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§ 0 Statement of Results.

Throughout this paper, p denotes always an odd prime. We consider a
cell complex

(0.1) Bn (p) = S2n+1 \Je2n+2p'1 \Je*n+2p,

whose cohomology ring with Z^-coefficient is

(0.2) H*(BH(p); Zp) = A(u, &ιu\ u e H2"+\Bn(p); Zp).

We notice that the /^-primary components Ui(Bn(p)\ p) of the ί-th homo-
topy groups of Bn(p) appear in the following

THEOREM 0.1. For the homotopy groups of the special unitary groups
SU(m) and the symplectic groups Sp(m), we have the following direct sum
decompositions:

(0.3) Σπi(Bk(p);p)+ PΣ πi(S2k+1;p)^πi(SU(n+p);p\for n<p,
k=l k=n+l

(0.4)

These decompositions for n = l are (1.4) and (1.5) of [6], and the similar
direct sum decompositions for exceptional Lie groups are obtained recently
by Mimura and Toda \jf].

As a special kind of Bn(p), we have the following

THEOREM 0.2. There exist cell complexes Bn(p) for π,]>l, satisfying (0.1),
(0.2) and the following two conditions:

(0.5) Bn(p) is an S2n+1-bundle over S2n+2p~\

(0.6) There exists a map

f:S2Bn(p) >Bn+1(p)

which induces isomorphisms of H{( Z) for ί
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The purpose of this paper is to compute Ki(Bn(p);p) of these Bn(p) for
ί<2n + l + 2(p2+p)(p-ΐ)-5.

From (0.5), we have the following exact sequence:

(0.7) . . . ^ ^ ( S ^ ^ ^ T Γ ^ S 2 * ^

and we consider the boundary homomorphisms dn. We have easily

THEOREM 0.3. dn(S2r)=aι(2n + l)oSγ for given γ e 7Γf _i(.S2n+2/>-3),

where S denotes the suspension homomorphism and aι(2n + ΐ) is an element in
τr2n+2P-2(S2n+1) of order p.

By means of the mapping cylinder construction of the map Bn(p) •
Ω2Bn+ι(p), induced by / of (0.6), we may regard as Bn(p)CΩ2Bn+1(p) and
write

THEOREM 0.4. We have the exact sequence

(0.8) . . . - i ^ T Γ ^ c ρ i ^ 2 * - 1 ) ^

where Q2m~1 = Ω(Ω2S2m+1^ S2m~ι). Furthermore we obtain the following com-
mutative diagram of exact sequences:

(0.9)

s2 us2 s2

>πi+2{nn(p)) >πi+2w )

ω H(2)

iρ* I
i

By the above diagram, we can investigate dn by using 9w_i and Theorem
0.3. Using the homomorphisms /' and / in the exact sequence

(0.10) > -
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of [8; (2.5)], we have the following

THEOREM 0.5. There is an integer xn^=0 (modp) such that

(Oil) idniχs3r)=χn(3Λ2(n+i)P+i)oS3r

for any γ e π^iS2^^-'; p\ where β1(2(n + l)P + l) e τr2 ( w + w_1(52 ( w + 1^+ 1;p)
^Zp is Toda's element in \Ίf\.

Using these three theorems and the known results about the homotopy
groups of spheres in [8J, we can determine

for Jc<2(p2+p — ΐ)(p — 1) — 4 except the only one case

(0.12) p = 3, n = l, 4 = 35.

For the determination of the extensions of groups in the exact sequence
(0.7), we treat Lemmas 6.2 and 6.3 in §6. Consequently, the groups π2n+i+k
(Bn(p); p), k<2(p2+p)(p — T) — 5:> are determined except the following two
cases:

(0.13) p = 3, j* = l, * = 37, 38,

(0.14) k = 2r(p-l)-2, r>

and r =

The case (0.13) occurs from the indetermination of (0.12). In the case (0.14),
we can determine the orders of groups.

Summarizing these facts, it is stated as follows:

THEOREM 0.6. For n^il and k<2(p2 +p) (p — 1) — 5, we have the following
direct sum decomposition:

E(n, k)

+ Ua (n, k) + Ub (n, k) + Uu (n, k),

where the definitions of direct factors are given in § 6.
The subgroups A(n, k) + B(n, k) (&=V2(/ + 1) (p-ΐ)-3) + E(n, k) are

mapped isomorphically into the stable groups πf(i?; p) = lim π2n+1+k(Bn(p); p).
n

In § 1, Theorem 0.1 is proved. The bundles Bn(p) of Theorem 0.2 are con-
structed in § 2, and Theorems 0.3 and 0.4 are proved. Theorem 0.5 is proved
in §3. Section 4 is used to quote the known results about the homotopy
groups of spheres. The determination of dn is in § 5 and the proof of Theorem
0.6 is in §6.

The author would like to thank Professor H. Toda who read the manu-
script and gave me many useful suggestions.
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§ 1 Proof of Theorem 0.1.

Since π2n(S2k+ι) is finite and has no/>-torsion if k<n<p, it follows that

π2n(SU(k-{-l)) is finite and has no p-torsion. From the exactness of the

sequence π2n+ι(SU(n + l))-^>π2n+ι(S2n+1) >π2n(SU(n)), there exists a map

/ „ : S2n+1 >SU(n + l)

such that the mapping degree of the composition πfn: S2n+1 >S2n+1 is prime

to/>, for n<p. Weiput f'n = ίnfn, for the inclusion in\ SU(n + l) >SU(n+p).

Since ττ2n+2p^2(SU(n+p)) = 0 by Bott periodicity, the map f'n is extended to a

map

gn: Kn^S2n^\Je2n^2p-λ >SU(n+p),

where Kn is the (2n + 2p—l)-skeleton of Bn(p). And g * are epimorphisms of

ίΓ*( Zp), since ^=V0 holds in SU(n+p) for n<p. According to Imanishi

([2] Theorem 1), the order a of πAn+2p_ι(SU{n+p)) is prime to p for π,<J

3(JO —l)/2. Replacing the attaching map β of the (4^ + 2p)-cell of Bn(p) by

α^? we obtain a cell complex B'n(p). Obviously we have

(1.1) 7d(B'n(p) ;p)^πi(Bn(p) p) for all ί.

The map gn has an extension

hn: Br

n(p) >SU(n+p) for n<p

and /** are epimorphisms of H*( Zp). Using the maps hi and /• and the

multiplication of SU(n+p), we obtain a map

F=hι*h2 A» /«+r/«+2 /i-i:

Sί(^) X Bf

2(p) X ••• x JS;(/>) x S2n+3 X 5 2 w + 5 x ~ X S2p-ι-+SU(n+p)

which induces isomorphisms i*7* of AΓ*( Zp). Thus, for 7z</?, the following

isomorphisms hold:

(1.2) F*: Σ τrz (5ί(j^) P) + *Σ m (S2k+1; p)-*-> π{ (SU(n +p) p).
k=l k=n+\

The decompositions (0.3) follow from (1.1) and (1.2).

Similarly we have a map

G:B[(p)x-- xB/

2n_ί(p)xS4n+3x- -xS2p-3 >Sp(n + q)

and isomorphisms G* of 7Γ, ( p) for n<.q = (p—1)/2, and the decompositions

(0.4) are obtained.
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§ 2 Definition and Properties of Bn(p).

Let Vm>k denote the Stief el manifold of orthonormal A -frames in Rm, the
^-dimensional vector space over the reals. Then Vm>k is a fibre bundle over
Vmχ with fibre Vm-k\k-k'> for l<;Λ;'<ίJfc<Ξ>. Especially V2n+3>2 is an S2n+1

bundle over S2n+2. The characteristic class of this bundle V2n+3>2 is an ele-
ment 2c2n+i e π2n+ι(S2n+1)^Z, which is represented by a map of degree 2.

Let A and B be spaces, and / = [0, 1] the unit interval. We denote by
A*B the join of A with B, and d: Ax B x / >A*B the canonical map. Then
the homeomorphism

h: Sm*S1 >Sm+2

is given by hd(x, 0, t) = (λx, jucos0, /*sin0), λ = cos(πt/2), /̂  = sin(7rί/2)5 0<J
θ<:2π. We define a map

g' V2n + 3>2^S1 > F 2 w + 5,2

by gd((χ, y\ θ, t) = ((λx, /*cos0, ju sin θ)9 (λy, —/^sin/9, /i cos 0)), then we obtain
the following diagram in which the left square is homotopy commutative and
the right one is commutative.

h \ g \ h
V

7Γ ,

+ 5,2 :
ς2« + 3 / . Y 7t v c2» + 4

^ 7" r 2 n

Since ^n+a^*^ 1 has the same homotopy type as 52Γ2w+3,2? we get the follow-
ing

PROPOSITION 2.1. There exists a map

such that, in the following diagram (2.1), τzg—S2τt and gS2ί — ί hold:

S2i $

(2.1) S 2 κ + 3 Ϊ 5 2 κ + 4 ,

i

where ^ means homotopic.

Let αi(3) be the generator of π2p(S3; p)^Zp with mod p Hopf invariant
one. Then S~αi(3)=αi is the first non-trivial element of the/^-component of
the stable homotopy groups of spheres. We put
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(2.2) a1(m) = Sm-3a1(3)eπm+2p_3(Sm;p) for m^S.

DEFINITION 2.2. We denote by Bn(p), the induced bundle of the bundle

V2n+3,2 by the map which represents the element -o-αi(2ra + 2) 6 π2n+2p-ι(S2n+2;

p)9for n^l.

PROOF OF THEOREM 0.2. By definition, the conditions (0.1), (0.2) and (0.5)

are satisfied obviously. The space Bn(p) consists of pairs (x, y) in s2n+2p~1

x V2n+3,2 satisfying a{x) — π(y), where a denotes a representative of-o-αi(2τι

+ 2). We define a m a p / : S2Bn(p) = Bn(p)ΛS2 >Bn+ι(p) by

/((*, y)Λz) = (xΛz, g(yΛz)),

for any elements (x, y) e Bn (p) C S2n+2p~1 x V2n+3>2 and z e S2, whereΛdenotes

the smash product. Then the map / is well defined, since (S2a)(xΛz) =

n (g(yΛz)) by Proposition 2.1. We can verify easily that this map / satisfies

the condition (0.6). q.e.d.

