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0. Introduction. Non-null distributions of some statistics in multivariate
analysis have been expressed by series of zonal polynomials due to James
Q19], especially in terms of hypergeometric functions of matrix argument
(Herz [_1V\> Constantine [_6J and James C21J). Such examples have been
summarized in James Q21], C22]. However the exact distributions of many
test statistics are not yet available for the general values of parameters, and
the almost all results obtained in some special cases are very complicated.
Therefore, the asymptotic approximations for the distributions are very
important.
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In this paper asymptotic expansions of the distributions of test statis-
tics in multivariate analysis are obtained by inverting asymptotic formulas
of the characteristic functions or the moment generating functions expressed
in terms of the hypergeometric functions with matrix argument. Based on
our formulas, an atempt is also made to compare the powers of (i) likelihood
ratio ( = LR) criterion, (ii) Hotelling's criterion, and (iii) Pillai's criterion for
a multivariate linear hypothesis (Wilks [42], Hotelling [13] and Lawley [24],
Pillai [28]). Some statistics have been already treated by our method of
asymptotic expansions. They are the generalized variance in Fujikoshi [9]
and the LR criteria in multivariate analysis in Sugiura and Fujikoshi [39]
and Sugiura [40].

We showed that formulas for weighted sums of zonal polynomials played
an important role in our method. To extend the usefulness of our method,
additional formulas are required. In part I we derive new formulas for
weighted sums of zonal polynomials and the generalized Laguerre poly-
nomials (due to Constantine [7]), and also formulas for Laplace and inverse
Laplace transforms of some functions of matrix argument, which yield the
asymptotic expressions of the characteristic functions.

Part II deals with the multivariate linear hypothesis. For the Pillai's
criterion, certain approximations have been suggested in the null case by
Pillai [27], Pillai and Mijares [29], and the limiting distribution has been
investigated by Ogawa [26]. In Section 5 we obtain asymptotic expansions
of the distributions of the Pillai's criterion both under hypothesis and alterna-
tives up to order 7V~2, where iV" denotes the sample size, by using the formulas
for weighted sums of zonal polynomials given in Section 2. The tables of
the upper 5 and \% points of the criterion based on our asymptotic expres-
sions are given in Appendix III. Asymptotic expansion of the distribution
of the Hotelling's T\ statistic has been investigated by Ito [15], [16] and
Siotani [37], [38]. Recently Siotani [38] has extended his result in the non-
null case up to order N~2. In Section 6 we give two other methods for obtain-
ing his formula, using the results due to Hsu [14] and Constantine [7],
respectively. The numerical comparisons among the powers of three test
criteria ((i), (ii), (iii)) are made in Section 7. We note that the observations
made by Pillai and Jayachandran [30] in the case of p { — dimension of vari-
a t e s ) ^ are also valid forp = 3, when the sample size is moderately large.

In Part III, we investigate asymptotic non-null distributions of the
Pillai's criterion and the Hotelling's criterion for testing the hypothesis of
independence between two sets of variates under sequence of alternatives
converging to the null hypothesis with rate of convergence iV"~7(7\>0). This
sequence of alternatives has been considered in testing problems for covari-
ance matrix by Sugiura [40]. By utilizing a close relationship between the
tests of the multivariate linear hypothesis and the hypothesis of independ-
ence between two sets of variates, we derive asymptotic expressions of the
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distributions of the Pillai's criterion and the Hotelling's criterion for this
problem in the case of r = l in Sections 8 and 9, respectively.

The distributions of the determinant and the trace of a non-ncentral
Wishart matrix have been studied by Bagai [4], Hayakawa [10], etc. How-
ever, the exact distributions which they have obtained in some special cases
are too complicated for numerical computation. In Sections 10 and 11 we
investigate asymptotic distributions of the statistics for large n ( = degrees
of freedom of the non-central Wishart matrix) under the assumption that
the non-centrality matrix Ω = n8Θ(δ'>0) and Θ does not depend on n. In
Fujikoshi Q9] we obtained an asymptotic expansion of the determinant of
the non-central Wishart matrix in the case that Ω is a fixed constant matrix,
i. e., in the case of δ~0, by using Lemma 2 in Section 2. In the same way
we can derive it in the case of δ = -j- up to order n"~2 in Section 10. In Sec-
tion 11, by using the explicit expression of the characteristic function of the
non-central Wishart matrix due to Anderson [1] we obtain asymptotic ex-
pansions of the distributions of the trace of the non-central Wishart matrix

__ 3

up to order n 2, when δ = 0 and 1, without using the formulas in part I. In
Section 12 we obtain asymptotic expansions of the non-null distribution of
the modified LR criterion for equality of mean vectors and covariance mat-
rices under the restricted alternatives such as equality of all the covariance
matrices.

PART I. SOME USEFUL FORMULAS

1. Preliminaries. We list some necessary results on zonal polynomials and
others which will be used frequently in this paper. The hypergeometric
function of matrix argument is defined by Constantine [6] as

(1.1) rFs(au- -9 ar; bu ->bs;Z)

= Σ Σ {(aι)κ -(ar)Aί>ι)« --(bs)κ}Cκ(Z)/kl,

where au -,ar, bι,.-,bs are real or complex constants, κ= {ku &2, , kp) deno-
tes a part i t ion of the integer k such t h a t kλ + k2H \-kp = k and & i > & 2 > ••

F u r t h e r

(1.2) (α).= Π (α-(α
a=ι

and the symbol Σ denotes summing over all partitions for fixed k. Also,

the function CK(Z) is called a zonal polynomial of thepxp symmetric matrix
Z corresponding to K and it is a symmetric homogeneous polynomial of degree
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k in the p characteristic roots of Z. The detailed discussion may be found
in Constantine [6] and James [19], [20], [21]. Tables for zonal polynomials
have been given by James [21] up to order 6. For & = 1, 2, 3 and 4,

(1.3)

C(2)(Z)

' 3

) = trZ,

1 2

C(3)(Z) 1 1

1
15

2

8

-18

10

){Z)

-(21

105

1

20

14

6

9 9

, 5 -15

12 12 32 48

100 -40 80 -160

28 98 -112 -28

(tr Z) 2

t r Z 2 /'

' (tr Z)3 -

; (tr Z)tr Z 2 j ,

"'•• t r Z 3 ί

(tr Z) 4

(tr Z)2tr Z 2

(tr Z 2 ) 2

56 -56 -112 -112 224

14 -84 42 112 -84

(tr Z)tr Z 3

tr Z4

The fundamental property of zonal polynomials is the average over the or-
thogonal group O(p), given by

(1.4)
O(P)

where / is the identity matrix of order p and dju (H) is the invariant measure
on the orthogonal group O(p), so normalized that the measure of the whole
group is unity. Special cases of the hypergeometric function of matrix argu-
ment are

(1.5)
0F 0(Z)=Σ l = etr Z,

(1.6) z) = Σ Σ
k )

where the last formula (1.6) holds when all the absolute values of the charac-
teristic roots of Z are less than one. The following recurrence relations for
the hypergeometric function defined in (1.1) are due to Constantine [6] :

(1.7)
S>Ό

{etr(-S)}\S\a-(p+1)l\Fs(au...,ar;bu...,bs;ST)dS
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= r + iFs(aiy, ar, a; δ i , , bs; T ) ,

( 1 8 ) Wβ^~\^--xa>o{etϊ T)\T\-KFs(au-, aribu-, bs; T^S)dT

= r^7s + i ( « i 5 5 a,r\ δ i , , ό s , b\ 5 ) ,

which may be regarded a generalization of Laplace and inverse Laplace
transformation. The integral of the last formula (1.8) is taken over all
T(p xp) = Xo + ίY for fixed positive definite matrix Xo and arbitrary real sym-
metric matrix Y. The function Γp(t) is defined by

(1.9) Γ,(ί) = τr^" 1 ) / 4 Π Γ( ί-(α- l )/2) .

The following formulas for zonal polynomials are also obtained by Constan-
tine [6].

(1.10) (
J S>0

where the first formula (1.10) holds for any symmetric matrix Z whose real
part (=3t(Z)) is positive definite and any symmetric matrix T for 3l(ί)>
(/> —1)/2. The last formula (1.11) holds for any positive definite matrix 5.

The Laguerre polynomial of matrix argument is defined by Constantine
as follows:

( U 2 )

oίΊ(r+4-

where γ>—l. He obtained the following generating function for Laguerre
polynomials:

(1.13) Σ ΣLl(Ω)Cκ(Z)/{k\CXI)} = \I-Z\-^(p+1)<2

- Σ Σcχ-Ώ)cχzu-zyι)/{k\cχi)}
k = 0 (Ό

for any symmetric Z such that all the absolute values of the characteristic
roots of Z are less than one.

We shall also use the following asymptotic formula for the gamma func-
tion (c. f. Anderson [2, p. 204]):
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(1.14) log Γ(* + h) = log V 2T + (x + h-4-)log x-x-Σ —
r = l 7

which holds for large | # | and fixed h with Bernoulli polynomial Br(h) of
degree r. For r — 2 and 3,

(1.15) B2(h) = h2

2. Formulas for zonal polynomials. We shall first prove the following
lemma which will be useful in deriving some formulas for weighted sums of
zonal polynomials.

LEMMA 1. Let CK(Z) be a zonal polynomial corresponding to the partition
κ={ku &2, > kp} of k withkι + k2-\ hkp = k and &i>& 2> ••>&£>(). Putting

(2.1)

= Σ ka

ι

then the following differential relations hold:

(2.2) ai (ic)Cκ ( Z ) = t r (Λd)2 Cκ (Σ)

(2.3)
Σ=Λ

where d denote the matrix of differential operators having
00r s

as its (r, 5) element for a symmetric matrix Σ — ((7rs) with Kronecker's delta
δrs and A — diag (λu λ2y^ λp) is a diagonal matrix with p characteristic roots
of Z as its non-zero elements.

PROOF. It is sufficient to prove that the formulas (2.2) and (2.3) hold for
any positive definite matrix Z. From (1.10) we have the following asympto-
tic formula for large n with any positive definite matrix Z:

(2.4) { Γ ^ ^ l Z l t p J ^ {etr(-Z-15)> \ S\^-p^l2Cκ^S^j dS
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The left hand side can be expanded asymptotically as follows, by using the
method of a matrix of differential operators (see Ito [15], James [23], Siotani
[37], Sugiura and Fujikoshi [39], etc. for the method.)

(2.5)

Comparing the coefficients of each term of orders n'1 and n~2 in the last
equations of (2.4) and (2.5), we see that the formulas (2.2) and (2.3) are true.

The following seven lemmas are fundamental for the asymptotic expan-
sions. Lemma 2 will be used in Sections 10 and 12. Lemma 3 will be used
in derivation of the Pillai's criteria for multivariate linear hypothesis and
independence.

LEMMA 2 (Sugiura and Fujikoshi [39]). The following identities hold:

(2.6) ΣΣCK (Z)/(k -1)1 = (tr zyetr Z,

(2.7) ΣΣCK (Z)m (jc)/k \ = (trZ2) etr Z,

(2.8) Σ Σ^(Z)α!(Λ:)/(A;-l)!={2trZ2 + (tr Z) tr Z2}etr Z,

(2.9) Σ Σ Cκ(Z)a1(fc)2/k != {(tr Z)2-f- tr Z 2 + 4tr Z 3 + (tr Z2)2} etr Z,

(2.10) Σ ΣCκ(Z)a2(/c)/kl={tτ Z + 3 ( t r Z)2 + 3tr Z 2 + 4 t r Z3}etr Z,

= {12tr Z4 +8(tr Z 2)tr Z 3 + (tr Z2)3}etr Z

where a3(fc) is defined by

(2.12) a3(ιc)=Σka{2ki-4:
k = l

PROOF. For a proof of the formulas (2.6)^(2.10), see Fujikoshi [9],
Sugiura and Fujikoshi [39]. In the following we shall prove the formula
(2.11). From (1.6) we can write

(2.13) \I-n-1Z\-»=Σ Σ(n)κCκ(Z)/{nkk*}
k (
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= Σ Σ \l + (2n)-1a1(ιc)+(24n2y1{Sa1(κ)2-a2(κ
k=o (*) L

which holds for any symmetric matrix Z with large n. The left hand side
can be expanded asymptotically as in (2.15) by the well known formula, (2.14).

