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As compared with separable isogenies of group varieties, inseparable
ones have a peculiar aspect. Let G and G be two group varieties and let a be
an isogeny of G onto G'. Then the tangential mapping a* of the tangent space
at the unit point of G to that of G' associated with a is not an isomorphism if
a is inseparable, whereas a* is an isomorphism if a is separable. We may
say, in the scheme theoretic languages, that an inseparable isogeny a of G has
the kernel of a which is a group subscheme of G with the non-reduced structure
sheaf. In particular the kernel of a purely inseparable isogeny of G is a group
subscheme of G with one point e such that the stalk of the structure sheaf at
e is an artinian local ring.

As to the purely inseparable isogenies of height 1, it is known that the
kernels of the tangential mappings determine these isogenies. Precisely, let
g be the Lie algebra of G consisting of the left invariant derivations of G.
Then /?-subalgebras of Lie of g stable under the adjoint representation of G
correspond to purely inseparable isogenies of G of height 1. This was obtained
essentially by I. Barsotti in Q1J, and some authors generalized his results
(cf. Q3[], [Ί5] and CH]) Barsotti considered in [_1~] also kernels of general
purely inseparable isogenies of group varieties and used invariant semi-
derivations (or hyperderivations in his terminologies) on G as tools, which
were introduced by J. Dieudonne for formal Lie groups of a positive charac-
teristic in [6]. However he did not pursue complete results in general cases,
and P. Cartier developed some theories on this subject (cf. pΓ], [β~] and [_4Γ\).

The aim of this paper is to give a theory of purely inseparable isogenies
of group varieties essentially from Barsotti's point of view originated in the
paper [1]. The main results are as follows. Let G be a group variety defined
over an algebraically closed field k, and denote by g (G) the set of left invari-
ant semi-derivations on G. Then we shall show that £>(£) = kφq(G) is
a bialgebra over k using the main results in [ΊΓ], and that the set of isomor-
phism classes of purely inseparable isogenies of G corresponds bijectively to
the set of subbialgebras of φ (G) of finite dimensions which are stable under
the adjoint representation of G. Moreover if Nice) is the corresponding sub-
bialgebra of a purely inseparable isogeny a of G, it will be shown that the
affine algebraic group scheme Spec (N(a)D) is the kernel of a in the scheme
theoretic sense, where N(a)D is the linear dual of the bialgebra N(a).
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The first three sections are devoted to the development of a systematic
theory of local semi-derivations of a local ring, global semi-derivations of an
algebraic function field and regular semi-derivations at a simple point of an
algebraic variety, respectively, which are used later. In § 4 we give a theory
of invariant semi-derivations on a group variety G following Barsotti's idea
in [1]. In particular we shall show that a semi-derivation D on an abelian
variety is invariant if and only if D is regular at any point of it. This is
a generalization of the result for ordinary invariant derivations on an abelian
variety. In § 5 we shall show first that G is commutative if and only if § (G)
is a commutative algebra over k. This was given by Dieudonne for formal
Lie groups in [6], but we shall prove it directly without making use of his
result. Moreover some functorial properties of ξ>(G) will be given in this
section. In §6 we shall give the correspondence between the set of purely
inseparable isogenies of G and the set of finite dimensional subbialgebras of
ξ>(G) stable under the adjoint representation of G. In the last section, we
shall define the kernel of a purely inseparable isogeny of G as a group
subscheme of G and give the relations between this subscheme and the sub-
bialgebra of ξ>(G) corresponding to the isogeny. Moreover we shall give a
condition for a group subscheme of G to be the kernel of a purely inseparable
isogeny of G.

Our terminologies are mainly Weil's in [12] and [13], but we use in part
also the languages of the scheme theory in [7] and [10].

In the course of this work, the author had stimulating conversations with
Prof. M. Nishi constantly, and obtained many valuable suggestions from
him. Here the author wishes to express his thanks to the Professor.

§ 1. Local semi-derivations on a local ring

Let A; be a field of a positive characteristic p, and 0 a local ring contain-
ing k such that the residue field 0/m of 0 modulo its maximal ideal m is
canonically isomorphic to k. Then we denote by f(O) the element of k
representing the class of an element / in 0 modulo m, and by 0pr the subring
of 0 consisting of the elements of the pr-th power xpr of x in 0.

We understand by a local semi-derivation D of height r on 0 a A -linear
mapping of 0 into k satisfying the equality

D(fg)=f(O)D{g) + g{O)D(f) for / in 0 and g in 0pr.

A local semi-derivation D of height r on 0 is called special if D(f) = 0 for any
/ in 0pr. We shall denote by ®r((9) the set of the local semi-derivations of
height r on 0 and by <8r(0) the subset of 3X(0) consisting of the special ones.
Let a be an element of k and D an element of ®r(0). Then the linear map-
ping aD defined by (aD)(f)=a(D(f)) for / in 0 is in ®r(0) and S r(0) is
a vector space over k by this scalar product. It is obvious that @r(0) is
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a linear subspace of ® r(0). Since the restriction to 0pr of any element D in
® r(0) is a local derivation in a usual sense, we can easily see that D(0pr+1) = 0.
Therefore we have the following

LEMMA 1. For any integer r > 0 , we have

If {xu ..., xn} is a system of generators for the maximal ideal tn of 0,
let fflr be the ideal of O generated by the elements χ\\ ••-, xζ. Then it is
easily seen that sJJtr is determined independently of the choice of the genera-
tors xu •••, χn of SJJ£ and that 0 ^ is contained in the set & + mr.

LEMMA 2. 1/ Z) ΐs m ©r(0X ί̂ ew we k v e D(A; + mr) = 0.

PROOF. Since 0pr contains 1 and D is A -linear, we have D(k) = 0. If
/ is in mr, f is a linear combination Σ&ίχί\aι ^ Φ> a n d hence we have
D(f) = ΣcCiκO)D{xPir) + Σ(xi(0))prD(ad = 0 since Λ/(O) = Z)(*Jr) = 0. Therefore

r) = 0. q. e. d.

PROPOSITION 1. Suppose that 0 is a regular local ring of rank n. Then
5) is a vector space of dimension pnr — 1 over k.

PROOF. By Lemma 2, D in @r(0) vanishes on & + mr and hence corres-
ponds to an element D in the dual space (O/A + m,)* of O/A -f-nv over A. The
mapping φ: D->D is an injective A -linear mapping. If {tu •. , ίw} is a regular

system of parameters of 0, 0/k + mr is isomorphic to Σ k Π if* as vector

spaces over A, where the sum Σ runs over all (ei, •••, en) such that 0<e z <//

and Σ e, >0. Therefore dim^(0/A: + πxr) is equal to pnr — 1 and hence we have
ί = 1

r(0) <Lpnr — 1. On the other hand / in 0 has the following expression

. m r),

where /(O) and ^ei...βB are in A, and uniquely determined. Let Dei_βn be the
mapping of 0 into k which maps / to ctei...en> Then it is easily seen that Dei...en

is in @r(0). Moreover these pnr — 1 semi-derivations are linearly independent
over A:. In fact if Σ ^,,...^^...^ = 0 (/9βl...β|i e k\ we have ( Σ /S.,.....)̂ 1-••«;") =

iSei...en = O. Therefore dim^@r(0) is at least p w r —1 and hence is equal to
pnr-l. q.e.d.

COROLLARY. Suppose that 0 is a regular local ring and let D be a k-linear
mapping of 0 into k. Then D is in <&r(O) if and only if Z?(A + mr) = 0, and
&r(0) is canonically isomorphic to the dual space of xn/mr over k.

PROOF. Since we have dim*@r(0) = dim*(O/A; + m,.)*= dimΛ(m/mr)*, the
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mapping φ in the proof of Proposition 1 is an isomorphism. Then @r(0) is
exactly the set of A -linear mapping of 0 into k vanishing on k-\-mr. q.e.d.

The basis {£ei...βn!()<>,• <//, Σ et >0} of @r(0) over k in the proof of
ί = 1

Proposition 1 will be called the canonical basis of Sy(O) with respect to the

regular system {tu . , tn} of parameters of 0. Moreover we put £Ί, r = /Vo...o,

. . , Eitr = DOmm£rmmmO, •., En>r = Do_opr, w h e r e Do...o/>> o...o i s a n e l e m e n t of t h e c a n o n -

i c a l b a s i s {Deim,men} of © r + i ( 0 ) w i t h r e s p e c t t o {tu •••, ί w } . T h e n w e h a v e t h e

f o l l o w i n g

PROPOSITION 2. Suppose that 0 is a regular local ring of rank n. Then

we have 2)r(0) = δv(0)Θ Σ kEi>r. In particular dim*®r((9) is pnr' + /ι —1.

PROOF. First we consider the case r = 0. Then we can easily see that
D(k-\-m2) = 0, and that ®0(0) is isomorphic to (m/m2)*, it is well known in
this case that {£Ί,o, , En>0} is a basis of ®0(0) over A:. In general cases r>0,
we put 0r = k0pr. Then the restriction to 0 r of Z> in © r(0) is an element D'
in S)o(Or), and ®0(0 r) is generated by the restrictions £i, r U r , •••, Entr\e,r of
£i, r, , £W f r, since the maximal ideal of 0r is generated by t[\ ., ί̂ r. There-
fore for any D in ® r(0) there exist /9i, ..., /9n in A such that the restriction to

0r of £ - Σ ft^ ,, is 0. Then D~Σ &iEi>r is in ©,(0) by definition. This
t = l ί = l

shows that ® r(0) is the sum © r (0)+ Σ &£>. Moreover if E=D+ ΣaiEi>r = 0
ί = l ί = l

for i) in @r(0) and α, in A;, we have E(ήr) = D(ήr)^Σ aiEi>r(ήr) = aj = 0. This
ί = 1

means that the sum is direct. q. e. d.

Remark. Since {τnr|r = ί, #, •••, zi, •••} is a basis of the neighbourhoods
at 0 in 0 with respect to the m-adic topology, we can see that any element D
in the dual space 0* of 0 is in ©r(0) for some r if and only if D is a continuous
mapping of 0 with m-adic topology into a discrete space k which vanishes
on k.

% 2. Semi-derivations of a function field

Let k be a field of a positive characteristic /> and K a finitely generated
and separable extension of k. We shall denote by Kr the subfield kKpr of i£
for a positive integer r.