Let X and Y be spaces and let A be a subspace of X. We denote by

[X, Y} the set of homotopy classes of base-point preserving maps X-> F, and

Ω(X, A) the space of paths (/, 0, 1)-*(X, *, A) with compact-open topology.

ΩX=Ω(X, *) is the loop space of X. Let p: E^B be a fibering and F=

p~ι(*) the fibre over *, then the boundary map Δ\ \_SX, B~]-^[_X, F] is de-

fined as usual, and the following lemma is verified easily.

LEMMA 2.3. Δ (aoSβ) = J(a)oβ for any a e [5F, B~] and β e [_X, YJ.

Let d be the boundary homomorphism in the homotopy exact sequence of

the bundle V2n+3>2. The characteristic class of this bundle is

(2.3)

and the following diagram is commutative:

(2.4) πi+1 (S2n+2p-χ) ^ Ui (S2n+1)

where {a}——^- αi(2ra + 2).

PROOF OF THEOREM 0.3. By Lemma 2.3 for J = d, (2.3) and (2.4),

1
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= 2c2n+i°^2-aι(2n + ϊ)oSr = a1(2n + l)oSr. q.e.d.

Let/?: E-^B be a fibering with the fibre F=p~1(*), and assume that E, B
and F have the same homotopy types as CW-complexes. Since Ωp: Ω (E, F)
-^ΩB induces isomorphisms of homotopy groups, it is a homotopy equiva-
lence. The projection p0: Ω(E, F) -+ F induces homomorphisms of homotopy
groups equivalent to the boundary homomorphism in the homotopy exact
sequence of the pair (E, F). Replacing Ω(E9 F) and p0 by ΩB and the com-
position with a homotopy inverse of Ωp respectively, we get the following

LEMMA 2.4. p: E >B, F and p0 are as above. There is a map

(2.5) p: ΩB >F

such that p0 is homotopic to pΩp, and the following diagram is commutative:

π{(ΩB) P* .

The following proposition is proved easily.

PROPOSITION 2.5. Let p: E > B and p': E' > B' be fiberings with fibres
F and F\ and assume that the following two conditions hold:

(i) E, B, E\ B\ F and F have the same homotopy types as CW-complexes.

(ii) E\ B1 and F are subspaces of E, B and F respectively, and the follow-
ing diagram is homotopy commutative:

F t'yE-^+B'

where vertical arrows are inclusions.

Then we obtain the following commutative diagram of exact sequences:

4

Γ
πM(B) -

4
πi+ι(B, B')-

4

4

4

4'
—>τti(F)

4
— > 7Γ, (F, F

4

4

4'
>π,(E) -

4
')—->• πi (E, E')~

4

4

4

4
> 7Ci (B)

4
—>π,(B,Br)

4

Γ1
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PROOF OF THEOREM 0.4. The double suspension S 2 : Ki(S2m~l) >
πi+2(S2m+1) is equivalent to the map induced by the inclusion S2m~ι >
Ω2S2m+ι, and the homomorphism H{2) is defined as follows:

H^ = k*Ω3: T T ^ C S 2 ^ 1 ) - ^ ^ ^ 3 S 2 m + ι ) >πi-i(β2

2

m-1\

for the inclusion k: ΩsS2m+1 >Q2

2

m~\ The projection/?: Q2

2

m~ι = Ω(Ω2S2m+\

S2m-i^ >S2m-i i s a fibering w i t h fibre Ω*s2m+1. First and second columns

of the diagram (0.9) are obtained from the homotopy exact sequence of this
fibering for m = n+p—1 and n respectively. Similarly, third column of (0.9)
is obtained from the fibering p: QBn_ι(p) >Bn^1(p). Then in Proposition
2.5, putting F=Ω2S2n+\ E=Ω2Bn(p), B = Ω2S2n+2p~\ F=S2n~\ E = Bn.1(p)
and tf'^s2^-3, we obtain (0.8) and (0.9). q.e.d.

Now we consider the cohomology spectral sequence associated with the
fibering

(2.6) ^S2^1-^^^^^)-^^^2^2^1.

Then Et:¥^Ef^H^(ΩS2n+1;Zp)(^H^(ΩS2n+2p-1;Zp) holds, since both ΩS2n+1

and ΩS2n+2p~1 have vanishing cohomology of odd degrees. In more detail:

(2.7) H*(ΩS2n+1; Zp) has the following Zp-basis

{xri\ • xris

s\ 0<iι< <ίs, 0 < ; r 1 ? , rs<p}> deg Xi =

And H*(ΩS2n+2p-ι\Zp) has the following Zp-basis

{yίl yί:; 0^ϊi<- -<£,, 0^n, , rs<p}, deg γ i

PROPOSITION 2.6. H* (ΩBn (p) Zp) has the following Zp-basis

0 ^ ί i , , ts<p, q, 5^1}, and deg ak = 2npk, deg bk =

Furthermore the elements ak and bk satisfy the following conditions:

(ϊ)k (Ωί)*ak = Xk and bk = (Ωj)*yk^ up to non-zero coefficients.

(ii)* 0>pkak = bk and 0>iak = Ofor ί>pk.

PROOF. Put ao = (7u and bo = (ϊ0>1u, for the cohomology suspension 6 and
u e H2n+1(Bn(p); Zp). Since 0>ι commutes with σ, (i)0 and (ii)0 hold.

We have the sequence:

(2.8) 0 >H*(ΩS2n+2p-1\ Zp)-4£*H*(ΩBn(p); Zp)^r>H*(ΩS2n+1; Zp) >0

which is exact as Hopf algebras, with respect to the diagonal map A* induced
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by the loop-multiplication β. The sets of primitive elements in H*(ΩS2n+2p~1

Zp) and H*(ΩS2n+1; Zp) are spanned by j 0 and xQ respectively. It follows
from Proposition 3.12 of [3] that

(2.9) The primitive elements of H*(ΩBn(p) Zp) are spanned by aQ and b0.

Now we consider the case n>l. Assume that there are elements ak and
bk satisfying (i)*,, (ii)^ and the following conditions (iii)& for k = 0, 1, •-, r.

(iii)* There exist elements ak e H2npk(ΩBn(p); Z) and bk e H2(n+P'1)pk

(ΩBn(p) Z) whose mod p reductions are the elements ak and bk of above. Such
elements satisfy ap

k^1=pak and bp

k^λ—pbk.

From (ii)r, ap

r = 0>nprar = O. This means that ap

r=par+τ for some ar+ι 6
H2npr+\ΩBn(P); Z). From (iii)*, k^r, P

1+p+"+prar+1 = ap

o

r+1 holds in Z-coef-
ficient. Then we have

i=ι p

r r

where i= Σatp* and/> r+1 — ί= Σ βtp% arep-adic expansions, av,

Remark that ct = - r + 1 _ v (p . ) is an integer prime to p, for 0<i<pr+1. So,
p \ i /

we have

(2.10) /ί*(α r +i) = o r + i ® l + l ( g ) α r + 1 + ί Σ " 1 c / α ? '...α?^(8)α^...α^
ί = 1

in Z^-coefficient. Using the Cartan formula and (ii)*, Λ^r, (2.10) implies the
following

(2.11) /

Ό).+i /or ί>pr+\

On the other hand, we have similarly

(2.12) /i*(br+1) = br+1®l + l<S>br+1+
pTΣ1cib?r...b?»®b?'...bξ>.

ί = l

The elements ^ r + 1 α r + i — &r+i and ^ ί α r + i ( ί > j p
r f l ) are primitive by (2.11) and

(2.12), and so vanished by (2.9), that is, (ii) r +i holds. Therefore the proof
can be done by the induction on r.
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For the case n = l, we choose an element ar+ι such as (Ωΐ)*ar+i = χr+i-
Then A*(α r +0 has a form of (2.10) for some c{ e Zp. Applying Hopf algebra

homomorphism (ώi)* a n d comparing with β*(xr+1), we have ci = -ττγ_

The rest of the proof is similar to the case n>l and omitted. q.e.d.

REMARK ( i ) In the case n — 1, the relations ap

k = bk(k = 0, 1, ) hold.

REMARK (ii) The following relation in (ii)i is essential for the proof of
Theorem 0.5 (§ 3):

(2.13) 0>p(a1) = b1.

REMARK (iii) Using Dyer-Lashof's operations (pΓ|) a n d Nishida's formula
([5H), we can determine the reduced power operations in H*(ΩBn(p); Zp).
Let L=S2n\Je2n+2p-2 be the mapping cone of αi(2τι), H,>1, and Q(L) be the
limit space lim ΩNSNL. Then S3£ is a subcomplex of Bn+ι(p). Using / in

N

(0.6), we obtain a map ΩBn(p) >Ω3S3LCQ(L) which induces a monomor-
phism of H*( Z,). H*(ΩBn(p); Zp)^Zp\jι, ό], deg α = 2^, deg b = 2n + 2p-2
and α = ̂ ^6 hold, where 0>% denotes the dual operation of ^ in the sense of
[ΊΓ]. Then α^(resp. bk) is the dual element of ^ ( r e s p . bpk), which can be
written by iterated Dyer-Lashof operations on α(resp. b). And so, applying
Nishida's formula, the relations (ii)* are obtained.

§ 3 Proof of Theorem 0.5.

We shall quote the following four propositions from [8], with respect to
the homomorphisms / and Γ in (0.10) and (0.11).

We denote by Yn the Moore space of type (Zp, n — ϊ), i.e., the mapping
cone of a map Sn~ι > Sn~ι of degree p.

PROPOSITION 3.1 (Lemma 2.5 of [βj). Assume that 2mp — h^6. Then
there exists a map G: γ2m^-h~2 >ΩhQlm~1, uniquely up to homotopy equiva-
lence, such that G* are isomorphisms of Hι{ Zp) for ί^2mp—h — 2. For
such a map the following diagram is commutative:

(3.1) πi(S2mp-h-*;P)^πi(Y2mp-h-2;p)-^πi(S2mp-h-2;p)

τti+h+2 (S2**-1 p) -£-> τr/+A (ρi*" 1 p) - ^ ^ 7rί+Λ+3 ( 5 2 w ί + 1 /?),

for some integers x, γ^O (mod/?).