(2.14) - log I I-n~ιZ \ = Σa'

(2.15) \I-n-1Z\-n

= (etr Z)Γl + (2«)- 1 t rZ 2 + (24re2)"1{8tr Z3 + 3(tr Z2)2}

+ (48re3)"1 {12tr Z4+ 8(tr Z 2 )tr Z 3 + (tr Z2)3}

Comparing the coefficients of each term of order n~3 in (2.13) and (2.15), we
obtain the formula (2.11).

LEMMA 3. Let Z be any symmetric matrix such that all the absolute values
of the characteristic roots are less than one and put F=Z(I—Z)~1. Then the
following identities hold:

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

k = 2 (*)

oo

/ , / | V^A^/ίV
& = 0 (*)

oo

+ b(tr V)3

+ 4(tr V)3

+ 2(262 + δ

?)/(A-2)! =

?K (*)/*! =

?)α1(/c)/(A —

+ (2δ2

 + δ +

r ) α i W

2 A h

= b{

4
•D!

2)(

=τ

δ(tr vy+

{(tr Γ)2 +

= {{2(tr

tr Γ ) t r F 2

{2(26 + 1)

+12(26+ l)(trΓ)tr Γ2 + 8

• + 2)(tr Γ)5

+ 8(2i + l)(tr F)tr Γ

! t r

tr F2}

(26 + 1

F) 2 + 2

: + 2(2ό

(tr Vf

/OΪ2 _|_ ς

+ 5)tr

1/

) t i

:(2

+ :

; +

!δ-

-δ

F 4

• F 2 }

!ό + l

L)tr

2(26

l-2)ti

+ 2)(

-b

|/-z|-6,

V*}\I-Z\

+ 3)tr F^

c F 3 + δ(tr

tr F 2 ) 2

}\i-z\-\

-b
j

F) 4
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(2.21) Σ Σ ( a C ( 2 ) « 2 W A ! = | { 2 t r F + 3(2ό + l)(tr V)2

k=0 («) ώ

+ 3(2ό + 3)tr Γ2 + 2(tr Γ)3 + 6(2ό + l)(tr V)tτ V2

+ 4(2ό2 + 3ό + 2)tr V3}\I-Z\'K

PROOF. In (1.6) replacing Z by xZ, we have

(2.22) Σ Σ χk(b),CXZ)/k \ = \I-xZ\ -»,

which holds for any x such that | x | < 1 . Differentiating (2.22) with respect

to x by -^- I U(x) I = I U(x) I tr U(χYι ~- U(x), we have the formulas (2.16)
(s X (/ X

and (2.17). Multiplying both sides of (2.2) by (b)κ/k\ and using the formula
(1.6), we obtain

(2.23) Σ Σ(b)κCκ(Z)aι(/c)/k\=tr(Λd)2\I-Σ\ -b

After some calculations, we see that the right hand side of (2.23) is equal to
the right hand side of (2.18) (see Appendix I). The formula (2.19) follows
immediately by replacing Z by xZ in (2.18) and differentiating it with re-
spect to x. Multiplying both sides of (2.2) by (b)κaι(fc)/kl and using the
third formula (2.18), we obtain

(2.24) Σ Σ (b)j
k = 0 (*)

whose right hand side is reduced to the formula (2.20) (see Appendix I).
Similarly multiplying both sides of (2.3) by (b)κ/k\ and using the formula
(1.6), we obtain

(2.25) Σ Σ(b)κCκ{Z)
k (

Using the formulas (A. 21) and (A. 22) shown in Appendix I, we can write
the right hand side of (2.25) as follows:

| | / Z | - * { 8 ( t r F) 3 + 24(2ό + l)(tr F)tr F 2 + 16(2ό2 + 3ό + 2)ίr F3| - | /-Z |-*{8(t r F) 3 + 24(2ό + l)(tr F)tr F 2 + 16(2ό2 + 3ό + 2)ίr F

+ 3δ(tr Γ)4 + 6(2ό2 + & + 2)(tr Γ)2tr Γ2 + 3(2ό + l)(2ό2 + ό + 2)(tr V2)2



82 Yasunori FUJIKOSHI

+ 24(2δ + l)(tr Γ)tr V3 + 6(8b2 + l0b + 5)tr V4}.

Combining this result with (2.16) and (2.20), we have the desired formula
(2.21).

3. Formulas for Laplace and inverse Laplace transforms of some functions
of matrix argument. We will use the following abbreviated notations:

i s>o

for any symmetric matrix Z whose real part (= Xo) is positive definite, and

\6.Δ) l |_y(Z , SJ, (y)_\

— γ^(3\ \ (p\r 7}\7\~~ϊ~f(7~1 Ω Θ) dZ
— P \ O / /O '\ύ(ύ+l)l2 \ VCUL ^ ) I ^ I J V^ 5 u<ί) ^Z " ' ^

\ Δ / (^Z7Γi;^VjK Jgϊ(Z)=xo>o

In (3.1) and (3.2), Ω and 0 are any symmetric matrices and q>p — l. The
q_

first integral (3.1) can be regarded as the Laplace transform of \Z\ 21 5| ^-^~1)/2

•/(5, i?, ©VΓ^(-|-) and also as the expectation of the statistic /(S, Ω, Θ) with
\ Δ /

respect to the Wishart distribution Wp(q, yZ" 1 ) on S. The integral (3.2) is
related to inverse Laplace transform. The formulas L [1] = 1 and I [1]
= 1 (Herz [11]) will be frequently used in this paper. The formula (1.10)
can be written in our notations as
(3.3) I

Let us consider the integral I \jC£ΩZ-λy\. Put g(Ω) = I [CΛώZ"1)]. From

(1.11) we have g(I) = Cκ(I)/(-^-j g(Ω) is clearly a symmetric function of

Ω. Hence, by making the transformation Ω-+HΩH and integrating H over

O(p) and using (1.4), we obtain g(Ω) = tg(I)/Cκ(I)ΊCκ(Ω) = Cκ(Ω)/(^-]

Therefore we can write

(3.4) I [(

which holds for any symmetric matrix Ω.
By inverting the linear relationship (1.3), we have

(3.5) trZ=C α ) (Z),

1 (2 2)

trZ 2

C(2)(Z)



Asymptotic Expansions of the Distributions of Test Statistics in Multivariate Analysis 83

' (tr Z) 3

(tr Z ) t r Z 2

ί tr Z 3

(tr Z) 4

(tr Z) 2 t r Z 2

(tr Z 2 ) 2

(tr Z) t r Z3

tr Z 4 1

1
12

1
~ 48

' 48

48

48

48

48

12 12 12

12 2 - 6

1 2 - 3 3,

C(3)(Z) ^

C(21)

C ( l 3 >

48 48 48 48 i

20 8 - 4 -24

- 8 28 - 8 12

6 -12 - 3 12

- 8 - 2 4 - 6 ,

(Z) 5

'C (4)(Z) -

C(31)(Z)

C(2»)(Z)

C(212)(Z)

c
From the formulas (3.3), (3.4) and (3.5) we can easily get the following Lem-
mas 4 and 5, which will be used for derivation of the distribution of the
Hotelling's criterion in Section 6. Lemma 5 will also be used in the case of
Pillai's criteria in Sections 5 and 8.

LEMMA 4. The following identities hold:

(3.6)

(3.7)

(3.8)

L[tr

(3.9)

fL[(trβ5)3]

L[(tri25)tr(i25)2]

LQtr(i25)3]

L[(tr

L[(tr

L[{tr(J25)2}2]

ί?2

— 1 fγ O7-1

—2"tr at, ,

q 2

1 q+1

6?

tr(ΩZ

8

- 1 ) 2

(tr J2Z"1)3

(tr O7-lUWO7-^2

L[(tr

L[tr(i25)4]

16

12q2
12,

8( 9

2 + 9 + 2)

q S(q2

1

48

24(g + l)

(tr ώZ" 1) 4

(tr ΩZ-χ)Hΐ{ΩZ'ιf

(tr
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LEMMA 5. The following identities hold:

(3.10)

(3.11)

(3.12) d2

= tr Ω,

I [(tr

f I [ ( t r ΩZ-yj

I [(tr i2Z"1)tr(i2Z-1)2]

(tr Ωf

tvΩ2 V

16 ί (tr

(tr

tr Ω3

(3.13) d3

ί I [(tr

I [{tr

I[tr(i2Z"x)4]

+ 5q +18) -

4q(q

-48(5 g + 6) (tr ΩY

(tr β) 2 tr Ω2

(tr ώ2)2

(tr i2) tr Ω3

tr i24

where dj(i = l, 2, 3) are given by

(3.14) dι = (q
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For the case of the Hotelling's criterion for independence, we need the
following Lemmas 6 and 7, which generalize some results in the Lemmas 4
and 5.

LEMMA 6. The following identities hold:

(3.15)

(3.16)

ί L[(tr J2S)tr ΘSJ
_ 1

L[tr

L[(tr

L[tr (i2S)2tr ΘSJ

L[(tr ΩS)tr ΩSΘS^}

LCtr(i2S)2Θ5]

(tr

tr

q2 2q

q q(q + l

(tr

(tr

ΘZ' 1

(3.17)

+ 8(tr

+ 4( ? + l)(tr i2Z^1@Z

+ 8( ? + l)(tr θZ~ι)tτ

+ 4( ? + 3)tr(i2Z-16>Z"1)2}.

PROOF. Replacing Ω by Ω + n"1Θ in (3.7) and (3.8) and comparing the
coefficients of each term of order n'1 in their asymptotic expansions, we ob-
tain (3.15), and the first and the last formulas of (3.16), as well as the follow-
ing identity:

(3.18) L[tr(J2S)2tr ΩS)tr ' 1
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From the second identity in (3.7), we note that (3.19) holds for large n such

that the real part of Z — —Θ is positive definite.
n

(3.19)

1

4 L r ^ —J- itτΩlZ- Z-
1

n

Equating the coefficients of each term of order n ι on both sides of the above
identity, we obtain the formula for L [tr (J2S)2 tr ΘSJ. The formula for
L [(tr ΩS) tr ΩSΘSJ is an immediate consequence of this result and (3.18).
Now we will prove the last formula (3.17). Let us consider the following
identity for large n:

(3.20)

[etr {-(Z+Ω- Ω*—Rΰh}S3\S \ «->-»* tr(ΘS)2 dS~\ dR.
s>o

Applying the last formula of (3.7) to the second integral in the right hand
side of the above identity, and expanding it in a Taylor series with respect

2
to — R about / as in (2.5), we can write it as follows:

n

| 1 2 1 2 ί J tr %

The calculation of the operation d in the above expression is given in Appen-
dix II, which shows that the coefficient of order n'1 is equal to the right hand
side of (3.17). Noting that the reductions

(3.21) {etr (-£S)}{r/4r)} [ {etr(-Λ)} |Λ|(n-*-1)/2
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= l + n-1 tr (ΩS)2 + O(n~2),

hold for large n, the left hand side of (3.20) can be expanded as follows:

L [tr (ΘSyj + n-1 L [tr (£S)2tr (ΘS)2J + O(n-
2).

Therefore we see that the formula (3.17) is true.

LEMMA 7. The following identities hold:

(3.22) dλ

IC(tr ΰZ'^tT ΘZ'^

(3.23) d,

{I [tr

(I[(tr

I[tr(i2Z-x)2tr

I[(tr

q + 1 - 2

- 1 Q

(tr Ω)tτ &

tr ΩΘ

ΩZ~1ΘZ'1~]

- ( ? +2)

16 (tr i2)2tr Θ

tr i22(tr (9)

(tr ώ)tr i2©

tr i22@

where d± and d2 are given by (3.14).
PROOF. The formula (3.22) is proved from (3.11) by the same method as

in the proof of the formula (3.15). Also from (3.12) we have the first and
the last formulas of (3.23) and the following identity;

ΩZ~ι)tτ(3.24)

+ 2(q2 + 2q + 4)(tr Ω)ixθ- 12q tr Ω2Θ.

To prove the second and the third identities in (3.23), we use the following
asymptotic formula for large n:

(3.25) Γ l q \
Γ^Γ27'

(etrZ)|Z|
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nq

tr ΘZ-^ + Oin-2) (using (2.14)).

2
Making the transformation Z-+T=Z+ — ©, we can expand the left hand

nq
side of (3.25) as follows:
(3.26)

From (3.25) and the result obtained by applying the formulas for I\jtr(ΩZ~1)2']
in (3.11) and I[tτ(ΩZ-1)2ΘZ-1Ί in (3.23) to the coefficient of order n~ι in
(3.26), we obtain the formula for l[tr(ΩZ-ι)2tr ©Z"1]. The formula for
I[(tr ΩZ'ι)tr ΩZ^ΘZ'1^ is immediately obtained from this result and (3.24).
4. Formulas for Laguerre polynomials. In this section we derive the for-
mulas similar to Lemma 2 for Laguerre polynomials, which are used only for
the second derivation of an asymptotic expansion of the non-null distribu-
tion of the Hotelling's criterion for multivariate linear hypothesis.

