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As compared with separable isogenies of group varieties, inseparable
ones have a peculiar aspect. Let G and G’ be two group varieties and let « be
an isogeny of G onto G’. Then the tangential mapping oy of the tangent space
at the unit point of G to that of G’ associated with « is not an isomorphism if
« is inseparable, whereas ax is an isomorphism if « is separable. We may
say, in the scheme theoretic languages, that an inseparable isogeny « of G has
the kernel of « which is a group subscheme of G with the non-reduced structure
sheaf. In particular the kernel of a purely inseparable isogeny of G is a group
subscheme of G with one point e such that the stalk of the structure sheaf at
e is an artinian local ring.

As to the purely inseparable isogenies of height 1, it is known that the
kernels of the tangential mappings determine these isogenies. Precisely, let
g be the Lie algebra of G consisting of the left invariant derivations of G.
Then p-subalgebras of Lie of g stable under the adjoint representation of G
correspond to purely inseparable isogenies of G of height 1. This was obtained
essentially by I. Barsotti in [17], and some authors generalized his results
(ef. [87, [5] and [117]). Barsotti considered in [17] also kernels of general
purely inseparable isogenies of group varieties and used invariant semi-
derivations (or hyperderivations in his terminologies) on G as tools, which
were introduced by J. Dieudonné for formal Lie groups of a positive charac-
teristic in [6]. However he did not pursue complete results in general cases,
and P. Cartier developed some theories on this subject (cf. [2], [3] and [4]).

The aim of this paper is to give a theory of purely inseparable isogenies
of group varieties essentially from Barsotti’s point of view originated in the
paper [1]. The main results are as follows. Let G be a group variety defined
over an algebraically closed field %, and denote by g(G) the set of left invari-
ant semi-derivations on G. Then we shall show that H(6)=kPHg(G) is
a bialgebra over £ using the main results in [3], and that the set of isomor-
phism classes of purely inseparable isogenies of G corresponds bijectively to
the set of subbialgebras of (G) of finite dimensions which are stable under
the adjoint representation of G. Moreover if N(«) is the corresponding sub-
bialgebra of a purely inseparable isogeny « of G, it will be shown that the
affine algebraic group scheme Spec (N (a)?) is the kernel of « in the scheme
theoretic sense, where N(a)” is the linear dual of the bialgebra N(«).
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The first three sections are devoted to the development of a systematic
theory of local semi-derivations of a local ring, global semi-derivations of an
algebraic function field and regular semi-derivations at a simple point of an
algebraic variety, respectively, which are used later. In §4 we give a theory
of invariant semi-derivations on a group variety G following Barsotti’s idea
in [1]. In particular we shall show that a semi-derivation D on an abelian
variety is invariant if and only if D is regular at any point of it. This is
a generalization of the result for ordinary invariant derivations on an abelian
variety. In §5 we shall show first that G is commutative if and only if H(G)
is a commutative algebra over £&. This was given by Dieudonné for formal
Lie groups in [ 6], but we shall prove it directly without making use of his
result. Moreover some functorial properties of D{G) will be given in this
section. In §6 we shall give the correspondence between the set of purely
inseparable isogenies of G and the set of finite dimensional subbialgebras of
9(G) stable under the adjoint representation of G. In the last section, we
shall define the kernel of a purely inseparable isogeny of G as a group
subscheme of G and give the relations between this subscheme and the sub-
bialgebra of (G) corresponding to the isogeny. Moreover we shall give a
condition for a group subscheme of G to be the kernel of a purely inseparable
isogeny of G.

Our terminologies are mainly Weil’s in [127] and [ 137], but we use in part
also the languages of the scheme theory in [7] and [107].

In the course of this work, the author had stimulating conversations with
Prof. M. Nishi constantly, and obtained many valuable suggestions from
him. Here the author wishes to express his thanks to the Professor.

§ 1. Local semi-derivations on a local ring

Let & be a field of a positive characteristic p, and 0 a local ring contain-
ing % such that the residue field O/m of O modulo its maximal ideal m is
canonically isomorphic to .. Then we denote by f(O) the element of &
representing the class of an element f in O modulo m, and by 0”" the subring
of O consisting of the elements of the p’-th power x*" of x in O.

We understand by a local semi-derivation D of height r on O a k-linear
mapping of O into £ satisfying the equality

D(fg)=f0)D(g)+ g(O)D(f) for finOand gin 0.

A local semi-derivation D of height r on O is called special if D(f)=0 for any
fin 0?”. We shall denote by ©,(0) the set of the local semi-derivations of
height r on O and by &,(0) the subset of ®,(0) consisting of the special ones.
Let a be an element of £ and D an element of ©,(0). Then the linear map-
ping aD defined by (aD)(f)=a(D(f)) for f in O is in D,(0) and D,(0) is
a vector space over k by this scalar product. It is obvious that &,(0) is
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a linear subspace of ®,(0). Since the restriction to 0?" of any element D in
D,(0) is a local derivation in a usual sense, we can easily see that D(0*" ") =0.
Therefore we have the following

Lemma 1. For any integer r >0, we have
@r<0> C @7«9) C@H»I(O)'

If {x1, .., x,} is a system of generators for the maximal ideal m of O,
let ¢, be the ideal of O generated by the elements x!", ..., x2". Then it is
easily seen that 91, is determined independently of the choice of the genera-
tors x1, .-, x, of M and that 0?" is contained in the set £+m,.