We understand by a semi-derivation D of height r of K over k a A-linear
endomorphism of K satisfying the following conditions: i) if x e Kr, then
D(x) is in Kr, and ii) D(xy) = D(x) y-f χD(y) f or x e K and ye Kr. Moreover
D is called special if D(Kr) = 0. We shall denote by ^r(K/k) the set of the
semi-derivations of height r of K over k and by &r(K/k) the subset of
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consisting of all the special ones. Let x be an element of Kr and D an element
of ®r(X/A). Then the linear mapping xD defined by (xD)(y) = x(D(y)) for
yζ K is in ®r(X/A) and hence we see that ^)r(K/k) is a vector space over Kr.
Similarly &r(K/k) is a vector space over K.

The following lemma is a direct consequence of definition.

LEMMA 3. (i) For any integer r^>0, we have

(ii) Let D be a mapping of K into itself. Then D is in &r(K/k) if and
only if D is Kr-linear endomorphism of K such that D(l) = 0.

Let n be the transcendental degree of K over k and {xu . , xn} a separat-
ing transcendence basis of K over k. Then we see that K=Kr(xu , χn) =

n

Kr\iχu •••> χnj and that {Π #f* |0<> ( <//} is a linear basis of K over Kr. Let
i =1

{ΛgiLeJOj^e/ <//} be the dual basis in the dual space of K over Kr with

respect to the above basis {Π *?*} of if. Then !>£!..βn is in &r(K/k) if and
ί = 1

only if e{ φ0 for some ί by Lemma 3. It is easy to see that {D{J^en \ 0<e z <p\
71

2 en>0} is a basis of ®r(K/k) over iC Therefore we have the following
/ =i

PROPOSITION 3. Let K be a finitely generated and separable extension of

the transcendental degree n over k, and {xu •••, xn\ a separating transcendence
n

basis of K over k. For 0 < e , <// and Σ e{>0 let D{/\.en be the Kr-linear
ί = l

endomorphism of K such that D{

e

r^en(x{ι...χe

n

n) = l and De1...en(
χiκ 'xn1)=:Q for

, - ;en)Φ(ei, •••,e/

n). Then {D%..,H\0 <ei<p\ ± e / >0} is

a basis of &r(K/k) and hence the dimension of &r(K/k) over K is pnr — l.
Moreover Kr is the set of the elements x is K such that D(x) = 0 for any D in

The set {/>^Lgn|0<e/ <pr, Σ β( > 0} will be called the canonical basis of
&r(K/k) with respect to the separating transcendence basis {xu ..., xn} of K

over k. Note that {D^l.J is not a subset of {D^J.

PROPOSITION 4. (Barsotti) Let K be a finitely generated and separable
extension of k and H a finite separable extension of K. Then for any D in
^S)r(K/k) there exists unique element Ώ' in ^)r{H/k) such that the restriction of
D' to K is D. Moreover D is in &r(K/k) if and only if Df is in &r(H/k).

This is Lemma 1. 3 in Ql]. But we give an outline of Barsotti's proof
for the convenience of the reader. There exists an element x in H such that
H= K(x) = K\^x~2, and then for any positive integer r, we have H=K(xpr) =

K[_xpr~}. If y is in H, y is uniquely expressed as a linear combination Σ ajxjpr,
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where n = [H\ KJ and α, a K. Therefore Ώr is defined by D'(y) = Σ D(aj)xjpr

j=0.
for any D in &r(K/k), since 2)' should be an ^-linear endomorphism of H.
Then we can easily see that Ώ' is in &r{H/k). If D is in <&r(K/k\ D is in
&r+ι(K/k) and hence there exists D' in ®r+1(H/k) such that the restriction of
D' to K is equal to Zλ It can be seen that Ό' is in ®r(///&).

LEMMA 4. Lei F be a field of a positive characteristic p and K a purely
transcendental extension of one variable x over F. Then there exists a semi-
derivation Dr of height r of K over F such that Dr{xa) — axa~pr for any positive
integer a, where a = apr-\-b and 0 < ό <pr.

PROOF. Since {xa\a = 0, 1, 2, •••} is a basis of the polynomial ring F[_x~]
over F, there exists an F-linear endomorphism Dr of F[_xJ satisfying the con-
dition in our lemma. Then we see that Dr(fg) = Dr(f)g+fDr(g) and D(g)
is in F[xprJ for / in F [ > ] and g in F[xprJ. In fact, for β = afp% we have
Dr(xa+β) = (a + a0xa+β-pr = axa+β-pr + a'xa + β-pr = Dr(xa)xβ + xaDr(xβ). Now
we extend Dr to an F-linear endomorphism of K=F(x) as follows. For any
y in K, there exist / in F[_xJ and g in F^xpr~] such that y=f/g. We put
Dr(y) = Dr(f)g—fDr(g)/g2' If y—f'/gr is another expression of y where
/ ' in F [ > ] and g' in F{_xpr~\, we have fg'=fg and hence Dr{f)gf Λ-Dr{g')f=
Dr(f/)g-\-Dr(g)f/ as shown in the above. From this relation we can easily
obtain the equality Dr(f)g-Dr(g)f/g2 = Dr(f)g'-Dr{g')f>'/g'\ This means
that Dr(y) is independent of the choice of / a n d g. A similar routine calcu-
lation shows that we have Dr{yz) — Dr{y)z-\- yDr(z) for y in K and z in
F(xpr) = Kr. This completes the proof. q. e. d.

Let K be a finitely generated extension of k with a separating transcend-
ence basis {xl9 ..-, χn} as before. We define Ei>r in &r+ι(K/k) as follows:

(*) Eir{jι xγ)=aixγ-pr π %γ,
3=1 j^vi

where 0<ej<pr+\ Σ e;>0, ei = aiP

r + bh and 0<bi<pr. Since {Π χe'\
3=1 3=1

0 <e/ </?r+1} is a linear basis of K over i£r+i, we easily see that there exists
the exact one Ei>r in &r+1(K/k) satisfying the above condition by Lemma 3.

PROPOSITION 5. Let Ei>r be as above. Then Ei>r is in At)r(K/k) for i = l,
2, .-., n.

PROOF. Let Ko be the subfield k(xu , χn) generated by the separating
transcendence basis xu •••, xn over k and F the subfield k(xu , Λ , _ I , Xi+U ••-,
xn) of KQ generated by n — \ elements χu •••, Λ;, _ I , #,-+!, •••, Λ?Λ over A:. Then
KQ is a purely transcendental extension of one variable x{ over F. If D r is
the semi-derivation of height r of Ko over F defined as in Lemma 4, it is clear
t h a t Dr is in ^r(K0/k) and is the restriction of Ei>r to Ko. By Proposition 4
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Eifr is the unique extension of Dr to K and is in Sr(K/7c), since K is a finite
separable extension of Ko. q. e. d.

PROPOSITION 6. Let Kbe a finitely generated and separable extension of
transcendental degree n over k with a separating transcendence basis {xu •••,
xn}. If Eir (i = l, 2, , n) is the element of ®r(K/k) defined by the formula
(*), Eϊ>r, •••, En,r are linearly independent over Kr, and QriK/k) is equal to the

n

direct sum ©r(K//c)0 Σ KrE{ r.Σ
ί = 1

PROOF. Since {xλi • •-, xn} is a separating transcendence basis of K over
&5 {#ί\ •? ^Γ} is that of Kr over k and it is well known that there exists an
ordinary derivation d of Kr over k such that C^xf) = ί, y for e a c ^ ί = ί, #, • , Λ
(cf. [8]). They are a basis of ©0CSV/A) over Kr and the restriction of Ei>r to
Kr is C, . If D is any element of ® ,.(£/&), the restriction of D to i£r is in

® 0(^rA), and hence the restriction of E=D—f] ocfij r to i£r is 0, where

aj = D(xpjr) c iί r. Therefore j ^ is in &r(K/k). This shows that ^r(K/k) is the

sum &r(K/k) and Σ A:r£f ,r. On the other hand if E+ Σ 0CiEi%r is 0 for a{ e Kr

and Ec&r(K/k), we have J?(*f)+ Σ α ^ X ^ f ) = α y = 0 for each /, and hence
ί 11

E=0. This means that £Ί, r> •••, En>r are linearly independent over Kr, and

that the sum ®r(i^/A:) = ©r(^/A:)+ Σ ^-£*,r is a direct one. q. e. d.
ί = 1

LEMMA 5. Let K, k, {xι, ••, xn} and Ei>r be as above. Then we have

n and h,

PROOF. Since Eifh and Ej>k are in &r(K/k) for r = max{Λ, A} + 15 Ei>hEjyk

and EjfkEi)h are also in &r(K/k) by Lemma 3. (ii). Therefore we may assume
that K=k(xϊ:> ..-, Λ;W) by Proposition 4. Then if iφj\ it is clear from defini-
tion that Ei>hEj>k is equal to EjtkEi>h. Suppose that i—j and h>k. If we
expand a positive integer a as a /?-adic series α=ΣΛs/? s(0<Λ s </?), we can

easily see that Eiit(xf) = Xtxf-p'' and a-pt = (λt-ΐ)pt+ Σ ^ ^ 5 Therefore if

at least one of λh and λk is zero, we see that Ei)hEi)k(χ?) = Ei!kEijh(x?) = 0, and
if otherwise, we have Ei,hEi>k(x?) = Ei>kEiJι(χ°ί) = λhλkx

<*-ph-p'c. This proves
our lemma. q. e. d.

Let βi be an integer such that 0 <e{ <pr and expand it as a p-adic series
r-\ r-ι n

Σ λhip
h(b<lλhi<p). Lemma 5 shows that the product Π Π Efy is well

defined, and we denote it by Eeimm.βn. Then we have the following

PROPOSITION 7. Let Kbe a finitely generated and separable extension of k
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with a separating transcendence basis {xu • , xn}. Let {D^l^J- be the canonical
basis of <ξr(K/k) with respect to {xu •••, xn}, and {Eei_βn} the elements of
&r(K/k) defined in the above. Then we have

££..«„ = ( II IΊ 4 D'1£.,..ιn+ΣΛί....;
h = 0 i=l (e')

where Σ runs over all (e[- -e'n) such that e ; < e for each ί and Σ e% < Σ ej,
( « ' ) ί = l ί = l

αTtcί where fe'^e^Xi, • ••, Xw) i s α polynomial in Xu •••, JΓW w i ώ coefficients in

the prime field of characteristic p.

r-l n

PROOF. It is easily seen that J?ei...«nO*;i1---#;n) = II Π λhil If e, > e ί =
Λ = 0 / = 1

Σ λf

hip
hφ<λr

hi <p), there exists an integer 5 such that λji = λji for j>s-\-l
h = l

and ^S1 >A^ ? and hence we have

r - l / r - l s

— Π AΛ, ! Π E{^(xih=o hι )
A=s+i h=0

= 0

On t h e o t h e r h a n d le t ge{...e'niX\, •••, X») b e t h e p o l y n o m i a l in Xu •••, Xn w i t h

coefficients in t h e p r i m e field of c h a r a c t e r i s t i c p such t h a t

(π Π λkiϊ)-1E.1....n(xV...χ?) = g.i._.i(χu •••, xn).
h=0 i=l

Then the above equality shows that ge'lmmmβ'n(X1 . Xn) = 0 if β <e, for some i.
Therefore we see easily that

r - l n

D{r) = ( Π Π λfli\)~1E + Σ g' '(XΛ X )D{r') '

for any (eι---en) satisfying 0 < e , <pr. Proposition 7 is a direct consequence
of these equalities. q. e. d.

n

COROLLARY. Let {Eei_eJQ<ei<p\ Σ β, > 0} be as in Proposition 7.

