vector fields on spheres, Ann. of Math., 75 (1962), 603-632.
- J. Adem and S. Gitler, Non-immersion theorems for real projective spaces, Bol. Soc. Mat. Mexicana, 9 (1964), 37-50.
- [3] M.F. Atiyah, Thom complexes, Proc. London Math. Soc., (3), 11 (1961), 291-310.
- [4] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. of Symposia in Pure Mathematics **3**, Differential Geometry, Amer. Math. Soc., 1961, 7-38.
- [5] R. Bott, Quelques remarques sur les théorèmes de periodicité, Bull. Soc. Math. de France, 87 (1959), 293-310.
- [6] E. A. Feldman, The geometry of immersions. I, II, Bull. Amer. Math. Soc., I, 69 (1963), 693-698;
 II, 70 (1964), 600-607.
- [7] E. A. Feldman, The geometry of immersions. I, II, Trans. Amer. Math. Soc., I, 120 (1965), 185– 224; II, 125 (1966), 181–215.
- [8] I.M. James, Spaces associated with Stiefel manifolds, Proc. London Math. Soc., (3) 9 (1959), 115-140.
- [9] I. M. James, On the immersion problem for real projective spaces, Bull. Amer. Math. Soc., 69 (1963), 331-338.
- [10] W.F. Pohl, Differential geometry of higher order, Topology 1 (1962), 169-211.
- [11] B.J. Sanderson, A non-immersion theorem for real projective space, Topology 2 (1963), 209-211.
- [12] E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.
- [13] H. Suzuki, Bounds for dimensions of odd order non-singular immersions of RPⁿ, Trans. Amer. Math. Soc., 121 (1966), 269-275.
- [14] H. Suzuki, Characteristic classes of some higher order tangent bundles of complex projective spaces, J. Math. Soc. Japan, 18 (1966), 386-393.
- [15] H. Whitney, Differentiable manifolds, Ann. of Math., 37 (1936), 645-680.

Department of Mathematics Faculty of Science Hiroshima University