PROPOSITION 3.2 ((2.12) (ii) of [8]). There exists a map hp: ΩS2m+1-
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ΩS2mp+1 such that h* is an isomorphism of H2mp( Zp) and that the following
diagram is commutative:

(3.2) πi(ΩS2m+1;p) ^ >πi(ΩS2mp+1; p)
« t Ω « f Ω

Ki + 1\& ? P) >Ki-2\Y2 ? P) >Ki + l\δ > PJ

PROPOSITION 3.3 (see (2.1)' of [8]). There exists a map h: Q\m~λ >

S23S2mp+1 such that

(3.3) I=Ω-3h*:πi(Ql"-1;p) >πi(Ω3S2mp+1;p)<^-πi+3<<S
2mp+1;p).

For such a map h the following diagram is homotopy commutative:

(3.4) Q2

2

m-1 -JL^Ω3S2mp+1

hG

γ2mp-2 π ς<2mp-2

where ίι denotes the inclusion.

PROPOSITION 3.4 ((2.6) of [βj). The homomorphisms I and Γ satisfy the
following relations:

(3.5) I (a° β) = Ia° S3 β and T(a!°S2β) = Γa'°β for β e it

By Lemma 2.3 for J = dn and (3.5), we have

(3.6) IdHΓ (αo S3 β) = (Idn ΐa) o S3β.

Therefore we can assume that

r = c2(n+P)P-4 in (0.11),

where cm e πm(Sm) τ& Z is represented by the identity map. By Proposition 3.1,
we obtain the following

(3.7) 7ΐ2(n+p)P-3(Q2

n+2p~1 p)& Zp is generated by Tc2(n+P)P-ι. For isomorphisms
Ω: πi(Q2

2

n+2p~ι p) > πi_ι(ΩQln+2p~1 jo), ΩΓc2{n+P)P_ι is represented by the map
Giθ9 where ί0 denotes the inclusion s2{n+p)p'AC γ2(n+p)p-3^

Let pn: ΩS2n+2p-1 >S2n+1 be a map of (2.5) with respect to the fibering
Bn(p) >s2n+2p~\ Since the diagram (0.9) implies S2dn = dn+1S

2, we have
the following commutative diagram:

- ^ ± ί > Ω2S2n+3

t
Pn σ2n + l
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where vertical arrows are inclusions. Then we can define a map

Q2(Pn): ΩQ2

2

n+2p~1^Ω(Ω3 S2n+2p+\ ΩS2n+2p~ι) >Ω(Ω2S2n+\ S2n +

which coincides with the map of (2.5) with respect to the fiberig QBn (p) >

Q2n+2p-\ Since t h e homomorphism G*: π2(n+P)p-4(Y2in+1)p~2;p) >π2(n+P)P_A

(Q2

2

n+1;p) is an isomorphism by (3.1) and [ r 2 ( w + ^ - 3 , r 2 ( w + 1 ) / ) - 2 ] >7Γ2(«+W_4

(Y2in+1)p~2;p) is an epimorphism, we have

(3.8) There exists a map λn: Y^+VP+WP-V-* > γ^n+i)P-2 m c h t h a t t h e f φ

lowing diagram is homotopy commutative:

ΩQ2n + 2p-l _Q2lPnL> Q2n + 1

γ2(n+p)p-3 λn γ2(n + l)p-2

By (3.7), (3.8) and (3.1), IdnΓ(c2(n+P)P-i) e π2(n+P)P^(S2(n+1)p+1; p) is represent-
ed by the map S\πoλnίo) for the pinching map τr0: Y2^+1^p~2

 >s^n+ι)P-2^

According to Toda [ 8 ] , π2m+ι+2p(p^1)_2(S2m+1 p)(m^p) are in the stable

range and isomorphic to Zp. We put

(3.9) βi(2/? + l ) 6 π2p+ι+2P(p-i)-2(S2p+1; p) ^Zp is a generator and βι(m) =

PROPOSITION 3.5. Let f: F W + 2 ^ ~ 1 ) - 1 > Sm(m~^2p+1) be a map and let

K=smyjem+2p(p~l)'ι\Jem+2p(p-1) be the mapping cone of f. Assume that

(3.10) &p\ Hm(K; Zp) >H
m+2p(p-1\K; Zp)

is non-trivial. Then the map fί is essential, i.e., fί represents xmβi(m) for
some xm^0(modp), where ί denotes the inclusion 5™+2/>(/>-D-2^- γm+2p(P-i)-it

PROOF. If / i c r O , then K has the same homotopy type as Kι = (Sm\/

5 ^ 2 ^ - i ) - i ) W e m + 2 ^ - i ) ( v d e n o t e s the one point union), and 0>P^O holds in

Kι. Smashing a subcomplex sm+2p(p^1)~1 to a point in Ku we get a complex

K2 = SmKJem+2p(p~1) with non-trivial &>p. This contradicts the triviality of

mod p Hopf invariant. q. e. d.

REMARK. Additionaly, the converse of above Proposition 3.5 holds. And

so, we can choose j8i(2p+l) satisfying &P(sm) = (-l)mem+2p{p-l) in (3.10) and

/?i(2jD + l ) = {/ί} for m = 2p + l. Thus, the elements β1(m)(m^2p + l) in (3.9)

are determined uniquely.

The map

(3.11) πOλnio : S2{n+P)p-A—-> Γ 2 ( w + ^ ~ 3 > γ2(n + l)p-2 > S2{n + l)p-2

represents the element xnβi(2(n + l)p—2) and this coefficient xneZp coin-

cides with one in (0.11). From Proposition 3.5, we have
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(3.12) If ^p^0 holds in the mapping cone of πoλn, then xn^0 (mod/?), i.e.,

Theorem 0.5 is proved.

Now we consider the following fibering:

(3.13) Ω2S2n+2p+1 - ^ ^ ΩS2n+3 —?i-+ ΩBn+1(p).

The map Ωi has an extension ϊ: CΩpn+1 = ΩS2n+3VjCΩ2S2n+2p+1 >ΩBn+1(p),

where Cf denotes the mapping cone of a map / . The cohomology ring

H*(Ω2S2n+2p+1; Zp) is generated as Z^-module by the elements 1, zo=(^yo, zλ

and Δzι=6yι for deg<2(τι+p)(pJrl) — 3, where A denotes the cohomology

Bockstein operation and y{ are the same as (2.7). Therefore H*(CΩpn+1; Zp) is

spanned by the following elements for low degrees:

(3.14) 1, x0, ••-, 4 ~ \ xu •••> %ι~ι> •••; 2o = -^1*o, zu Azu ...,

where f denotes a corresponding element of γ for γ e H*(ΩS2n+3; Zp) or γ e

H*(Ω2S2n+2p+1; Zp) and χ{ are the same as (2.7). For the homomorphism

Γ*: H*(ΩBn+1(p); Zp) > H*(CΩpn+1; Zp) and the elements αf and b{ in

H*(ΩBn+ι(p); Zp), we obtain the following relations:

(3.15) ϊ*(αo) = ^o, ί*(αi) = £i, ϊ*(bo) = zo and ϊ*(bι) = Jzι, up to non-zero coeffi-

cients.

The last relation is obtained by comparing two spectral sequences associated

with the fibering (3.13) and the fibering Ω(ΩS2n+2p+\ ΩS2n+2p+1) >ΩS2n+2p+\

and others are obvious.

Applying ϊ* to the relation (2.13) and using (3.15), we have ^px1 = Δzι

up to non-zero coefficient. Since the map &* in Proposition 3.2 for m — n + 1

is an isomorphism of H2(n+1)p( Zp), we have

(3.16) In the mapping cone Cg of the map g=hpΩpn+1: Ω2S2n+2p+1 >ΩS2n+3

pp. H2(n+1)p(Cg; Zp) >H2(n+p)p(Cg; Zp)

is non-trivial.

The map g is homotopic to g'k for some g1': (Ω2S2n+2p+\ S2n+2p~ι) >

(ΩS2(n+1)p+\ *) and inclusion k: (Ω2S2n+2p+\ *) >(Ω2S2n+2p+\ s2"*2*-1). Put

g" = Ω2g'\ ΩQ2n+2p-1

 >Ω*S

2{n+1)p+ι. From definition of H{2) and Proposi-

tions 3.1, 3.2 and 3.3, we obtain the following

(3.17) The map g" is homotopic to hQ2(Pn)>

From (3.16) we have easily

(3.18) &p: H2(n+1)p-2(Cg-; Zp) >H2(n+p)p-2(Cg-; Zp) is non-trivial.

By the maps h: S2{n+1)p~2 >Ω3S2(n+1)p+1in (3.4) and G: r 2



174 ShichirόOKA

in (3.8), we can define a map V: CπQλn > C ί > o λ n and a map G: ChQ2(Pn)G >
ChQ2(Pn) such t h a t i'\S2(n+1)p~2 = i1 and t h a t G Π ώ 3 S 2 ( " + 1 ) * + 1 = identity of

Ω*S2&+i)P+im Such.maps ϊ and G satisfy

(3.19) i'* and G'* are isomorphisms of H2(n+1)p~2( Zp).

Therefore by (3.17), (3.18) and (3.19), the assumption of (3.12) is proved.
Thus Theorem 0.5 is established.

§ 4 The Homotopy Groups of Spheres.

In this section, we shall quote the main results of [7], [8] and [9].
Let Gk be the λ-stem group lim πk+N(SN) and pGk be its p-primary com-

N

ponent. Then G* = ΣGk and pG* = ΣpGk admit a graded ring structure with

respect to the composition.

THEOREM 4.1 (see Theorems 4.14 and 4.15 of [7], Proposition 4.18 of [T]
and Theorems 15.1 and 15.2 of [8]).

