Asymptotic Behavior of Solutions of Parabolic Differential Equations with Unbounded Coefficients

Dedicated to Professor Tokui Satō on the occasion of his retirement

Takasi Kusano*
(Received September 17, 1969)

Introduction

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ denote points in the real Euclidean n-space E^{n} and t denote points on the real line E^{1}. The distance of a point x of E^{n} to the origin is defined by $|x|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}$.

Consider the Cauchy problem

$$
\begin{gathered}
\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}+\left(-k^{2}|x|^{2}+l\right) u-\frac{\partial u}{\partial t}=0 \text { in } E^{n} \times(0, \infty) \\
u(x, 0)=M \exp \left(a|x|^{2}\right) \text { on } E^{n}
\end{gathered}
$$

where $k>0, l, a$ and M are constants. It is shown in [5] that if $2 a<k$ the solution of this problem exists and is given explicitly by

$$
\begin{aligned}
u(x, t)= & M\left(\frac{k}{k \cosh 2 k t-2 a \sinh 2 k t)}\right)^{n / 2} \\
& \times \exp \left[-\frac{k(2 a \cosh 2 k t-k \sinh 2 k t)}{2\left(\overline{k \cosh 2 k t-2 a \sinh 2 k t)}|x|^{2}+l t\right] .} .\right.
\end{aligned}
$$

This formula shows that if $l-k n$ is negative, then $u(x, t)$ tends to zero as $t \rightarrow$ ∞, the convergence being of exponential order and uniform with respect to $x \in E^{n}$.

The purpose of the present paper is to prove similar results for general second order parabolic equations with unbounded coefficients. In Section 1 we investigate under what conditions the solutions of

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x, t) \frac{\partial u}{\partial x_{i}}+c(x, t) u-\frac{\partial u}{\partial t}=0 \tag{A}
\end{equation*}
$$

with unbounded initial values decay exponentially to zero as $t \rightarrow \infty$. In Section 2 the results of Section 1 are extended to weakly coupled parabolic systems of the form

[^0](B)
\[

$$
\begin{array}{r}
\sum_{i, j=1}^{n} a_{i j}^{\mu}(x, t) \frac{\partial^{2} u^{\mu}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}^{\mu}(x, t) \frac{\partial u^{\mu}}{\partial x_{i}}+\sum_{\nu=1}^{N} c^{\mu \nu}(x, t) u^{\nu}-\frac{\partial u^{\mu}}{\partial t}=0 \\
\mu=1, \ldots, N
\end{array}
$$
\]

1. Exponential decay of solutions of (A)

(a) Statement of results. Throughout this section it is assumed that there exist constants $K_{1}>0, K_{2} \geqq 0, K_{3}>0$ and K_{4} such that

$$
\begin{gather*}
0 \leqq \sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} \leqq K_{1}|\xi|^{2} \tag{1.1}\\
\left|b_{i}(x, t)\right| \leqq K_{2}\left(|x|^{2}+1\right)^{1 / 2}, i=1, \ldots, n, \tag{1.2}\\
c(x, t) \leqq-K_{3}|x|^{2}+K_{4} \tag{1.3}
\end{gather*}
$$

for all $(x, t) \in E^{n} \times[0, \infty)$ and $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in E^{n}$. We put

$$
\begin{equation*}
\alpha=\min _{i=1, \ldots, n}\left[\inf _{(x, t) \in E^{n} \times[0, \infty)} a_{i i}(x, t)\right] \tag{1.4}
\end{equation*}
$$

and let λ be the positive root of the equation

$$
\begin{equation*}
4 K_{1} \lambda^{2}+2 K_{2} n \lambda-K_{3}=0 \tag{1.5}
\end{equation*}
$$

One of the main results of this paper is the following
Theorem 1. Let $u(x, t)$ be a regular solution of (A) in $E^{n} \times(0, \infty)$ such that

$$
\begin{equation*}
|u(x, 0)| \leqq M \exp \left(a|x|^{2}\right) \text { for } x \in E^{n} \tag{1.6}
\end{equation*}
$$

where M and a are positive constants. Suppose that the following inequalities are satisfied:

$$
\begin{gather*}
4 K_{1} a^{2}+2 K_{2} n a-K_{3}<0, \tag{1.7}\\
K_{4}+2\left(K_{2}-\alpha\right) n \lambda<0 . \tag{1.8}
\end{gather*}
$$

Then $\lim _{t \rightarrow \infty} u(x, t)=0$, the convergence being of exponential order and uniform with respect to x in E^{n}.

