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Introduction

Let x = (xu ..., xn) denote points in the real Euclidean rc-space En and t

denote points on the real line E1. The distance of a point x of En to the ori-

gin is defined by \χ\=(Σχ2i)1'2.
» = i

Consider the Cauchy problem

U ( ^ 5 O) = Mexp ( α | * | 2 ) on E^,

where A:>05 Z, α and M are constants. It is shown in Q5] that if 2a <k the
solution of this problem exists and is given explicitly by

u(x, t)=M
άcosh 2kt — 2αsinh 2kt)

This formula shows that if l — kn is negative, then u (x, t) tends to zero as ί->
oo, the convergence being of exponential order and uniform with respect to
χeEn.

The purpose of the present paper is to prove similar results for general
second order parabolic equations with unbounded coefficients. In Section 1
we investigate under what conditions the solutions of

(A) Σ aυ(x, t)-^-%-+±b,(x,t)-p |
dxϋx σx

with unbounded initial values decay exponentially to zero as £->oo. In Section
2 the results of Section 1 are extended to weakly coupled parabolic systems
of the form
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1. Exponential decay of solutions of (A)

(a) Statement of results. Throughout this section it is assumed that
there exist constants JEi>0, K2^>0, K3>0 and K± such that

(1.1) 0 ^ Σ aiΛxt

(1.2) \bi(x

(1.3) c(x9i)^-Kz\x

for all (*, t) e Enx[0, oo) and f = (fi, ..., ξH) e E\ We put

(1.4) α = min [_ inf au(x, t)J
i = l,-",n (x,t)€En*t0,°°)

and let λ be the positive root of the equation

(1.5) 4K1λ
2 + 2K2nλ-K3 = 0.

One of the main results of this paper is the following

THEOREM 1. Let u (x9 t) be a regular solution of (A) in En x (0, oo) such
that

(1.6) I u(χ, 0) I ^Mexp(α | % \2) for x e E\

where M and a are positive constants. Suppose that the following inequalities
are satisfied:

(1.7)

(1.8) K4 + 2(K2-a) nλ<Q.

Then lim u(x, ί) :=0, the convergence being of exponential order and uniform

with respect to x in En.

By a regular solution of (A) we mean a function u(x, t) with the pro-
perties: (i) u(x, t) is continuous in Enx [Ό, oo)5 (ϋ) u(x, t) has the continuous
partial derivatives which appear in (A) and fulfils (A) in En x (0, oo)5 and (iii)
for each Γ > 0 there are positive numbers Mτ and aτ such that \u(x, t)\<,
Mτexv(aτ\x\2) f o r (x, t)e Enx[05 T ] .

Under the additional hypothesis that there exists a positive constant β
such that
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(1.9) Σ (an (x, t) + hi (*, 0 xί) ;> β for (*, t)eEnx [0, oo),
ί = l

we can prove the following theorem.

THEOREM 2. Let u (x91) be a regular solution of (A) in En x (0, oo) satisfy-
ing (1.6). Assume the following inequalities to hold:

(1.10)

Then lim u(x, t) = 0, the convergence being of exponential order and uniform

with respect to x in En.
It will be of interest to compare our theorems with an earlier result of

IPin, Kalashnikov and Oleinik [2] (§12, Theorem 6).
(b) Proof of Theorem 1. At first we shall show that under assumptions

(1.1) —(1.3) a finite time can be found at which the solution u(x9 t) becomes
a bounded function of x in En. For this purpose we employ the method as
described in \Ίf}. We introduce the auxiliary function

(1.11) «U > 0

where p(l<p<2) is a parameter and

logp

0o is positive by assumption (1.7). Using (1.1) —(1.3) it is easy to verify that
v (x, t) satisfies the differential inequality

Σ a ( x t ) + Σ b ( x t )

in En x (0, 0Q ^ Setting w±(x91) = v(x, t) ± u(x, t) and applying the maximum
principle of Krzyzaήski [3] to w±(x, t) we have w±(x, ί ) ^ 0 , or equivalently | u
(x, t) \<*v(χ, t) in En x (0, 001]. Substituting, in particular, 1 = 6^ we obtain

