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On Certain Classes of Algebras—II

T. S. RAVISANKAR
(Received July 3, 1969)

The present note owes its origin to some remarks by Professor K. Mc-
Crimmon on an earlier paper with the same title [5]. The main object of
this note is to show that the restriction on the characteristic of the base
field can be dispensed with in Theorem 3.2 (and therefore also in Theorem
3.3) of [5] and that it can be weakened considerably in Proposition 3.4 of
[5]. In other words, we prove

A. (i) An alternative algebra over a field F of arbitrary characteristic
1s am (Aj)-algebra iff it is a direct sum of a zero ideal, and ideals which are
(alternative) division algebras over F.

(ii) For an alternative algebra over F, all the properties stated in [5,
Definition 1.17] are mutually equivalent.

B. A Jordan algebra over a field K of characteristic 2 is an (A;)-alge-
bra for k>3, iff it is either a zero algebra or is the direct sum of its an-
nihilator ideal and the semisimple ideal A* such that there exists no nonzero
element x in A* with R.* =0, for the right multiplication R, in A.

Other results proved in this note are in the nature of some further re-
marks on the classes (4;) of algebras supplementing those in [5].

The notations of this note are those of [5], and we consider only vector
spaces which are finite dimensional over their base fields.

1. The following two lemmas which lead to results A, B are essentially
based on an idea suggested by Professor McCrimmon.

Lemma 1.1.  Let A be a power-associative algebra (see [7, Chapter V] for
definition etc.) over a field F and N be any wilideal of A. Then, for any idem-
potent x=x~+ N of A/N, there exists an idempotent e in A such that e=z,
where x— x is the canonical homomorphism of A onto A/N.

Proor. By power-associativity of A4/N, since % is an idempotent of
A/N, z"== for any integer n. Consequently x cannot be nilpotent in A4; the
associative subalgebra F[ x] of 4 generated by x is nonnil; F[ x7] contains
an idempotent e [7, Proposition 3.3]. We have ezzﬂ}a,-x" for a; in F. e=

i=1
(Za)x=0bx (say) is an idempotent in 4/N where b is a nonzero element of F
(since e cannot belong to V). The relations e’=é, =% immediately yield
b=1 and the lemma is proved.



146 T. S. RAVISANKAR

LemMA 1.2. Let A be a flexible strictly power-associative algebra over a
field of characteristic==2 (of arbitrary characteristic in the special case of an
alternative algebra), and I be the annihilator ideal of A. If A/I contains an
identity 1, then I is a direct summand of A. Further, any ideal B of A with
BA=AB=0 and with A/B possessing an identity, can only be the annihilator
ideal 1.

Proor. First, suppose 4 is a flexible strictly power-associative algebra
over a field of characteristic==2. Then, by Lemma 1.1 there exists an idem-
potent e of A4 such that e=e+ I is the identity element 1 of 4/1. Let 4=
A,(2)+ A,(1)+ A,(0) be the Peirce decomposition of A relative to e (see [4]).
For x in 4.(0), xe=ex=0, xe=x=0; x € I, the annihilator ideal of 4. For y
in 4,(1), yet+tey=y, yet+ey=7y; 2y=% y=0and ye€ I. Thus 4.(1)+4.(0)
cl Forzel ze=ez=0; z¢c 4,(0). Hence we have I=4,(0); 4,(1)=0. 4,(2)
and 4,(0) being orthogonal subalgebras of 4[4] and I=A4,(0) being the an-
nihilator ideal of 4, A=IPA,(2)=IPB as ideals; I is a direct summand
of A.

Secondly, if 4 is an alternative algebra (with arbitrary characteristic
for the base field), the above arguments are easily modified by using the
two-sided Peirce decomposition of 4 relative to e (see [ 7, (3.14)]).

For the ideal B with BA=AB=0, let ¢’ be the idempotent of A (see
Lemma 1.1) such that &’=e’+ B is the identity of 4/B. B< I if, however,
B% I, there exists an element x in I such that x ¢ B. Then xe'=0, z¢'=%=0,
i.e. x € B, a contradiction. Thus B can only be equal to I.