Then {Eeimmmen} is a basis of &r(K/k) over K.

§ 3. Regular semi-derivations at points of an algebraic variety-

Let X be an algebraic variety over a perfect field k of a positive charac-

teristic p, and let K be the field of the rational functions of X over k. Then

X may be identified with an integral algebraic scheme over k. If x is a point
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of X, we shall identify the stalk 0x>x of the structure sheaf 0χ of X at x with
a subring of K. Then we say that an element D in ®r(2£/λ;) is a regular
semi-derivation of X at x if D(0x>x) is contained in 0x,χ. We shall denote by
2)r(X, x) the subset of the semi-derivations in ®r(£/A) regular at #, and by
@v(X, #) the subset of %r(X, x) consisting of special ones. Then we see that
Θr(X, x) is an O*,χ-module and ®r(X, x) is an (9(r)-module, where 0 ( r ) is the
intersection of 0x>x and £, .

PROPOSITION 8. Let x be a point of X rational over k. Assume that x is
non-singular, and let {ti, •••, tn} be a regular system of parameters of 0x>χ.
Then {ίi, , tn} is a separating transcendence basis of K over k and any element
of the canonical basis {D{

e

r^..en} of &r(K/h) with respect to it is regular at x.

PROOF. It is well known that {tι tn} is a separating* transcendence basis
of K over k. For example see [8]. Let R = k[_tχ, • •-, tn~] be the subring of
0x,x generated by ti, •-, tn over k and L the quotient field of R. Then the
restriction D(

e[len \ L of D{£..en to L is in &r(L/k) by the definition of the canon-
ical basis, and we can see easily that D{£,..en(R) is contained in R. Moreover
if we denote by as the ideal of R generated by n elements t{\ ••-, tp

n\ we see
D{

e

r^en(as)<Zas for s^>r because of iΓr-linearity of D{

e

r^.en. Therefore we see
that D{

e

rl,.en\R is a continuous A -linear endomorphism of R with the αo-adic
topology and hence it has unique extension Dei_βn\R->Ry where R is the
Do-adic completion of R. We can easily see that i)βl...*n is a ^.R^-linear
endomorphism of R, since D^..,βn\R is k[_x[\ •••, Λ;^r]-linear by Lemma 3. By
the same way as in the proof of Lemma 4 we extend Dei...en to Kr-endmorphism
of K, where K is the quotient field of R. If we also denote this extension to
R by J5βl...βn, 5βl...βn is in &r(K/k) by Lemma 3. On the other hand R is also
the m^x-adic completion of 0x>x, and hence we can consider 0x,x (resp. K) as
a subring of R (resp. as a subfield of K). If K is generated by an element x
of Kove L, we have K=L(χpr) = L[_χpr~]. Since 5βl...βn is £ r-linear and 5βl...βn(L)
is in L, we have Dei_βn(K)CK. This means that the restriction Dei_βn\κ of
Dβι...en to K is in &r(K/k) and hence is equal to D[

e

r^en by Lemma 3. It is well
known that 0x>x is the intersection of K and the m#,z-adic completion R of
0XtX. Therefore if y is any element of Qx,χ, D{

e

r^en{y)-= Dβl...βn(j) is contained
in Ox,x=Kr\R. This means that D%.m.en is regular at x. q. e. d.

COROLLARY. Let X, x, 0XiX and {tu •••, tn} be as in Proposition 8. Then

D in ^r(K/k) (resp. in <&r(K/k)) is regular at x if and only if D(t{ι- -te

n

n) and

D(tpjr) (resp. D(t{ι' -te

n

n)) are contained in 0X)X for 0 < e , <pr and j = l,2, ••-, n.

PROOF. There exists αβ l...β n and βj in K for 0 < > ; <pr and j = l, 2, ..., n

such that D = Σ^eι...enD
{

e

rl.en + ΣβjEjjr by Proposition 6, where {D%nen} is the
canonical basis of &r(K/k) over K with respect to {ίi, •••, tn} and {ΐ' ^} is the
same as in Proposition 6. Then we have -D(ί!1 tJn)=αβ l...β n and D(ήr) = βj.
On the other hand Ej>r is a linear combination of the canonical basis {D{

e

r^}e

]

n}
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of @r+i(JE/λ;) with respect to {tu , tn} with coefficient in the polynomial ring
in ίi, ..-, tn over the prime field of the characteristic p. Therefore Ej>r is
regular at x for each j = l9 2, • •-, n. This means by Proposition 8 that D is
regular at x if and only if αβl...βn and β, are contained in 0x>x for 0 < e ; < / /
and j = l, 2, •-, n. This proves our assertion for the case D in ®r(X/7c). The
other case also can be obtained in the similar way. q. e. d.

PROPOSITION 9. Let X, x, 0x,x and {tu • ••, tn} be as in Propositions. Let

{££!..*„ 1 0 < > t < r , Σ e, > 0 } and {Ei>r\ί = l, 2, • ••, n} be as in Propositions 3
/ =i

αTicί 5 /or the separating transcendence basis {ί1? ••-,£„} o/ i£ over A;. Then

© r(X, #) is a free Ox>x-module of rank pnr — 1 wiίA α /rβe basis

®r(X, *) is egwaZ to @r(X, ( )Σ ,
ί = l

PROOF. By Corollary of Proposition 8 we see easily that {/)£!..βn 10<e, </?r,

Σ e^O} is a free basis of ©r(X, ^) over 0x>χ. On the other hand each Ei>r
ί = 1
is regular at # by the definition and Corollary of Proposition 8, and any

n

element E contained in 2)r(X, x) is writen as a sum D+ Σ oίiEi>r, where D is
ί = 1

in &r(K/k) and each α, is in K. Then JF(ίyr) is equal to a{ and hence a{ must
be contained in Kr n 0^,χ = 0 ( r ). From this D is regular at x. Therefore we

see easily see that S)r(X, Λ;) is the direct sum of Θr(X, x) and Σ 0(r)Ei>r.
ί = 1

q. e. d.

For the later use we give an application of Proposition 9.

LEMMA 6. Let X and K be as above. Assume that k is algebraically closed,
and let D be a semi-derivation of K over k. Then there exists a dense open
subset U of X such that D is regular at any closed point of U.

PROOF. Let {tu , tn} be a separating transcendence basis of K over k.
Then there exists an open subset Fof X such that each t{ is in 0x>x at any
point x in Ffor i = l, 2, •• , n and that {tι-tι(x), ••-, tn — tn(x)} is a regular
system of parameters of the local ring 0x>x for any non-singular closed point
x in V. (cf. Chap. VIII. in [8]). On the other hand there exist pnr — 1 elements

ae,..en(° <ei <pr> Σ ef > 0) such that D= Σ ^ . ^ L ^ w h ^ r e {D%m.βn} is the
i =1

canonical basis of &r(K/k) with respect to {*i ίn}. Let W be the open subset
of Xsuch that each αβl...βn is in 0^,χ at any point x in ̂  for 0 < e ; < / > r and

Σ ei > 0, and such that any point in W is non-singular. Then U= V Γ\ W is
» = 1

a dense open subset of X, and, by Proposition 9, it is easy to see that U
satisfies our assertion, because the canonical basis of &r(K/k) with respect to
{tι-tχ(x), , tn — tn (x)} for x in [/is nothing else than {Dι£.mmβn}. q. e. d.
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Let Y be another algebraic variety over k with the field L of the rational
functions over k. If there exists a dominant A -morphism f oί X into F, we
may identify L with the subfield /*(£) of K. Then a semi-derivation D of K
over & does not generally induce that of L over k, because the image of L by
D may not be contained in L. However we have the following

LEMMA 7. Let K and L be as above, and let {ί i5 • ••, tn\ be a separating

transcendence basis of L over k. Then the restriction D\L of a semi-derivation

D in ®r(K/k) to L is contained in &r(L/k), if each element D(tlι te

n

n) is in L

forO<,ei<pr.

PROOF. If we denote by Lr the subfield kLpr of L generated by the pr-th
n

powers of L over k, we have L = Lr(tu •••,*») = Lr\ju • • •, t J and {Y\tγ | 0 < e f < p r }
ί = l

is a linear basis of L over Lr. On the other hand the restriction D\ L of D to
L is Zr-linear, since D is ^-l inear by Lemma 3. Therefore D(L) is contained
in L by the assumption and D\ L is in &r(L/k). q. e. d.

LEMMA 8. Let K, L and {tl9 ••-, tn} be as in Lemma 7, and let D be an

element of ^)r(K/k). Then if each D{tlι" te

n

n) is in L for 0 < e ί < p r and if

each D(tp

{

r) is in Lr for ί = l, 2, , n, the restriction D\L of D to Lis contained

in

PROOF. If a is an integer such that ()<>; <pr+1, we put ei = aφr

i <pr). Then we have

i = l i = l * = 1 t = l i = l

since tf is in ^ r for each ί = l, 2, , n. By definition Z?|^ r is an ordinary
derivation of Kr over k and hence we have

This means by the assumption that each D{t[l...te

n

n) is contained in L for
0<ei<pr+1. On the other hand D is an element of &r+1(K/k) and hence
Z)| z is contained in @r+1(X,/4) by Lemma 7. Therefore the proof of Lemma 8
will be complete, if we show that D(Lr) is contained in Lr. Let F be the
subfield k(t^ •• , tn) of L generated by ίi? ••-, tn over A;, and assume that L is
generated by an element t over F. Then any element u in L can be written

uniquely as a polynomial Σ aμjpr+1 of ί̂ r+1 with coefficients aj in F, where
y=.°

m = QL: F ] , and u is in Î 7^ if and only if each α; is inFpr for y = 0, i, •••, m — 1.

Since i) is in &r(K/k), we have D(M) = Σ D(aj)tjpr+\ Therefore it is sufficient

to show that D{aj) is in Lr for αy in F^ r. But this follows form the fact that
the restriction D\FP

r of D to Fpr is an ordinary derivation of Fpr to L and
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from the assumption that D(tf) is in Lr. q. e. d.