LemmA 2. If D s in ©,{(0), then we have D(k+m,)=0.

Proor. Since 0?" contains 1 and D is k-linear, we have D(k)=0. If
f is in m,, f is a linear combination Y a;x? («; € J), and hence we have
D(f)=Zai0)D(x?") + X (x0))?" D(et;) =0 since x;(0)=D(x7)=0. Therefore
D(k+m,)=0. q.e.d.

Prorosition 1. Suppose that O 1is a regular local ring of rank n. Then
©&,(0) 1s a vector space of dimension p" —1 over k.

Proor. By Lemma 2, D in &,(0) vanishes on £+m, and hence corres-
ponds to an element D in the dual space (0/k+m,)* of O/k+m, over k. The
mapping ¢: D—D is an injective k-linear mapping. If {¢, .-, t,} is a regular
system of parameters of O, O/k+m, is isomorphic to }; & 1”] t¢ as vector

e <p’ i=1

spaces over k, where the sum 2. _runs over all (ey, ---, e,) such that 0<le; <p’
eq< P1

and Z e;>0. Therefore dim,(0/k+m,) is equal to p"”—1 and hence we have
dlmk@ (0) <p""—1. On the other hand f in O has the following expression

=0+ T ae,..titi»(mod. m,),
ei<p”

where f(0) and «,,.., are in k, and uniquely determined. Let D,, .. be the
mapping of O into £ which maps f to ., .,. Thenitis easily seen that D, .,
is in &,(0). Moreover these p"’—l semi-derivations are linearly independent
over k. Infactif }] Bel e Deye. =0 (Be,..., €k), wehave \Z Bepe U5 tem) =

ei<p

Be,..,=0. Therefore dim;&,(0) is at least p"" —1 and hence is equal to
prr—1 q.e.d.

CoroLLARY. Suppose that O is a regular local ring and let D be a k-linear
mapping of O into k. Then D is i &,(0) 1f and only 1f Dk+m,)=0, and
&,(0) is canonically isomorphic to the dual space of m/m, over k.

Proor. Since we have dim;&,(0) = dim,(0/k+m,)* = dim,;(m/m,)*, the
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mapping ¢ in the proof of Proposition 1 is an isomorphism. Then &,(0) is
exactly the set of k-linear mapping of O into £ vanishing on & -+m,. q.e.d.

The basis {D, . |0<e;<p’, g’z}l e; >0} of &,(0) over k in the proof of

Proposition 1 will be called the canonical basis of &,{0) with respect to the
regular system {t,, ---, t,y of parametersof 0. Moreover we put E; ,=Dyrq_ o,
ey Ei,,:DO,,}_.,O, oy Ey ,=Doy._opr, Where Dy _gpro..0 is an element of the canon-
ical basis {D, .} of &,.1(0) with respect to {¢1, ---, z,}. Then we have the
following

Prorosition 2. Suppose that O is a regular local ring of rank n. Then
we have D,(0)=&,(0)D i} kE;,. In particular dim,D,(0) is p""+n—1.
T

Proor. First we consider the case r=0. Then we can easily see that
D(k+m?) =0, and that D,(0) is isomorphic to (m/m?)*, it is well known in
this case that {E, o, -, E, o} is a basis of ©,(0) over k. In general cases r>0,
we put 0,=k0?". Then the restriction to 0, of D in ®,(0) is an element D’
in D,(0,), and D,(0,) is generated by the restrictions E |, -, Es,|o, of
E,,, .-, E, ,, since the maximal ideal of O, is generated by 27, ..., t2". There-
fore for any D in D,(0) there exist 81, .-, 8, in k such that the restriction to

O, of D—3 B:E;,is 0. Then D—3 8:E;,, is in &,(0) by definition. This
i=1 i=1
shows that ®,(0) is the sum &,(0)+ 3, kE;,. Moreover if E=D+ > aE;,=0
i=1 i=1

for D in &,(0) and «; in k, we have E(t?")=D{t}") + Zn] a;:E; (t?)=a;=0. This
i=1
means that the sum is direct. q.e.d.

Remark. Since {m,|r=1,2, ..., n, ...} is a basis of the neighbourhoods
at 0 in 0 with respect to the m-adic topology, we can see that any element D
in the dual space O0* of O is in &,(0) for some r if and only if D is a continuous
mapping of O with n-adic topology into a discrete space & which vanishes
on k.

§ 2. Semi-derivations of a function field

Let % be a field of a positive characteristic p and K a finitely generated
and separable extension of .. We shall denote by K, the subfield kK?" of K
for a positive integer r.

We understand by a semi-derivation D of height r of K over k a k-linear
endomorphism of K satisfying the following conditions: i) if » € K,, then
D(x) is in K,, and ii) D(x y)=D(x) y+xD(y) for x ¢ K and ye€ K,. Moreover
D is called special if D(K,)=0. We shall denote by ®,(K/k) the set of the
semi-derivations of height r of K over k and by &,(K/k) the subset of D,(K/k)
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consisting of all the special ones. Let x be an element of K, and D an element
of ®,(K/k). Then the linear mapping xD defined by (xD){y)=x(D(y)) for
ye K is in ®,(K/k) and hence we see that D,(K/k) is a vector space over K.
Similarly &,(K/k) is a vector space over K.

The following lemma is a direct consequence of definition.