By a regular solution of (A) we mean a function $u(x, t)$ with the properties: (i) $u(x, t)$ is continuous in $E^{n} \times[0, \infty)$, (ii) $u(x, t)$ has the continuous partial derivatives which appear in (A) and fulfils (A) in $E^{n} \times(0, \infty)$, and (iii) for each $T>0$ there are positive numbers M_{T} and a_{T} such that $|u(x, t)| \leqq$ $M_{T} \exp \left(a_{T}|x|^{2}\right)$ for $(x, t) \in E^{n} \times[0, T]$.

Under the additional hypothesis that there exists a positive constant β such that

$$
\begin{equation*}
\sum_{i=1}^{n}\left(a_{i i}(x, t)+b_{i}(x, t) x_{i}\right) \geqq \beta \text { for }(x, t) \in E^{n} \times[0, \infty), \tag{1.9}
\end{equation*}
$$

we can prove the following theorem.
Theorem 2. Let $u(x, t)$ be a regular solution of (A) in $E^{n} \times(0, \infty)$ satisfying (1.6). Assume the following inequalities to hold:

$$
\begin{gather*}
4 K_{1} a^{2}+2 K_{2} n a-K_{3}<0, \tag{1.10}\\
K_{4}-\beta \sqrt{K_{3} / K_{1}}<0 .
\end{gather*}
$$

Then $\lim _{t \rightarrow \infty} u(x, t)=0$, the convergence being of exponential order and uniform with respect to x in E^{n}.

It will be of interest to compare our theorems with an earlier result of Il'in, Kalashnikov and Oleinik [2] (§ 12, Theorem 6).
(b) Proof of Theorem 1. At first we shall show that under assumptions (1.1)-(1.3) a finite time can be found at which the solution $u(x, t)$ becomes a bounded function of x in E^{n}. For this purpose we employ the method as described in [6]. We introduce the auxiliary function

$$
\begin{equation*}
v(x, t)=M \exp \left[a|x|^{2} \rho^{-\theta_{0} t}+\frac{2\left(K_{1}+K_{2}\right) a n+2 K_{4}}{\theta_{0} \log \rho}\left(1-\rho^{-\theta_{0} t}\right)\right], \tag{1.11}
\end{equation*}
$$

where $\rho(1<\rho<2)$ is a parameter and

$$
\theta_{0}=\frac{K_{3} a^{-1}-2 K_{2} n-4 K_{1} a}{\log \rho}
$$

θ_{0} is positive by assumption (1.7). Using (1.1)-(1.3) it is easy to verify that $v(x, t)$ satisfies the differential inequality

$$
\sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x, t) \frac{\partial v}{\partial x_{i}}+c(x, t) v-\frac{\partial v}{\partial t} \leqq 0
$$

in $E^{n} \times\left(0, \theta_{0}^{-1}\right]$. Setting $w_{ \pm}(x, t)=v(x, t) \pm u(x, t)$ and applying the maximum principle of Krzyżański [3] to $w_{ \pm}(x, t)$ we have $w_{ \pm}(x, t) \geqq 0$, or equivalently |u $(x, t) \mid \leqq v(x, t)$ in $E^{n} \times\left(0, \theta_{0}^{-1}\right]$. Substituting, in particular, $t=\theta_{0}^{-1}$ we obtain

$$
\begin{equation*}
\left|u\left(x, \theta_{0}^{-1}\right)\right| \leqq M_{1} \exp \left(a \rho^{-1}|x|^{2}\right) \text { for } x \in E^{n}, \tag{1.12}
\end{equation*}
$$

where

$$
M_{1}=M \exp \left[\frac{2\left(K_{1}+K_{2}\right) a n+2 K_{4}}{\log \rho}\left(1-\rho^{-1}\right) \theta_{0}^{-1}\right] .
$$