Proors of A, B. Let A4 be an alternative (A4j)-algebra over a field of
arbitrary characteristic. The radical R of A4 is then precisely the annihilator
ideal I of 4 (by [5, Lemma 2.127]). Being semisimple, 4/I contains an identi-
ty element 1[7, Theorem 3.10], when 4=~1. By Lemma 1.2, 4=1@B, where
B is an ideal of A4 isomorphic to 4/7; B is semisimple. By an earlier result
[5, Proposition 1.4], I and B are (A4j)-algebras. An appeal to [ 5, Theorem
3.1] completes the proof of A.

The proof of B is quite similar and is omitted.

2. As observed by Professor McCrimmon, the statement in italics in
Remark (i), p. 231 of [ 5] has now no significance.

The simple direct proof of a part of A (ii) for the special case of semi-
simple associative algebras given in [5, p. 231, Remark (i)] is applicable even
for semisimple alternative algebras; in fact, one can also show using this
argument that the property right (4,) is equivalent to (4;) for such algebras.

Professor McCrimmon suggests the following simplification in the proof
of Proposition 2.8 of [5]. After obtaining B™A4=0=A4B™, we observe that
@A) if n=1, B< 1, (ii) if n>1, we have a contradiction at the stage B™=0.
The last three sentences of the original proof can therefore be deleted.
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For a commutative power-associative (A4)-algebra over a field of charac-
teristic=~2, the radical is the annihilator ideal (see [5, p. 230, end of Section
2). When the algebra is also strictly power-associative, it can be realised
as the direct sum of a zero ideal and a semisimple (4)-algebra of the same
kind. Thus the determination of (A)-algebras belonging to this class boils
down to that of simple (4)-algebras of the same class.

We note that if 4 is an algebra such that the set {R,, L,}.cs does not
contain any nonzero nilpotent element, then 4 is an (4.)-algebra and con-
versely (cf. [8, Proposition 7] and [ 6, p. 235, Remark )).

8. For a right alternative algebra (in which the identity R.*=R,: holds
for all elements; see [1]) and for right properties instead of two-sided pro-
perties one can easily prove analogues of some of the results in §§ 1,2 of [5].
Of these analogues we prove the following, which immediately suggests a
direct proof of Lemma 2.12 of [5].

Prorosition 3.1. The radical (maximal nilideal) N of a right alternative
right (A4z)-algebra A over a field of characteristic=~2 is precisely its right an-
nihilator ideal Ir={x € A| Ax=0}.

Proor. We note first that R.*=R, for any integer %k and for all x in 4
(see [1]). This fact can be used as in the proof of Proposition 1.2 (i) of [5]
to deduce an analogue of the same for right properties in 4. Thus 4 is a right
(Ay)-algebra for every integer k. Let now x”=0 for an x in N. Then R,"=
R.»=0; by right (4,)-property of 4, R,=0, i.e. NS Iz. On the other hand,
IzxC N, the former being a nilideal of 4. (That it is an ideal, follows from
the identity z (x y+ yx)=(zx) y+ (2 y)x for 4 [1, p. 319, identity (3)].)

The following result comprising of analogues of Theorems 3.1, 3.3 of [5]
is easily proved (either by modifying the proof of [ 5, Theorem 3.1 or by ap-
pealing to the remarks in para 2 of Section 2).

ProrosiTiON 8.2. For a semisimple alternative algebra, the properties right
(AR k=s,....e TIGht (A), Tight (Bi)r-z,.. > l&ft (AR)i-z,..., left (A4), left (Br)i-z,..,
(besides the corresponding two-sided properties) are all mutually equivalent.
Any such algebra is a direct sum of ideals which are alternative division
algebras over the base field.