Lemma 3. (i) For any integer r =0, we have

(ii) Let D be a mapping of K into itself. Then D is in &,.(K/k) 1f and
only 1f D is K,-linear endomorphism of K such that D(1)=0.

Let n be the transcendental degree of K over k and {x,, ---, x,} a separat-
ing transcendence basis of K over k. Then we see that K=K,(xy, .-, x,)=

K,[ %1, -, x,] and that {l’nl x¢1]0 <e; < p’} is a linear basis of K over K,. Let
i=1
{D, 10<e;<p’} be the dual basis in the dual space of K over K, with

respect to the above basis {ﬁ x¢} of K. Then DY, is in &,(K/k) if and
i=1

only if e;5~0 for some ; by Lemma 3. It is easy to see that {D}., |0<Te;<p’,

ﬁ e,>0} is a basis of &,(K/k) over K. Therefore we have the following

i=1
Prorosition 3. Let K be a finitely generated and separable extension of
the transcendental degree n over k,and {x., .-, x,} a separating transcendence
basis of K over k. For 0e;<p’ andﬁ e;>0 let D, be the K,-linear
endomorphism of K such that D;’I?,,en(xflnt.:clzn)zl and Dell,_en(xfi...x,ﬁi)zo for
0<<el <p’ and (e1, -, e) F (el -, e}). Then {DV, |0<e;<p’, 31 e;>0} is
a basis of €,(K/k) and hence the dimension of &,(K/k) over I?lis pr—1

Moreover K, is the set of the elements x is K such that D{(x)=0 for any D in
&,.(K/k).

The set {D{,. 10 <e; <p’, 2 e;> 0} will be called the canonical basis of

&,(K/k) with respect to the separating transcendence basis {x., .., x,¥ of K
over k. Note that {D{., } is not a subset of {DV*1}.

ProrosiTion 4. (Barsotti) Let K be a finitely generated and separable
extension of k and H a finite separable extension of K. Then for any D in
D,(K/k) there exists unique element D’ in D,(H/k) such that the restriction of
D' to K ws D. Moreover D is in €,(K/k) if and only if D' is in &,(H/L).

This is Lemma 1.3 in [1]. But we give an outline of Barsotti’s proof
for the convenience of the reader. There exists an element x in H such that
H=K(x)=K[ x|, and then for any positive integer r, we have H=K(x?")=

r . . . . . . . n_l TAT
K[x?"]. If yisin H, yis uniquely expressed as a linear combination }; a;x’?",
7=0
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where n=[H: K] and a; ¢ K. Therefore D’ is defined by D'(y) :"il D(a;)x’?"
i=0

for any D in &,(K/k), since D’ should be an H,-linear endomorphism of H.
Then we can easily see that D’ is in &,(H/k). If D is in ®,(K/k), D is in
&,.,1(K/k) and hence there exists D’ in &, ,,(H/k) such that the restriction of
D' to K is equal to D. It can be seen that D’ is in ©,(H/k).

Lemma 4. Let F be a field of a positive characteristic p and K a purely
transcendental extension of one variable x over F. Then there exists a semi-
derivation D, of height r of K over F such that D,(x%)=ax*"?" for any positive
integer a, where a=ap”+b and 0 b < p’.

Proor. Since {x*|a=0, 1, 2, ...} is a basis of the polynomial ring F[ x|
over F, there exists an F-linear endomorphism D, of F[ x] satisfying the con-
dition in our lemma. Then we see that D,(fg)=D.(f)g+ fD,(g) and D(g)
isin F[x”"] for f in F[x]and g in F[x?"]. In fact, for f=a'p’, we have
D,(x"Fy=(a+a)x F P =aqx* PP L o/ x* PP =D (xxf+x°D,(x?). Now
we extend D, to an F-linear endomorphism of K=F(x) as follows. For any
yin K, there exist f in F[x] and g in F[x?] such that y=f/g We put
D.(y)=D.f)g—fD.(g)/g* If y=f'/g'is another expression of y where
f'in F[x]and g’ in F[x?"], we have fg'=f'g and hence D,(f) g +D.(g")f=
D.(f")g+D,(gf as shown in the above. From this relation we can easily
obtain the equality D,(f)g—D.(g)f/g*=D,(f)g'—D.(g")f'/g'®. This means
that D,(y) is independent of the choice of fand g A similar routine calcu-
lation shows that we have D,(yz)=D,(y)z+ yD,(z) for y in K and z in
F(x?")=K,. This completes the proof. q.e.d.

Let K be a finitely generated extension of £ with a separating transcend-
ence basis {xi, ---, x,} as before. We define E;, in &, ,(K/k) as follows:

n
™) E;, (11 x¢)=aix§7?" [T x4,
Fe1 ixi

where 0<le; <p"*!, Z} e;>0, e;=a;p’+b;, and 0<b;<p’. Since fH x|

0<e;<p*'tisa llnear basis of K over K, ., we easily see that there ex15ts
the exact one E; , in &, ,(K/k) satisfying the above condition by Lemma 3.

Prorosition 5. Let E;, be as above. Then E;, is in D,(K/k) for i=1,
2, ..., n.