(I) For k<2 (p2 +p) (p — 1) — 5, the group pGk is as follows:

(4.1) pGk ̂  Zpz for k = 2p2(p — ΐ) — l (generator a'p^)

»Zpi + Zp for k = 2(p2 —p) (p — 1) — 1 (generators a'p*-p and a,\ β{~λ)

τ& ZP2 for k = 2sp (p — 1) — 1 and 1 <ίs <p — 1 (generator ar

s^)

τ&Zp + Zp for k = 2 (p2 +1) (p — 1) — 1 (generators aP2+1 and aλ β{'~2β2)

?&Zp for k = 2r(p—ΐ) — l, r^0(mod p) and r^p2 + 1 (generator ar)

τ&Zp for k=2((r + s)p + s-l)(p-l)-2(r + l), r ^ O and

(generator β{βs)

^Zp for k = 2((r + s)p + s)(p-l)-2(r + l)-l, r ^ O and l<

except the cases (r, s) = (p — 2, 1), (p — 1, 1) and (p—2, 2)

(generator aλ β[ βs)

^Zp for k = 2 (p2 +1) (p -1) - 3 (generator ε')

^ Zp for k = 2 (p2 + ί) (p—l) — 2 and l<,ί <p (generator ε, )

τ&Zp for k — 2 (p2 + ί +1) (p — 1) — 3 and l<zί <p — 2 (generator <X\ ε* )

= 0 for otherwise k<2(p2 +p)(p — 1) — 5.
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(II) Using the secondary composition, the elements ar( = ra/

r if r = 0 (mod
p)) and ε, are defined inductively as follows:

(4.2) ar+ι e {ar,pc, aλ} and εi+1 = {ei,

And the following relations hold:

(4.3) aiar = aιct'sp = O for r^>l, s^>l and β1ar = βιa'sp = 0 for

(4.3)/ αiβ' = 0 for p>Z and aλε
r = β\ for p = 3.

(4.3)"

(4.3)'" 7 + ϊ " <*r+i
 e iauar,pc} for r ^ - 1 , 0 (modp), (p + y ) a'sp e {auasp-u

pc} for s<p, (p2 + l)a'P2 6 {au aP2_upc}, asp+λ a {au ccf

sp,p
2c} for s<p, aP2+1

{au ap2, p3c} and εp.ι = {au ep_2, pc}-

We mention that εf and a i s f ( l < ^ ' < p —2) correspond to ε[ and ε + i of
respectively and that the proofs of the non-triviality of αiε, ( l ^ ί ^ p — 3 )
and {εi9pe9aι} (X^i^p — 2) and the relations (4.3)'", deg^>2p2(p — 1) — 3, are
not given in Q7] and [βj. But we can prove those by the similar methods in
[77] with simple calculations of exact sequences in Steenrod algebra. Details
may appear elsewhere.

According to Toda PΓ], there are elements

(4.4) α r(3) e 7r3+2r(/,-i)-i(53;^) of order p, S~ar(S)=ar for r ^ l ,

α ^ ( 5 ) e 7r5+2S/,(/,-i)-i(55;/?) of order p2, S^a'sp(5)=a'sP for l<L

af

P2 (7) e 7Γ7+2/,2( ί_i)_i(57; jp) of order p\ S°°a'P2(7)=a'p^

βi(2p-ΐ) c τr 2 ,_ 1 + 2 W _ 1 ) _ 2 (5 2 ^ 1 ; /?) o/ order / , S2β1 (2p-ΐ) = β1 (2p + ΐ)

in (3.9) and S™β1(2p-l) = βu

e π2p+3+2(sp+s_1)(P-1)_2(S2p+3; p) of order p,

for l<s<p,

S) e 7Γ5+2(S/,+s)(/,-i)_3(55;^) of order p, S2a1βs(5)=aι(7)oSβs(2p + 3)

for

ε'(2p(p-2) + ΐ) € τ r w _ 2 ) + 1 + 2 ( ^ + 1 ) ( / , _ 1 ) _ 3 ( 5 2 ^ - 2 ) + 1 ; p) of order p,

S~ε'(2p(p-2) + ΐ) = ε',

εi(2p(p-i) + S) € τ r w _ 0 + 3 + 2 ( ^ + 0 ( , _ 1 ) _ 2 ( 5 2 ^ - / ) + 3 ; p) of order p,

= εi for l^ί^p-2 and for

ε 2 (l l) e 7Γii+42(511; 3) of order 3, 4S
rooε2(ll) = ε2 for p=3,
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a1εi(2P(p-ί-2) + l) e π2p(p-^2)+i+2^+i+i)(P-i)-s(S2p(p^-2)+1; p) of order

p, S2p+6aιεi(2p(p-ί-2) + l) = a1(2p(p-ί-l) + 7)oSεi(2p(p-i) + 3) for l^ί

<p-2.

Here all above elements are not in the S2-image.
We define the elements in πi+m(Sm;p) for suitable ί as follows:

(4.5)

^2p-l, l<s<p\ a1β
r

1(rn)=a1(m)oβl(m + 2p-
(m^S), aιβ

r

1βs(m) = aιβ
r

1(m)oβs(m + 2(rp + l)(p-l)-2r-l)(m~^3,
αiβ s(m) = Sm'5a^s(5)(m^5, l<s<p), etc.

In addition, we shall use the following notations:

(4.6) (i) For γ e S^aCS 2 * '- 1 ; j*) = Im S~n^_ 2 w , + 3, Qm(ϊ) 6 τti(Qψ^;p) de-
notes an element such that Qm(γ) = Γγ(2mp — l) and S°°γ(2mp — l) = γ for some

(ii) For γ c pGi_2mp+2, Qm(ΐ) €" τti{Q2

2

m~ι p) denotes an element {if it exists)

such that S-°I(Qm(γ)) = r.

THEOREM 4.2 (Theorems 11.1, 15.1 and 15.2 in [8]).

(I) For //II>1 and k<2(p2+p)(p — l) — 5, we have the following direct
sum decomposition:

π2m+1,k(S2m+1;p) = A(m, k) + B(m, k) + E(m, k)+ΣUt(m, k).
t = i

(4.7) A (m, k) is defined as follows:

A (m, 2p2 (JD — 1) — 1 ) » Zpi generated by a'pi(2m +1) for m^> 3.

A (2, 2p2(p — 1) — l)?&Zp2 generated (formally) by p α^(5) (in this case, the
element aP2(5) exists and is divisible by p, but not divisible by p2, and an element
ar

p2(5) such thatp2a'p2(5)=aP2(5) does not exist).

A(m, 2sp(p — 1) — 1)^Z p * generated by a'sP(2m + 1 ) for m^>2, l<^s<p.

A(m, 2r(p — l) — l)τ^Zp generated by ar(2mJrl) for m — \ and for

(mod/?).

A(m, k) = 0 for kΞ^E-1 (mod 2p-2).

(4.8) B (m, k) is defined as follows:

B(m, 2((r + s)p + s-l)(p-l)-2(r + l))^Zp generated by β\βs(2m + l) for
^>p — l if r ^ l and sί>l, for m^>p if r = 0 and 5 = 1, for m^>p + l if r = 0
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and sl>2, and for m = l if (p, r, s) = (3, 3, 1).

B(m, 2((r + s)p + s)(p — ΐ)-2(r + ΐ) — ΐ)&Zp generated by axβ\βs(2m +1)
for m^>l ifr^l or s = l, and for m^>2 ifr = 0 and s^>2, except the case (r, s)

B (m, 2p2 (p — 1) — 3) ?& Zp generated by aλ β{ (2m +1) for l<,m <p2 —p (re-
mark that, forp2—p<,m<:p2 — 3, <Xιβ{(2m + l) is non-vanishing and divisible
by p, and that axβ{ (2p 2-3) = 0 (see (4.17) (iii))).

B (m, k) = 0 for the other cases.

(4.9) E(m, k) is defined as follows:

E(m, 2(p2 +1)(p-1)-3)^Zp generated by ε'(2m +1) for m^p(p-2).

E(m, 2(p2jrί)(p-l)-2)^Zp generated by ε/(2τ?ι + l) for m^p(p-ί
and l<:ί<p, except the case (p, ί, m) = (39 2, 4).

E(m, 2(p2 + ί + l)(p-l)-3)?ϊZp generated by a1ei(2rn-}-l) for m^>
p(p — i — 2) and l<,ί<p — 2.

E(m, k) = 0 for the other cases.

(4.10) Uι(m, k) is defined as follows:

(i) C/I(TO, 2(p2-p + m)(p-ΐ)-2)τ&Zp + Zp generated by P^Qm+1(aP2_p_1)
andp*Qm+1 (/9Γ1) for l<,m<2p-l and

(ii) Uλ(m, 2(p2 + m + l)(p-l)-2)^Zp + Zp generated byP*Qm+1(aP2) and

(iii) U^m, 2r(p-ΐ)-2)&Zp generated by P^Qm+1(ar_m^)(by p*Qm+1(c)
if m = r — ΐ) for l<;ττι<r, r ^ 0 ( m o d p) and r-m^ψp2— p, p2-\-l.

(iv)*} Z7i(m, 2((r-\-s)p + s + m)(p-l)-2(r + 2))»Zp generated by
+1(0l$s) for m^-l(modp\ r ^ 0 ? l^s <p, (r, s)^(p-2, 1), (p-2, 2)

and for (m, r, s) = (p, p — 2, 1).

(v)*} C/i (ττι, 2 ((r + 5)jo + s + m) (p - 1) - 2 (r + 1) - 1 ) » Z^ generated by

P^Qm+ι(βrιβs) for tfi^

(vi) Z7i(3, 41)» Z3 generated by p*QA (β2) for p = S.

(vii) Ê i(/?ι, 2(ίjp + ί)(jo-l)-4)»Z i > for2<Lm<t<p.

(viii) E/i (TO, A) = 0 /or ίλe oίΛer cases.

Remark that any element γ of Uι(m, k) is characterized by the relations S2γ

*) In the third and fourth cases of (11.9) in [8], the cases m = l, r=0, s ^ 2 should not be excluded.
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= 0 and γ ί Im S2.