However, we cannot extend Proposition 3.2 further, to get an analogue
for right properties of the result A stated in the beginning of the note. In
fact, A(i) is not true, as the following example of a right (A4)-algebra (which
is not even an (A4;)-algebra) shows: The (associative) algebra 4 with basis
e, b over a field F, multiplication being defined by e*=e, be=b, eb=5b*=0. 4
is easily verified to be a right (4)-algebra. Since L?=R?=0 and L,=~0, 4 is
not even an (4;)-algebra, nor also a left (4;)-algebra. The radical R of 4 is
the ideal {4}, which is not the annihilator ideal of 4. Evidently, there can-
not exist an ideal in 4 complementary to R.
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ReEmark. An alternative algebra is an (4;)-algebra iff it is a right
(Ay)-algebra and the right annihilator ideal coincides with the annihilator
ideal.

4. Finally, we give parallel definitions of properties (4.)s-s,.. .. and (A4)
for Lie triple systems and indicate how these properties can be similarly
studied.

DeriniTioN. Let T be a Lie triple system (see [3] for definition etc.)
with the trilinear composition [ x, y, z]; z—[ %, y, 2]=2D(x,y) defines a der-
ivation in 7. Then T is said to be an (4) — ((4)rs,—) system if zD(x, y)i=
0= 2D (x, y)=0 for x, y, z in 4 (if D(x, y)*=0=D (%, y) =0).

As for algebras, the following implications are true:
(D= (A== (4= = (4d3) = (42).

This definition is consistent with that for a Lie algebra. For, if 4 is a
Lie algebra with respect to the multiplication [ x, y] and T, is the Lie triple
system associated to A, defined with respect to the composition [«x, y, z]=
[([x, vl, 2], Ta is an (4)—((4x)—) system whenever A4 is an (4)—((4x)—)
algebra. However, a Lie algebra 4 which is an (4,)- or (4)-system as a
Lie triple system need not be so as an algebra, e.g.: The Lie algebra 4 with
basis a, b, ¢ and multiplication defined by [a, b]=—[b, a ]=c, the rest of the
products being zero is not even an (4;)-algebra, but T4 being a zero system
is trivially an (4)-system. In view of the above observation, the Lie triple
system T, associated to the Lie algebra A4 considered by Joichi (see [2, p.
297]) is an (A4,)-system; it is not, however, an (4;)-system.

We recall that the center C of a Lie triple system T is the ideal {x € T|
[xTT]=0}. Evidently, [TCT]=0=[ TTC] and C is a solvable ideal of T.

ProrositioN 4.1. The radical (maximal solvable ideal) of an (A43)-Lie
triple system T coincides with its center C. More generally, a solvable ideal B of
T is contained in C.

Proor. Let BY=B, B®»=[T, B, B],..., B*V=[T, B®», B®7] . be the
solvability series of the ideal B. B™ are ideals of T. Let B® =40, B*+1=(,
If k=1, then [ T, B, B]=0, so that [ B, T, B]=0; since B is an ideal of T,
[B, T,[B, T, T]]=0; by (43)-property, [B, T, T]=0, B€C. If k>1, we can
arrive at a contradiction (as in the proof of [5, Proposition 2.87]; see also
Section 2 supra), proving the proposition.

The above proposition is not true for (4;)-systems. (The example given
in [2, p. 297, and cited in the remarks preceding Proposition 4.1 suffices.)

The following result can be proved using the radical splitting theorem
for Lie triple systems [3, Theorem 2.217 in the same way as its analogue [6,
Theorem 4] for Malcev algebras is proved.
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ProrosiTioN 4.2. A Lie triple system T over a field of characteristic zero
18 an (Ay)-system for k>3 iff either T is trivial or T is reductive (i.e. T is a
direct sum of the center C and the semisimple ideal [ T, T, T]) and is such that
[T, T, T] contains no distinct elements x, y with D (x, y)*=0.

We note that if 7 is a Lie triple system over a field of characteristic
zero and {D(x, y)}. ,er does not contain any nilpotent elements, then T is an
(4..)-system and it is reductive.
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