Now regarding $t=\theta_{0}^{-1}$ as the initial time and (1.12) as the bound for the initial values of $u(x, t)$, we can use the same argument as above to derive the inequality

$$
\begin{aligned}
|u(x, t)| & \leqq M_{1} \exp \left[a \rho^{-1}|x|^{2} \rho^{-\theta_{1}\left(t-\theta_{0}^{-1}\right)}\right. \\
& \left.+\frac{2\left(K_{1}+K_{2}\right) a \rho^{-1} n+2 K_{4}}{\theta_{1} \log \rho}\left(1-\rho^{-\theta_{1}\left(t-\theta \sigma_{0}^{-1}\right)}\right)\right]
\end{aligned}
$$

for $\left.(x, t) \in E^{n} \times\left(\theta_{0}^{-1}, \theta_{0}^{-1}+\theta_{1}^{-1}\right]\right]$, where

$$
\theta_{1}=\frac{K_{3} a^{-1} \rho-2 K_{2} n-4 K_{1} a \rho^{-1}}{\log \rho}>0
$$

In particular

$$
\left|u\left(x, \theta_{0}^{-1}+\theta_{1}^{-1}\right)\right| \leqq M_{2} \exp \left(a \rho^{-2}|x|^{2}\right) \text { for } x \in E^{n}
$$

where

$$
\begin{aligned}
M_{2}=M & \exp \left[\frac{2\left(K_{1}+K_{2}\right) a n}{\log \rho}\left(1-\rho^{-1}\right)\left(\theta_{0}^{-1}+\rho^{-1} \theta_{1}^{-1}\right)\right. \\
& \left.+\frac{2 K_{4}}{\log \rho}\left(1-\rho^{-1}\right)\left(\theta_{0}^{-1}+\theta_{1}^{-1}\right)\right] .
\end{aligned}
$$

By induction we have in general

$$
\begin{equation*}
\left|u\left(x, \theta_{0}^{-1}+\theta_{1}^{-1}+\cdots+\theta_{k}^{-1}\right)\right| \leqq M_{k+1} \exp \left(a \rho^{-k-1}|x|^{2}\right) \text { for } x \in E^{n}, \tag{1.13}
\end{equation*}
$$

where

$$
\theta_{k}=\frac{K_{3} a^{-1} \rho^{k}-2 K_{2} n-4 K_{1} a \rho^{-k}}{\log \rho}>0
$$

$$
\begin{align*}
M_{k+1}=M \exp [& \frac{2\left(K_{1}+K_{2}\right) a n}{\log \rho}\left(1-\rho^{-1}\right)\left(\theta_{0}^{-1}+\rho^{-1} \theta_{1}^{-1}+\cdots+\rho^{-k} \theta_{k}^{-1}\right) \tag{1.14}\\
& \left.+\frac{2 K_{4}}{\log \rho}\left(1-\rho^{-1}\right)\left(\theta_{0}^{-1}+\theta_{1}^{-1}+\cdots+\theta_{k}^{-1}\right)\right], k=0,1,2, \ldots
\end{align*}
$$

We form the convergent series

$$
\begin{aligned}
& f(\rho)=\sum_{i=0}^{\infty} \rho^{-i} \theta_{i}^{-1}=\sum_{i=0}^{\infty} \frac{\rho^{-i} \log \rho}{K_{3} a^{-1} \rho^{i}-2 K_{2} n-4 K_{1} a \rho^{-i}}, \\
& g(\rho)=\sum_{i=0}^{\infty} \theta_{i}^{-1}=\sum_{i=0}^{\infty} \frac{\log \rho}{K_{3} a^{-1} \rho^{i}-2 K_{2} n-4 K_{1} a \rho^{-i}}
\end{aligned}
$$

and observe that the following relations hold:

$$
\begin{equation*}
f(\rho) \leqq \frac{1}{K_{3} a^{-1}-2 K_{2} n-4 K_{1} a} \frac{\log \rho}{1-\rho^{-1}}, \tag{1.15}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{\rho \rightarrow 1} g(\rho)=\lim _{\rho \rightarrow 1} \int_{0}^{\infty} \frac{\log \rho}{K_{3} a^{-1} \rho^{s}-2 K_{2} n-4 K_{1} a \rho^{-s}} d s \tag{1.16}
\end{equation*}
$$

$$
=\frac{1}{2 \sqrt{K_{2}^{2} n^{2}+4 K_{1} K_{3}}} \log \frac{K_{3} a^{-1}-K_{2} n+\sqrt{K_{2}^{2} n^{2}+4 K_{1} K_{3}}}{K_{3} a^{-1}-K_{2} n-\sqrt{{K_{2}^{2}}_{2}^{2}+4 K_{1} K_{3}}} .
$$