(4.11) U2 (77i, k) is defined as follows:

U2(m, 2p2(/> — 1) — 2) ^ Z p i generated by an element γp(2m + 1 ) for 3 <ΞI ττι <

U2(m, 2sp(p — ϊ) — 2)^Zp2 generated by an element γs(2mJrl)(γp(2p2 —
= S2γp(2p2-5))for2<1m<sp-landform=p-l,s =
except the case 3<Ξm<p2 — 2, s=p.

£/2(l, 2sp(p — ϊ) — 2)τ&Zp generated by an element γs(3).

U2(sp-1, 2sp(p-l)-2)^Zp generated by S2γs (2sp-3), s^2.

U2(m, k) = 0 for the other cases.

(4.12) U3 (m, k) is defined as follows:

U3(lp+j, 2((r + s + l)p + s-ΐ)(p-ΐ)-2(r + ΐ)-ΐ)&Zp generated by an
element S2iu3(l, β[βs) for rΞ>0, sj>l, Z^l , 0^j^p — 2 except the case r = 0,
5 ^ 2 , the case l=p — 1, r —0, 5 = 1, j<p — 2 and the case/> = 3, Z = l , r = 2, s = l .

U3((p — ϊ)p+]\ 2p2(p — l) — S)^Zp2 generated by an element
S2ju3(p — 1, βι) for 0<;j<.p — 3 (the element S2p~4u3(p — 1, βι) is of order p).

Zp generated by an ele-
ment S2ju3(l, β[βs) for r ^ l , s ^ l , Z^O and 0^j^p-2.

U3 (τ7i, A;) = 0 /or ίΛβ oίfcer cases.

(4.13) Z74 (77i, 4) is defined as follows:

l) — 3)^Zp generated by an element
S2iu4(l9 βs) forl^l,s^2,s + l<p and

Ui(m, k) — 0 for the other cases.

(II) For the elements in E(m, k) and Ut(m9 k) ί = l, 2, 3, 4, we have the
following relations up to non-zero coefficients:

(4.14) H{2k/(2p(p-2) + l) = Qp(p-2)(β2) and

(4.15)

(i) H^Qm+1(aj)=Qm(a/j + 1) and

(ii) H^P^Qm+ι(β{βs)=Qm(aιβ\βs), H(2^Qm+1(β[βs) = Qm(aιβlβs) and
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(iii) p*Q2(asp^ι)^=a1(3)oa/

sp (2p) except the case p=s = 3, p*Q2(a8) =
a2(3)o<χ8(10) for p = S (in this case, a'9(6) does not exist) andp*Q2(ar)=aι(3)
oar+1(2p) forr^-1, -2(modp).

(iv) P*Q2 (β[ βs)=a1(S)oaι β\ βs(2p).

(4.16)

(i) S2rs(2m + l)=pγs(2m-\-S) for l^m<sp — Sy for m = sp — 3, s<p and
for m—p — 2, s — 1.

(ii) H{2)γs(2m + l)=Qm(ar

sp-m) for l<,m<sp-2,for m = sp-2, s<p and
for m—p — 1, 5 = 1.

(iii) p*Qm+\asp^m_1)=prs(2m + l)( = 0 if m = ΐ) for 1

for m = sp-l,

0 ί/^^l52) for l^

2-S) for m=P

2-2.

(iv) rs(3) = a1(3)oasp_1(2p), pγs(5)=a1(5)oasp_1(2p + 2) and p2γp(Ί) =

Note that, in the above two cases (4.15) and (4.16), ar

r=ar for r ^ 0 ( m o d p).

(4.17)

(i) H(2)us(l, β[βs)^Qlp(βr

1βs) and

(ii) S^-'u^l, β J β s ) = p * P
S2*-4s3(Z, β[βs)=p*Q'p+p(aιβΓ1βs) and S2p~2u3(l, β\βs) = S2p~2π3{l, β[βs) = O.

(iii) PS
2Ju3(p-l, βi) = a1β{(2(p-l)p + 2j+l) for O^j^p-S and

(4.18) H^Ui(l, βs)=Q!p(βs), S2puS, βs)=p*Qιp'p+1(βs-ύ and S2p+2u4(l, β.)
= 0.

Now let πk be the limit group lim [Yk+N, YNJ and π* the direct
N k

Then 7r>κ admits a ring structure with respect to the composition. Moreover,
7T* admits an algebra structure over Zp, since c = {identity map} generates
πQ^Zp. π* can be computed from the results on PG* by the following iso-
morphism :

Let δ e 7Γ_i be the class represented by the map iπ; F^" 1 > 5 Λ Γ ~ 1 >YN.
Concerning the map &*#*: πk >pGk-i, we have (see Yamamoto [9J)
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(4.19) There are elements a and /?(s) in π* uniquely, satisfying the following
conditions:

^p-l) and

THEOREM 4.3 (Theorem II of [9]). The ring π*, in dim<2p 2(p —1) —4,
has multiplicative generators δ e 7Γ_i, e e 7Γ0, a e π2p-2 and β(s) e π2{sp+s_ι){p_ι)_ι
(1 <ί s <p). These elements satisfy the following fundamental relations:

(4.20)

(i) δ2 = 0 and 2aδa=a2δ + δa\

(ii) aβ(s) = β(s)a=0 and aδβ(s) = β(s)δa for s<p — l and for />>3, 5 =
jo —1. For p = 3, 5 =p-1-2, aβ{2)=-β{2)a=±(β{1)δ)2β{l) and aδβ(2) = β(2)δa
modulo the elements (δβa))

3 and (β(ι}δ)3.

(iii) β(s)β(t) = O for p>S, s + t<p and β(s)δβ(t)= S+

S

t__f β(i)δβ(S+t-i)

for s + t — l<p. For p = 3, /9(i)/?(i) = 0 modulo the element δaδ(βa)δ)2.

REMARK (i) Strictly speaking, in the case p = 3, s = 2 of the third rela-
tion of (4.19), the equality should be understood modulo (β(i)δ)2β(ιy

REMARK (ii) The relation (4.19) (i) implies

a8δcΐ = ta8+t-1δa + (l-t)a8+tδ and asda1δ^δa*ιδa8 = ta8+t-1δaδ.

REMARK (iii) By the map i*π*ι πk >pGk-u we have

(4.21) ΐ*τr*(α:r) = αr, i*π*((βii)δ)rβi8)) = βr

1β8 and i*π*(aδ(β(1)δγ'βi8))=a1β[β8.

REMARK (iv) Since π2p(p-i)-i has a Z^-basis { (̂i)5 apδ, ap~ιδa}, the class
of λn in (3.8) is described as follows:

(4.22) {λn}=xnβ(i)+ yna
pδ + zna

p~1δa for some xn, yn, zn <s Zp and xn^r0 by

Theorem 0.5.

In addition, we shall use the following two results (see § 4, § 6 of [8] and

[9]):

(4.23) Let γ e pGk-ι = πN+k-ι(SN; p) be of order p. Then there is an element
f e πk such that ί*π*(γf) = r. Furthermore the element δγr e πk-ι = lYN+\ YN+1~]
is an extension of i*(χ) e πN+k-ι(YN+1; p).

(4.24) The element ak~λδa is an extension of ί*(βr

k) up to non-zero coefficient^
i.e., ί*(ak~1δa) = xi*(a'k) for some ^ ^O(modp), wherea'k=<xk for k
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§ 5 Determination of dn.

In this section, we always assume that k<2(p2+p)(p — 1) — 5 and m =
n+p — 1.

We shall determine the boundary homomorphism

(5.1), dn: π2m+1+k_(2p_3)(S2m+1;P) >π2n+1+k(S2n+1;p)

in the homotopy exact sequence of the bundle Bn(p)y using mainly Theorems
0.3, 0.4 and 0.5 as follows:

(5.2) dn(S2r)=a1(2n + l)oSγ for any γ e π2m-ι+k-(2p-3)(S2m-1; p).

(5.3) S2dH = dH+1S
2.

(5.4)

(5.5)

(5.6) IdnΓ(S3γ) = χnβi(2(n + l)p + l)oS 3γ, xn^0(mod p\

foranyreπ2n+k(S2(n+p)p-*;p).

By Theorem 4.2, we have

(5.7), π2m+1+k_2p+3(S2m+1;p)

4

+ Σ Ut (m, k —

Note that the elements in (4.10) (vii) do not appear in (5.7), since m^>p.
Using properties (5.2) and (5.3) of dn and relations (4.3), (4.3)', (4.3)",

(4.15) (iii), (4.15) (iv) and (4.16) (iv), we have easily

PROPOSITION 5.1. For the stable elements, dn of (5.1), satisfies the follow-
ings up to non-zero coefficients:

(i) dn(c2m+1)=a1(2n

(ii) dn(ar(2τn + l))=p*Q2(ar-ι) for τι = l, r ^ O , -l(modjσ),

= r*(3) for π, = l, r = sp — l,

=pϊs(5) for n = 2, r = sp-l,

= 0 for the other cases.

(iii) dn(a'sp(2m + ϊ))=p*Q2(asp-ι) for n = l except the casep = s = 3,
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=p*Q2 (α8) or 0 for p = s = 3, rc = 1,

= 0 /or £Λe oί/^er cases.

(iv) dΛ(/9ί/9s(2/?ι + l))=ai/?ί/9s(27& + l) β^cepί the case

(v) ^(ai/Sί/

= 0 for n>l.

(vi) dw (e'(2τn +1)) = £ί (2* +1) /or p = 3, JH ̂ ^ (p - 2) = 3,

- 0

(vii) dn(εi(2m + l)

= 0 for i=p-2.

(viii) dn(a1εi(2m + ΐ)) = 0 for m^p(p-i-ΐ)-l.

For the case/>>3, p(p — 2)<,m<:p(p — l) — 2 of (vi) and the case
2)<;m<,p(p — i — 1) — 2 of (viii), we shall discuss in Proposition 5.2.

PROOF. First, we consider (i), (ii), (iii), (iv) (except r = 0, s^>2, m=p +
l(n = 2)) and (v). Since any element r which is mapped by dn is in the S2-
image, dn(γ)=aι(2n + l)oγf(Sγf = r) holds by (5.2). So, the above results fol-
low from (4.3), (4.15) (iii), (4.15) (iv) and (4.16) (iv).