Proor. Let K, be the subfield k{x:, ---, x,) generated by the separating
transcendence basis x1, -, x, over k and F the subfield k{(xy, ---, xi 1, i1, -
x,) of K, generated by n—1 elements «x;, .-, x;_1, %;11, ---, 2, over k. Then
K, is a purely transcendental extension of one variable x; over F. If D, is
the semi-derivation of height r of K, over F defined as in Lemma 4, it is clear
that D, is in D,(K,/k) and is the restriction of E;, to K,. By Proposition 4
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E;, is the unique extension of D, to K and is in D,(K/k), since K is a finite
separable extension of K. q.e.d.

ProrositioN 6. Let K be a finitely generated and separable extension of
tramscendental degree n over k with a separating transcendence basis {xi, .-,
x.r. IfE;,(i=1,2,. ., n)1s the element of D,(K/k) defined by the formula
(), Ey 5, -, En, are linearly independent over K,, and D,(K/k) 1is equal to the

direct sum &,(K/kYD 3. K,E, .
i=1

Proor. Since {xi, ---, x,} is a separating transcendence basis of K over
k, {x?", ..., 24"} is that of K, over k£ and it is well known that there exists an
ordinary derivation C; of K, over k such that C;(x?")=0;;foreachi=1,2,...,n
{cf. [8]). They are a basis of Dy(K,/k) over K, and the restriction of E; , to
K, is C;. If D is any element of ®,(K/k), the restriction of D to K, is in

Do(K,/k), and hence the restriction of E=D— f} o;E;, to K, is 0, where
=1
a;j=D(x?") ¢ K,. Therefore E is in &,(K/k). This shows that D,(K/k) is the
sum &,(K/k) and f} K,E;,. On the other hand if E+ an o;E; , is 0 for a; € K,
i=1 i=1

and E ¢ &,(K/k), we have E{x?")+ Zn] a;:E; (x8y=a;=0 for each j, and hence
i=1

E=0. This means that E, ,, ..., E,, are linearly independent over K,, and

that the sum D,(K/k)=&,(K/k)+ Zn] K,E;, is a direct one. q.e. d.
i=1

Lemma 5. Let K, k, {x1, ---, x,} and E;, be as above. Then we have

Ei‘th,k:Ej’kE,',h for 1£L, ]gn and h, k20

Proor. Since E;, and E;, are in &,(K/k) for r=max {h, k} +1, E; +E; ,
and E; ,E; , are also in &,(K/k) by Lemma 3. (ii). Therefore we may assume
that K=*%k(x1, ---, x,) by Proposition 4. Then if i+, it is clear from defini-
tion that E;,E;, is equal to E;.E;,. Suppose that i=; and r >k If we
expand a positive integer a as a p-adic series a=)2,p*(0 <1, < p), we can

easily see that E; (x{)=Ax{ " and a—p'=A,—1)p'+ X A,p°. Therefore if
st

at least one of 1, and 2, is zero, we see that E; ,E; .(x7)=F; .E; 1,(x5)=0, and
if otherwise, we have E; ,E; ,(x%)=E; ,E; /(x¥)=2,A,x¢?"~?". This proves
our lemma. q.e.d.

Let e; be an integer such that 0 <e; < p” and expand it as a p-adic series
r—1 -1 =n
> Aup"(0 <24 < p). Lemma 5 shows that the product IT IT E}* is well
h=1 h=0 i=1
defined, and we denote it by E, .. Then we have the following

ProrosiTion 7. Let K be a finitely generated and separable extension of k
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with a separating transcendence basis {x1, ---, x,}y. Let {D{., } be the canonical
basis of &,(K/k) with respect to {x1, ---, x.}, and {E. .} the elements of

&,(K/k) defined in the above. Then we have

-1 =n
De1 en:(H 1_11 'z-hi !)_1Ee1...en+(2) fe{...e;L(xla Tty xn)-Ee{...e’"a
=0 i= e

where 3, runs over all (ei---e,) such that e; < e} for each i and Z e; < Z el,
)

(e
and where fo; ... (X1, -, X,) s a polynomial in X, ..., X, with coeﬁcwnts m
the prime field of characteristic p.

Proor. It is easily seen that E, . (xf...xgm)= H H il If e;>el=

h=0 i=
r—1
2 An:p"(0<2j; < p), there exists an integer s such that 1;=2j; for j>s+1
h=1
and 4,;>2%;, and hence we have

" S

Xht(xez)— H ]‘ht H )”h.t(x‘ —h>s Anid )

S

X 2)‘ h
— T ! T1 B (o ")

h=s+1 h=
=0

On the other hand let g.;..;(Xi, ---, X,) be the polynomial in Xi, ..., X, with
coefficients in the prime field of characteristic p such that

7 —

(]

-

7 ’ ’
1:[ ) Eel...en<xf1"‘x;n>:gej...e;(xl, Tty xn)

u,’:l

Then the above equality shows that g, ..(X;.. X,)=0 if e;<e; for some i.
Therefore we see easily that

-1 n
Div:) en ( H ]-_Il xhi!)ﬁl-Eel...en_f'(Z gef...e;z(xl"'xn)Dérl) en
=0 i= e’)

for any (e;---e,) satisfying 0 <e; < p”. Proposition 7 is a direct consequence
of these equalities. q.e.d.

CoroLLARY. Let {E, . |0<e;<p’, an e; >0} be as in Proposition 7.
i=1
Then {E, .} 18 a basis of &,(K/k) over K.