Let D be a semi-derivation of X regular at a rational point x in X over
k. Then we can attach to it a local semi-derivation Dx on the local ring 0x>x

as follows. If πx is the natural homomorphism of 0x>x onto the residue field
k = Gx,χ/mXjX, we define Dx by the formula Dx(f) = πx(D(f)) for any element
/ of 0x>x. In the following we write often D(f)(x) instead of πx(D(f)).
We can easily see that Dx is of height r (resp. of height r and special) if D is
of height r (resp. of height r and special). This local semi-derivation Dx will
be called the local component of D at x. We denote also by πx the mapping
of D to its local component Dx at x. The following proposition is a direct
consequence of definitions, and Propositions 1, 2 and 9.

PROPOSITION 10. Let the nototions be as in Proposition 9. Then the image
n

of a free basis {D{

e[l,en 10 <e{ <p\ Σ e, > 0} of @r(X, %) over 0x>x by the map-
/=i

ping πx is a basis of &r(Px>x) over k and the images of {D{

e

r^en\ϋ<sei<p\

Σ βi > 0} and Ei r(i = 1,2, , n) are a basis of ®r(0x x) over k. Moreover the
i=l '

kernel of the restriction of πx to @r(X, x) is mx>x&r(X, x), where mx>x is the
maximal ideal of 0x>x.

Next we give a generalization of a tangential mapping for usual local
derivations associated with a morphism of an algebraic variety to another
one. Let X, Y be algebraic varieties over k and / a A -morphism of X to Y.
Let x be a non-singular closed point of X rational over k and y the image
f(x) of x by /. We assume that y is also non-singular, and denote by / * the
canonical homomorphism of 0y>γ to 0x>x associated with /. If D is a local
semi-derivation on 0XtX, we denote by /*(/>) the composite mapping Dof*.
Then /*(Z>) is a A -linear mapping of 0y>γ to k> and /*(£>) is in S)r(0^ jF) (resp.
in ®r(0ytγ)) if i) is in Ώr(0Xtχ) (resp. in (g r(0^ z)). /* will be called the
tangential mapping at x associated with the morphism f of X to Y.

PROPOSITION 11. Let X, Γ, /, x and y=f(χ) be as above. Suppose that f
is dominant and that if K (resp. L) is the field of the rational functions of X
(resp. of F), L, 0x>x and 0y>γ are identified with subsets of K. Let {tu , tn}
be a regular system of parameters of 0y>γ. Then if D is in <&r(K/k) (resp. in
&r(K/k)) and if Ό(tγ. .te/) (resp. D(t{^.-te

n-) and D(ήr)) are in 0yJ for
0<ei<pr (resp. 0 < β , < p r and j = l, 2, ••, n), the restriction D' = D\L of D
to L is regular at j , and we have Df

y=f*(Dx) if D is regular at x.

PROOF. By Lemma 7 (resp. Lemma 8) we see that D' = D\ L is in &r(L/k)
(resp. in S)r(L/A;)), and hence by Corollary of Proposition 8 Df is regular at y.
The last assertion is clear from the definition of local components. q. e. d.
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§ 4. Invariant semi-derivations of a group variety

In the sequel we assume that k is an algebraically closed field of a
positive characteristic p. It is well known that there exists a natural
correspondence between integral algebraic group schemes over k and group
varieties defined over k in the sense of Weil [13]. Hereafter we shall identify
an integral algebraic group scheme over k with the corresponding group
variety defined over k. Then the set of all the closed points of a group scheme
over k is nothing else than that of all the rational points of the corresponding
group variety over k, since k is algebraically closed. This set of the closed
points is an abstract group. We shall use rather the Weil's languages than
those of schemes in this section for convenience' sake. We denote by e the
unit element of G and, for a closed point a in G, by La the A -morphism of G
onto itself defined by the left translation x -• ax for any point x in G. Then
the associated homomorphism L* of 0ax,G to 0XyG is an onto isomorphism. In
particular Z* gives an automorphism of the field k(G) of the rational functions
of G over k.

A semi-derivation D of k(G) over k will be called left invariant or, simply,
invariant if L*D = DL* for any closed point a in G. First we give a charac-
terization of an invariant semi-derivation by its local components.

PROPOSITION 12. Let G be a group variety defined over k and D a semi-
derivation of k(G) over k. Then if D is left invariant, D is regular at any
closed point of G and satisfies the realation Dab = (La)*(Db) for any closed points
a and b in G, where (La)* is the tangential mapping associated with the mor-
phism La. Conversely if these conditions are satisfied, D is left invariant.

PROOF. First we assume that D is left invariant. Then there exists
a dense open subset U of G such that D is regular at any closed point b in U
by Lemma 6. Let c be any closed point in G and put a — cb'1. a is also a closed
point in G. Since D is left invariant, we have D = L* \ΏL* and L*(0C)G) = 0b>G.
This means t h a t D(0CtG) = L*-iDL*(Oe,G) = L*-iD(pbtG) C L*-i(ObtG) = 0C f G, and

hence that D is regular at c. Next let a and b be any two closed points in
G and / an element of 0abtG. Then we have (La)*(Db) (f) = Db(L*(f)) =
D(L*(f))(b) = (L*DXf)(b) = D(f)(ab) = Dab(f). This means that (Lβ)*(Z>>) =
Dab. Conversely assume that D is regular at any closed point in G and that
Dab = (La)*(Db) for any closed point a and b in G. Let / be an element of
k(G). Then there exists an affine open subset U of G such that / is contained
in the coordinates ring of U. We put V=La-ι(U) for any closed point a in
G. Then if b is a closed point in V, we have (La)*(Db) (f) = Dab(f) by assump-
tions. This shows that D(L*(f))(b) = L*(D(f))(b) for any point b in U.
Since G is reduced, we see that DL*(f) = L*D(f). This completes the proof.

q. e. d.
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Remark. Let A be an abelian variety defined over k. Then it will be
shown later that a semi-derivation D is invariant, if D is regular at any closed
point in A.

COROLLARY. Let G be as above and let D and Dr be two left invariant
semi-derivations of G over k such that their local components Da and Ώ'a are
equal to each other at a closed point a in G. Then D is equal to D'.

PROOF. Let b be any closed point in G. Then we have Dba — {Lb)^Da —
(La)*D'a = D'ba by the assumption and Proposition 12. Therefore if / is an
element of k(G), D{f){x) — D\f){x) for any closed point x of a dense open
subset of G. This shows that D(f) = D'(f)9 since G is reduced. q. e. d.

Now we denote by g(G) the set of all left invariant semi-derivations of G
over k and put gr(G) = g(G) r\Q)r(k(G)/k) and §>r = g(G) Γ\ &r(k(G)/k). It is
easy to see that g(G), gr(G) and 3r(G) are vector spaces over k and that g(G)
and 3r(G) are associative algebras. gr(G) is a Lie algebra over k with the
multiplication [\D, D'^ — ΌD' — Ό'D. In the rest of this section we shall
determine basis of §r(G) and gr(G) using Barsotti's original idea (cf. [1]).

Let x and y be two independent generic points of G over k. Then k(x)
(resp. k(x, y)) is isomorphic to the field k(G) (resp. k(GxG)) of the rational
functions of G (resp. the product variety G x G) over k. For simplicity put
0 — 0etG and 0' = 0exβ,GχG. H {̂ i5 •••,£»} is a regular system of parameters of
0, there exists a regular system {t[, • ••, *£„} of parameters of 0' such that
t'i(x, y) = ti(x) a n d tf

i+n(x, y) = ti(y) f o r i = l, 2, •••, n. W e s h a l l p u t ξi = ti(x)

and 97; = ί, ( j ) for t = ί, ^, , n. Let / be a rational function of G defined over
k which is contained in 0. Then it is easy to see that there exist a rational
function/in 0' such that f(x, y)=f(χy)—f(χ). If p is the prime ideal in
0' generated by n elements t'n+l9 , t'2w 0 is canonically isomorphic to the
residue ring 0f/p and / is contained in p, since f(x, e) = 0. Therefore f(x, y)

n

is equal to Σ a>j(χ, y)Vj, where α is in 0' for each j = l, 2, •• , zι. From the

fact that 0 is canonically isomorphic to 0r/ρ> there exists unique element αy

in 0 for j = l, 2, ••-, n such that ay(x)=aj(^, y) mod. p. This means that

y=i ί,y=i

where af

{j is in 0' for each i, / = ί, ^, •••, n. Reperating this procedure we

obtain the following equality

where α .̂..̂  6 0 and α .̂..,-,.̂  e 0'. We denote by /βl...βn(/) the coefficient o .̂..̂
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of v^ Vis^vV Vn71 i n this expansion, which is uniquely determined, since 0'
is a regular local ring. Then the mapping Iei...en of 0 into itself is a ά-linear
mapping.

LEMMA 9. For 0 < e ί < p r (i = l, 2, •••, n), Iei...en is 0pr-linear and

Io...opΌ...o(fg) ^ equal to //o...o^ o...o(g ) + glo...op^...o(f) for f in 0 and g in 0pr

PROOF. If / and h are in (9, we have

(fhpr) (*, y)=f(xγ)hpr(xy)-f(x)hpr(x)

Iei...en(fhpr) is the coefficient of rj\x---rje

n

n in the left-hand side of this equality
and the coefficient of rj{x---r)e

n

n in the right-hand side is hpr(χ)Iei_en(f)(χ),
because (hpr(xγ) — hpr(x))f(χy) has no terms of total degrees in ηu •••, rjn less
than pr. This shows that Iei...en in 0^r-linear. Similarly the second assertion
can be shown. q. e. d.

Now we can extend Iβl...en(0 < e , <p\ Σ e z > 0 ) to a semi-derivation of
K=k(G) over k naturally as in the proof of Lemma 4, which will be also

denoted by Iβί,,,βn. Then Ie^βn is in &r(k(G)/k) if 0 < e , <pr and Σ>, >0, and
i =1

I0...0PΌ...0 is in ^r(k(G)/k).

LEMMA 10. Iβl...en is left invariant.

PROOF. Let a be a closed point of G and let / be an element of the inter-
section of 0 = Ge,G and 0a>G. Assume t h a t 0 < e z < / / for each ί = l, 2, •••, n.
Then we have

f(χ, y) = Σ Ie1...
eι<pr j = l

where bj(χ> y) is in 0 for each j . By replacing / by Z*/, we have

(L*/)(x, y)= Σ I.^SLWWVΪ' VΪ+Σ
eί<pr j =

and by replacing x by ax, we have

f(ax, y)=Σ Ie,.,n(f) (ax)vV- yβ

n

n+ Σ bj(
ei<pr 3=1

= Σ (L*Ie,.,n)(f)(x)W--Venn+Σ
ei<pr j=l

This means t h a t L*Iei,.,en = Iβlmm.enL*. q. e. d.