From (1.14) and (1.15) it follows that

$$
\begin{equation*}
M_{k} \leqq \bar{M} \exp \left[\frac{2 K_{4}}{\log \rho}\left(1-\rho^{-1}\right) \sum_{i=0}^{\infty} \theta_{i}^{-1}\right], k=1,2, \ldots, \tag{1.17}
\end{equation*}
$$

where we have set

$$
\bar{M}=M \exp \left[\frac{2\left(K_{1}+K_{2}\right) a n}{K_{3} a^{-1}-2 K_{2} n-4 K_{1} a}\right],
$$

and on account of (1.16) it is possible to choose $\rho_{0}\left(1<\rho_{0}<2\right)$ so that the righthand side of (1.17) does not exceed a constant, say $M_{0}=2 \bar{M} \exp \left(2 K_{4} T_{0}\right)$ provided $1<\rho<\rho_{0}$, where T_{0} stands for the limit $\lim _{\rho \rightarrow 1} g(\rho)$ given in (1.16). Therefore it follows from (1.13) that

$$
\begin{equation*}
\left|u\left(x, \sum_{i=0}^{k} \theta_{i}^{-1}\right)\right| \leqq M_{0} \exp \left(a \rho^{-k-1}|x|^{2}\right) \text { for } x \in E^{n} \tag{1.18}
\end{equation*}
$$

provided ρ is sufficiently close to 1 .
Let $x \in E^{n}$ be arbitrary but fixed. Given an $\varepsilon>0$, by (1.16) and the continuity of $u(x, t)$ there exists a number $\rho_{1}\left(1<\rho_{1}<2\right)$ such that $\mid u\left(x, T_{0}\right)-u(x$, $g(\rho)) \mid<\varepsilon / 2$ for $1<\rho<\rho_{1}$. On the other hand, for a fixed ρ with $1<\rho<\min$ $\left(\rho_{0}, \rho_{1}\right)$ an integer N can be found such that $\left|u(x, g(\rho))-u\left(x, \sum_{i=0}^{k} \theta_{i}^{-1}\right)\right|<\varepsilon / 2$ for $k>N$. Thus we obtain

$$
\left|u\left(x, T_{0}\right)\right|<\left|u\left(x, \sum_{i=0}^{k} \theta_{i}^{-1}\right)\right|+\varepsilon \text { for } k>N,
$$

whence in view of (1.18)

$$
\left|u\left(x, T_{0}\right)\right|<M_{0} \exp \left(a \rho^{-k-1}|x|^{2}\right)+\varepsilon \text { for } k>N .
$$

Letting $k \rightarrow \infty$ and $\varepsilon \rightarrow 0$ we have $\left|u\left(x, T_{0}\right)\right| \leqq M_{0}$. Since x is arbitrary, this inequality holds throughout E^{n}.

Our next task is to study how $u(x, t)$ behaves for $t>T_{0}$. To do this, we make use of a result due to Krzyżański [4]. We introduce the function

$$
\begin{align*}
w(x, t)= & M_{0}\left[\cosh 4 K_{1} \lambda\left(t-T_{0}\right)\right]^{n\left(K_{2}-\alpha\right) / 2 K_{1}} \tag{1.19}\\
& \times \exp \left[-\lambda|x|^{2} \tanh 4 K_{1} \lambda\left(t-T_{0}\right)+K_{4}\left(\mathrm{t}-T_{0}\right)\right] .
\end{align*}
$$