Putting τ = (q— p —1)/2 and Z—xIp in (1.13), we have

(4.1) Σ ΣxkL{

κ

q-p-1)

1 — X

for I x I <1 . Moreover, we prove the following lemma:

LEMMA 8. Let x be any number such that \ x \ < 1 , and put γ = (q—p—ΐ)/2
with γ> — 1. Then the following identities hold:

(4.2) Σ Σ x k { ) / { ) { ) ^ \ ψ
k=i (*) 1 — x { Δ 1 — x

(4.3)

f , Ox tr Ω / t r Ω\2\ ^ ( x \
-(pq + 2)- + ( Ί l e t r ( - - ϊ Ωh11 1 — χ \l — x/\ \ 1 — x /

(4.4) ΣΣ/Ll{Ω)a1^)/k\^{l^xY^2{J^

tr Ω tr

+

(4.5)
- x
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# / t r Ω \ 2 , ίo . f pq , Λ Λ; ) t r Ω
l — x\\ — xj { \ 2 / I — Λ ; J ( 1 — Λ;

Ί μ 7 " d - , ) 3 JetIΛ i-Λ

(4.6) ΣoΣ^£Ufi)αi(θVA! = (l"^)-^ / 2(- ϊ^)[^^^

tΓ

X

2{ t r i?2

+ 4 ( 5 g r + 8 ) ) ( \ T - 2 ( j σ + g + l ) ( ) ^Ί \y~ N T 2 ( j σ + g + l ) ( Ί

1 — xJ i (1 —Λ;) \ 1 — Λ;

2x \ tr^2

(4.7)
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PROOF. Differentiation of (4.1) with respect to x yields (4.2) and (4.3).
Similarly the formula (4.5) follows from (4.4). In the following, we prove
the formulas (4.4), (4.6) and (4.7). It is sufficient to show that these for-
mulas are true for any positive semidefinite matrix Ω. Noting that LΎ

K(Ω)
is expressed as follows by (1.8) and (1.12)

(4.8) Z,ϊCfi) = (etr j2)ILβ[

with an abbreviated notation

(4.9) IL f i[{ }] = -

{etτ-(I +Ω2Z-1ΩhR}\R\(9~p~1)l2{ }dR\dZ9)S>0

and using Lemma 2, we obtain the following identities:

OO

(4.10) Σ Σ*kLl(ώ)aλ(κ)/k! = (etr Ω)x2YLΩ[(tr R2)etr xRΓ],

(4.11) Σ Σ xkLI(Ω)ax(ιc)2/kl= (etr i2)x2ILβ[{(tr R)2+ tr R2

Φ4rtr K34-r2(ϊr R2V\PΪV rffΊ
\^ *±Λ bJL J.\. r̂  Λ/ yUJ. J.X. J j C l / i Λ/JL\ I ,

OO

+ Sx tr R2 + Ax2 tr R3} etr xR~].

Using Lemmas 4 and 5, we simplify each of the right hand sides of above
expressions. For example, by Lemma 4 the right hand side of (4.10) can be
written as follows:

(4.10) \x

with I[{ }] defined by (3.2). Making the transformation Z->Z+(l-χ)~ιΩ,
we can write it as follows:

(4.13) f α - - ) ^

t r ΩZ~l . / t r ΩZ~ι\2

1 — x V 1 — x / (1 — x)

Applying Lemma 5 to the above expression, we obtain the right hand side of
(4.4). Similarly the right hand sides of (4.11) and (4.12) also imply (4.6) and
(4.7), respectively.
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PART II. MULTIVARIATE LINEAR HYPOTHESIS

5. Asymptotic expansions of the distributions of the Pillai's criterion

5.1. The moment generating functions of the criterion. The multivariate
linear hypothesis model has been discussed by many authors (e.g., Anderson
[2], Das Gupta, Anderson and Mudholkar [8], Roy [35], Seber [36], etc.).
The following canonical form is well known: Let each column vector of pxN
matrix X' = (X[(pXq), X'2(px(N-s)\ X'3(px(s-q))) with q<s be distribut-
ed independently according to a />-variate normal distribution with the com-
mon covariance matrix Σ and expectations given by

= M(qxp), E[X2] = 0((JV-s) xP\ E[X3] = Γ((s- ? ) xp).

Then multivariate linear hypothesis is defined by testing the hypothesis

(5.1) H: M= 0 against alternative K: MφO,

where Γ is a matrix of nuisance parameters. The Pillai's criterion (Pillai
[28]) for this problem is based on the statistic

(5.2) V=mtr Sk(Sk + Sβy\

where m = N—s + q = n + q9 Se = X'2 X2 and Sh = X{Xi are the matrices of
sums of squares and products due to error and due to the hypothesis, respec-
tively. The matrix Se has the Wishart distribution Wp(n, Σ). The matrix
Sh has the non-central Wishart distribution Wp(q, Σ, Ω), where the matrix

of non-centrality parameters is given by Ω = -j~Σ *M' MΣ 2.

We can easily see that in the case of q^>p under the hypothesis H the

matrix 5 = (5Λ + 5e)
 2Sh(Sh

JτSe)
 2 has the following multivariate beta dis-

tribution

(5.3) Γ,(^±i) \rp(±yp(±.)} \B\«->-w\I-B\«->-w dB.

Therefore, by James [21] the moment generating fonction of V under the
hypothesis H with q^>p is expressed as follows:

(5.4) MH(t)=ι

By using a well known fact that the density function of the characteristic
roots of Sh S71, in the degenerate case of q<p, is obtained from its density
function in the case of p<Lq by making the substitutions (c.f., Anderson [2,
p. 318], Roy [36, p. 46])
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(5.5) q-+p, n-^n + q-p, p^q.

P m .We can write the MH(t) in the degenerate case as λFι ί ̂ - -̂ - mtlq). It is
\ Lt Li /

easily seen that this expression is equal to the expression (5.4) by the formula

Cκ(Iq) = d{ic)(-^~) of Constantine [6], which vanishes when the number of
parts in a partition of k is larger than q. Therefore the formula (5.4) also
holds for q < p.

Moreover, Pillai [31] has obtained the following moment generating
function of V under alternative K with p<ίq, which covers the formula (5.4)
as a special case:

(5.6) Λftr(O = {etr C- [ { ^ f ) } ^

where I [ ] is defined by (3.2) with respect to T. We note that if q <p9 V
has the moment generating function obtained from (5.6) by making the

substitutions (5.5) and putting Ω = ^

5.2. Approximate null distribution. First we derive an asymptotic expansion
of the null distribution of the Pillai's criterion V, which is also derived as
a special case of the general result in the Section 5.3. The moment generat-
ing function MH(t) can be written, by the definition (1.1), as follows:

From (2.4) we can write MH(t) as

(5 8) figl*'!1-^

By Lemma 3, we simplify the above expression, and obtain

(5.9) Mff(ί) = ( l - 2 ί ) - w
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which holds for 11 | < -ί where the coefficients ha(a = 0,1, , 4) are given by

(5.10).

(5.10) Λo =

Since (1 —2ί)~^ is the moment generating function of the x2 distribution with
/ degrees of freedom, %2, we obtain the following theorem:

THEOREM 5.1. The null distribution of the Pillai's criterion (5.2) for
multivariate linear hypothesis can be approximated asymptotically up to order
m~2 by the following distribution:

(5.11) PH(V< Z) = P(x} <*)-^

-2P(x}+2 < z) + P(x}+A < z)}

where m = N—s + q, f — pq and the coefficients Λα(α = 0, 1,.. ,4) are given by
(5.10).

5.3. Approximate non-null distribution. In this section we derive the asym-
ptotic expansion of the Pillai's criterion V given by (5.2) under the alternative
K, by expanding the moment generating function (5.6). From (2.4) and
Lemma 3 in Section 2 we have

(5.12)
2 ' 2 '

1 2 L -i
- 1

m
1

uJS, T) + ̂ 2U2(S, T) + O(m)f(~S, T) + O(m-3)f(*-S, T)\ ,

which holds for sufficiently small 11 \ and large m, where ΌΊ (—5, T) and
\m J

U2 (-S, T) are given by (5.13).
\771

(5.13) E/i(—S, Γ) = (tr W)2 + (q + l)tr W\
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U2 S, Γ) = wf

+ 96(? + l)(tr

+ 6(^2 + ^ + 4)(tr r ) 2 t r

+ 48(? + l)(tr r ) t r r 3

(frsώτ-

W\

with W=(2tI+Sfr—sώτ-Λ \(l-2t)I-Ω^SΩ^T-ι\ , and/(—S, ϊΛ is
\ 771 / I 7Π j \77l /

a remaider term. By using the above formula and the same method as
in the expansion of the left hand side of (2.4), the following asymptotic
identity is obtained:

(5.14) {βtr(-S)} I Sl' dS

I, T)-\T-ψΩ\2

•tr d2\ T-

•tr d2\ T-φΩ*ΣΩ*\'

J+M^qU2(l>τ)~^qlτ-
51, T)

4/ -1

n-φΩ[M~(tr i --^tr

.-•)].
where φ = (1 —2*)"1 is used for abbreviation. Now we have to carry out the
operations d appeared in the right hand side of the above expression, which
is given in Appendix II. Inserting the formulas (A, 37), (A, 38), (A, 39) and
(A, 47) in Appendix II to the right hand side of (5.14) and using the trans-
formation T—*Z= T—(l — 2t)~ιΩ we can express Mκ(t) as follows:

(5.15)

\φ-l)tr ΩZ~ι ΩZ'1)2

ΩZ'1)' 1 ) 2

{φ2-I)
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where the notation IQ "] is denned by (3.2) and the coefficients γa(u = 0,
1, ,6) are given, with ha in (5.10), by (5.16).

(5.16) γo=pΣ {-DaΦaha,
α 0

φ'] .

By Lemma 5 in Section 3, we finally obtain the following asymptotic formula
for the moment generating function of V:
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(5.17) M (̂ί) = (l-2ί)- ί ? ; 2{etr( ϊ^β)J [ l - A-

i2 + 4(l-2ί)" 4tr

with the coefficients Aa(Ω) (a = 2, 3, , 8) given by (5.18).

(5.18) A2(Ω) = pqh2-2Aitr Ω-24pq(p + q + ΐ)tr Ω2,

Λ3(Ω)= -pqh3 + 4h2 tr i2 + 48 {^2 + (̂ r2 + q + 4)/? + 4(g + l)}tr i?2

+ 128tr

/ 2 2 9 - l }( t r i?)2

i3)tr i

-384tr i?3,

^2 + 2^ + 7}(tr Ω)2 + 24 {qp2 + (

+ 4(5? + 8)}tr £ 2 -

-96(tr J22)2,

r ΰ)tτ i?2 + 384tr Ω3,

i?2)2

Noting that the expression (5.17) is a symmetric function with respect to p
and q, we can easily see that the asymptotic expansion of Mκ(t) in the generate
case is also given by (5.17). By inverting this moment generating function
using the fact that (l — 2t)~fl2exp{2tδ2/(l — 2t)} is the moment generating
function of the non-central x2 distribution with / degrees of freedom and
non centrality parameter δ2, we obtain the following theorem:

THEOREM 5.2. The non-null distribution of the Pillaί's criterion (5.2) for
multivariate linear hypothesis can be approximated asymptotically up to order
m~2 by

(5.19) Pκ( V< z) = P(XJ (δ2) <z)- ±[pq (p+q + 1) P(XJ (δ2) < z)
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Ω2-P(x}+8(δ2)<z)^

z)-pqhιP(x2

f+2(δ2)<z)+ΣAa(Ω)P(x}+2a(δ2)<z)

where m = N—s + q, f* = pq, δ2 — tr Ω = -ί tr Σ~ιM'M and the coefficients ha(a

= 0, 1, , 4) cwwZ ^4α(i2) (α = 2,3, , 8) aregivenby (5.10) <md (5.18),respectively.
The non-central x2-variate with f degrees of freedom and non-centrality par-
ameter δ2 is denoted by xj(δ2).