THEOREM 1. Let G be a group variety of dimension n defined over an
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algebraically closed field k. Let {ί i5 • ••, tn} be a regular system of parameters

of the local ring 0 = 0e>G of G at the unit point e and let {Iei...en} be as above.

Then {Iei...en\0<ei<pr, Σ e, > 0} is a basis of §r(G) over k and gr(G) is the
ί = 1

n i

direct sum § r (G)@ Σ A/O...^o...o
ί = 1

PROOF. P u t t i n g / = ί f ί . . - ί j » for 0 < e ; < / / , we have

Since (t(ι teήn) (#, y) is regular a t (e, y) of GxG, we may specialize Λ; to e in

the above equation. Then we have

VV "Vnn= Σr(Ie1...en)e(te

1

1 -te

n

n)'ηi1. -7]e

n

n-{- Σ bj(e, y)η*\

where (J e i...β B)β is the local component of Jβl...βn a t e, and hence we see t h a t

(/elιifgB)g (if1-- •£»") = 0 if (eι en)
:φ(e/

1 e/

n) and (/e^...eς)β(ίf ---ίj") = 1. This

means t h a t /βl...βn(ίί1 ί5w) — 1 is in the maximal ideal m of 0 = 0e>G for

0 < β / < p r and Σ e, > 0, and /«,«, (if1-••££") is in in for (βi, •••, en)Φ{e[^ •••,

e^). In other words the local components of {/ β l . . . e J0<>,-<//, Σ e t > 0 } is

the canonical basis @ r(0) over jfc with respect to {ίi, ••-, tn\. By Corollary of

Proposition 12, § r(G) is isomorphic to a subspace of @ r(0) over k. But from the

above, we see t h a t § r(G) is isomorphic to © r (0) and hence {/ e i . . . e J0<e; </>r,

v e, > 0} is a basis of 3 r(G) over k. Similarly we easily see t h a t {Iei...en\LΛ

0 <e{ <p\ Σ e, > 0} and {/o...o/>̂ o . o I ί = l, 2, •••, ^} is a basis of gr(G) over k.

q. e. d.
ί = 1

COROLLARY 1. Lei G and {Iei_βn}be as in Theorem 1 and let a be a closed
n

point in G. Then {Iei...en\0<^ei<pr, Σ e% > 0} is a basis of @r(G, a) over 0a>G
i = 1

and the local components of this basis at a is a basis of @r(0α,G) over k.

PROOF. If α = β, we see in the proof of Theorem 1 t h a t the local com-
n

ponents of {/ e i . . . e JO<e z <p% Σ β, > 0} is a basis of @ r(0e,G) over k. There-
i = 1

fore @r(G, e) is equal to Σ Oβ>G/βl...en + τπe@r(G5 e) and hence to Σ 0e,G/ei...βn
βi<pr ei<pr

n

by Nakayama's lemma. In the general cases, {(/ei...eJa|0<e/ <//, Σ β» > 0}
ί = 1

is also a basis of @r(0a>G), since Da — {La)^De for Z) in g(G). Therefore we
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n

see that {/ei...eJ0<e* <//, Σ e» > 0} is a basis of @r(G, α) over (9βfG by the
/ = 1

same reason as the case a — e. q. e. d.

COROLLARY 2. Let G be an abelian variety defined over k and D a semi-
derivation of G over k. Then D is invariant if and only if D is regular at
any closed point in G.

PROOF. Assume that D is regular at any closed point in G and that D is

in ®r(k(G)/k). Since {Iei...en\0<ei<pr, Σ β, > 0} is a basis of &r(k(G)/k)
i=l

over k(G), we have D= Σ ae1...enle1...en- By Corollary 1 of Theorem 1 {Iei...en}
ei<pr

is also a basis of ©r(G, a) over 0α;G for any closed point a in G, these αg]...βn

must be in 0a>G. This means that each αβl...βn is a constant, i.e., an element
of A:, because G is a complete variety defined over k. This completes the proof.

q. e. d.

§ 5. Functorial properties of Φ(G) = ftφfl(G) as an algebra

First we recall some definitions concerning Hopf algebras over a field k
for convenience' sake. Let A be a vector space over a field k. Then ^ is called
a unitary algebra over k if there exist a ^-linear mapping ra of Aξ§kA into J
and a A -linear mapping η oik into y4 such that m(idA(&m) = m(m(i>t)idA), and
that m(τ/<S) ίdA) and m(ίdA(g)y) &iγe the canonical isomorphisms of kξξ>kA and
4̂ (g)ΛA onto J respectively, m is called the multiplication of A. Let r be the

automorphism of A ®kA defined by r(α (g) b) = b 0 α. Then the unitary algebra
4̂ is called commutative if mr = m. Let (^', m/, ̂ 0 be another unitary algebra

over A: and / a A -linear mapping of A into ^ . Then we say t h a t / is α^ algebra
homomorphism of J into A' if mr{f<^)f) — fτn and y' = frj. Similarly we can
define an augmented coalgebra over k, which is the dual notion of a unitary
algebra over k. A vector space A over k is called an augmented coalgebra over
k if there exist a A -linear mapping A of A into A(&kA and a A -linear map-
ping ε of A into A such that (idA(& A)A = {A(&idA)A and that (e<S)idA)A and
(idA(S>ε)A give the canonical isomorphisms of 4̂ onto k(&kA and A^kk
respectively. // and ε are called the diagonal and the augmentation of A
respectively. The cocommutativity and coalgebra homomorphisms of aug-
mented coalgebras over k can be defined in the same way as the commutativity
and algebra homomorphisms of unitary algebras over k. Moreover notice
that if (A, m, ΎJ) is a unitary algebra over k, Aζξ>kA has a structure of a unitary
algebra over k. In fact if we put m = (m(&m) {idj^^r^idjC} and 7j=-ηζ>ξ)7],
(A(g)kA, m, rj) is a unitary algebra over k. Similary, if (A, A, ε) is an aug-
mented coalgebra over &, we see that A ζξ>kA has a structure of an augmented
coalgebra over h defined naturally by that of A, It is easy to see that k itself
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is a unitary algebra and an augmented coalgebra over k.
A vector space A over k is called a bialgebra over k or a hyperalgebra over

k if A has both structures of a unitary algebra (A, m, η) and an augmented
coalgebra (A, J, ε) such that A and ε are algebra homomorphisms of A into
A§§kA and k respectively. It can be seen easily that the last condition is
satisfied if and only if m and η are coalgebra homomorphisms of A ζξ)kA and
k into A respectively. A A -linear mapping / of (A, m, η, Δ, ε) into another
bialgebra (A\ m\ η'9 A\ εf) is called a bialgebra homomorphism if / is both an
algebra homomorphism and a coalgebra homomorphism of A into A' over k.
If a A -linear endomorphism of a bialgebra (A, m, η, A, ε) over k is called an
antipode of A if τjos = m(c(S>idA)Δ = m(idA(S>c)Δ, and then (A, m, η, A, ε, c) is
called a Hopf algebra with the antipode c.

If A is a vector space of a finite dimension over k, we denote by A* the
dual space Honu(^4, k). For a A -linear mapping of A into a finite dimensional
vector space B over 4, / * will be the dual mapping of £ * into A* defined by
f*(Φ) = Φ°f f ° r Φ i n #*• Then if (A, m, η, A, ε) is a bialgebra over k such that
dim* A is finite, we can easily see that (̂ 4*, J*, ε*, 771*, ??*) is also a bialgebra
over &, where 04*, J*, ε*) (resp. (̂ 4*, m*, ??*)) is the underlying unitary algebra
(resp. the underlying augmented coalgebra). (A*, A*, ε*, τn*? 97*) is called ίfee
linear dual of 04, 771, η, A, ε) and denoted by AD. Moreover if a Hopf algebra
A has the antipode c, c* is the antipode of J D , and hence AD is also a Hopf
algebra over k.

Now we return to an integral algebraic group scheme G over an algebrai-
cally closed field k. Since the set g(G) of left invariant semi-derivations of
G over A; is a subalgebra of AutA(A(G)), §(G) = A©g(G) can be also considered
a subalgebra of Aut*(A(G)). Then §(G) is a unitary algebra over A in the
above sense. We shall denote by mG the multiplication of ξ>(G) and by ^G the
mapping of k into ξ)(G) defined by η(a)=a®0 in φ(G) for a in A. The co-
algebra structure of «ξ)(G) is defined as follows. For simplicity we denote by
/o...o the identity mapping of k(G) onto itself. Then ξ>(G) is a vector space
over k such that {/βl...βJe, : non-negative integer for ι = ί, ^, , τι} is a basis
of ξ)(G) over k. The augmentation εG of φ(G) is given by the value 2>(1) of
i) in φ(G), i.e., the projection of the direct sum φ(G) = A0g(G) to the first
factor k. The diagonal AG of φ(G) can be determined by the values of a basis
of φ(G) over A. Therefore we put ΔG(Ie e ) = Σ /«$...«;®*/eί...β;, where

the sum runs over all (e(, •••, ê ) and (e{, •••, ej) such that e,' + ej = e, for any
i = l,2, ,n. It is easy to see that J G is cocommutative and that (Φ(G), JG, εG)
is an augmented coalgebra over k, since εG(Jβl...βn) = O if (ei, •••, en)φ(0, ••-, 0).
We must see that (£>(G), mG5 ^G, ^G? εG) is a bialgebra over k. If it is done,
we see that the subalgebras ξv(G) = A;©3r(G) are subbialgebras of φ(G) and

00

that ξ)(G) = V7 ξ)r(G). Conversely if we see that each ξv(G) is a bialgebra over
r = l

A, ξ>(G) is necessarily a bialgebra over k. We shall see later that ξv(G) is
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a Hopf algebra over k for each i and postpone there the verification for ξ

to be a bialgebra over k. But we show here that the multiplication mG of

is related closely to that of G. For this purpose we show the following.

THEOREM 2. Let G be a group variety over an algebraically closed field k,

and let {ίi, •••, tn} be a regular system of parameters of 0 = 0e>G. Let x and y

be two independent generic points of G over k and put £,- = £,•(#) and ηi — ti{

for ί — 1) #, • , n. Then, for any element f of 0 and for any r, we have

0<ei,ej<pr

ί = 1

where α, and b{ are rational functions of GxG regular at e x e and (Iei...enle'1...e<n)e

is the local component of /ei...en/e

/

1...β; at e.