Then by assumptions (1.1) through (1.5) we can verify that

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial^{2} w}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x, t) \frac{\partial w}{\partial x_{i}}+c(x, t) w-\frac{\partial w}{\partial t} \leqq 0 \tag{1.20}
\end{equation*}
$$

in $E^{n} \times\left(T_{0}, \infty\right)$. Thus, according to Krzyżański's maximum principle, we conclude that $|u(x, t)| \leqq w(x, t)$ in $E^{n} \times\left(T_{0}, \infty\right)$. Now the assertion of Theorem 1 follows from the observation that the asymptotic behavior of $w(x, t)$ as $t \rightarrow \infty$ is determined by the factor

$$
\left[\cosh 4 K_{1} \lambda\left(t-T_{0}\right)\right]^{\left(K_{2}-a\right) n / 2 K_{1}} e^{K_{4} t},
$$

which decays exponentially to zero as $t \rightarrow \infty$ provided (1.8) holds.
(c) Proof of Theorem 2. We are able to proceed entirely as in the first part of the proof of Theorem 1 to arrive at the estimate: $\left|u\left(x, T_{0}\right)\right| \leqq M_{0}$ for $x \in E^{n}$. In order to obtain information about the behavior of $u(x, t)$ for $t>T_{0}$ we employ a comparison function $w(x, t)$ slightly different from (1.19), namely

$$
\begin{aligned}
w(x, t)= & M_{0}\left[\cosh 2 \sqrt{K_{1} K_{3}}\left(t-T_{0}\right)\right]^{-\beta / 2 K_{1}} \\
& \times \exp \left[-\sqrt{K_{3} / 4 K_{1}}|x|^{2} \tanh 2 \sqrt{K_{1} K_{3}}\left(t-T_{0}\right)+K_{4}\left(t-T_{0}\right)\right] .
\end{aligned}
$$

Using the additional hypothesis (1.9) together with (1.1)-(1.3) we find that $w(x, t)$ satisfies the differential inequality (1.20) in $E^{n} \times\left(T_{0}, \infty\right)$ and hence that $|u(x, t)| \leqq w(x, t)$ for $(x, t) \in E^{n} \times\left(T_{0}, \infty\right)$. The conclusion of Theorem 2 follows immediately, for when $t \rightarrow \infty$ the function $w(x, t)$ behaves just like

$$
\left[\cosh 2 \sqrt{K_{1} K_{3}}\left(t-T_{0}\right)\right]^{-\beta / 2 K_{1}} e^{K_{4} t},
$$

which tends exponentially to zero as $t \rightarrow \infty$ provided (1.10) holds.

2. Exponential decay of solutions of (B)

The system (B) of parabolic equations to which we shall extend the results of the preceding section can be written

$$
L^{\mu}\left[u^{\mu}\right]+\sum_{\nu=1}^{N} c^{\mu \nu}(x, t) u^{\mu}=0, \mu=1, \ldots, N,
$$

where

$$
L^{\mu} \equiv \sum_{i, j=1}^{n} a_{i j}^{\mu}(x, t) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}^{\mu}(x, t) \frac{\partial}{\partial x_{i}}-\frac{\partial}{\partial t}, \mu=1, \ldots, N .
$$

The system is coupled only in the terms which are not differentiated; so that a system of this form is said to be weakly coupled (see [7]).

It is assumed that there exist constants $K_{1}>0, K_{2} \geqq 0, K_{3}>0$ and K_{4} such that

$$
\begin{gather*}
0 \leqq \sum_{i, j=1}^{n} a_{i j}^{\mu}(x, t) \xi_{i} \xi_{j} \leqq K_{1}|\xi|^{2}, \mu=1, \ldots, N, \tag{2.1}\\
\left|b_{i}^{\mu}(x, t)\right| \leqq K_{2}\left(|x|^{2}+1\right)^{1 / 2}, i=1, \ldots, n, \mu=1, \ldots, N, \tag{2.2}
\end{gather*}
$$

$$
\begin{align*}
& c^{\mu \nu}(x, t) \geqq 0 \text { for } \mu \neq \nu, \mu, \nu=1, \ldots, N, \tag{2.3}\\
& \sum_{\nu=1}^{N} c^{\mu \nu}(x, t) \leqq-K_{3}|x|^{2}+K_{4}, \mu=1, \ldots, N, \tag{2.4}
\end{align*}
$$

for all $(x, t) \epsilon E^{n} \times[0, \infty)$ and $\xi \in E^{n}$.
Theorem 1 of Section 1 is generalized as follows.
Theorem 3. Let $\left\{u^{\mu}(x, t)\right\}, \mu=1, \ldots, N$, be a solution of (B) in $E^{n} \times(0, \infty)$ with the properties:
(i) there are positive constants M and a such that

$$
\left|u^{\mu}(x, 0)\right| \leqq M \exp \left(a|x|^{2}\right) \text { for } x \in E^{n}, \mu=1, \ldots, N,
$$