§ 8. Regular semi-derivations at points of an algebraic variety

Let X be an algebraic variety over a perfect field £ of a positive charac-
teristic p, and let K be the field of the rational functions of X over .. Then
X may be identified with an integral algebraic scheme over k. If x is a point
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of X, we shall identify the stalk 0, x of the structure sheaf Oy of X at x with
a subring of K. Then we say that an element D in ®,(K/k) is a regular
semi-derivation of X at x if D{0,, x) is contained in 0, x. We shall denote by
D,(X, x) the subset of the semi-derivations in ®,(K/k) regular at x, and by
&,(X, x) the subset of ®,(X, x) consisting of special ones. Then we see that
@,(X, x) is an 0, x-module and D,(X, x) is an J’-module, where 0 is the
intersection of 0, x and K,.

ProrosiTioN 8. Let x be a point of X rational over k. Assume that x 1is
non-singular, and let {t1, - -, t,} be a regular system of parameters of O, x.
Then {ti1, ---, t.} 18 a separating transcendence basis of K over k and any element
of the canonical basis {DV7 , } of &,(K/k) with respect to it 1s regular at x.

Proor. It is well known that {¢;---¢,} is a separating transcendence basis
of K over k. For example see [8]. Let R=¥k[ty, .-, t, | be the subring of
O, x generated by ti, .-, t,» over k and L the quotient field of R. Then the
restriction D, |, of Dy, to L is in &,(L/k) by the definition of the canon-
ical basis, and we can see easily that D!’ , (R)is contained in R. Moreover
if we denote by a, the ideal of R generated by » elements :°, ..., t2’, we see
D, (a;)Cas for s=>r because of K,-linearity of D7, . Therefore we see
that D, |z is a continuous k-linear endomorphism of R with the a,-adic
topology and hence it has unique extension D,, . :R— R, where R is the
ap-adic completion of R. We can easily see that D, . is a kR”-linear
endomorphism of R, since DY), |z is k[ x?’, ..., x%"J-linear by Lemma 3. By
the same way as in the proof of Lemma 4 we extend D,, ., to K ,-endmorphism
of K, where K is the quotient field of R. If we also denote this extension to
K by D..,.., D.,.., is in & (K/k) by Lemma 3. On the other hand R is also
the m, x-adic completion of U, x, and hence we can consider 0, x (resp. K) as
a subring of R (resp. as a subfield of K). If K is generated by an element x
of Kove L, we have K=L(x*")=L{x?"]. Since D,, ., is K,-linearand D, (L)
isin L, we have D, . (K)CK. This means that the restriction D,, . |x of
D,, .., to K is in &,(K/k) and hence is equal to D!’ , by Lemma 3. It is well
known that O, x is the intersection of K and the m, x-adic completion R of
O,,x. Therefore if y is any element of U, x, DY, (y)=D.,.. (y) is contained
in 0, x=KNR. This means that DY’ , is regular at x. q.e.d.

CororLARY. Let X, x, O, x and {t;, ---, t,} be as in Proposition 8. Then
D in D,(K/k) (resp. in &,(K/k)) 1s regular at x vf and only vf D(t$'-t5") and
D7) (resp. D(t5---tem)) are contatned tn O, x for 0 <e; <p and j=1,2, .., n.

Proor. There exists «,,.. and 8;in K for 0e;<p” and j=1,2, ..., n
such that D=X«, . D)., + 3 5;E;, by Proposition 6, where {D{, } is the
canonical basis of &,(K/k) over K with respect to {¢;, ---, t,} and {E;,} is the
same as in Proposition 6. Then we have D(:¢'...tg") =« .. and D(t})=4,.

On the other hand E;, is a linear combination of the canonical basis {D7*1}
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of &,..(K/k) with respect to {t,, .-, t,} With coefficient in the polynomial ring
in ¢, -, t, over the prime field of the characteristic p. Therefore E;, is
regular at x for each j=1, 2, ..., n. This means by Proposition 8 that D is
regular at x if and only if «,, ., and 3, are contained in O, x for 0<e;<{p’
and j=1, 2, ..., n. This proves our assertion for the case D in ®,(K/k). The
other case also can be obtained in the similar way. g.e.d.

ProrositioN 9. Let X, x, O,,x and {t,, ---, t.} be as in Proposition 8. Let

(DD, 10<e;<r, Y. e;>0} and {E:,|i=1, 2, ..., n} be as in Propositions 3
i=1

and 5 for the separating transcendence basis {ti, ---, t,y of K over k. Then
&,(X, %) 18 a free O, x-module of rank p"” —1 with a free basis {D{ , } and

D,(X, x) is equal to &,(X, x)D 3, OVE;,.
i=1

Proor. By Corollary of Proposition 8 we see easily that {D{., [0<e;<p’,
i e; >0} is a free basis of &,(X, x) over 0, x. On the other hand each E;,

i=1
is regular at x by the definition and Corollary of Proposition 8, and any

element E contained in ®,(X, x) is writen as a sum D+ Z o;E; ., where D is
=1

in &,(K/k) and each «; is in K. Then E(¢%") is equal to a, and hence a; must
be contained in K, N0, x=0, From this D is regular at x. Therefore we
see easily see that ®,(X, x) is the direct sum of &,(X, ») and Z”] 0"E; ,.
i=1
a.e.d.

For the later use we give an application of Proposition 9.

Lemma 6. Let X and K be as above. Assume that k is algebraically closed,
and let D be a semi-derivation of K over k. Then there exists a dense open
subset U of X such that D s regular at any closed point of U.