PROOF. Let x, y and z be three independent generic points of G over k

and denote by 0" the local r ing of GxGxG a t eXeXe. Then there exists

a regular system {t'{, ••-,*£„} of parmeters of 0" such t h a t ξi = ti(x) = t/ (x, y,z),

7ji = ti(y) = ti+j(x, y, z) and ζ, = *,-(*) = *L+i(*> J ?

 z) for i = l, 2, •••, n. Then

we can easily see t h a t OVC^L+u ---J ί3«) is canonically isomorphic to 0f =

Oeχe,GxG> Therefore if g is a rational function of GxG defined over k and if

g is regular at e x e, we can expand g(χz, y) to a series in the veriables

Ci, •••, Cn as follows:

g(xz,y)=g(x,y)+ Σ Γei...
ei<pr

where Γeι...en(g) and a) are contained in 0' and 0" respectively. It is easy to

see that Γei...en is a A -linear mapping of 0' to itself and that the restriction of

Γβl...βn to the field k(G) = k(Gx e) is Iei...en defined in §4. Putting in particular

g(xz,y)=f(xzy)=f{xy)+ Σ Γ.^.Sg) (*> yXV' 'Zϊ
ei<pr

+ ta'j(x, y,z)ζf.

Since f(xy)=f(χ)+ Σ I.'1^'Sf)(x)vli- vf+ Σ b'^x, y)y?r,
4<ρr y=i

we see easily that
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and hence that

0<βi,^y</>r

+ Σ αy(*, 7> *)Cf + Σ bj(x, y, *)?f,
y=i y=i

where α, and δ, are in 0". Specializing Λ; toe and replacing z by i , we obtain
the following

f(χγ)= Σ ( ^ , . . , J , ί . . . , ; ) ί ;

Q<ei,e'j<pr

n n

+ Σ «;(*, y)fy + Σ
y = i y = i

where α; and 6; are in 0\ q. e. d.

COROLLARY. Let G be as in Theorem 2. Then G is commutative if and
only if the algebra g(G) is commutative.

PROOF. G is commutative if and only if xγ = γx for any independent
generic points x and y of G over k. If ^7 = yx, then /ei...βn/β;...β; = /e

/

1...β;/βl...βn

by Theorem 2 and Corollary of Proposition 12. This shows that g(G) is a com-
mutative algebra over k, since {/βl...βn} is a basis of g(G) over A. Conversely
if g(G) is commutative, we see thaA, f(xy) = f(yχ) for any function / in 0e>G.
But this means that xy = yx, since G is reduced. q. e. d.

Next we give some functorial properties of ξ>(G) as an algebra over k.
Let G and G' be two group varieties defined over k and let α be a homomor-
phism of G into Gr defined over k. If i> is an element of g(G), α*(De) is
a local semi-derivation of the local ring 0g/,G' of G' at the unit point e\ where
α* is the tangential mapping at the unit point e of G attached to the A -mor-
phism α. Then there is the unique left invariant semi-derivation Ώ' such
that the local component D'e' of Df is α*(De) by Corollary 1 of Theorem 1 and
Corollary of Proposition 12. Putting α*(D) = D\ we obtain a A-linear mapping
α^ of g(G) into gCG'), and extend it to a A -linear mapping of φ(G) into φ(G')
such that the restriction of the mapping to k is the identity mapping of k.
We shall also denote by α* the extended mapping and this α* will be called
the tangential mapping of <£>(G) to £>(G') attached to a.

LEMMA 11. Let G, G and a be as above and D a left invariant semi-deriva-
tion of G. Then we have

( i ) (a*D)a(a)=a*(Da) for any closed point a in G, and
(ii) a*(a*D) (f) = Da*(f) for any f in k(G) regular along a(G).
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PROOF. By the definition of a* and Proposition 12 we have (a*D)a(a) =
(Laia))*(a*D)e' = (Iα(α))*α*CDe) = (La{a)a)*(D e) = (aLa)(De)=a*Da. This proves
(i). Take a closed point a in G such that / is regular at a(a). Then we
have, using (i), ίa*{a*D)f){a) = (a*D)φ{a{a)) = {a*D)a{a)(f) = (a*Da)(f) =
Da(a*f) = D(a*f) (α). Since G is reduced, we can easily see that α*(α*D)(/) =
D(a*f). q. e. d.

LEMMA 12. Lei G, G' and a be as in Lemma 11. Then the k-linear map-
ping a* of φ(G) m£o ξ)(GQ is an algebra homomorphism and hence the restric-
tion of a* to Q(G) is a Lie algebra homomorphism of g(G) into g(G').

PROOF. It is sufficient to see that ct*(DιD2)
for / in 0e>tG' and D, in g(G) (i = l, 2). By Lemma 11 and the definition of a*
we have {a^Dι)a^D2))Af) = (α*(#i)α* (Z>2) (/)) (e') = ( α ^ O X C * *Z>2) (/)) -
a* (Dle) {{a*De) (/)) = Dle (α*α* (D2) (/)) = Dle(D2 (α*/)) = (Z)1β2(α*/)) (β) =

q.e.d.

PROPOSITION 13. Lδί G be a group variety defined over k and let G' be
a group subvariety of G defined over k. Then j * attached to the injection j of
G' into G is an injective mapping.

PROOF. Put 0=0e>G and 0r=0e,G' and let p be the prime ideal of 0 cor-
responding to the subvariety G' of G. Then 0/p is canonically isomorphic to
0' and * is nothing else but the natural homomorphism of 0 onto 0\ if we
identify 0' with 0/p. Therefore the tangential mapping /* in the sense of §3
is injective. But this means that the mapping j * of ξ)(G) to Φ(G) is also
injective by Corollary of Proposition 12. q. e. d.

PROPOSITION 14. Let G and Q be two group varieties defined over k, and
a a separable homomorphism of G onto G' defined over k. Then the tangential
mapping a* attached to a is surjective.

PROOF. We may identify k(Gf) with the subfield a*(k(G')) of k(G). By
assumptions, there exists a separating transcendence basis {51, ••-, sm} of k(G)
over k(Gf). If {ίi, •••, tr} is a separating transcendence basis of k(G') over &,
{tu ••-, tr, su •• , sm} is t h a t of k(G) over k. Then there exist non-empty open
subsets U and V of G and G' respectively such t h a t { ί i - ί i ( α ) , •••, tr~tr(a),
5i —5i(α), ••, sm — sm(a)} is a regular system of parameters of the local ring
0a>G a t any closed point a of £7and t h a t {t1 — t1{b), ..., ί r — ί r(δ)} is t h a t of the
local r ing 0bfG' a t any closed point b of F. Let a be a closed point of the non-
empty set Ur\or1(y) and put b=a(a). Then we see t h a t {i*-i(ίi — ίi(α), ••,
L*-i(tr — tr(a))} is a regular system of parameters of the localing 0 β ' ( G ' and
t h a t { i ί - i ( ί i - ί i ( α ) ) 5 ••-, L * - i ( ί r - ί r ( α ) ) , i * - i ( 5 i - 5 i ( α ) ) 5 •••, L * - i ( 5 m - 5 m ( α ) ) } i s

that of the local ring 0e>G. Therefore we may assume that {tu , tr} is
a regular system of parameters of 0,>tG> and that {tu ••-, ίr, si, ..., sm} is that
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of 0e>G. If {/βl...βm+r} is the canonical basis of g(G) with respect to {tu • •-, tr,
5i, •••, sm}, then we see easily that {α*(Jβl...βrO...o)} is that of g(G0 with respect
to {ίi, •••, tr}. This shows that a* is surjective. q. e. d.

We terminate this section by giving an interpretation of α* attached to
a surjective homomorphism a.

PROPOSITION 15. Let G and G be group varieties defined over k and a a
homomorphism of G onto G' defined over k. Let k(G') be identified with the
subfield α*(A(G0) of k(G). Then if D is in ®(G), the restriction D \ HGΊ of D to
k(G') is in ©(GO and we have a^(D) = D\k(GΊ and a*(Da)=a*(D)a(a) for any
closed point a in G.

PROOF. By (ii) of Lemma 11, we have a*(a*(D))(f) = D(a*(f)) for any
/ in 0e'fG', since a is surjective. By the definition of α* and Proposition 12
a*(JD) is regular at e\ and hence a*(D)(f) is in 0β',G'. This means that
2?(α*(0e',G')) is in α*(Oβ'>G0 and hence D(k(G')) is in k(Gr). Moreover the
above equality shows that D\k(G^ is a*(D). The last assertion is easily seen.

q. e. d.

§ 6. Bialgebra structure of §(G) and purely inseparable isogenies of G

First we summarize the Cartier's results on isogenies of group varieties
given in [ΊΓ], which are necessary for determining the structure of φ(G) of
a group variety G. For convenience we state them in our terminologies.

Let G be a group variety defined over an algebraically closed field k and
let L be a subfield of k(G) containing k such that [_k(G) : L~}= r <°°. Assume
that L is stable under the automorphism L* of k(G) attached to the left
translation La of G for any closed point a of G. Let ΛL be the set of Z-linear
endomorphisms of k(G) and NL the subset of the elements u in AL such that
uL* = L*u for any closed point a of G. Moreover denote by N{

L

s) the set of
L-multilinear mappings u of the product space k(G) x x k(G) with 5 factors
into k(G) such that L*u(fu •••, fs) = u(L*(f1), ..., L*(fs)) for any closed point
α of G and for any /,- in A(G) (&' = 1, 2, , 5). Then Cartier obtained the fol-
lowings.

(A) ^ is a ring containing k(G) (as translations) and a vector space over
k(G). NL is a subring of Jz, containing k and a vector space over k. There-
fore NL is a unitary algebra over k. Moreover any basis of NL over k is that
of A over £(G). In particular r =

(B) T h e t e n s o r p r o d u c t NL<g)k- (8)kNL of copies of NL is i s o m o r p h i c t o
N^s) b y a A - l inear m a p p i n g πs s u c h t h a t 7r5(ui(8) (8)ws) (fu •• ,fs) = ui(fi) ..
us(fs) for u, in Nx a n d / f in A(G) (£ = 1, 2, •••, 5). W e shal l i d e n t i f y ΛΓ z(g)Λ...
(8)^iVz w i t h N(s\
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(C) NL is a bialgebra over k, where the diagonal ΔL and the augmenta-
tion εL are defined as follows. For any/ x and/ 2 in k(G) we put ΔL(u) (fuf2) =
M ( / I / 2 ) . Then ΔL is a A -linear mapping of NL into NL(g)kNL=N(2\ The
augmentation eL is given by eL(u) = u(l).