If we specialize Ω to the null matrix, we can obtain the asymptotic ex-
pansion (5.11) of the null distribution of the Pillai's criterion (5.2).
5.4. Numerical accuracy of the approximations. When p = 2, Pillai and
Jayachandran [30] have given the exact 5 and \% points of tr Sh(Sh + Se)'1

and its powers under certain alternatives for some values of q and n. Hence
it is possible to put our results (5.11) and (5.19) to the test of a numerical
comparison. From (5.11) the approximate 100α^ point of the Pillai's criteri-
on V are obtained by solving the equation

(5.20) Q(z)=a,

where Q(z) is given by

(5.21) Q(z) - P(xj > z)-Pq(4my1(p + q + l) {P(xj>z)-2P(x}+2 > z)

(-lThaP(x}+2a > z)} ,

with the notations defined in Theorem 5.1. To solve the equation (5.20), we
use the Newton's iterative method. It may be remarked that the 100a %
point of the Pillai's criterion V can also be expressed in terms of the 100a96
point u of the x2 distribution with f = pq degrees of freedom, by applying
the general inverse expansion formula of Hill and Davis [12] to the asympto-
tic null distribution of V given by (5.11), giving

(p + q + 1)2

16m2(/+2)2
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TABLE 1.

n

13

33

63

Comparison of approximations to the upper 5 %

q

3

7

13

3

7

13

3

7

13

points of tr Sh(Sh +

Neglecting terms of order

Oin'1) 0(n'2) 0(n-*)

0.78698

1.18424

1.49558

0.34977

0.59212

0. 84533

0.19078

0. 33835

0.51165

0.71712

1.06873

1.35214

0. 33435

0.55968

0.79386

0.18602

0. 32729

0.49181

0. 69996

1.04051

1.31479

0. 33262

0.55580

0.78622

0.18573

0. 32659

0.49020

Se)
 1 for p = 2

Exact

0.69762

1.03905

1.30525

0.33257

0.55598

0. 78628

0.18573

0.32662

0.49030

TABLE 2.

n

13

33

63

Comparison

3

7

13

3

7

13

3

7

13

of approximations to the upper 1 % points of tr Sh(Sh +

Neglecting terms of order

O(n~1) O(n~2) 0{n~z)

1.05074

1.45707

1.75545

0. 46700

0.72853

0.99221

0.25473

0.41630

0.60055

0.85894

1.18805

1.44859

0. 42472

0. 65227

0. 87953

0.24194

0.39102

0.55810

0. 83389

1.15056

1.39781

0. 42424

0.65238

0.87606

0.24206

0.39191

0.55966

Se)
 1 for p = 2

Exact

0.85427

1.18472

1.42313

0. 42557

0.65685

0.88550

0.24219

0. 39243

0.56119

0. 125

0

2

0

TABLE

ω2

. 125

1

2

5

3. Comparison

n

33

83

33

83

63

63

q

3

7

3

7

3

7

3

7

3

7

3

7

of approximations tothe powers of tr Sh(Sh + Se)
 1 for p -

Neglecting terms of order

O(n~ι) O(n~2) O(n-η

0.08634

0.09018

0. 07670

0. 07349

0.17137

0.14709

0. 15620

0. 12367

0.55171

0.41336

0.66328

0.51352

0.06942

0.06308

0.06963

0.06178

0. 13228

0.09709

0. 13964

0. 10169

0. 50766

0.34238

0.60115

0. 41007

0.06785

0.06001

0.06939

0.06131

0.12973

0.09343

0. 13924

0.10119

0.50469

0.33716

0. 59401

0.39904

= 2 and a = 0. 05

Exact

0.06788

0.06007

0.06939

0.06131

0.12992

0.09389

0. 13926

0. 10123

0.505

0.337

0.594

0.398
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Tables 1 and 2 give the upper 5 and \% points of tr Sh(ShΛ- Se)'1 for 9 = 3,
7,13 and rc = 13, 33, 63. Table 3 gives approximate powers of the Pillai's cri-
terion V for various pairs of values of the characteristic roots (ίθi, ω2) of Ω,
based on our h% points. As is shown by all three tables, the agreement
between the results derived from our formulas and the exact values in Pillai
and Jayachandran [30] (extracted from their tables 7a, 8, 10, by noting that

their notations n, m> ω{ mean by our notations 2ra + 3, 2^ + 3, -γωi9 respective-
ly) is excellent and is still excellent in the case when terms of O(m~2) are
neglected. Tables 1 and 2 also shows that the approximations to the upper
h% points are better than those of the upper \% points. It is worthwhile to
note that our asymptotic formulas (5.11) and (5.19) hold for any p, q, n such
that p < ft and without any assumption on the rank of noncentrality matrix
Ω. By using (5.21), the upper 5 and \% points were computed for values
/> = 2(1)7, ? = 2(1)12, and Λ = 25, 30, 40, 60, 80, 100, 130, 160, 200, 250, 350, 500.
These results are presented in Appendix III.

6. New derivation of an asymptotic expansion of the non-null distribution of
the Hotelling's Ύ% statistic

6.1. The characteristic function and the Laplace transform of the statistic.
The Hotelling's criterion for testing the multivariate linear hypothesis given
in (5.1) is based on the statistic Tl = n tr ShS~ι, which is called the Hotelling's
Tl statistic. The exact distribution of this statistic has been studied by
various authors, e.g. Hsu [14], Hotelling [13], Constantine [7], Pillai and
Jayachandran [30]. However the exact distribution of Tl is available only
for some particular values of/? and q or under the condition Tl<n. On the
other hand, an asymptotic expansion of the distribution has been given for
general values of the parameters py q and the non-centrality matrix Ω. An
asymptotic expansion of the null distribution of Γ§ was given by Ito [15] up
to order n~2. The non-null distribution was given by Siotani [37] and later
by Ito [16] up to order n'1. Recently Siotani [38] obtained the non-null
distribution up to order n~2. In Section 6.2 we give two other methods of
obtaining the non-null distribution up to order n~2 by using hypergeometric
function and Laguerre polynomial of matrix argument. First we shall ex-
press the characteristic function and the Laplace transform in a form con-
venient for our method.

THEOREM 6.1. Under the alternative K with p <g, the characteristic
function C(t) of the Tl statistic can be expressed as follows:

(6-1) , 5 > o
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.{etr(2ίίS)} |S| ( ί-*-1 ) / 2

0Fi(-jjr; 2ίtΩs)dS.

PROOF. From Hsu [14] and Ito [16] we can write C(t) as follows:

(6.2)
1

X'X
n

• {etr (itX'X+ <l2itDX)} dX,

p) = ( ^ y ) | - o o < a ; / y < o o , i = l, 2,..., ? , / = l, 2,..., jo}

= (Dz, 0(px (q — p)) and y D = diag(α)i, ft)2, , «)/>) is a diagonal matrix with

jo characteristic roots ω{ of i? as its non-zero elements. We decompose X as
follows:

(6.3) X = ASϊ,

_ 1

where A = X(X'X) 2 is a ςrxjσ matrix satisfying ArA = Ip and 5 = X ' Z is a
positive definite matrix. The Jacobian of this transformation is (Herz [11],
James [18])

(6.4)

where dv(A) is a normalized invariant measure on Stiefel manifold with
volume unity. Inserting (6.3) and (6.4) to (6.2), and using the formula

, >(A) = QFι(f;ίtDS
)A'A=IP V 2

(see Constantine [6], p. 1277-8), we obtain the expression (6.1).

COROLLARY 6.1. The characteristic function of Tl in the degenerating
case, i.e. q<p, is given by (6.5),

where Ω is defined by —MΣ~λM'.

The corollary is obtained by considering the transformation X' = ASϊ, where
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_ l

A = X'(XX) 2 and S=XX\ instead of (6.3), with the obvious changes of the
matrix D and the formula dv(A).

Constantine [_T] obtained the non-null density function of Tl for Tl < n
by a series of Laguerre polynomials of matrix argument. A slight reduction
from his expression yields the following theorem:

THEOREM 6.2. Under the alternative K withp<Lq> the Laplace transform
g(t) of a density function of Tl can be expressed asymptotically as (6.6),

(6.6) gV={τ{!^)/^

• Σ Σ(-J Γ )*£i β ^" 1 ) / 2 (ώ)Γl + —(
k=o (*)\ 2t / L n

for 111 >γ, where ai(κ) and a2(/c) are given by (2.1).

PROOF. Substituting nt for t in the expression (36) in Constantine [7],
we have

(6.7) ^(ί) = ECe-'Γί]

k=o

2
Expanding the above integrand in a Taylor series with respect to 5

n-\-q

about / as in (2.5), we can get the following

(6.8) g{t) =

r 92)2+8tr93}+O(re"3)

C.(Σ)
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Now, the result follows from the Lemma 1 in part I.

COROLLARY 6.2. The Laplace transform of a density function of Tl in the
degenerate case> i.e. q<p, is obtained from (6.6) by making the substitutions

The corollary follows from the fact that for the degenerate case the sub-

stitutions (5.5) and Ω-^>-γ MΣ~ιM for each parameter except two terms

) and n~k should be made in (6.7). We also note that Tp( — = — )/ΓΛ )

Δ / \ Δ / \ Δ /

is invariant for this transformation.
6.2. Approximate non-null distribution. In this section we give two alterna-
tive methods of obtaining the asymptotic formula of the non-null distribu-
tion of Tl up to order n'2. At first we expand the characteristic function
C(t) of Tl expressed in (6.1) with respect to n. Let

Then the first factor can be expanded easily by (1.14) as follows:

The remainder factor d(t) in (6.9) can be written, by using (1.8) and (2.14),
in the following form for large n:

(6.11) Λ C l + Λ-Ktr S2-qtr 5) + (6^2)-1{3^2(tr S)2 +6?tr S 2 -8t r S3

-6?(tr 5)tr 52 + 3(tr 52)2}+O(^"3)]5

where ^ j[{ }] is an abbreviation for

(6.12) 2M-1)l2(2πi)-M+1)l2[ (etr T)\T\~*
)m(T)=xo>o

ΓΓ 1• ± Ί

Lj5>o ι L J

We must carry out each integral j4fi[Xtr ^) 2 ] 5 ^^Etr S2], etc. in (6.11). For

example, let us consider j4βC(tr 5) 2]. By using Lemma 4, we can write

(6,13) . ^ [ ( t r Syj = rJ±) λHp+1)lΛ (etr T)\ Γf2 |(l-2ίί)J
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τ~xώ I ~*-|j? {tr((l-2iί) I-2itΩi Γ" 1 ^

Considering the transformation T-*Z= T—2it(l — 2it)~1Ω, we can simplify
AC(tr S)2J as follows:

with the notation IQ ] in (3.2). Applying Lemma 5 to the above expression,
we obtain

(6.14)

The similar computation gives us (6.15)

(6.15) /Jβ[tr5]= (l

S)tr 5 2 ]-( l-2f

2τίk
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Ω)2+ (qp2+ (q2+ q+ 20) p
3

+ 4(5<? + 8))tr Ω2} + 2 ( τ ^ 7 7 ) {(p + q + iχtτ Ω)tv

+ 4tr Ω3} + ( ^ ^ ) (tr Ω2f | etr (

Therefore, we obtain (6.16).

(6.16)

-2q(pq-2tr Ω) (l-2it)-1+ (pq(p + q + l)-4(p + 2q + l)tr Ω

+ 4tr i 2 2 ) ( 2

+ 4tr £ 2 ( l
yore «=o

where Ba(Ω) (α=0, 1, , 8) are given by (6.17).

(6.17) B0(Ω)=pql0,

B1(Ω)=-l1(pq-2tvΩ),

B2(Ω) = Pql2-2(l1 + 2l2)tr i2 + 489

2(tr Ω)2

-24?{/-(?-l) jD-4}tri22,

B3(Ω)= -pql3 + 2(2h + 3l3)tr Ω-96(qp+2q2 + q + 2)(tr Ωf

+ 48{qp2-(2q2-q +A)p-8(2q + l)}tr i22 + 96

+ 128tr i23

54(ώ) = pqh - 2 (3Z3 + 4Z4)tr i2 + 48{/ + 2 (βq +1)^

+ 3(29

2 + 2 9 + 5)}(tr i2)2 + 48{3(9

2 + 6)jD + 4(99 + 8)}tr Ω2

-96(/?+49 + l)(tr i2)tr J22-768tr β 3 + 48(tr j22)2,

B5(Ω)=8l4(tr Ω)-96{p2 + (Zq + 2)p + 2q2 + 3q +9}(tr fl)2-
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+ 1536tr .!23-192(tr Ω2)2,

Ω)2 + 24{qp2 + (q2 + q + 20)p

Ω2-96(3p+4q + 3)(tr J2)tr # 2-1280tr Ώ2

+ 288(tr Ω2)\

Ω)tτ £ 2 + 4tr ώ 3 -2(tr Ω2)2},

Ω2)2,

and la(a = 0, 1, ,4) are given by (6.18).