Proor. Let {t1, - -, t.} be a separating transcendence basis of K over k.
Then there exists an open subset 7 of X such that each ¢ is in 0, x at any
point x in ¥ for i=1, 2, ..., n and that {t;, —£,(x), .-, t,—t,(x)} is a regular
system of parameters of the local ring O, x for any non-singular closed point
x in V. (cf. Chap. VIIL. in [8]). On the other hand there exist p”” —1 elements

.o, (0 <e; < p7, Z”} e; > 0) such that D=3 a, . DV, , where {D’ , } is the
i=1

canonical basis of &,(K/k) with respect to {¢;---t,}. Let W be the open subset
of X such that each a,, ., isin O, x at any point x in w for 0 <le; < p” and

fn‘_, e; > 0, and such that any point in ¥ is non-singular. Then U=V W is
i=1

a dense open subset of X, and, by Proposition 9, it is easy to see that U
satisfies our assertion, because the canonical basis of &,(K/k) With respect to
{ti—t1(x), -, ty—1t, (x)} for x in U is nothing else than {D¥’ , } q.e.d.
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Let Y be another algebraic variety over k with the field L of the rational
functions over k. If there exists a dominant k-morphism f of X into Y, we
may identify L with the subfield f*(L) of K. Then a semi-derivation D of K
over k does not generally induce that of L over k, because the image of L by
D may not be contained in L. However we have the following

Lemma 7. Let K and L be as above, and let {ti, ---, t.} be a separating
transcendence basis of L over k. Then the restriction D|; of a semi-derivation
D in &,(K/k) to L is contained in S,(L/k), 1f each element D(t5'...t2») is in L
Jor 0<e; <p".

Proor. If we denote by L, the subfield £L?" of L generated by the p’-th
powers of Lover k, wehave L=L,(t,,..-,t,)=L,[t1,--,t, ] and {ﬁtf" [0<e;<p"}
i=1

is a linear basis of L over L,. On the other hand the restriction D|; of D to
L is L,-linear, since D is K,-linear by Lemma 3. Therefore D{L) is contained
in L by the assumption and D]|; is in &,(L/k). q.e.d.

Lemma 8. Let K, L and {t1, ---, t,} be as in Lemma 7, and let D be an
element of D,(K/k). Then if each D(¢5...ti) ts in L for 0 <e; <p” and if
each D(¢?") is in L, for i=1, 2, ..., n, the restriction D|; of D to L is contained
i D,(L/k).

Proor. If e; is an integer such that 0<e; <p'*', we put e;=a;p’+
B:i(0 <a; <p, 0<B; <p"). Then we have

D(IT 2 =D(IT ¢%#")T t85+ I1 % D(TT ¢9),
i=1 i=1 i=1 i=1 i=1

since ¢" is in K, for each i=1, 2, ..., n. By definition D|g, is an ordinary
derivation of K, over k and hence we have

n n
D(I1 ¢Fi2")y= 37 at (VI ¢ D(e}7).
i=1 i=1 i¥xj

This means by the assumption that each D(¢§...¢¢%) is contained in L for
0<e;<p”*'. On the other hand D is an element of &,,,(K/k) and hence
D], is contained in &, ,,(L/k) by Lemma 7. Therefore the proof of Lemma 8
will be complete, if we show that D(L,) is contained in L,. Let F be the
subfield k(¢y, -, t,) of L generated by ¢y, ---, ¢, over &, and assume that L is
generated by an element t over F. Then any element z in L can be written

uniquely as a polynomial Z a;jt’?"" of """ with coefficients @; in F, where

m=[L: F], and u is in LP 1f and only 1f each g; isin F?" for j=0,1, ...,m—1.

Since D is in ®,(K/k), we have D(u)z Z D(a;)t’?"". Therefore it is sufficient
j=0

7
to show that D(a,) is in L, for a; in F?". But this follows form the fact that
the restriction D|z»" of D to F?" is an ordinary derivation of F?" to L and
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from the assumption that D(:?") is in L,. g.e.d.

Let D be a semi-derivation of X regular at a rational point x» in X over
k. Then we can attach to it a local semi-derivation D, on the local ring O, x
as follows. If 7, is the natural homomorphism of O, x onto the residue field
k=0, x/m, x, we define D, by the formula D,(f)=r.(D(f)) for any element
f of O,x. In the following we write often D{f)(x) instead of 7.(D(f)).
We can easily see that D, is of height r (resp. of height r and special) if D is
of height r (resp. of height r and special). This local semi-derivation D, will
be called the local component of D at x. We denote also by 7, the mapping
of D to its local component D, at x. The following proposition is a direct
consequence of definitions, and Propositions 1, 2 and 9.

ProrositioN 10. Let the nototions be as in Proposition 9. Then the image
of a free basis {D) , |0<e; <p’, Z"] e; >0} of ©,(X, x) over O, x by the map-
i=1

€1--€n
ping 7w, 18 a basis of &,(0, x) over k and the images of {D{., 10<e; < p’,
Z”] e; >0y and E;,(i=1,2, .-, n) are a basis of D,(0,,x) over k. Moreover the

i=1
kernel of the restriction of w, to &,(X, x) is m, x&,(X, x), where m, x is the

maximal ideal of O, x.