Second, we consider the case r = 0, s^>2, m=p + l of (iv). By (5.3), S2d2

(βs(2p + S)) = d3(βs(2p + 5))=a1βs(7) = S2a1βs(5). And 5 2 : τr5+; ( 5 5 ; ^ ) >
π7+j(S7;p)(j=2(sp + s)(p — 1) — 3) is monomorphic by Theorem 4.2. So the
above result follows. Similarly, the cases/> = 3 of (vi) and (vii) are proved.

Finally, the triviality of dn(j) for γ = ε/(2m + l)(p>3), ep^2(2m + l) or
cc\ Si (2m +1) is obtained from the triviality of the homotopy groups contain-
ing dn(γ). q.e.d.

PROPOSITION 5.2. Up to non-zero coefficients, dn of (5.1)* satisfies the fol-
lowings:

(i) dn(e'(2m + ΐ)) = S2iΰ3(p-S, βιβ2) for m=p(p-2)+j\

;p-2,p>3.

for m=p(p-i-2)+j,



On the Homotopy Groups of Sphere Bundles over Spheres 183

(ii) dn(S2Ju3(l, β[βs)) = S2JU3(l-l, β[+1βs) for m = lp+j9 0 ^ / ^ - 2 .

(iii) dn(S2j'ΰ3(l, β[βs)) = O for m = lp + l+

(iv) dn(S2iu4(l,βs)) = S2jn3(l-l, βiβs) for m =

= 0 for m = lp+j,j=p-l,p.

PROOF. By (4.14), (5.4) and (5.6), we obtain

), e/

i=a1εi_1(2p(p-ί -ΐ) + ΐ)(2^i^p-2) and n =
p(p — ί — 2) + l. Similarly, we have

Since 7# ( 2 ) : π2n+1+k(S2n+1;p) >π2n+1+k(S2np+1;P)(n=P(P-ί-2) + l, k = 2(P

2

+ i + ϊ)(p — 1) — 4) is isomorphic by Theorem 4.2, 6 (̂ε ) = u3(p — i — 2, /?i/?, +i)
holds. Thus, (i) is proved.

By (5.6), we have

and by Theorem 4.2, we can verify the triviality of the kernel of

n = lp-l9 k =

So, dnQ
ιp+p-1(a1β

r

1βs) = Qιp(a1β
r

1

+1βs). Applying p* to this and using (4.17)
(ii) and (5.5), we get dH(S2p-*u3(l9 βiβ,)) = S2p-*n3(l-l9 β[+1βs). The kernel
of the (2p — 4 — 2;)-fold iterated suspension into π2ιP-ι+k(S2lp~ι\p)(0<,j<,p —
2) is trivial by Theorem 4.2, provided that (r, s, l)^(p-2, 1, 1). Thus (ii)
((r, 5, l)^(p — 2, 1, 1)) is proved. By (3.5) and the relation

for ae πi+2(Su+2), β e πj-

we can choose the elements in U3(m, k) as follows:

for r ^ l ,
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Then the case (r, s, ΐ) = (p — 2, 1, 1) of (ii) is obtained from Lemma 2.3 for

The element S2jn3{l, β[βs) is contained in the group π2n+ι+k(S2n+1;p)ΓΛ
KerS2p-\ 7i = (Z-l)p+/+2, k = 2((r + s + ΐ)p + s + ΐ)(p-l)-2(r + ΐ)-l, and
this group vanishes by Theorem 4.2. So, (iii) is proved.

The relation (iv) is similar to (i). q.e.d.

PROPOSITION 5.3. Up to non-zero coefficients, dn of (5.1)* satisfies follow-
ings:

(ii) d
H
(p*Q»

+1
(a

f
-
m
-i)) = 0.

(iii) d
n
 (

P
*Q

m+1
(β[ β

s
)) =p*Q

n+1
 (β[

+1
 β,).

(iv) d
n
(p*Q

m+1
(β[β

s
))=:0.

(v) ^(r
s
(2m + l))-S

2
^

2
u

4
(5-2

?
 β

2
) for m = sp-2

= 0 for the other cases.

(vi) d
n
(S

2
r

s
(2sp-S)) = S

2p
ιn(s-2, β

2
) for τn^sp-

= 0 for m = sp — l, 5 = 2, p.

PROOF, (i), (iii) and (vi) are similar to (ii) in Proposition 5.2, and (iv) is
similar to (iii) in Proposition 5.2. The first half of (v) follows from (vi).

To prove (ii) and the second half of (v), we put

1(α:r_w_1) for r^O(modp) and /jtsp(2

For the case (r, m) = (p2, p2 — 2), we have dn(βr(2mJrl)) c π2n+i+2^+i)(p-i)-3
(S 2 n + 1 ; p)Γ\Ker S~ = 0, n=p2—p — l. And so, in the following, we assume
(r, jn)=¥0>2, p2-2). By (4.15) (i) and (4.16) (ii), we have H^fir(2m + 1) =
Qm(a/

r^m) = Γa/

r_m(2mp-l). The composition βι(2np + ϊ)oa'r-m(2mp-l) is in
the stable range and vanishes by (4.3). Therefore we have IH{2)dn(μr(2m +
l)) = 0. Thus we get

By Theorem 4.2, this group π is as follows:

π^Zp generated by S2ju3(l, βι) for r = p

7&Zp2 generated by S2ju3(p — 1, /?i) for r=p2 — l,

7sύ Zp generated by ax β{ (2n +1) for r =p2 — 1,

^ Zp generated by S2iu3 (1, β{) (p>3) for r = (p + ΐ)p-2,
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TsύZp generated by S2JUA(1, βs) for r =

— 0 for the other cases.

According to the facts dn(μr(2m + ϊ)) c Ker S2 for r^O(modp) and dn(βsp(2m
+ 1)) 6 Ker SA for s<p, we have the following non-zero possibilities:

(A) dH(p^Q3p^a^2p)) = aS2p^u3(l90{) = a/p^Q2p-\a1β
p

1-
1) for some a,

a' 6 Zp, p>3.

(B) dH(p*Q«+2»(ai8-2χP+1))) = bS2puA(l, βs) = b'p*Qυ+1)p+1(βs-ύ for some
b, b' e Zp, 2<s<p, Z ^ l ,

(C) dn(γs(2sp-S)) = cS2p-2ιn(s-2, β2) for some c e Zp, 2<s<p.

Since Q2p~ι(ur

p2_p) generates the kernel of

pl)(pl)2(Qί 3 P) >ft4p3 2(p2 pl)(Pl)3(SP~ \ p)

the relation (A) implies

dn{Q"p'\ap2^p))^afQ2p-\aιβ
p

1-
ι)-Va'fQ2p-ι{a^p) for some a" c Zp.

Since the kernel of

G*: 7Γ2 (,2 +,+ 1 ) (,_1 )_2(F4^2-2^2 ^) >τr 2 (, 2 +,+ 1 ) (,_ 1 )_ 2((? 4^ 3 p)

is trivial, we have

λn*ί*ap2-2p = ί1*(xa'a1β
p-1 + a'"a'p2_p), x, a"' 6 Zp, x\Q,

where ί: s2^2^1^-1^2C γW+p+»<p-v-i and ί i : 5 4^ 2- 2^ 3C F 4 ^ 2 - 2 ^ 2 are in-
clusions and λn is the same as (4.22). By (4.23) and (4.24), we have

/i* {xa'ax β{-χ + a'"a'fi2_p) = £* (^α7ία (δβ^y

and the kernel of

i * : 7Γ2(/,2_/>)(/,_i)_i >7Γ 2 ( / ,2 + / ) + 1 ) ( / ,_ 1 ) _ 2

is generated by α^^^ί and ad{βa)d)p~ι. Thus we have

ι + a'"ap2-p-16a modulo ap2'pδ and ad(β{l)d)p-\

In this relation, the linearly independency of da (δβ^Y'1 implies α' = 0.

By the similar arguments, we obtain b = 0 in (B). q.e.d.

§ 6 The Homotopy Groups of Bn(p).

We start from the discussion of the stable homotopy groups
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The sequence (0.7) implies the following exact sequence:

(6.1) —^> pGk-(2p-3) >pGk-
1±^7ΐ^(B p) —*-> pGk~{2p-2) >• •>

and d is composition with a,\. The group π$(B;p) is isomorphic to the stable
homotopy group of the mapping cone of au i.e.,

(6.2) π2N+1+k(BN(p) p) » π2N+1+k(KN; p\ KN= S2N+1KJ ai{2N+l)e

2N+2p~ι

for large N.

We shall use the following notation:

(6.3) For γ e pGk_(2p-2)Γ\Ker d^γ^c πξ(B p) denotes an element such that

j*(Lrl)=r.

PROPOSITION 6.1. For k<2(p2jrp)(p — 1) — 5*}, πf(B p) is generated by
the following elements:

[ctrΊ °f order p2 and degree 2 (r +1) (p — 1) — 1, for r^0, — 1 (mod/?),

[_asp-{} of order p3 and degree 2sp(p — 1) — 1, for s<p,

\jtp2_{] of order p4 and degree 2p2 (p — 1) — 1,

Lasp2 of order p3 and degree 2 (sp +1) (p — 1) — 1, for s <p,

L^p2J of order p4 and degree 2 (p2 +1) (p — 1) — 1,

ί*β[βs of order p and degree 2((r + s ) j p+s- l )^- l )-2(r4- l ) , for r^O,

l<;S<p except the casep = S, r = 3, 5 = 1,

LβΏ of order p and degree 2p2 (p — 1) — 2,

[>i/3ί/3J of order p and degree 2((r + s)/) + s + l)(;>-l)-2(r + l ) - l ,

for r^>0, l<Ls<p except the case r=p — l, 5 = 1,

i*ε' of order p and degree 2 (p2 +1) (p — 1) — 3,

o/orderp and degree 2(p2J

Γί)(p — l) — 2, for 1 < ί i ^ p — 2,

o/ order jo and degree 2 (p2 + 2) (jo — 1) — 3, /or p > 3,

i of order p and degree 2 (p2 + i + 2) (p — 1) — 3, /or 1 <J i ̂ p — 3,

[βp-2] of order p2 and degree 2 (p2 +p — l)(p — 1) — 2.