(1.12) I u (x, 0ox) I ^Mxexp(ap-1 \ x \2) for x e E",

where

Now regarding ί = 0o"
1 as the initial time and (1.12) as the bound for the

initial values of u (x, i), we can use the same argument as above to derive
the inequality
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Iu(x, t)I^

for (x, t)aEnx(<V, θo' + Θ^J), where

01 ΐ

logp

In particular

I u (x, θo1 + θ:1) I <, M2exp (αp"21 x \2) for * e

where

By induction we have in general

(1.13) \u(x, θo1 + θl1 + ---+θ'b
1)\^Mk+1exp(ap-k~1\x\2)ίor x e E\

where

logp

(1.14) M,+1 = Mexp[ 2 ( ^ 1

1 + g y α ^-( l-p- 1 )(^ 0 - 1 + p-1(9r1 + +

We form the convergent series

ί=o j=o Δ-3α p

and observe that the following relations hold:

(1.15) 1

= K3a-1-2K2n-4K1a l-t

(1.16) — 2K2n
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-log J\ J

From (1.14) and (1.15) it follows that

(1.17) Mk^Mexv[-^(\-p-1)Σθ71~], * = 1 , 2, ...,

where we have set

LK^a"1 — 2K2n — AKia J

and on account of (1.16) it is possible to choose p0 ( K p o < 2 ) so that the right-

hand side of (1.17) does not exceed a constant, say M0 = 2Mexp(2KAT0) pro-

vided l<p<po, where To stands for the limit lim g(p) given in (1.16). There-

fore it follows from (1.13) that

(1.18) \u (*, Σ θj1) I ^M o exp {ap~k~l \ x | 2 ) for x e En

i = 0

provided p is sufficiently close to 1.

Let x e En be arbitrary but fixed. Given an ε>0, by (1.16) and the con-
tinuity of u(x, t) there exists a number pi(l<p!<2) such that | u(χ, T0) — u(χ,
g(p))\ <ε/2 for l<p<<θi. On the other hand, for a fixed p with l<p<min

(Po, Pi) an integer N can be found such that \u(x, g(p)) — u(x, Σθjι)\ <ε/2
i=0

for k>N. Thus we obtain

\u(χ, T0)\<\u(χ, ΣOj^l+eίo
i = 0

whence in view of (1.18)

I u(x, To) I <Moexp(αp-^11 x \ 2) + ε for k>N.

Letting k-+oo and ε->0 we have|u(Λ;, T0)\^M0. Since x is arbitrary, this
inequality holds throughout En.

Our next task is to study how u(χ, t) behaves for t> To. To do this, we
make use of a result due to Krzyzaήski \jf}. We introduce the function

(1.19) w(x, t) =

x e x p [ - i I x 12tanh 4KΛ(t- T0) + K4(t- Γo)].

Then by assumptions (1.1) through (1.5) we can verify that

(1.20) Σ aij(x9 t)-^— h Σbi(x,t)-ά—+c(x, t)w--^-<:
ij l OXOX i \ OX Ot
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in En x (To, oo), Thus, according to Krzyzaήski's maximum principle, we con-
clude that I u(χ, t) \<,w(x, t) in En x (Γo, oo). Now the assertion of Theorem
1 follows from the observation that the asymptotic behavior of w(χ, t) as
ί->oo is determined by the factor

[cosh 42^/Kί- To)jκ2-a)ni2κleκ^

which decays exponentially to zero as ί->oo provided (1.8) holds.
(c) Proof of Theorem 2. We are able to proceed entirely as in the first

part of the proof of Theorem 1 to arrive at the estimate: \u(x, To)\<,Mo
for x 6 En. In order to obtain information about the behavior of u (x, t) for
t> To we employ a comparison function w(x, t) slightly different from (1.19),
namely

xexp[-V^s/4iίi I x 12tanh 2VϋΓi^3(*- T0)+KA(t- Γo)].

Using the additional hypothesis (1.9) together with (1.1) —(1.3) we find that
w(x, t) satisfies the differential inequality (1.20) in Enx(T0, oo) and hence
that I u (#, t) I <>w(x, t) for (x, t) e Enx (To, oo). The conclusion of Theorem
2 follows immediately, for when z—>-oo the function w(x, t) behaves just like

[cosh 2^KxK,(t- T0)Tβl2Kleκ*\

which tends exponentially to zero as £—>-oo provided (1.10) holds.

2. Exponential decay of solutions of (B)

The system (B) of parabolic equations to which we shall extend the
results of the preceding section can be written

v = 1

where

The system is coupled only in the terms which are not differentiated so that
a system of this form is said to be weakly coupled (see [7]).