Next we give a generalization of a tangential mapping for usual local
derivations associated with a morphism of an algebraic variety to another
one. Let X, Y be algebraic varieties over £ and f a k-morphism of X to Y.
Let x be a non-singular closed point of X rational over & and y the image
f(x) of x by f. We assume that y is also non-singular, and denote by f* the
canonical homomorphism of 0,y to 0, x associated with f. If D is a local
semi-derivation on O, x, we denote by f4«(D) the composite mapping Do f*.
Then fx(D) is a k-linear mapping of 0, y to k, and fy(D) is in D,(0,y) (resp.
in &,(0,y)) if D is in 9,00, x) (resp. in &,(0, x)). f« will be called the
tangential mapping at x associated with the morphism f of X to Y.

ProrosiTion 11, Let X, Y, f, x and y=f(x) be as above. Suppose that f
1s dominant and that if K (resp. L) 1s the field of the rational functions of X
(resp. of Y), L, O, x and O,y are identified with subsets of K. Let {t, -, tn}
be a regular system of parameters of O,y. Then if D is in S,(K/k) (resp. in
D(K/k)) and tf D(t§..t5») (resp. D(t---te) and D(2)) are in O,y for
0<e;<p" (resp. 0e;<p” and j=1, 2, ..., n), the restriction D'=D|, of D
to L 1s regular at y, and we have D= f«(D,) if D 1s regular at x.

Proor. By Lemma 7 (resp. Lemma 8) we see that D'=D]|; is in &,(L/k)
(resp. in D,(L/k)), and hence by Corollary of Proposition 8 D" is regular at 1.
The last assertion is clear from the definition of local components. q.e. d.
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§ 4. Invariant semi-derivations of a group variety

In the sequel we assume that k is an algebraically closed field of a
positive characteristic p. It is well known that there exists a natural
correspondence between integral algebraic group schemes over 4 and group
varieties defined over £ in the sense of Weil [13]. Hereafter we shall identify
an integral algebraic group scheme over k& with the corresponding group
variety defined over k. Then the set of all the closed points of a group scheme
over k is nothing else than that of all the rational points of the corresponding
group variety over k, since k is algebraically closed. This set of the closed
points is an abstract group. We shall use rather the Weil’s languages than
those of schemes in this section for convenience’ sake. We denote by e the
unit element of G and, for a closed point a in G, by L, the k-morphism of G
onto itself defined by the left translation x —ax for any point » in G. Then
the associated homomorphism L} of 0,, ¢ to O, ¢ is an onto isomorphism. In
particular L} gives an automorphism of the field £(G) of the rational functions
of G over k.

A semi-derivation D of k(G) over k will be called left invariant or, simply,
wnvariant if L¥*D=DL* for any closed point a in G. First we give a charac-
terization of an invariant semi-derivation by its local components.

ProrositTion 12. Let G be a group variety defined over k and D a semi-
derivation of k(G) over k. Then if D is left invariant, D is regular at any
closed point of G and satisfies the realation D,, = (Ly)«{(D;) for arny closed points
a and b wn G, where (L,)x ts the tangential mapping assoctated with the mor-
phism L,. Conversely if these conditions are satisfied, D is left invariant.

Proor. First we assume that D is left invariant. Then there exists

a dense open subset U of G such that D is regular at any closed point 6 in U
by Lemma 6. Let ¢ be any closed point in G and put a=cb"". a is also a closed
point in G. Since D is left invariant, we have D=L}.DL¥ and L0, c)=0,¢.
This means that D (0. ¢) = L¥DL¥(0, ¢) = L*+D (0y,¢c) C L¥1(0s,¢) = O;,6, and
hence that D is regular at ¢c. Next let ¢ and b be any two closed points in
G and f an element of O, c. Then we have (L,)x(Ds) (f)=Dy(L}I(f)) =
D(LE(f)) ()= (LED)(f)(b)=D(f)(ab)=D.(f). This means that (L,)«(D,)=
D,,. Conversely assume that D is regular at any closed point in G and that
D,y =(L)«(D,) for any closed point e and b in G. Let f be an element of
k(G). Then there exists an affine open subset U of G such that f is contained
in the coordinates ring of U. We put V'=L,(U) for any closed point « in
G. Then if b is a closed point in 7, we have (L,)«(D;) (f)=D.;(f) by assump-
tions. This shows that D(L}¥(f))(b) = L¥(D(f))(b) for any point b in U.
Since G is reduced, we see that DL¥(f)=L¥D(f). This completes the proof.
q.e.d.
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Remark. Let 4 be an abelian variety defined over k. Then it will be
shown later that a semi-derivation D is invariant, if D is regular at any closed
point in A.

CoroLLARY. Let G be as above and let D and D’ be two left invariant
semi-derivations of G over k such that their local components D, and D) are
equal to each other at a closed point a in G. Then D is equal to D’.

Proor. Let b be any closed point in 6. Then we have D,,=(L;)xD,=
(Lo)«D,=D;, by the assumption and Proposition 12. Therefore if f is an
element of k(G), D(f)(x)=D'(f)(x) for any closed point x of a dense open
subset of G. This shows that D(f)=D'(f), since G is reduced. q.e.d.

Now we denote by g(G) the set of all left invariant semi-derivations of G
over k and put g,(G) =g(G) "D, {(k(G)/k) and 8, =g(G) N\E&,(k(G)/k). It is
easy to see that g(G), g,(G) and 8,(G) are vector spaces over & and that g(G)
and 8,(G) are associative algebras. ¢,(G) is a Lie algebra over k with the
multiplication [ D, D']=DD'—D’'D. In the rest of this section we shall
determine basis of 3,(G) and g,(G) using Barsotti’s original idea (ef. [1]).