*) For the smaller k, cf. Proposition 4.21 in [7].
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This proposition follows easily from Proposition 5.1, the relation (4.3)/7/

and the following Lemma 6.2.
To investigate the group extensions, we shall use the following two lem-

mas.

LEMMA 6.2. Let γ e pGk^(2p-2) be an element of order pt(t^ΐ)9 satisfying
aιγ = 0. Then the set of all —JO'CΓ] coincides with the set i*{α:i, γ, pU}, where
we identify πf(B\p) with π2N+ι+k(KN; p).

LEMMA 6.3. Let h: Yk+n > Yn be a map and let a e #,-( Yk+n) be an element
of order p such that h*a=0. Let a e πi+ι(Ch) be a coextension of a and a e
[_Yi+1> Yk+nJ be an extension of a. Then there exists an element γ e πi+ι(Yn)
such that

pά=jι*r and π^γ= —h*a,

where j \ : Yn >Ch= Yn\jhCYk+n is the inclusion and TΓI: Yi+1 >Si+1 is the
projection.

These lemmas are the special cases of Proposition 4.2 in [7] and Lemma
4.7 in PΓ], and proofs are omitted.

Now we consider the homotopy groups n2n+ι+k(Bn(p);p). Results of the
computations are settled as follows:

THEOREM 0.6. For n^>l and k < 2 (p2 +p) (p — 1) — 5, we have the following
direct sum decomposition:

(n, k)+Ua(n, k)+Ub(n, k)+Uu(n, k).

To define the direct factors, the symbol [ ] is used as (6.3).

(6.4) A(n, k) is defined as follows:

J ( l , 2r (p — 1) — 1 ) » Zp generated by ί*ar (3) for r±t=l (mod p),

Λ(l, 2 (sp +1) (p-1) - 1 ) « ZP2 generated by \jxsp (2p +1)] for s<p,

A(l, 2 (p2 + ΐ)(p-1) - 1 ) » Zp* generated by \_pa'pi (2p +1)] for p>3,

7^ZP% or Zpi generated by E3αg(7)] or ^ 9 ( 7 ) ] respectively^ for p = 3,

A(2, 2sp(p-l)-l)^ZP2 generated by £*o:^(5)(i*(joα^(5)) if s=p\

A(β9 2p2(p — 1) — 1)^ZP3 generated by i*α^(7),

A(n, 2r(p — l) — l)^Zp2 generated by \jxr^ι{2n + 2p — 1J]

for n>l, r^O, 1 (mod/?), r > l ,

A(n, 2sp(p — l) — l)^Zp3 generated by [asp-ι(2n + 2p — l)J for rc>2, s<p,
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A(n, 2p2(p-l)-l)^ZPi generated by \jDCP2_1(2n + 2p — 1)] for n>3,

A(n, 2(sp + ϊ)(p-ΐ)-l)»Zp* generated by \jxr

sp{2n

for n>l, s<p,

A(n,2(P

2 +1)(p-1)-1)»ZPi generated by [α>(2n + 2p-1)] for n>l,

A(n, k) = 0 for fc^-l(mod 2p-2) and for k = 2p-3.

(6.5) B(n, k) is defined as follows:

Zp generated by ί*βl
for n^>p — l i / r ^ l , 5 ^ 1 , for n^>p if r = 0, 5 = 1, and for n^>
5^2, except the case (/?, r, 5) = (3, 3, 1),

l)&Zp generated by [aιβ
r

ιβs{2n

— Vy\ for n>l, except the case r=p — l, 5 = 1, n^p2—p — l^

B(n,2p2(p-1)-2)^ZP generated by [/?f (2n + 2p-1)] for n>p2-3,

B (Λ, &) = 0 /or ίλe oίλer cases.

(6.6) E(n, k) is defined as follows:

E(n, 2(p2 + l)(p-ΐ)-S)^Zp generated by ί*e'(2n + l) for n^P

2-2p,

generated by i*
for l<,i<p-2, n^p(p-i)

l)-3)^Zp generated by \j'

E(n,2(p2 + ί + 2)(p~ 1)-3)»Zp generated by [_aλε, (2n + 2p-1)]

/or l^i^p-3, n^p{p-ί-2),

eratedb

E(n,2(p2+p-l)(p-l)-2)^ZP2 generated by

for n

E(n, k) — 0 for the other cases.

To define Ua(n, fe), we shall use the following notations and conventions:

(6.7) For ί = l, 2, 3, G; denotes the group isomorphic to ZPi+i or ZPi + Zp.

In a few word, we say that Gi is generated by γx and γ2, when G{ is generated
by Tι and Gi?zZPi+i or by yx and γ2 and Gi^Z

(6.8) Ua(n, k) is defined as follows:
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(i) For k^-2 (mod 2p-2) and for k = 2p-4, Ua(n,k) = 0.

So, in the following, we put k = 2r(p — l) — 2(r>l) and U— Ua(n> &), and divide
into eight cases by the values of r.

(ii) l <

U^Zp generated by \lp*Qp+1(<Xι)J for n = l,r=

^Zp generated by ί*p*Qn+1(ar_n_ι) for 2<Ξπ,<r — 1 ,

^Zp generated by i^p^Qn+1(c) for n = r — l,

= 0 for the other cases.

(iii) r :>p + 4, r ̂  0, 1 (mod p):

UTsύZp generated by [p*Q/)+1(^r-/>-2)] for n = l,

» G i generated by Lp*Qn+p(ttr-p-n-ι)Ί <™>d i*p*Qn+1(ar-n-i)

for l<n<r—p — l,

^Zp generated by ί*p*Qn+1(ar_n_ι) for r—p — l^n<r — l,

^Zp generated by i*p*Qn+1(c) for n = r — l,

= 0 for n~^r.

(iv) r=p:

U^^Zp generated by ί*γι(b) for n = 2,

7sύ ZP2 generated by ί*γι (2n +1) for 3<Ln <!/? — 1,

= 0 for n = l and for n ^>p.

(v) r = sp,2<;S<p:

U^Zp generated by [_p*Qp+1(ctsp-p-2)J for n = l,

ϊ&Zp generated by i*7"2(5) for p = 3, 5 = 2, n = 29

^Gι generated by Lp*Qp+2(ctsp_p_3)J and ί*γs(5)

for n = 2 except the case p = 3, 5 = 2,
^G2 generated by \Lp*Qn+p(asp_p_n_ι)~] and i*γs(2n + ΐ)

for 2<n<sp—p — l9

^ZP2 generated by ί*γs(2n +1) for sp—p —

^Zp generated by ί*S2γs(2sp — 3) for n = sp — l,

= 0 for n ̂  sp.
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(vi) r=p2:

U^Zp generated by {_p*Qp+1(aP2_p_2)] for n = l,

^Gι generated by [_p^Qp+2{ccp2_p_zy\ and i*γp($) for n = 29

^G2 generated by [/?*Q/)+3(^2_/,_4)] and ί*γp(Ί) for n = 3,

7&G3 generated by [p*Qn+p(ap2_p_n_1)~] and ί*γp{2n + 1)

forS<n<p2-p-l,

T&Zpt generated by ί*γp(2n + l) for p2— p — l<,n<p2 — 2,

7sύ Zpi generated by ί*γp (2p2 — 3) for n =p2 — 25

τ& Zp generated by ί*S2 γp (2p2 — 3) for n =p2 — 1,

= 0 forn^p2.

(vii) r = 2p + l:

U^ ZP2 generated by [j2(2p + 1)H f°r n = l,

^G2 generated by \y2(2n-\-2p — 1)] and ί^p^Qn+ι(a2p-n) for l<n<p,

^Gι generated by [_S2γ2(±p — 3)] and ί*p*Qp+1(ctp) for n=p,

τ^Zp generated by Hp*Qn+1(a2p-n) forp<n<2p,

τ&Zp generated by ί*p*Qn+1(c) for n = 2p,

= 0 for n>2p.

(viii) r = sp + l> 2<s<p:

U^ZP2 generated by [_ϊs(2p + l)~] for n = l,

7&G2 generated by [j8(2n + 2p — ΐ)'3 and ί^p^Qn+1(asp^n)

for l<n<sp—p — l,

^Gι generated by \ipγs(2sp — 3)] and ί*p*Qn+ι(ap+ι) for n = sp—p — l9

τ&Zp generated by i*p*Qn+1(asp_n) for sp —p<Ln<sp,

^Zp generated by ί*p*Qn+1(c) for n = sp,

= 0 for n^sp + 1.

(ix) r=P

2 + l:

UT^ Zpi generated by \jp (2p + 1 ) ] for p > 3, n = 1,

^ G 3 generated by [_γp(2n + 2p — Vβ and i*p*Qn+1(aP2_n)
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^G2 generated by [_γp(2p2 — 3)] and i*p*Qn+1(ap+ι) for n=p2—p — l,

^Gι generated by [_S2γp{2p2 — 3)] and ί*p*Qn+1(ctp) for n=p2—p,

^Zp generated by i*p*Qn+1(ap2-n) for p2—p<n<p2,

^Zp generated by ί*p*Qn+1(c) for n=p2,

= 0 for

For the case p = 3, n = l, we have either U^Zpz generated by [7*3 (OIL o r

generated by Cr3(7)H and i*p*Q2(a8).

(6.9) Ub(n, k) is defined as follows:

(i) Ub(n,

generated by i*u3(l, β[βs+ύ and Hp*Qn+p(i3r

1βs)~]

for n = lp, r>0 ? l<*s<*p-2.

generated by i*uA(l, βs+1) and [_p*Qn+p(βsΏ

for n = lp, r = 0, l<,s<:p-2.

generated by Lp*Qn+p(βrιβs)J for n=Q(modp), r = Q,s=p-l

and for π ^ O , l(mod/>)5

generated by ί*S2pu4(l, βs) and

for

(ii)

^Zp generated by iS2p-2u4(l, βs-0~] ' for 1 = 0, s^>3, n = (l + ΐ)p.