(ii) for any $T>0$ there are positive numbers M_{T} and a_{T} such that

$$
\left|u^{\mu}(x, t)\right| \leqq M_{T} \exp \left(a_{T}|x|^{2}\right) \text { for }(x, t) \in E^{n} \times[0, T], \mu=1, \ldots, N .
$$

Assume that

$$
4 K_{1} a^{2}+2 K_{2} n a-K_{3}<0 \text { and } K_{4}+2\left(K_{2}-\alpha\right) n \lambda<0,
$$

where

$$
\begin{equation*}
\alpha=\min _{\substack{i=1, \ldots, n \\ \mu=1, \ldots, N}}\left[\inf _{(x, t) \in E^{n_{\times}} \times[0, \infty)} a_{i i}^{\mu}(x, t)\right], \tag{2.5}
\end{equation*}
$$

and λ is the positive root of the quadratic equation $4 K_{1} \lambda^{2}+2 K_{2} n \lambda-K_{3}=0$.
Then $\lim _{t \rightarrow \infty} u^{\mu}(x, t)=0, \mu=1, \ldots, N$, the convergence being of exponential order and uniform with respect to x in E^{n}.

Proof. We need the following Lemma due to Besala [1].
Lemma. Suppose that hypotheses (2.1)-(2.3) are satisfied. Suppose, furthermore, that there are positive constants K_{3}^{\prime} and K_{4}^{\prime} such that

$$
\sum_{\nu=1}^{N} c^{\mu \nu}(x, t) \leqq K_{3}^{\prime}|x|^{2}+K_{4}^{\prime} \text { for }(x, t) \epsilon E^{n} \times[0, \infty), \mu=1, \ldots, N
$$

Let $\left\{Z^{\mu}(x, t)\right\}, \mu=1, \ldots, N$, be a system of functions defined in $E^{n} \times[0, \infty)$, with the property (ii) mentioned in Theorem 3, and such that

$$
\begin{gathered}
L^{\mu}\left[Z^{\mu}\right]+\sum_{\nu=1}^{N} c^{\mu \nu}(x, t) Z^{\nu} \leqq 0 \text { in } E^{n} \times(0, \infty), \mu=1, \ldots, N, \\
Z^{\mu}(x, 0) \geqq 0 \text { on } E^{n}, \mu=1, \ldots, N .
\end{gathered}
$$

Then, $Z^{\mu}(x, t) \geqq 0$ for $(x, t) \in E^{n} \times(0, \infty), \mu=1, \ldots, N$.
We let the quantities $\rho, \theta_{k}, M_{k}, T_{0}$ and the functions $v(x, t), w(x, t)$ be as in the proof of Theorem 1, except that it is required for α to be replaced by
(2.5). We form the functions $w_{ \pm}^{\mu}(x, t)=v(x, t) \pm u^{\mu}(x, t), \mu=1, \ldots, N$. Since, by (2.1)-(2.4),

$$
L^{\mu}[v]+\sum_{\nu=1}^{N} c^{\mu \nu}(x, t) v \leqq 0 \text { in } E^{n} \times\left(0, \theta_{0}^{-1}\right], \mu=1, \ldots, N,
$$

we see that

$$
L^{\mu}\left[w_{ \pm}^{\mu}\right]+\sum_{\nu=1}^{N} c^{\mu \nu}(x, t) w_{ \pm}^{\nu} \leqq 0 \text { in } E^{n} \times\left(0, \theta_{0}^{-1}\right], \mu=1, \ldots, N .
$$

Since $w_{ \pm}^{\mu}(x, 0) \geqq 0$ for $x \in E^{n}, \mu=1, \ldots, N$, we conclude from Besala's lemma that $w_{ \pm}^{\mu}(x, t) \geqq 0$, i. e. $\left|u^{\mu}(x, t)\right| \leqq v(x, t)$ for $(x, t) \in E^{n} \times\left(0, \theta_{0}^{-1}\right], \mu=1, \ldots, N$. Thus in particular

$$
\left|u^{\mu}\left(x, \theta_{0}^{-1}\right)\right| \leqq M_{1} \exp \left(a \rho^{-1}|x|^{2}\right) \text { for } x \in E^{n}, \mu=1, \ldots, N .
$$