(D) Let Af be an algebra eith identity of 4-linear endomorphisms of k(G)
satisfying the following conditions: (i) M is of finite dimension over k.
(ii) uL* = L*u for any u in M and any closed point a in G, and (iii) for any u

t

in Λf, there exist ẑ  and u'iii — 1, 2, • ••, ί) such t h a t u(fιf2) = Σ ^ ( / i V K / 2 )
ί = 1

for any/,- in k(G) (i = l, 2). Let M+ be the set of u of M such that a(l) = 0
and let L be the subfield consisting of the elements / in k(G) such that u(f) = 0
for any u in M+. Then L is stable under the automorphisms L* of k(G) for
any closed point a in G and M=NL. In particular we have EA (G): L] =

Let G' be another group variety defined over k and a an isogeny of G onto
G' defined over k. Then we may identify k(G') with the subfield α*(A(G')) of
4(G) and A:(Gr) is stable under the automorphisms L* and i?* of A(G) for any
closed point a in G, where i?α is the morphism of G onto G such that i?α(Λ;) = Λ;α
for any point x in G (cf. Proposition 7 in [3]). We denote by N(a) the bial-
gebra NHGΊ attached to the subfield k(G') of k(G). We put ada(u) = RfιuR*
for any closed point a in G and a ά-linear endomorphism u of k(G). Then the
operator ad is called ίfeβ adjoint representation of G.

(E) Let G, G' and α be as above. Let M be a subalgebra of ΛΓ(α). Then
Aί is the corresponding subalgebra N(β) to an isogeny β oί G onto G/r if and
only if M is a subbialgebra of N(a) over 4 which is stable under the adjoint
representation of G. Then if so, β is determined uniquely up to isomorphisms,
and there exists an isogeny γ of G" onto G' such that a — yoβ. Conversely if
a — yoβ^ N(β) is a subbialgebra of N(ά) stable under the adjoint representa-
tion of G.

Now we apply these results to purely inseparable isogenies of group
varieties. Let G be a group variety defined over k. Then it is well known
that there exists a purely inseparable isogeny πr of G onto a group variety
Gr defined over k, isomorphic to G over 4, such that π*(k(Gr)) is the subfield
k(G)pr of k(G) and that such πr is uniquely determined up to isomorphisms.
We call πr the Frobenius morphism of height r of G. Moreover we easily see
that a purely inseparable isogeny a of G onto a group variety G' decompose
a 7rr, i.e., τzr — β°oc for some isogeny β of G' onto Gr, if and only if π^(k{Gr)) —
k(G)pr is contained in α*(4(G0). Such an isogeny α will be called of height < r .

LEMMA 13. Let Gbea group variety defined over k. Then k(G)®&r(k(G)/k)
is the set Ar of all the k(G)pr-linear endomorphisms of k(G).

PROOF. Since an element / of k(G) operates on k(G) as a left translation,
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k(G) is contained in Ar. On the other hand &r(k(G)/k) is contained in Ar by
Lemma 3, Moreover we have dimk(G)(&r (k(G)/k) =pnr — 1 if dim G=n by
Proposition 3, and hence dimk(G)(k(G)Q)&r(k(G)/k) =pnr, which is equal to
dimk(G)Ar, since it is easy to see that \Ίc(G): k(G)pr~]=pnr q. e. d.

PROPOSITION 16. // πr is the Frobenius morphism of height r of a group
variety G defined over k, then N(πr) is equal to §r(G)

PROOF. By Lemma 13 and the definitions of £r(G) and N(πr), N(πr) con-
tains &®£r(G), whose dimention over k is pnr by Theorem 1. On the other
hand dimkN(πr) is equal to d\mk{G)Ar=pnr by (A). This shows that N(πr) =

G) = !Qr(G). q.e.d.

PROPOSITION 17. Let G be a group variety defined over k. Then Op(G),
mG, ηG, dG, εG) defined in §5 is a bialgebra over k, and N(πr) with the structure
defined in (C) is a subbialgebra of ξ

PROOF. AS noticed in §5, it suffices to show that tQr(G) = k®§r(G) is
a bialgebra over k. Since N(πr) = ξ)r(G) by Proposition 16, we show that
ΛGI §r(G) and εG | § r ( G ) are nothing else than the diagonal Δr and the augmenta-
tion er of N(πr) in (C) of this section. By the definitions eG § r ( G ) is equal to
εr. On the other hand let / and g be two elements of k(G) regular at the unit
point e of G, and let x and y be two independent generict points of G over k.
Then we easily see that

f(χy)g(χy)=f(χ)g(χ)+ Σ ( , Σ ie^SD^i^g))^---^

β i < p r (e ) + ( e " ) = (e)

n

+ Σ α/O5 y)vj\

where αy is in 0exe>GxG for any j = l,2, > >n. This means, put t ing Jo...o = t h e

identity map of k(G\ t h a t Ie,.,n(fg)= Σ Λί....;(/)Λf....;(«r)> w h e r e t h e

sum Σ runs over all (e(, •••, e'n) and (ej, ••, eζ) such t h a t e'i + eΊ=ei
( e ' ) + ( e " ) = (e)

for each z' = i, ^, ••, n. From this we have J r (/ β l . . . β n ) (/, g) = Ieimmtβn(fg) =

, Σ i.{...e'Sf)'.ι . . £g)= , Σ

q. e. d.

THEOREM 3. Lei G be a group variety defined over k and ξ)(G) iίs bialgebra
generated by left invariant semi-derivations on G. Then there exists one to
one correspondence between isomorphism classes of purely inseparable isogenies
of G and finite dimensional subbialgebras of ξ)(G) which is stable under the
adjoint representation of G. Moreover a purely inseparable isogeny a of G
is of height < > if and only if the corresponding bialgebra N(a) is contained
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PROOF. Let a be a purely inseparable isogeny of G onto a group variety
G defined over k. Then there exists an isogeny β of G to Gr defined over k
such that πr = βct. Then the bialgebra N(a) of a is a subbialgebra of φr(G) =
iV(7Z7) by (2?), and hence a subbialgebra of φ(G), which is of a finite dimension.
Conversely if M is a subbialgebra of φ(G) of a finite dimension, there exist
an subbialgebra fQr(G) containing M, since φ(G) is the union of φ»(G) (n = l9

2, ...). Then if ikf is stable under the adjoint representation of G, M is equal
to JV(α) for an isogeny a of G onto G' such that πr~βct, where β is an isogeny
of G onto Gr. Then correspondence of a and N(a) is evidently a bijection
between isomorphism classes of isogenies of G defined over k and invariant
subbialgebras of finite dimensions of ξ>(G) under the adjoint representation
of G. The last assertion follows from the above. q. e. d.

§ 7. Kernels of purely inseparable isogenies

The aim of this section is to determine the kernel of a purely inseparable
isogeny a of a group variety G as a closed group subscheme of G whose un-
derlying space consists of the unique point e of G, and to show that the kernel
of a is isomorphic to Spec (N(a)D) of the linear dual N(a)D of the bialgebra
N(a) defined in §6.

Let G be a group variety defined over k and a a purely inseparable isogeny
of G onto a group variety G defined over k. If we denote by 0 and m (resp.
0' and tn') the local ring of G (resp. G) at the unit point e (resp. e') and its
maximal ideal, there exists a local homomorphism α* of 0' into 0 attached to
the morphism a. Since G and G are group schemes over k, there exist k-mor-
phisms μ and μ' of G x G and G x G' to G and G' respectively which define the
multiplications of G and G. Therefore there exist local homomorphisms δ
and δr of 0 and 0' to the local rings 01 = 0exeyGxG and 0ί = 0e'Xβ'tG'xG, of GxG
and GxG' respectively such that ί α * = (αxα)* ί / .

Now we put /? = 0/α, where α is the ideal of 0 generated by the image
tf*(mθ of the maximal ideal m' of 0' by α*, and let 0 be the canonical homo-
morphism of 0 onto R = G/a. On the other hand it is easy to see that 0χ
(resp. OΊ) is isomorphic to the quotient ring (0(8)*0)n (resp. (O'(8)*0')n')
with respect to the prime ideal 31 (resp. ϊi'X where π (resp. rt') is the ideal
m^ibO + O ^ m of 0(g)*0 (resp. m'(g)*0' + 0'<g)*m' of (7 ®*00, and hence if we
identify 0{ with the subring (αxα)*(0Q of 0u 0f ^k0

f is a subring of 0<g)k0
and π ; is equal to π Λ ί O ' ® ^ ) . Therefore Oi/πΌi is isomorphic to (0® A 0/
π / (0®*0)) n / n ' (^^ ) = 0(8)*0/n/(0(8)ik0), since O^^O/n^O(8)*0) is a local ring.
Moreover 0(8)Λ0/n'(0(8)Λ0) is equal to σ®Λ(5/(α®Λσ + (5®Λα)^σ/α®*O/α =
R(g)kR. This means that there exists a canonical homomorphism 0 of 0χ —
Oexe.GxG to i?0*-R whose kernel is the ideal nΌi. Then we see that the kernel
of the homomorphism ψod of 0 to R (£)kR contains α. In fact α*(m') generates
α and we have (φδa*) (mr) = 0(αxα;)*(ί'(m')) C 0(αxα)*(mί) C ίίCnΌJ = 0,
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where mi, is the maximal ideal of 0[. Hence there exists a homomorphism
ΔR of R into R®kR such that JRoφ = ψod. Since R is equal to 0/α, there
exists a canonical homomorphism εR of R onto k = R/mR, where mR is the
maximal ideal m/a of R. Then we can easily see that (R, JR, eR) is a coal-
gebra over k, since ΔR and εR are defined by dualizing the multiplication of G
and the injection of the unit point e into G. We omit the detail proof. This
means that (2?, mR, rjR^ ΔR, εR) is a bialgebra over k, where mR and TJR are the
multiplication of the ring R and the injection of k into R respectively.

Moreover let γ (resp. γr) be the A -morphism of G (resp. Gf) onto itself such
that γ(x) = x~1 for any point x in G (resp. γ'(xf) = χr~ι for any point x' in G').
Then there exist automorphisms r* and 7-'* of O and 0' respectively such that
γ*a*=a*γ'*. From this we see that a = 7**(a) and hence there exists an
automorphism cR of R, which is an antipode of the bialgebra (7?, mR, ηR, JR, εR)
over k, since cR is obtained from the morphism γ. Therefore Spec(i?) has
a structure of an affine group scheme over k and there exists a closed im-
mersion j a of Spec (R) into G such that j a is a morphism of group schemes
over k (cf. Chap. I in CIO]). The group scheme Spec (R) over k is called the
kernel of the purely inseparable isogeny a of G and denoted by Kera. We
also say that R is the bialgebra (or Hopf algebra) of the group subscheme Kera
ofG.