(6.18) h = 3qp3 - 2 m2 - Zq + 4)p2 + 3 (q - 1 ) (q2 - q + 4)p - 4 (2q2 - 3 ? - 1 ) ,

From Corollary 6.1 and the fact that the formulas (6.14) and (6.15) are sym-
metric with respect to p and q, we see that this asymptotic formula holds
also for q </>. Inverting this characteristic function, we have the following
asymptotic formula with the same notations in (5.19):

(6. 19) Pκ(n<z) δ)<z) +

~2q(pq-2tr Ω)P(x}+2(δ2)< z)+ (pq(p + q + l)-4(p + 2q + l)tr Ω

+ 4tr Ω2)P(xj+i(δ2)<z) + 4((P + q + l)tr Ω-2\x Ω2)P(x2

f+6(δ2)<z)

which agrees with the result of Siotani [39J, after minor changes of notation
and some calculations. By putting Ω = 0 and δ — 0 in (6.19), we have the
following asymptotic expansion of the null distribution of T\:

(6.20) PH PJL

where la(a=0, 1, , 4) are given by (6.18).



106 Yasunori FUJIKOSHI

We now show another derivation of the non-null distribution of Tl by
simplifing the Laplace transform of the non-null density function of Γ§ given
in (6.6). The expansion of the first factor in (6.6) is given by (6.10), and
each term of the infinite series can be simplified by using the formulas for
weighted sums of Laguerre polynomials given by Lemma 8, which gives
exactly the same formula as (6.16) with it replaced by —t. This result also
holds for q <p from Corollary 6.2 and the fact that each formula in Lemma
8 is symmetric with respect to p and q. Hence (6.19) can be also drived by
our second method.

7. Numerical results of the powers. For testing the multivariate linear
hypothesis H defined in Section 5.1, various criteria have been suggested
(see e.g. Anderson [2], Seber [36]). In this paper we are especially concern-
ed with three criteria, namely, (i) LR criterion due to Wilks [42], (ii) Hotel-
ling's Tl criterion due to Lawley [24] and Hotelling [13], and (iii) Pillai's
criterion due to Pillai [28]. For a given level of significance a(0<a< 1),
their rejection regions are given by

Criterion (i) : W=\Sβ\/\S, + S

Criterion (ii) : T2

0 = ntr ShS~ι>t

Criterion (iii) : V=mtr Sk(Sh + Sέ)~1>v.

Here constants w, t and v are defined by the equations

Except for particular values of p and q, the exact distributions of these
test statistics are not available in closed forms, even for the null case. How-
ever asymptotic expansion of the distributions of these test statistic with
respect to n are available for any p, q, n and Ω, such that p<n as we have
seen for V and T2

Q in Sections 5 and 6. Asymptotic expansion of the null
distribution of W was obtained by Rao [33] as follows :

(7.1) PH(-n'\o«W< z) = P(χj<z) + J^{P(χ}+i < z)-P(xj < z)}
Th

where f=pq, n' — n + (q—p—l)/2, and βu β2 are defined by

(7.2) β1=pq(p2 + q2-5)/4S,

β2 = β\/2 +pq {3/ + Sq4 - 50/ - 50?

2 + 10p2q2 +159}/1920.

This and similar approximations were also given by Box (Ί>D Recently Su-
giura and Fujikoshi £39] have obtained the non-null distribution of W up to
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order n~2, based on Lemma 2, as follows:

(7.3) Pκ(-nΛogW<z) = P{x2

f(d2)<z)+~^Up-\-q + V)tY Ω P(χ}+2(d2)<z)

-{(/> + ? + l)tr i2-2tr i2 2 }P(% 2

+ 4 (5 2 )O)-2tr Ω2.P(x2

f+6(d2)<z)

n'2 L l l V f+A f /f

+ ΣGa(Ω)P(x}+2a(δ2) < ^)] + 0 (*'-3),

where <?2 = tr Ω and the coefficients Ga(Ω)(a = 2, 3, , 6) are given by (7.4).

(7.4) G2(i2) = -i-(p +σ +1) 2 {(tr i?) 2~2tr i2}+-"

ώ)tr Ω2,

j(tτ Ω2)2

3

These formulas, together with (5.11), (5.19), (6.19) and (6.20), give the nu-
merical results shown in Table 4, when /? = 3, y = 3, 5, 7, 7i = 85? 170 and α = 0.05
for specified values of the characteristic roots of Ω= {ωι, ω2, ϋ)3}(ω1<ω2

<ίi)3). Numerical comparisons of the powers of tests of (i), (ii) and (iii) have
been made in some special cases by several authors. For example, Ito [17]
has made power comparison of tests of (i) and (ii) using the formula (6.19)
up to order n~ι when rank Ω = l. For the tests of (i), (ii) and (iii) Mikhail
[25] has given such comparison by employing an approximate method when
p — 2. For test of (i) Posten and Bargmann [32] have computed the power
by using the formula (5.19) when p or q= 1 and rank 42 = 1, and Roy [34]
has also computed the power by using an approximate method when rank
,0 = 1. Recently Pillai and Jayachandran [30] has made a thorough investi-
gation of power comparison by the exact powers expressed in terms of zonal
polynomials when p=2. However their method is available only for p — 2.
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TABLE 4. Approximate powers of the W test, the T\ test and the V test for p = 3 and a = 0. 05

0

0

0

0.15

0.15

0.15

0.3

0

0

0

0.75

0.75

0.75

1.5

0

0.3

0.45

0.3

0.375

0. 15

0.3

0

1.5

2.25

1.5

1.875

0.75

1.5

0.9

0.6

0.45

0.45

0.375

0.6

0.3

4.5

3

2.25

2.25

1.875

3

1.5

*

3

5

7

3

5

7

3

5

7

3

5

7

3

5

7

3

5

7

3

5

7

3

5

7

3

5

7

3

5

7

3

5

7

3

5

7

3

5

7

3

5

7

W

0. 1116

0. 0942

0. 0855

0.1120

0.0946

0.0857

0.1121

0.0946

0. 0858

0. 1122

0.0947

0. 0858

0. 1122

0.0947

0. 0858

0.1121

0.0946

0. 0858

0.1123

0.0948

0.0859

0.473

0.370

0.308

0.481

0.378

0.316

0.482

0.379

0.317

0.485

0.381

0.319

0.485

0.382

0.319

0.482

0.379

0.317

0.486

0.382

0.320

τ\
0. 1119

0. 0946

0.0858

0. 1119

0.0946

0.0858

0.1119

0.0945

0. 0858

0.1119

0.0945

0.0858

0. 1119

0. 0945

0.0858

0. 1119

0.0945

0.0858

0. 1119

0. 0945

0.0858

0.478

0.376

0.315

0.479

0.377

0.316

0.480

0.377

0.316

0.480

0.378

0.316

0.480

0.378

0.316

0.480

0.377

0.316

0.480

0.378

0.316

V

0. 1111

0.0938

θΓθ851

0.1122

0.0946

0.0857

0. 1123

0.0947

0.0858

0. 1125

0.0949

0.0859

0.1126

0.0949

0.0859

0.1123

0.0947

0. 0858

0. 1127

0.0950

0. 0860

0.467

0.361

0. 298

0.483

0.378

0.314

0.485

0.380

0.316

0.489

0.384

0.320

0.489

0.385

0.321

0.485

0.380

0.316

0.491

0.386

0.322

W

0.1140

0.0964

0. 0874

0.1143

0. 0966

0.0876

0.1143

0.0966

0.0876

0. 1144

0.0966

0.0876

0.1144

0.0967

0.0876

0.1143

0.0966

0. 0876

0.1144

0. 0967

0.0876

0.491

0.390

0.328

0.496

0.394

0.332

0.496

0.395

0.332

0.497

0.396

0.334

0.498

0.396

0.334

0.496

0.395

0.332

0.498

0.396

0.334

nη
rT

0.1142

0.0966

0. 0876

0. 1142

0.0965

0. 0875

0.1142

0. 0965

0. 0875

0.1142

0.0965

0. 0875

0. 1142

0.0965

0. 0875

0.1142

0. 0965

0. 0875

0.1142

0. 0965

0.0875

0.494

0.393

0.332

0.495

0.394

0.332

0.495

0.394

0.332

0.495

0.394

0.332

0.495

0.394

0.332

0.495

0.394

0.332

0.495

0.394

0.332

V

0.1138

0.0962

0.0872

0. 1144

0. 0966

0. 0875

0. 1144

0. 0966

0.0876

0.1146

0.0967

0.0877

0. 1146

0.0967

0.0877

0.1144

0.0966

0. 0876

0.1146

0. 0968

0.0877

0.488

0.385

0.323

0.496

0.394

0.331

0.497

0.395

0.332

0.499

0.397

0.334

0.500

0.397

0.335

0.497

0.395

0.332

0.500

0.398

0.335



Asymptotic Expansions of the Distributions of Test Statistics in Multivariate Analysis 109

It is well known that all three tests are good for testing the hypothesis
(5.1). This fact can also be seen in Table 4. Moreover, Table 4 shows that
from the power point of view, for moderately large values of n, these tests
differ in their powers if we consider different classes of alternatives. For
example, we can see that Tl> W> V when ω3 is far apart from ωx and ω2,
and Vy W> Tl when ωu ω2 and ω3 are close, as having been pointed out in
the case of p = 2 by Pillai and Jayachandran [30].

PART III. TESTS OF INDEPENDENCE

8. Asymptotic non-null distributions of the Pillai's criterion under local
alternatives

8.1. Test criteria for independence. Let (p+q)xl vectors

(xN

x2

y2

be a random sample from a multivariate normal distribution with

mean vector a and covariance matrix Σ. Put

s=Σ
N Xa—X

\Va-y

Xa — X

ya-y

1 N

% "ΛT IS % a )

iV a = χ

and let us partition Σ and 5 into p and q rows and columns as

iSn Si

22

Without loss of generality we may assume p<iq. To test the hypothesis of
independence between two sets of variates, E: Σϊ2 = 0(pXq) against all
alternativse K: Σχ2φ0, the following three test criteria can be considered
(c.f. Pillai [28], Pillai and Jayachandran [30]):

(i) LR criterion:

r=|s|/(|s1 1||s22l)=|/-Λ|,

(ii) Hotelling's Tl criterion:

Tl = rntr S12 S2i 5 2 i ( 5 n - 5 1 2 S^S21)~1 = mtτ R(I-R)-1,

(iii) Pillai's criterion:

V= ntr 5i2 Szl S21 Srf = τιtr|Λj,

where n = N—l, m = n — q and R = diag(rf? r|,..., rf) with p characteristic
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roots of S12 Si} Szi Sϊ£ as its non-zero elements. The r//— 1, 2, ,p) are
called the sample canonical correlations.

Sugiura and Fujikoshi [39] have obtained asymptotic expansion of the
distribution of the LR criterion W under a fixed alternative hypothesis up to
order TV"1, by using the characteristic function expressed in terms of hyper-
geometric function with matrix argument. The limiting non-null distribution
degenerates at the null hypothesis, so that the asymptotic formula does not
give good approximation when the alternative hypothesis is near the null
hypothesis as having been pointed out by Sugiura [40]]. He derived asympto-
tic non-null distributions of the LR criteria for covariance matrix under
sequences of alternatives converging to the null hypothesis at the rate of
convergence N~Ύ for arbitrary positive number γ and also derived the asympto-
tic expansion of the distribution of W for this problem in the case of γ — 1.
The main purpose of part III is to give asymptotic expressions of the non-
null distributions of the Pillai's criterion and Hotelling's T2

Q criterion for
this problem under the local alternative in the above sense*

8.2. The moment generating function of the Pillai's criterion. The moment
generating function of the Pillai's criterion for the hypothesis of independence
between two sets of variates has been given under alternative K by Pillai
[31] as follows:

(8.1) M(0=|/-P| f l[{r,(^

) ( P / > ) ϊ r 1 )dsΛds21,

.where I [ ] is defined by (3.2) with respect to T and P = diag (pf, p|,..., pf)
with population canonical correlation p; . This expression is in a form cove-
nient for our asymptotic expansion.