^Zp generated by tS2puA(l + l, βs-ι)Ί

for Z^O, 5^3, s+Kp, n =

^Zp generated by ί*S2iuA(l, βs) for Z ^ l , s^>2, s + Kp,

n = lp-\-j\ 0<j<p except the case s = 2, j=p — l.

(iii) Ub(n, 2((r + s+l)p + s-ΐ)(p-ΐ)-2(r + ΐ)-l)

τ&Zp generated by ί*u3(l, β[+1) for n = lp, r^O, 5 = 1.

TsύZp generated by ί*S2Ju3(l, β\βs)

for n = lp+j, l<,j<:p — 2, Z ^ l , r^O, 5 ^ 1 except r = 0, s>l.

(iv) Ub(n, 2((r + s)p + s+n)(p-l)-2(r + 2))

τ& Zp generated by i*p*Qn+1(β[ βs) for n > 1, n ^ — 1 (mod p\
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r^>0, s2>l except the case n=0(moά p), s2>2.

generated by i*p*Qιp+1(βίβs) and [S 2 ^ 4 ΰ 3 (Z, β[+1 βs-O~l
for r^O, s^2, Z:>1.

generated by ί*p*Qn+ι(βs) for τι^0(mod/>), 5 ^ 2
and for p —

(v) Ub«l

^Zp generated by [S2^3(Z, PIP,)! for r ^ l , s ^ l , Z^l , 0 ^ ; ^ p - 2
except s<^p — 2, j=p — 2.

(vi) J76(Z/

(vii)

(viii) For ίΛe oίfeβr cases, we put Ub (n, k) = 0.

(6.10) Uu(n, k) is defined as follows:

Uu(n, 2(tp+t)(p-l)-4:)7&Zp for 2^n<t<p.

Uu(n, k) — 0 for other cases.

Remark that, under the projection 5": π2n+ι+k(Bn(p)ip)
the subgroups A(n, k)9 B(n9 k)(k^2(p2 + l)(p — l) — 3) and E(n, k) are map-
ped isomorphically into the stable group πf(B\ /?), and the subgroup Ua(n, k)
+ Ub(n, k)+Uu(n, k)( + B(n, k) if & = 2(p 2 + l ) ( j p - l ) - 3 ) coincides with the
kernel of 5".

The following proposition is obtained easily from Proposition 6.1 and the
above definitions (6.4), (6.5) and (6.6).

PROPOSITION 6.4. The subgroups A(n, A;) + S(τι, k) + E(n, k) are direct
factors of the groups π2n+ι+k(Bn(p); p).

To investigate Ua(n9 k) and Ub(n9 k)9 we shall discuss the exact sequence
(0.8). As a consequence, we obtain

PROPOSITION 6.5. There exists a map G: cXn = Y2(n+1)p~2VJCY2(n+p)p-3

>QBn(p)9 n^>l9 such that G* are isomorphisms of H2(n+1)p~3( Zp) and
the following diagram is commutative:

(6.11) ...J^TΓyCρi^ 1;^) - ^

G* T G* T G*

1»-2;p)^πj(CXΛ;P)^πj(Y^^^

where j \ denotes the inclusion and j 2 denotes the projection.
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PROOF. By Lemma 2.3 in [8], we obtain the following

(6.12) H*(Q2

2

n+1; Zp) = Λ(a0)®ZPtJa0Ί(deg a0 = 2(n + ϊ)p-S) for deg<
p(2(n + l)p-2)-2 and H*(Q\*+2p-ι\ Zp) = Λ(b0)<g)ZPtJb0Ί (deg bo = 2(
- 3 ) for deg <p(2(n+p)p-2).

Then the spectral sequence associated with the fibering

is trivial for total degree < p (2(^ + 1)/? — 2) — 2 and so, we have

(6.13) H*(QBH(p);Zp) = Λ(xo, γo)(g)Zp[_Jx(h J y 0 ] , ί*(*o) = αo, yo=jHh) for

The m a p iGλH: r2<»+*>*-3

 >Y^+DP-2 > ( ?2,+i >QBn(p) is null-homo-

topic. Hence there is a map G: CXn >QBn(p) which is an extension of iG,
that is, ίG = Gj\ holds. Similarly, we have a map G': 7 2 ( ί l + ^ - 2 >Ql"+2p~l

satisfying jG^.G!j2, since Ch is homotopy equivalent to Y2(»+P)P-2

Λ The map
G' is homotopic to G: γ2(n+p^~2 >Q2n+2p-i b y t h e uniqueness of G in Proposi-
tion 3.1, and the required conditions of G follow from (6.12) and (6.13). q.e.d.

Now we consider the subgroups Ua(n, k) and Ub(n, k).

PROPOSITION 6.6. The subgroups Ua(n, k) are direct factors of the groups
π2n+ι+k(Bn(p);p).

PROOF. By the dimensional reason, Ua(n, k) and Ub(n9 k) overlap in the
following two cases:

(A) k = 2(p2— p+n)(p — 1) — 2, l<n<2p — 1, n\p — 1, p. In this case,
π2n+i+k(S2n+1;p)/Im dn^Zp + Zp is generated by jo*Cn + 1(^ί"1) and p*Qn+1

(aP2_p_1), and π2n+ι+k(S2n+2p~1;p)r\Ker dn^Zp is generated by p^Qn+p(aP2_2p_ι).

(B) k = 2(P

2 + n + l)(p-l)-2, l<n<p-l. In this case, π2n+i+k(S2n+1;
p) / I m dn^Zp + Zp is generated by p*Qn+l^{~2$2) andp*Qn+1(aP2), and π2n+ι+k

(S2n+2p-1;p)ίλKer dn^Zp is generated by p*Qn+p(aP2_p).

Now we consider the case (A). By (3.1), (4.15) (i) and (4.24), we obtain
the following

HWp*Qn+p(aP2_2p_1) = xG^ί^ap2-2p-1 da for some x^O (mod/?),
where ίι denotes the inclusion and G: γ2(n+p-vp-3. >Q2n+2ps j s ^ e m a p j n

(6.11) (replacing n by n-ϊ). The element i^a^-^^δac πi(Y2(n+p-1)p-3;p\
ί = 2n + l + k — 4, is of order p and contained in Ker λn_v. Let γ2cπi+ι
(Cx^j) be a coextension of rι = xi\ap2~2p~1δa. Replacing h and a by λn-i
and 7Ί in Lemma 6.3, there exists γ3 6 πi+ι(Y2np~2;p) such that jι*Y3=pr2
and π\γz = -λn^ap2-2p-1δa hold. Since λn-1*api-2p-1δa = capi-p-1δctδ =

^ e Zp) and it*nti+1(Y*»p-2-iP)-^[_Yi+\ Γ 2 ^- 2 ]
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i s m o n o m o r p h i c , w e o b t a i n γ3 = cfi2

¥ap2~p~1δa f o r t h e i n c l u s i o n ί2: Si+1C Yi+2

and for some c' a Zp. Therefore G^γ^c"H{2)

P^Qn+ι(aP2_p_1) holds for G:
γ2np-2 >ρ|»-i a n ( j for s o m e c" e Zp. From the diagram (6.11) (replacing n

by 71 —1), we can determine the group extension at π2n+ι+k(Bn(p)',p) by the
investigation of the extension of the following groups:

0- >πi+1(Y2np'2;P)/lrnλn^ >πi+1(Cκ_1; p) >

i.e., π2n+1+k(Bn(p);p)^Zp2 + Zp if c"=V0, s.ndxZp + Zp + Zp if c" = 0. Thus,
we see that ί*p*Qn+1(β{~1) generates a direct factor of π2n+ι+k(Bn(p);p).

The case (B) is similar to the case (A). q.e.d.

On the groups Ub(n, &), we need to investigate the group extensions in
the following cases: the first and the second cases of (6.9) (i), the first case of
(6.9) (ii) and the case (6.9) (iv).

In the case (6.9) (i), we have H^P*Qn+p(l3\l3s) = G*ί*x(β(l)δγi3(sh x^O
(mod p) and /U_i*(/9(i)£)r/9(s) —0, and so the splitness of the case (6.9) (i) is
established by Lemma 6.3.

By the similar arguments, we obtain the following

PROPOSITION 6.7. The subgroups Ub(n, k) defined in (6.9) are direct factors
of the groups π2n+ι+k(Bn (p) p).

By the dimensional reason, the subgroups UM(n, k) are direct factors.
Thus, Theorem 0.6 is proved entirely.

As a corollary of Theorem 0.6, we get the following uniqueness on the
homotopy type of Bn(p):

PROPOSITION 6.8. Let n<P

2-2p and let B = S2n"ι\Je2n+2p-ι\JeAn+2p be a
cell complex having the cohomology ring

H*(B; Zp) = Λ(v, ^v), deg v = 2n + l.

Then, there is a map f: B >Bn(p), such that /* are isomorphisms of Ui{ p)
for all ί.

PROOF. Since the attaching map of the (2τH-2/? — l)-cell of B represents
an element xaι(2nJrl)-\-β, rβ — 0, for some x, r^0(mod/?), there is a map
/o: K >Bn(p) such that / * are epimorphisms of ίΓ*( Zp)9 where K denotes
the (2τx + 2p-l)-skeleton of B. Let g: sAn+2p~1 >K be the attaching map
of the (47i + 2/?)-cell of B. The group π4n+2p-ι(Bn(p)) is finite and its order 5
is prime to/?, since πAn+2p^ι(Bn(p);p) = 0(n<p2 — 2p) by Theorem 0.6. Then
we can construct a complex B1 and maps / i : B > B' and f2: B' > Bn (p)
such that ff and f% are isomorphisms of iJ*( Zp) and that f2 is an extension
of /o, where we may take B' as the mapping cone of the map gh for the map
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h. S4n+2P-i >S4n+2P-i o f degree s. Then, the map / = / 2 / i satisfies the re-
quired conditions. q. e. d.
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