LEMMA 14. Let G, G' and a be as above. Then the dual space R* of the
bialgebra R of Ker a is canonically isomorphίc to the subbialgebra N(a) of £>(G)
corresponding to the isogeny a as vector spaces over k.

PROOF. If u is an element of N(a), u maps 0 = 0e>G into itself, since any
left invariant semi-derivation is regular at any closed point of G. Then if π is
the natural homomorphism of 0 onto k = O/me>G, π°(u\0) is a ^-linear mapping
of 0 to k. Moreover, since u is α*(&(G'))-linear by the definition of N(a), the
image of a=ά*(mf)O by u is in α, where m' is the maximal ideal of 0/ = (9g/>G

/.
This means that no(u\Θ) induces a A -linear mapping of R = O/a to k, which
will be denoted by λ(u). We shall show that the mapping λ of N(a) to jf?* is
an isomorphism over k. First we see that λ is injective. In fact any element
u of N(a) is decomposed to ζ+uu where ξ is in k and uλ is in g(G), and
πo(uι\&) is the local component uXe of ux. Therefore λ is in jective by Corol-
lary of Proposition 12 and the sur jectivity of π. As to show the sur jectivity
of A, it suffices to see that dimkN(a) = άimkR = dimkR*. Identifying 0' with
α*((7) in 0, we easily see that 0 is a finite (7-module, since a is a purely
inseparable isogeny. Therefore the relative multiplicity rm (mΌ : 0') of
the primary ideal m'O of 0 with respect to 0' is defined and equal to
e(m'0)[_0/xn : O'/m'J by definitions, where m and mf are the maximal ideals of
0 and 0' respectively (cf. § 4 in [9]). Moreover rm (m'O 0') is equal to \Ίk(G):
k(Gf)~]e(mf) by Corollary 2 of Theorem 2 in [9]. Since 0' is a regular local
ring, the multiplicity e(m') is equal to 1 and hence QA (G): k(G')~] is equal to the
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multiplicity e(mf0) of the primary ideal m'Q of 0. On the other hand any sys-
tem of parameters of 0 is a distinct system of parameters of 0 by Theorem 4
in [β~], since 0 is a regular local ring, m' is generated by a regular system of
parameters of 0' and hence m'O is a primary ideal generated by a system of
parameters of 0. This means by the definition of a distinct system of para-
meters that e(m/0) = l(0/m/0)= KR) = dimkR. Therefore we have dimkR =
[k(G) H&Ώ On the other hand we see dim *N (a) = £k(G) : k(G')J by (A) in
§6, and hence dim*iV(α) = diπi*.R = dirndl?*, q. e. d.

THEOREM 4. Let G and G be group varieties defined over k and let a be
a purely inseparable isogeny of G onto G' defined over k. Then the bialgebra
R of the group subscheme Ker a of G is isomorphie to the linear dual N(a)D

of the subbialgebra N(ct) of ξ>(G) corresponding to a as bίalgebras over k.

PROOF. Since RDD = R, it suffices to show that RD = (R*, Δ% e% m% τj%) is
isomorphie to N(a) = (N(a)> mG, T?G> ΔG, SG). We may identify R* with N(a)
by λ in the proof of Lemma 14. If u is in N(a\ ΔG(u) ( / I ® / ^ ) = u(fif2)
by (C) in §6 for any fλ and f2 in k(G). Therefore, for any u in Λ* = JV(α),
™%(u) (fi<8>f2) = (umR) ( / I ® / 2 ) = W ( / I / 2 ) = ^G(U) ( / I ( 8 ) / 2 ) . This means that
JQ(U) = TΠ%(U) and hence t h a t AG\N{a)=m%. Next we show t h a t A% = mG\N{a).
If / is an element of R represented by an element / in 0 = 0e>G, ΔR{J) is the
class of #*(/) of 0 0 * 0 mod. α 0 0 + 0 0 α, where μ is the fc-morphism of
GxG onto G defining the multiplication of G, Now we identify the field
k(GxG) with k(χ, j ) ? where x and y are independent generic points of G over
k. Let {ί1? , tn} be a regular system of parameters of 0 and let {/βl...βn} be
the canonical basis of ξ>(G) with respect to {tu ..., tn}> Then #*(/) = f(χy)
is equal to, by Theorem 2,

i = 1 i = 1

and hence Ji?(/) is equal to

for a large r, where fj = ίjθc) and rji = ti(y) for ι = ί, ^, ..., τι. Let ι̂  and t; be
in Λ*. Then we have

As we see in the proof of Theorem 1, we have (Iei...en)e(t{1 tfί

n) = l and
(Ie^ejein1-•&) = <) for (*i, •••, ^ ) ^ ( ^ ί ? •••, e£, and hence
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This shows that J% = mG, since {/βl...βn} is a basis of ξ>(G). The equalities
SGZ=ZVR

 a n d Ĝ = ε^ c a n be also varified easily, but we omit the proof. q.e.d.

COROLLARY 1. ξ>(G) = k φ ®(G) is α Hopf algebra over k.

PROOF. φ(G) is the union of ξv(G) (r = ί, #, •••), which are equal to N(πr)
corresponding to the Frobenius isogeny πr of height r. By Theorem 4, 7V(7rr)
is isomorphic to the linear dual RD of the Hopf algebra R of Ker πr. There-
fore N(πr) is a Hopf algebra over k with the antipode cr. Then it is clear
that cr'\N(πr) = cr if r ' > r. Therefore ξ>(G) has an antipode cG such that
CGL{grr) = c r. q.e.d.

COROLLARY 2. Lβί G, G and G" be group varieties defined over k, and let
a and β be purely inseparable isogenies of G onto G and G" defined over k
respectively. Then there exists an isogeny γ of G onto G" such that β = γo<χ if
and only if there exists a k-morphism a of Ker a to Ker β as group k-schemes
such that ja=jβ°(J) where j a and j β are the closed immersions of Ker a and
Ker β into G respectively.

PROOF. Assume that there exists an isogeny γ of G onto G" such that
β=γoa. Then we see that the local homomorphism /2* of 0"=0e*ιG* into
0 — 0e>G decomposes into α*of*. Let tn' and m" be the maximal ideals of
0/ = 0e/,G' and 0" respectively. If we put α = α*(nx/)O and b = /9*(m//)0, O
contains 93, since r ^ m ' X m ' . Therefore there exists a natural homomor-
phism φ of S—O/b onto R = O/a, which defines a &-morphism σ of Ker a —
Spec(i?) to Ker /9 = Spec(5). Then it is easy to see that σ is a morphism of
group schemes over k and that j a =jβ°G. Conversely assume that there exists
a morphism a of Ker α = Spec(i?) to Ker β = Spec(S) such that ja=jβ°ΰ>
Then (T* is a bialgebra homomorphism of 5 onto R and hence the dual map-
ping h of σ* is an injection of RD into SD. This means by Theorem 4 that
N(a) is a subbialgebra of N(β), and hence that there exists an isogeny γ of
G onto G" such that β = γoa by (E) in §6. q. e. d.

Next we give a characterization for a group subscheme of a group variety
G to be the kernel of a purely inseparable isogeny of G. Let G be as above
and X a group A -subscheme of G with the underlying topological space consist-
ing of one point e. Then X is Spec(Oβ)G/α), where a is a primary ideal
belonging to the maximal ideal of 0e>G. Such a group &-subscheme will be
called a group A -subscheme with one point. Let g be a closed point of G and
τg the A -morphism RgLg-i = Lg iRg of G onto itself. Denote by r* the automor-
phism of 0e>G attached to τg. Then X=Spec(Oe>G/α) is called an invariant
group subscheme with one point of G if τ*(a)=a for any closed point g of G.
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Then we have the following

THEOREM 5. Let G be a group variety defined over k. Then a group
k-subscheme X with one point of G is invariant if and only if X is the kernel
of a purely inseparable isogeny of G defined over k.

PROOF. First we assume that X is Ker a = Spec(0/α), where 0 = 0e>G.
If N(ά) is the subbialgebra of φ(G) corresponding to α, υ(ά) is contained in a
for any v in N(a) as seen in the proof of Lemma 14. Moreover if u is in N(ά),
Rf'uR* is in N(a) by Theorem 3. Therefore we see that Rf'uR*^) Ca for
any u in N(a). This means that uR*(ά)CR*(cι) for any u in N(a). Since
u commutes with L* and r* = L*-iΛ*, we have ur*(α)Cr*(α). On the other
hand if a proper ideal b of 0 is such that u(b)Cb for any u in N(a), b is
contained in α. In fact if otherwise, there exists an element / in b but not
in α. Then there exists an element zz in N(ά) such that #(/) is not in the
maximal ideal m of 0, since iV(α) is canonically isomorphic to the dual space
of 0/a by Lemma 14. This means that u(b) is not contained in 33. A con-
tradiction. Therefore r*(α) is contained in α, and hence X=Spec(0 e/α) is
invariant.

Conversely we assume that X=$>pec(0/ά) is an invariant group A -sub-
scheme with one point of G. Then a is an in-primary ideal and hence α
contains the ideal αr = (ίf, • ••, tζ)O for some r > 0, where {tu •••, ίw} is a
regular system of parameters of 0. Then Xr = Spec(0/αr) is the kernel of
the Frobenies morphism πr of height r and there exists a A -morphism γ oί X
to Xr which is a morphism of group A -schemes. Then composite morphism
jKroγ is the natural injection of X into G. On the other hand tQr(G) = N(πr)
is isomorphic to the linear dual of 0/ar and hence the bialgebra (0/ά)D is
considered as a subbialgebra of §r(G) which consists of the elements w in
<tv(G) such that u(α)Oπ. Since X is invariant by our assumption, r*(ά)=a
for any closed point g of G. Therefore if u is in (0/ά)D, we have urj(α) =
u(α)Cπτ and hence τ*~1u c*(%l)Cτ*~1m = m. However we have r*~W* =
Λ*"1^/?*, since r* = i*-iΛ* and Z*-m = αi*-i. This means that R^uR^Cm
and hence Rf'uR* is in (0/α.)D. Therefore (0/α)D is a subbialgebra of ξv(G)
which is stable under the adjoint representation of G. By Theorem 3 this
shows that (0/a)D is N(a) for some purely inseparable isogeny a of G. Then
it is clear that X=Spec(0/a) in Ker a. q. e. d.
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