8.3. Asymptotic distribution when γ = l. Since the assumption 2Ί2 = 0 is
equivalent to P = 0, the alternative K\ Σι2φ0 can be expressed as K: PφQ.
In this section we derive asymptotic expansion of the distribution V under
the sequence of alternatives KΎ: P = 2nΎΘ with γ = 1, by expanding the
moment generating function. Using the same method as in the derivation
of the expansion (5.14), we can rewrite the part in the brackets [ ] in (8.1)
as (8.2).
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(8.2) (l-2t)-pq!2\ Γ|2| τ-φθ\~2\l-—{-£-U1(I9 T)- Σ I T-φθfi
L n {4 , =i

•tr d2i\ T—φΘ2Σiθ2\"

111

1

"^196* i=i 4

-tr d2i\T-
1 1 Q

1 1

h T)
2

Σ

+ I T-φΘ\*(tr 9i)tr 9?

2J72@2)2^71(©2^26)2)2 I 2

which holds for sufficiently small 11 \ and large n, and φ = (1 — 2t) ι, di(ί — 1, 2)

denote m a t r i c e s of d i f ferent ia l o p e r a t o r s h a v i n g {(lJrδrs)/2} {i) a s
oooo r

its (r, 5) element for symmetric matrices Σ = (d^) and ?/,•(&' = 1, 2) are given
by (5.13) with Ω =@. The above operations di, except for the operation (tr
dl) tr dl, are carried out in Appendix II. We obtain the following formula
from (A.37) and (A.47):

(8.3) (tr d\\ T-
^I, Σ2 = I

+ (q +1) (^2 + ̂  + 4) (tr2)
2 +16 (q + l)tr!tr3 + 4(2 ?

2 + 5?+ 5) tr4} j ,

where tr ; is an abbreviation for tr {Θ(T— φΘ)'1}^ By using the formulas
(A.37), (A.38), (A.39) and (A.47) in Appendix II, and considering the trans-
formation T->Z= T—φΘ, we can write M(t) as follows:

(8.4)
2

I

n

+ f5(tr
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l)(tr 6>Z-1)

where γ0 and ri are given by (5.16) and ΐa(a = 2, 3, , 6) are given by (8.5).

(8.5) ΐ2 = 6

The first factor in (8.4) can be expanded by the formula (2.14) as follows:

(8.6) / - *= {etr(-6>)}Γl-—tr ΘH^^-ίSαr 6>2)2-8tr 6»3}

By Lemma 5, we finally obtain the following asymptotic formula for the
moment generating function of the Pillai's criterion:

(8.7)
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-2pq(p + q + l)(l-

-8tr Θ2)(l-2tr

where the coefficients Aa(Θ)(a = 0, 1, , 8) are given by (8.8).

(8.8) A0(θ) = pqhQ + 24:pq(p + q + ΐ)tτ ©2-128tr <93 + 48(tr θ2)2,

Mθ) = -pqhu-

A2(Θ)=pqh2-2hιtY

-96(/> + ? + l)(tr β)tr ^ 2 -

A3(Θ)= -pqh3+4h2 tr & + 96{qp2 + (q2 + q + 4)p + 4(q + l)}tr Θ2

- 24 {qp2 + (^2 + g + 12)p + 4 ( 3 ? + 5)} t r Θ2

θ)tτ ©2 + 2 8 8 ( t r Θ2)2,

tr

Θ)tτ © 2 - 7 6 8 t r Θ3,

Θ2

3

+ 4(59 + 8)}tr Θ2 -96(jo + g + l)(tr β)tr ©2 - 128tr ©3 -192(tr 6>2)2,

A(^) = 96(p + q + ϊ) (tr ®)tr Θ2 + 384tr 6>3,

AS(Θ) = 48(tr @2)2,

with Aα(α = 0, 1, ,4) defined by (5.10). Inverting this moment generating
function, we obtain the following

o

T H E O R E M 8.1. Under the sequence of alternatives K: P — — © , the distribu-
n

tion of the Pillai's criterion for testing the independence between two sets of
variates with p components and q components (p<ίq) can be expressed asymp-
totically as follows'-
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(8.9) P{V< z) = P(χj(δ2) < z) - -±- {(pq(p +q+l) + 4tr Θ2)P(x}{δ2) < z)

xj+2(δ2) < z) + (pq(p + q+l)-4:(p + q+l)tr β-8tr Θ2)

Θ-P(x2

f+6(δ2) < z) + 4tr Θ2-P(xj+S(δ2) < z)}

Γ { Σ Λa(θ)P(xj+2a(δ2)< z)} +0(n~
3),

' 96n2 ι«tΌ

where f = pq, δ2 — tΐΘ and the coefficients Aa(θ)(a = O, 1, , 8) are given by
(8.8).

It is worthwhile to note that the asymptotic formula (8.9) can be specia-
lized to some interesting cases, namely, asymptotic expansions of the distri-
butions of the multiple correlation coefficient when p = 1, and the correlation
coefficient when p = q = 1 , under the assumption p2 = (2/n)θ.

8.4. Limiting distributions when γ>l. In this section we consider the
limiting distributions of the Pillai's criterion V = ntτ R under the sequences
of alternatives KΎ: P— 2n~7Θ with γ > 1. The distribution of R is given by
Constantine Q6], in the following form:

(8.10) π2!

. I T— R (n-q-p-l)j2 jη
1 /<yVί '"k%ti \\2J\2JJ\2

. {CK(R) Cκ(P)/k ! CK(I)} dR, (1 > r\ > r\ > • • > r2 > 0).

Putting nR = W, then we can get the following limiting distribution of W
under the assumption P=2n~ΎΘ(γ > 1).

(8.11)

(wl>w2

2> -->w2

p>0)

From (8.11) we see that the characteristic function of tr W is (1 — 2ίt)~pql2

Therefore we have the following

THEOREM 8.2. Under the sequence of alternatives KΎ: P = 2n~ΎΘ for γ> 1,
the limiting distribution of the Pillai's criterion V = ntr R for testing the
hypothesis of independence is the x2 distribution with pq degrees of freedom.

8.5. Numerical example. By putting Θ = 0 and d = 0 in (8.9), we can see that
asymptotic expansion of the null distribution of the Pillai's criterion for
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independence agrees with the formula (5.11) in the case of multivariate linear
hypothesis when m is replaced by n. This result also follows from the result
(e.g. Anderson [2J) that the distribution of R under hypothesis is the same
as that of the characteristic roots of SΛ(SΛ-f Se)~ι, where the random matrices
Sh and Se are independently distributed as the Wishart distributions Wp(q,
Σ) and Wp(n — q, Σ), respectively.

Example 8.1. When N=87,p = 2 and gr = 3, the formula (5.11) after
changing m to n gives the approximate 5% point as 12.3365. Pillai and Jaya-
chandran [31] gave the exact 5% point as 12.33642 (computed from their
Table 8. Upper 5% points of F ( 2 ) m = 0 and n = 40). For the alternative
hypotheses Kt: p\ = 0.005, p\ = 0.005 and K2: p\ = 0.001, p| = 0.05, the follow-
ing approximate powers are computed by the formula (8.10), based on our
596 point.

Approximate power of n tr R,

Neglecting terms of order Exact

O(n'1) O(n-2) O(n~3)

Ki 0.09400 0.08536 0.08505 0.0850549

K2 0.30971 0.29246 0.29079 0.292

This shows that our approximate powers give good approximation to the cor-
responding exact values due to Pillai and Jayachandran [30].

9. Asymptotic non-null distributions of the Hotelling's criterion under local
alternatives

9.1. Asymptotic distribution when γ = l. The Hotelling's criterion for testing
the hypothesis of independence between two sets of variates was defined in
Section 8.1 as T\ = mtr S12 S22

ι S2i(Sn -S12 S2Ϊ S2Xy
ι = mtr R(I-R)'\

First we obtain the characteristic function of Tl under the alternative K in
a form covenient for our asymptotic approximation. By reducing the test
for independence to that of the linear hypothesis as in Anderson and Das
Gupta [3], Sugiura and Fujikoshi [39], etc., we see that the conditional
characteristic function of Γ§ for given Y(nXq) is obtained from (6.1) by

i _i _i

making the substitutions n^m and Ω-^-(I-P) ^BfTYB(I—P) 25 where
the rows of Y are independently normally distributed with mean zero and
covariance matrix Iqy and B(qXp) is given by

(9.1) B' =

/Pi 0 ... 0 0 .. 0\

0 p2 .. 0 0 ... 0

0 0 ... pp 0 ... 0/
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Taking expectation with respect to F T by the Wishart distribution Wq(n9 Iq)
with the formula (1.10), we can write the characteristic function of T\ as
(9.2).

?M - 1f
5 > 0 m

{etr(2£ί5)} I SI \ 2ίt{I-PYιPs) dS.

Now we will derive the distribution of T\ under the same sequence of
o

alternatives K: P = —Θ as in the case of the Pillai's criterion. Using the

formulas (1.6) and (1.8), we rewrite λFι in (9.2) as

2it
~~2~dT

/ 2 X"1

for any fixed S and large n with J = 2( I——Θ) Θ. Considering the expan-
\ n j

sions of —
m

-(m+q)l2
and with respect to m by

using (2.14), we have the following approximation for C(t):

(9.4)

where d(t) is the expression obtained by replacing n-+m and Ω-+θ in (6.9)
and (6.11) and C2(t) is defined, with the notation f4®[_ J in (6.12), by

(9.5) C 2 (f)=|4 Γ—{4iίtr 02 Γ- 1 β^5+(2iί) 2 tr(β^Γ- 1 β2 5)2}
\_m

1 5 1 3 . 3 3 . 1

+ —o-{6ΐίtr 6>2 Γ-χ6

Sf

+ 4ιί(tr
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The expansion of |Γ//-^-^-)/(-^-) I\/-^- )} Ci(0 hasbeen already ob-
I \ Δ / \ Δ / \ Δ /)

tained in (6.16) with n, Ω replaced by m and (9, respectively. For simplifi-
cation of C2(t)9 we carry out each integral fl®[_ J in (9.5). Using- Lemmas
4, 5, 6 and 7, we obtain the following identities:

(9.6) Λttr6>2 T-ίΘ2SJ = (l-2itypq!2-1(tr 6>2)et
2\Λ<L../ 2it

2 Γ-1@2 5) 2 ] = ( l - 2 ά ) " ί > ? ; 2 " 2 ( t r 6>2)eti{ 2 ί ί

5Θ •Mπi f

^ 3 ( l p l 2 2 U ± F q + l)tr

β)tr
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^ g) ,

1©^ 5) 2 tr 5 2 ] = ( 1 - 2 i

r 6>)tr <92

In the derivation of the formulas (9.6), we used Lemmas 4~~7 after express-

ing, for example, tr 02 T'ιΘ2 S as y t r (02 + $2y t r (02 Γ ^ + $2 ϊ ® ^ ) ^ etc., since the

matrices Ω and © in Lemmas 4 ~ 7 are symmetric. The asymptotic ex-

pansion of Yp{ )/|(-Q- ) ? s obtained from (6.10) by making the

substitution n-*-m. Hence we can finally write the approximation (9.4) for
C(ί) as follows:

(9.7)

-2q(pq-2tr

+ 8tr Θ2)(l-

θ

»-2tr 6» 2 )(l-2ύ)"

where the coefficients Ba(Θ)(a=0, 1, , 8) are given by (9.8).

(9.8) B0(Θ) = pqlo + 24q{p2-(q-l)P +4}tr 6»2-128tr 6»3 + 48(tr 6»2)2,

B1(Θ)=-l1(pq-2tr Θ) + 48pq2tr 6>2-96?(tr #)tr Θ2,

B2(Θ) = Pql2-2(ί1 + 2l2)tr © + 48( ?

2 + 2)(tr Θ)2-2A{2,qp2-q{q-Z)p

- 4 ( 2 ? + l)}tr 6>2 + 96(jθ + 2 ? + l ) ( t r 6»)tr 6>)2-192(tr 6>2)2,

5 6»-96(g/>+2?