Applying this argument successively yields

$$
\begin{array}{r}
\left|u^{\mu}\left(x, \theta_{0}^{-1}+\theta_{1}^{-1}+\cdots+\theta_{k}^{-1}\right)\right| \leqq M_{k+1} \exp \left(a \rho^{-k-1}|x|^{2}\right) \text { for } x \in E^{n}, \\
\mu=1, \ldots, N, k=1,2, \ldots .
\end{array}
$$

Employing exactly the same limiting procedure as in the proof of Theorem 1 we can derive the estimate: $\left|u^{\mu}\left(x, T_{0}\right)\right| \leqq M_{0}$ for $x \in E^{n}, \mu=1, \ldots, N$.

Now define the functions $Z_{ \pm}^{\mu}(x, t)=w(x, t) \pm u^{\mu}(x, t), \mu=1, \ldots, N$. It is clear that

$$
\begin{gathered}
L^{\mu}\left[Z_{ \pm}^{\mu}\right]+\sum_{\nu=1}^{N} c^{\mu \nu}(x, t) Z_{ \pm}^{\nu} \leqq 0 \text { in } E^{n} \times\left(T_{0}, \infty\right) \\
Z_{ \pm}^{\mu}\left(x, T_{0}\right) \geqq 0 \text { on } E^{n}, \mu=1, \ldots, N
\end{gathered}
$$

Consequently, by Besala's lemma, we have

$$
Z_{ \pm}^{\mu}(x, t) \geqq 0 \text {, i. e. }\left|u^{\mu}(x, t)\right| \leqq w(x, t) \text { for }(x, t) \in E^{n} \times\left(T_{0}, \infty\right)
$$

$\mu=1, \ldots, N$, which was to be proved.
The following is an extension of Theorem 2 of Section 1.
Theorem 4. In addition to (2.1)-(2.4), we assume that there is a positive constant β such that

$$
\sum_{i=1}^{n}\left(a_{i i}^{\mu}(x, t)+b_{i}^{\mu}(x, t) x_{i}\right) \geqq \beta \text { for }(x, t) \epsilon E^{n} \times[0, \infty), \mu=1, \ldots, N .
$$

If $\left\{u^{\mu}(x, t)\right\}, \mu=1, \ldots, N$, is a solution of (B) in $E^{n} \times(0, \infty)$ having the properties (i), (ii) mentioned in Theorem 3 and if

$$
4 K_{1} a^{2}+2 K_{2} n a-K_{3}<0 \text { and } K_{4}-\beta \sqrt{K_{3} / K_{1}}<0
$$

then $\lim _{t \rightarrow \infty} u^{\mu}(x, t)=0, \mu=1, \ldots, N$, the convergence being of exponential order and uniform with respect to x in E^{n}.

The proof of this theorem may be omitted.

References

[1] P. Besala, On solutions of Fourier's first problem for a system of non-linear parabolic equations in an unbounded domain, Ann. Polon. Math., 13 (1963), 247-265.
[2] A. M. Il'in, A.S. Kalashnikov and O. A. Oleinik, Linear second order parabolic equations, Uspekhi Mat. Nauk S. S. S. R., 17 (No. 3) (1962), 3-146 (Russian).
[3] M. Krzyżański, Certaines inégalités relatives aux solutions de l'équation parabolique linéaire normale, Bull. Acad. Polon. Sci. Math. Astr. Phys., 7 (1959), 131-135.
[4] M. Krzyżański, Evaluations des solutions de l'équation liéaire du type parabolique à coefficients non bornéś, Ann. Polon. Math., 11 (1962), 253-260.
[5] T. Kusano, On the decay for large $|x|$ of solutions of parabolic equations with unbounded coefficients, Publ. Res. Inst. Math. Sci., Kyoto Univ., Ser. A, 3 (1967), 203-210.
[6] T. Kusano, On the behavior for large $|x|$ of solutions of parabolic equations with unbounded coefficients, Funkc. Ekvac., 11 (1968), 169-174.
[7] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, PrenticeHall, Englewood Cliffs, N. J., 1967.

Department of Mathematics
 Faculty of Science
 Hiroshima University

[^0]: *) This research was supported by Matsunaga Science Foundation.