It is assumed that there exist constants Kλ > 0, K2 ;> 0, K3 > 0 and KA such
that

(2.1) 0 ^ Σ α?y(^0f/
i ,j = 1

(2.2) |&?(*, ί ) l ^ ^ 2 ( k l 2 + l)1 / 2, 1 = 1, ..., n, ju = l, . ., TV,
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(2.3) cμv(χ, ί);>0 for βφv, β, v = l, ..., N,

(2.4) Σcμ"(x, t)^-K3\x\2 + K4, β = l, ...,7V,
v — 1

for all (x, t)cEnx [0, oo) and ξ e En.
Theorem 1 of Section 1 is generalized as follows.

THEOREM 3. Let {uμ(x, t)}9 β = l, ..., N,be a solution of (B) in En x (0, oo)
with the properties:

(i) there are positive constants M and a such that

I uμ(χ, 0) I ^ M e x p ( α | x 12) for x e E\ β = l, ..., N,

(ii) for any T>0 there are positive numbers Mτ and aτ such that

\uμ(x, t)\<,Mτexp(aτ\χ\2)for(x, t)eEnx[0, Γ], ju = l, ..., iV.

Assume that

4K1a
2 + 2K2na-K3<0 and Ki + 2(K2-a)nλ<0,

where

(2.5) a= min [ inf aμ

{(x,t)^
i = l,"',n (x,t)€Enxl0,°°)
μ=l, . ,N

and λ is the positive root of the quadratic equation 4Kιλ2 + 2K2nλ—K3 = 0.

Then lim uμ(x, t) = 09 β = l, ..., N9 the convergence being of exponential

order and uniform with respect to x in En.

PROOF. We need the following Lemma due to Besala [T].

LEMMA. Suppose that hypotheses (2.1) — (2.3) are satisfied. Suppose, fur-
thermore, that there are positive constants K'3 and Kf

4 such that

Σ cμ»(x9 t)<,Kf,Ix\2 + Kf

A for (x, t)€Enx[0, oo), /ί = l, ..., N.

Let {Zμ(x, ί)}, β = l, ...9N,bea system of functions defined in En x [0, oo), with
the property (ii) mentioned in Theorem 3, and such that

LμtZμJ+Σcμι>(x, t)Zv<,0inEnx(0, oo), ^ = 1, ..., TV,
v = l

Zμ(x, 0 ) ^ 0 on En, β = l, ..., JV.

Then, Zμ(x, ί ) ^ 0 for (x, t) e Enx(0, oo), ^ = 1, ..., K

We let the quantities p, θk, Mk, To and the functions v(x, t), w(x, t) be as
in the proof of Theorem 1, except that it is required for a to be replaced by
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(2.5). We form the functions wζ-(x9 t) = v(x9 t)±uμ(x, t)9 u = l9 ..., TV. Since,
by (2.1)-(2.4),

Σ p f e t) v^O in Enx(0, ό^o1], ju = l, ..., TV,
= 1

we see that

Since «;£.(#, 0 ) ^ 0 for x e En

9 μ = l9 ..., TV, we conclude from Besala's lemma
thattt4(*, ί ) ^ 0 , i. e. \uμ(χ, t)\<,v(x, t) for (x, t)eEnx(0, βo1], u = l, ..., iV.
Thus in particular

or x € E", μ = l9 ...,iV.

Applying this argument successively yields

^ 1 2 6 £*,

Employing exactly the same limiting procedure as in the proof of Theorem 1
we can derive the estimate: | uμ(x, To) \ ^ Mo for x e En, μ = 1, ..., 7V.

Now define the functions Zζ.(xy t)—w(x, t)±uμ(x, t), ju = l, ..., TV. It is
clear that

Consequently, by Besala's lemma, we have

Z±(x, 0 ^ 0, i. e. \uμ(χ9t)\^w (x9 t) for (x9 t)eEnx{ Tθ9 oo),

ju = l9 ..., TV, which was to be proved.
The following is an extension of Theorem 2 of Section 1.

THEOREM 4. In addition to (2.1) —(2.4), we assume that there is a positive
constant β such that

ί = l

μ(x9 t)Xi)>βfor (x9 t) €Enx[09 oo), A = l, ..., TV.

If {uμ(x, t)}9 ju = l, ..., TV, is a solution of (B) in Enx (0, oo) having the pro-
perties (i), (ii) mentioned in Theorem 3 and if

+ 2K2na-Kd<0 and K±-βslK^/Kx<0,
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then lim uμ(χ> t) = 0, β = l, ..., N, the convergence being of exponential order
f-KX>

and uniform with respect to x in En.
The proof of this theorem may be omitted.
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