2 + ? + 4)(tr @)2 + 48{qp2

+2)}tr Θ2-96(p-q + l)(tΐ 6»)tr Θ2

+ 640tr 6>3 + 192(tr @2)\

-192(/>+3g + l)(tr 6»)tr (92-1536tr 6>3 + 96(tr Θ2)2,
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+ (3q + 2)p+2q2 + 3q + 9} (tr Θ)2-48{qp2

6>)tr Θ2

+ 1920tr <93-384(tr Θ2)2,

+ 4(5 ? + 8)}tr 6>2-96(3/>+49 + 3)(tr 6>)tr (92-1280tr Θ3

+ 384(tr6>2)2,

5 7(β) = 96{Q> + ί + l )( t r β)tr 6>2 + 4tr 6>3-2(tr 6>2)2},

£8(6>)=48(tr 6>2)2,

with la (α = 0, 1, , 4) defined by (6.18). Inverting this characteristic func-
tion, we have the following theorem:

2
THEOREM 9.1. Under sequence of alternatives K: P=—Θ, the distribution

Th

of the Hotelling's criterion for testing the independence between two sets of
variates with p components and q comopneots (p<ίq) can be approximated for
large m as follows:

(9.9) ^

-2q(pq-2tY Θ)P(x2

f+2(d2)<z) + (pq(p + q + l)-A(p + 2q + l)tY Θ

+ 8tr @2)P(%^+4((ϊ2)<^ + 4((p + ^ + l)tr 6>-2tr Θ2)P(x2

f+6(d2)<z)

+ 4tr Θ

where f = pq^ m = n — q and the coefficients Ba(Θ) (a=0, 1, , 8) are given by
(9.8).

The above theorem also includes some interesting special cases as in the
case of Theorem 8.1.

9.2. Limiting distribution when γ>l. We now consider the limiting dis-
tributions of the Hotelling's criterion T% = mtr R(I-R)1 under the sequence
of alternatives KΎ: P=27i~7Θ(r>l). Noting that under P=2n~7&(r>l),

(9.10) umiFl(ΞpL ; ;

we obtain from (9.2) that the characteristic function C(t) of T% under P~
2n"7Θ tends to (1~2^)"^ 9 / 2 as m->oo. Hence we have the following theorem:

THEOREM 9.2. Under the sequence of alternatives KΎ: P=2n7Θ for γ>l,
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the limiting distribution of the Hotelling's criterion T\ for testing the hy-
pothesis of independence is the x2 distribution with pq degrees of freedom.

9.3. Numerical example. Asymptotic expansion of the Hotelling's T\ cri-
terion for independence under hypothesis is obtained from (6.20) by making
the substitution n-+m, or by putting Θ = 0 and δ = 0 in (9.9). Let us consider
the same example as was used for the Pillai's criterion.

Example 9.1. When iV=87, p = 2 and 9 = 3, the formula (6.20) after
changing n to m gives the approximate §96 point as 13.3433. Pillai and Jaya-
chandran Q30J gave the exact h% point as 13.34128 (computed from their
Table 8. Upper §96 points of U{2) m = 0 and n = 40). For the alternative
hypotheses Kx\ pf = 0.005, p | = 0.005 and K2\ p\ = 0.001, p | = 0.05, the following
approximate powers are computed from the formula (9.9), based on our h%
point.

Approximate power of nXx R(I-R)1,

Including up to Exact

first term second term third term

Kλ 0.06861 0.08425 0.08484 0.0848456

K2 0.25548 0.29363 0.29318 0.293

This shows that our approximate powers also give good approximation to
the corresponding exact values due to Pillai and Jayachandran [30] .

PART IV. OTHER ASYMPTOTIC DISTRIBUTIONS

10. The determinant QΪ a non-central Wishart distribution. Using the ex-
pression of moments due to Constantine Q6]5 Fujikoshi [_9J obtained asymp-

_ 3

totic expansion of the distribution of | 51 up to order n 2 for the non-central
Wishart matrix nS having Wp{n, Σ, Ω), when the non-centrality matrix
Ω may be regarded as a constant matrix with respect to n. Here we
shall show the asymptotic expansion of the distribution of the statistic

μ— y_^J log-L—[ — - τ = t r Θ\ instead of \S\ under the assumption t h a t
1 Δp { 1 2 \ V n )

Ω = ̂  nΘ. The characteristic function of β can be expressed as (10.1) (Fuji-
koshi [9]) .
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The first factor is the same as (3.7) in Fujikoshi [9] with it/^2p for it. By
Lemma 2, the second factor can be expressed as (10.2).

(10.2) 1 — -πF=-τ-=--tr 6>2+ \—~V2D ίttr Θ3~2(it)2tr Θ2 + (it)2(tr Θ2)2}
ΊΔpvn pn ( 3 J

p\IZpn\ln

- 3 ) t r <93 + - | (£ί

Hence we have,

THEOREM 10.1. Let nS have the non-central Wishart distribution with n
degrees of freedom and the non-centrality matrix Ω. Under the assumption
that Ω = ^J nθ, the distribution of \S\ can be expanded asymptotically as fol-
lows:

( 1 0 8 )

}+

±./Lpτι

+ 4(tr 6>2

) 2 -24t r

©2)tr

+ 6q(q - 2 ) t r ©2 + 12( ? -4)( t r 6»2

(92 + 4(tr

(q + 2 + 2tr Θ2)Φ(Ί\z) + -jΦm(z)] + O(n~2),

and Φ(r)(^) denotes the r-th derivative of the standard nor-
mal distribution function Φ(z).

When Ώ = nΘ, Fujikoshi Q9] obtained the limitting distribution of \S\,
but could not derive its asymptotic expansion.
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11. The trace of a non-central Wishart matrix. In this section we give

asymptotic expansion of the distribution of the statistic t r R^S which

is a generalization of t r S and t r Σ~λS, where R(px p) is any fixed real

symmetric matr ix with \R\Φ0. From the result of Anderson [IT] we can

write the characteristic function of t r RλS as follows:

(in) E[y' t r / M s]=

Firs t we assume t h a t the nonce-ntrality matr ix Ω = O(1) with respect to

ϊy, the characteristic function of ξ = Qfn / r ) ( t r R'x Sn. Put t ing r =

— t r RιΣ) can be given by (11.2).

(11.2)

-etv \-Ω + { I-^

The first factor can be expanded as follows:

n4n I 5

l i

where Δ = Σ^R~1Σ2. The second factor can be expanded as (11.4).

(11.4) —f—V{2tr (tr

+(tr

which gives the following theorem:

THEOREM 11.1 Let nS have the non-central Wishart distribution Wp{n,

Σ, Ω). Under the assumption that Ω = O(1) with respect to n, we have the fol-

lowing :

(11.5) R'S-tY ΔΩ)Φ\z)+ -
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+ 4(tr i 3)tr ΔΩ}Φ«\z) + ~(tτ J3)2φ(6)(z)']-^j^Γs

+ 6(tr ΔΩ)tτ Δ2Ω + (tx AS)3} Φ<*\z)+ -^{12*1 J 5 + 15(tr
Of

•tr Ji2 + 20(tr J 3 )tr J2i2 + 10tr J 3 (tr ΔΩ)2}<2>(5)(z) + -A- {3(tr
Of

-tr J4 + 2(tr J3)2tr ^ ]

2')2 and Δ = Σ^R'ιΣκ

Finally considering the characteristic function of the statistic rj = {n/

2tr J2(/+4®)}2{tr i T ^ - t r J(/+2®)} under the assumption Ω = nΘ, based
on (11.1), gives:

THEOREM 11.2. Under the assumption that Ω = nΘ, the distribution of
tr R~ιS can be expanded asymptotically as (11.6).

(11.6)

fe"[τ {tΓ

= {2tr J2(/+4(9)}2 and J =

The asymptotic expansions of the distributions of tr S and tr Σ~ιS can
be obtained immediately by putting R = / and 21 in the above two theorems,
according to ,0 = 0(1) or Ω = O(n).

12. The modified LR criterion for equality of mean vectors and covariance
matrices under special alternatives. Let the pxl vectors x[g), x{

2

8\ 9x%]
be a random sample from a normal population with mean vector juig) and
covariance matrix Σg for # = 1 , 2, , g(g^>2), and consider the testing
problem of the hypothesis H\ μ{1) =//2) =• ••• =/^U ), Σι = Σ2= -=-'Σq against
the alternatives K: uωφβU) or Σ{φΣj for some ί, (ίφj). Under the
assumption Σx = Σ2= =Σq( = Σ), the Λ-th moment of the modified LR
criterion λ for this problem was given by Tsumura and Fukutomi [41] as
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(12.1)

{^(1+A) + ? -1} -

where ^ = iV^-1,7i = Λi + Λ 2+ + Λβ and ώ = — L g
2 g=ι

Q Q

with μ = ( Σ iV^)"1 ΣiNgβ
(g\ Now we will derive asymptotic expansion of

the distribution of — 2plog λ under the assumption Σx — Σ^— —Σ^ where
the correction factor p is given by

Q2 2) no-n
(12.2) Λ p - Λ -

with TIA;̂  = 71̂ . for fixed kg > 0 (Anderson [2, p. 255]). Put m = pn and let τ?ι
tend to infinity instead of n. From (12.1) the characteristic function of
— 2plog λ can be expressed as follows:

(12.3) C(t) = C1(t)1F1(-itm;±-m(l-2it) + s; ~

where Ci(t) and s are given by (12.4) and (12.5), respectively.

(12.4) C l W = { » - / π »;

•/Γ

The first factor d(t) can be expanded asymptotically (Anderson [2, p. 255])
as follows:

(12.6) ( ) Γ 2
L 7 7 1 Λ

where f=(q- 1)JO(JO + 3 ) / 2 and /? is given by (12.7).

( 1 2 7 ) ^
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Sugiura and Fujikoshi Q39] obtained the asymptotic expansion of the same
type as xFλ in (12.3) by using Lemma 2. By the same argument, we obtain
the following asymptotic formula for the characteristic function C(t):

(12.8)
m

-(2str i2-tr Ω2)(l-2ίtY2-tΎ Ω2(l-2ίt)~3} + —
m

+ ΣDa{Ω)0—2ίtYa} +0{m-3)^,

where the coefficients Da(Ω) (α=2, 3, , 6) are given by (12.9).

Ω)tr Ω2

i2)tr ώ 2 -4tr Ω3

+ 1 * ^
D5(Ω)=~tr Ω3+2s(tr J2)tr J? 2-(tr J?2)2,

D&{Ω)=\{tτ

which implies,

THEOREM 12.1. Under the assumption Σι = Σ2

z= - = Σ^ we obtain

(12.10) P(-2plogΛ < z) = P(x}(d2) < z) + —{2str Ω P(x}+2(d2)<z)
m

-(2str Ω-tτ Ω2)P(x2

f+i(S2)< z)-tr Ω2-P(x2

f+6(d2)<z)}

z)-P(xj(δ2)<z)} + Σ Da(Ω)P(xj+2a(δ2)<z)]

where m = pn, f=(q — l)p(p + 3)/2, ̂ 2 = tr Ω and the coefficients s, β and Da(Ω)
(α=2, 3,. , 6) are given by (12.5), (12.7) and (12.9), respectively.
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Asymptotic expansion of the null distribution of — 2plog λ is given (An-
derson [2]) as follows:

(12.11) P(-2plog λ<z) = P(x}<z) + -^{P(x}=i<z)-P(x}<z)}+O(m-*)9

which is also obtained by putting £ = 0 and £ = 0 in (12.10). Hence we can
evaluate the power of the test — 2plog λ when Σι = Σ2 = =Σq.

Example 12.1. When case (i)/? = 2, 9 = 4, iVi = 21, 7^ = ̂ 3 = ^ 4 = 2 2 and
case (ii) /? = 2, 9 = 4, JVi = l l , JV2 = 18, 7V3 = 25 and 7V4 = 33, the approximate 5%
points of — 2plog λ can be computed by (12.11) as 24.4672 and 24.2075, respec-
tively. For the alternative hypotheses Kx\ α)i = 0, ω2 = l and K2: oh = 2, ω2 = 2
(a),- means the characteristic root of i2), the following approximate powers are
computed by the formula (12.10), based on the above §96 points.

Approximate power of — 2plog λ,

Neglecting terms of order

κ
2

(Km-
1
)

0.1178

0.3863

case (1)

O(m-
2
)

0.1109

0.3519

O(m-
3
)

0.1016

0.3418

0{m-
1
)

0.1245

0.3985

case (n)

O(τn-
2
)

0.1168

0.3617

O(m~
3
)

0.1025

0.3458

On the other hand, the powers of the LR criterion W, the Hotteling's criteri-
on T\ and the Pillai's criterion V for this alternatives are obtained from
(5.19), (6.19) and (7.3) as follows:

Approximate power

Wr T\ V

Kλ 0.13966 0.13990 0.13924

K2 0.5075 0.5040 0.5107

Note that all three tests are more powerful than the modified LR criterion
— 2plog λ, which should be expected. The exact powers of W, T2

Q and V un-
der Kx are known (Pillai and Jayachandran [30]) as 0.13965, 0.13994 and
0.13926 in their Table 10, respectively. Therefore, we can also see that our
approximate powers are good approximations to the exact values.

APPENDIX I. Calculations of tr (Λd)2\ I—Σ -b , etc. in the proof of

Lemma 3

We used some formulas to prove Lemma 3 in Section 2. Here, we list all
the necessary reductions in the computations. We use the following notations:
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Jii'=((T r s) is apxpsymmetric matrix, <? = (—(l + tfrs)——Jis a matrix
\ 00γ5/

of differential operators with Kronecker's delta δrs, Ers = (d/d6rs)Σ^
Λ — dihg(λu λ2y 9 λp) is a diagonal matrix such that λrφl for all r,

(1) By using the formulas (d/dσrs)\Σ\ = \Σ\tτ Σ~ιErs and (d/dσrs)Σ~ι

— Σ~ιErsΣ~ι, we easily obtain the following reductions:

(A.I) tr(Λd)2\I-Σ\ -b

Σ=Λ

F2

rs),

(A.2) tr(Λdf\I-Σ\ -b

.(ds/dσrsdσstdσtr)\I-Σ\

(A.3) {tr(Λd)2}2\I-Σ\

(tr Fst)tτ Ftr + 3b(tr Ftr)tτ FtsFsr + 2tr FrsFstFtr},

2 1 . 2 1 r v l - i 1

r s t u

I -b

l Ό r s t u

+ tr Fz

rs} {ό(tr F ( a F2

lu} +4ό2(tr f r s )( t r f,»)tr ί- r ι F ( ,

FrsFtu)
2

+ 2tr(FrsFtu)
2

(A.4)

•{(tr
2 r
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(2) The various summations appeared in (A.1)^(A.4) are simplified as fol-
lows:

(A.5)

(A.6)

=«r V\

v v

=2{(tr

(A.7)

(A.8) Σ Σ Σ
r s t

,tχi + dtr) λr λs λt{tτ Frs)tr FstFtr

(A.9)

r s *

= (tr

r s t u

=4{(tr Γ

(All) Σ Σ Σ Σ (1 + ί

Γ 2 } 2 (by using (A.5) and (A.6)),

tuY λr λs λt λ.(tτ F r,)(tr F (,)tr F r s FίM

tr F r r F , t =
As)

(A.12) Σ Σ Σ Σ (1 + ST.? (1 + δtu)
2λr λs λt λu (tr F r ,)tr F r i F?κ
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2 7 (/ 2 \ z / 7

α-^)(i-/U \\ i-λt) ^\ i-λu

= 8{(tr Γ)tr

r s t u
tu)

2λrλsλtλu(tτFrsFίu)
2

Noting that tr(ErrEtu)2 = 0(tφu) and tΐ(ErsEtu)
2=2δrtSsu(r<s, t<u), we have

r s t u

r \ I — λr / l<r<s<p

= 4{(tr Γ2

Γv27ΐ—y
Λr) (1 ~ λs

Noting that tr ^ r £ 2 ^ ^ + ^ (tψu) a n d t r ^ i f^ ί^ + ί^ + ί̂
s, tφu\ we have

r s t u

t r

y λrλsAtλu . j ^ 2 172

= 4{(tr F)2tr F)tr

V)(tv

\ - l l 2

•{tr
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F) Σ Σ n — λ s

• \ n

 1

( 1
F2 + (tr F)3 + (tr F)tr F2 + 2tr F 3

(tr F)2tr 2 4

Σ = Λ

= 8 6 | 7—v

tτ{Λdytr{Σ{I-Σ)-1}
- 1 1 . 2

\-ly 2

— oy λr(l-\-2λr)
— ^Δ—?ϊ ~ i —W — Ar) l<r<s<p \-i- Ar) \L — As)

= (tr Γ)2 + tr F2 + 4(tr F)tr Γ2 + 4tr F 3 + (tr F2)2

+ 2(tr

V2F*.}

_ L _ ; 2 ; _ι_

(3) By inserting these results (A.5)~(A.19) into the last expressions of the
results (A.1)~(A.4), we obtain the following desired formulas:

(A.20) tr(Λd)2\I-Σ\- =-§-{(tr

Σ = A 4

V2}\I-Λ\-b,

F)tr

V3}\I-Λ\-b,

(AJ22) 2+v. 772F)2tr F

F)tr F 3

(A.23)
Σ = Λ

F2 + 4(tr F)
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•tr F 2 + 8(2ό2 + 3ό + 2)tr V3 + b(tv V)4 + 2(2b2 + b + 2)(tr Vf

•tr V2 + (2b + l)(2b2 + b + 2)(tτ F2)2 + 8(2£ + l)(tr F)tr V3

1 1

APPENDIX II. Calculations of tr 02\ T—φΩ^ΣΩi\ 2 , etc.

In this appendix we evaluate the values of tr d2 \ g(Σ) | 2 , tr

, Σ) , where

= T-φΩ*ΣΩ2 and Z7i(Γ, Σ) is defined by (5.13). They are useful for the
derivation of asymptotic expansions of the non-null distributions of the Pil-
lai's criteria for multivariate linear hypothesis and independence. The fol-
lowing notations are used:

-ArΣ=E*. and

(1) The following reductions are easily obtained by using the fomulas (9/
~ιEfs and (d/dσfs)Σ~1=-Σ^E^Σ'1.

= ΣΣ(βι/da*Mr)\g{Σ)\(A.24)

(A.25) trd3 \g(Σ)Γ* = ΣΣΣ (d3/dσ*sdσftdσfr) \ g(Σ) \
Σ=I r s t Σ=I

=^φ31 T-φΩ I ~2ΣΣΣfj(tr Λ^*,)(tr RE*t)tr REfr

RE*s)tv RE*tRE*S+ 2tr RE*.RE*tRE*r} ,

(A.26) = ΣΣΣΣ (dA/dff?sdσ?:) | g(Σ) |
Σ=I r s t u

ΣΣΣΣ[-|
Σ=I r s t u L Δ

{|-(tr RE?

| ( t r RE*u q\tτ RE*,)(tτ RE*u)tτ REfsRE*u

+ 4q(tr RE*s)tr RE*S(RE*U)2 + g(tr RE*S RE%)2

?S)
2 (REfJ2 + 2tr (REfs RE*U)2] .
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(2) Let A and B be any p><p symmetric matrices. Then we have the fol-
lowing identities:

(A.27) Σ Σ (tr AE fs)tr BE?s = tr AB,
r s

(A.28) Σ Σ t r AE*,BE*,=±-{(χτ A)tr B + tr AB},
r s ^

(A.29) Σ Σ Σ (tr AF*,χtτ AE*t)tτ AE*r=tr A3,

yΆ.OK)) £_j 2_j /_i \vl Ji£jrs)\,l A.£J rf JiHd f s— \\vl sLjΛΛΆ. τ l Γ JL / ?

r s t ^

Σ Σ Σ t r AE*sAE*tAE*r=±{(tΐ J ) 3 + 3(tr A)tτ A2 + Atr A3},

(A.32) Σ Σ Σ Σ (tr AEfs)(tr AE*u)tr AE*S AE*u=tv A\
r s t u

(A.33) Σ Σ Σ Σ (tr AE*s)tx AE*s(AE*u)
2=±-{{tx A)tr A3 + tr A4},

r s t u 6

(A.34) Σ Σ Σ Σ ( t r AE*SAE*U)2=±{(tr A2)2 + tr A4},
t ^

(A.35) ΣΣΣΣtr(AE?s)
2(AE*u)

2=*-{(tr A)2tr A2 + 2(tr A)tr A3 + tr A'},
r s t u 4

(A.36) ΣΣΣΣtτ(AE*sAEfu)
2 = ̂ -{(tτ ^ 2 ) 2 + 3tr A4}.

r s t u 4

(3) Applying the above results (A.27)^(A.36) to the last expressions of
(A.24), (A.25) and (A.26), we obtain the following formulas:

(A.37) trd2\g(Σ)\-Qϊ

Q

(A.38) trc?31 g(Σ)Π 2R)tv R

R3},

(A.39) R) 2

tr R2 + (q+l)(q2 + q + 4)(tr Rψ + 16(q + l)(tr R)tr R?3



Asymptotic Expansions of the Distributions of Test Statistics in Multivariate Analysis 133

(4) Finally we evaluate the values of tr d2\ g(Σ)\ 2Uι(Σ, T)

expressed as follows:

(A.40) U1(i,τ)+2ΣΣ (d/dσ*s) \g(Σ)\

which is

*s) {P(P+q

2=1

•tr

To carry out the operations d appeared in the right hand side of (A.40), we
calculate more general formulas including symmetric matrix Θ, which will be
used in Section 8. Put Z=T—φΩ, then we obtain the following reductions
by the same method as in the derivation of the formulas (A.37), (A.38) and
(A.39).

(A.41) 2Σ Σ(d/dσ*s) I g{Σ) I -2(d/d<r*.)tr

ιf(A.42) Σ Σ (d/dσ%) I g(Σ) I -!(0/0σ*,)(tr Θg{Σyι

(A.43) ~kd/dσ*s)tr(Θg(Σy1)

(A.44) tr 92tr
Σ~I

θg(Σ)-
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=φ2{(tr ΩZ~ι)tτ

(A.45) tr9 2(tr = ΣΣ(d/dσ*s)
2(tr

Σ = I r s

-1\2

ΘZ'ι)tτ

•tr

(A.46) tr -1\2

2 = 1 r

ΩZ~X)

•tr

Inserting the formula (A.37) and the identities obtained by putting Θ— T in
the above equalities (A.41)~(A.46) to (A.40), we have the following formula:

(A.47)

+/4(tr Λ)3+/5(tr Λ)tr i? 2+/ 6tr

l)(tr Λ)tr

where the coefficients fa(a—2, 3, , 6) are given by

(A.48) f2



APPENDIX III. Tables of the upper 5 and \% points of the Pillai's criterion
TABLE A. Upper 5 % points of tr Sh (Sh + S e ) - 1

(1) 71 =

2

3

4

5

6

7

2

0.332

0.436

0.532

0.624

0.712

0.797

3

0.421

0.563

0.696

0.824

0.948

1.069

4

0.498

0.674

0.841

1.003

1. 160

1.313

5

0.566

0.774

0.972

1. 164

1.352

1.535

6

0.628

0.864

1.091

1.311

1.527

1.739

7

0.683

0.946

1.200

1.447

1.689

1.927

8

0.734

1.022

1.300

1.572

1.839

2.101

9

0.781

1.092

1.393

1.688

1.978

2.264

10

0.824

1. 157

1.480

1.796

2. 108

2.42

11

0.864

1.217

1.561

1.897

2.229

2.56

12

0.902

1.274

1.636

1.992

2.34

2.69

(2) n-

V ^
2

3

4

5

6

7

30

2

0. 2826

0.372

0.455

0.534

0.610

0.683

3

0.361

0.483

0.598

0.708

0.815

0.920

4

0.430

0.581

0.726

0.865

1.001

1.134

5

0.491

0.670

0.842

1.009

1. 172

1.331

6

0.547

0.752

0.949

1. 141

1.329

1.514

7

0.598

0.827

1.048

1.264

1.475

1.684

8

0.645

0.897

1. 140

1.378

1.612

1.843

9

0.688

0.962

1.227

1.486

1.740

1.992

10

0.729

1.023

1.307

1.586

1.861

2. 132

11

0.767

1.080

1.383

1.681

1.974

2.264

12

0.803

1. 133

1.455

1.770

2.081

2.389

(3) n -=40

2

3

4

5

6

7

2

0.2179

0. 2872

0. 3519

0.414

0.473

0.531

3

0. 2808

0.3760

0. 4659

0.552

0.636

0.718

4

0. 3367

0. 4558

0.569

0.679

0.786

0.891

5

0. 3875

0. 5291

0.'665

0.796

0.925

1.051

6

0. 4342

0.597

0.754

0.906

1.055

1.202

7

0.478

0.661

0.837

1.009

1. 178

1.344

8

0.518

0.720

0.915

1. 106

1.293

1.478

9

0.556

0.776

0.990

1.198

1.403

1.605

10

0. 592

0.830

1.060

1.285

1.507

1.727

11

0.626

0.880

1. 127

1.368

1.607

1.842

12

0.659

0.928

1.190

1.447

1.701

1.952

Ό
O

s.
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