Let x and y be two independent generic points of G over k. Then k(x)
(resp. k(x, y)) is isomorphic to the field k(G) (resp. k(G < G)) of the rational
functions of G (resp. the product variety Gx<G) over k. For simplicity put
0=0,¢and O=0,4,6xc. If {t1, -, t,} is a regular system of parameters of
0, there exists a regular system {z], .-, ¢5,} of parameters of O’ such that
ti(x, y)=ti(x) and t;,,(x, y)=t:(y) for i=1, 2, ..., n. We shall put &=1¢;(x)
and 7;=¢;(y) for i=1,2, ..., n. Let f be a rational function of G defined over
k which is contained in 0. Then it is easy to see that there exist a rational
function fin O such that f(x, y)=f(xy)—f(x). If p is the prime ideal in
(' generated by n elements ¢..,, ---, t},, O is canonically isomorphic to the
residue ring O/p and f is contained in b, since f(x, e)=0. Therefore f(x, ¥)

is equal to f} aj(x, y)u;, where a; is in O’ for each j=1,2, ..., n. From the
i=1

fact that O is canonically isomorphic to ('/p, there exists unique element q;
in O for j=1, 2, ..., n such that a;(x)=aj(x, y) med. p. This means that

flx, )= -21 a;j(x)y;+ Zlaéj(x, Y%,
J= 1,]=

where a}; is in O for each i, j=1, 2, ..., n. Reperating this procedure we
obtain the following equality

f(x, y)ZZlai(x)vi+ 2 1aij(x)77i77j‘|' et (Z;aill..ik<x)77i1' Wiy
i= i,j= i
+ (Z;;a;r"ikn(x’ y)’mn' C Wi i

where a;_;, € 0 and a] €(0'. We denote by I, ., (f) the coefficient a;,.,,

(ST PS)
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of »;,--.7;, =7%"..7¢» in this expansion, which is uniquely determined, since 0’
is a regular local ring. Then the mapping I.,.., of O into itself is a k-linear
mapping.

Lemma 9. For 0<e;<p” (i=1, 2, -, n), I, .., 1s O"-linear and
Io...opfo...o(fg) 18 equal to ffo...owo..ﬂ(g) + g]o...ow'o...o(f) Jor fin 0 and gin or

Proor. If fand % are in O, we have

(PR (o, )= (o )h? (xy ) — F ()R ()
= (B () —h?" () f (o) + 27 () (f () — F ().

L. .. {fh?") is the coefficient of 75'...7;» in the left-hand side of this equality
and the coefficient of 7{...7¢» in the right-hand side is A”"(x)I. .. (f) (%),
because (h*"{xv)—h?"(x)) f(xy) has no terms of total degrees in 7, ..., 7, less
than p”. This shows that I, in O?'-linear. Similarly the second assertion
can be shown. q.e.d.

Now we can extend I, . (0<le;<p’, Ye;>0) to a semi-derivation of
K=Fk(G) over k naturally as in the proof of Lemma 4, which will be also

denoted by I, ... Then I, . isin &,(k(G)/k)if 0<e;<p” and ﬁ]ei>0, and
i=1
Iy 0pr0.0 is in D,(k(G)/k).

Lemma 10. I, ., s left invariant.

Proor. Let a be a closed point of G and let f be an element of the inter-
section of 0=0, ¢ and 0, c. Assume that 0 <e; <p” for each i=1,2, ..., n.
Then we have

f(x) y)'—“ ;ﬁr-[el,..en(f) (x>7/fl77fzn+ Zl b]'(xa y)ﬂ?:
. eq J=
where b;(x, y) is in O for each ;. By replacing f by L}f, we have

N 7 ,
(L;"f)(x, V)z ;twr Iel...en<L>akf><x)77il"'77;"+ Zlbi(a’x’ y)"if s
23 i=

and by replacing x by ax, we have
flax, )= 3 Lepe,(f) @x)ag i+ 23 bilax, 1))
e; i=

= 5 Loy ) () @i mir + 20 biax, y)nf
eq =

This means that L} I, . =1, . L¥. q. e. d.

TueoreM 1. Let G be a group variety of dimension n defined over an
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algebraically closed field k. Let {ti, ---, t,} be a regular system of parameters
of the local ring 0=0, ¢ of G at the unit point e and let {I,,...} be as above.

Then {1.,..,10<e; <p’, _Zf,le,-> 0} 4s a basis of 2,(G) over k and g,(G) 1is the

direct sum 38,(G) P Z”} k]o...%;o...o.
i=1
Proor. Putting f=:¢i...t¢» for 0 <e; < p’, we have

¢ 7 /
(tshagm) (v, )= 2 Loy, (@55 187) ()75 7
e <p”
3 b7
+ ZII b;(x, y)u5 .
i=

Since (¢4'.--¢5") (%, y) is regular at (e, y) of G x G, we may specialize x to e in
the above equation. Then we have

7’ 7’ 7 ’ n r
nilg= gr(Ig,...en)e(ti”-~~tf;")77i‘~-~772"+ Zlbf(e, b AD
e i=

where (/... ). is the local component of I, .. at e, and hence we see that
(Loy.o))e (850 b5y =0 if (e1 e, F{ej-es) and ([..).(t{ - -tg)=1. This
means that I, . (¢5..t5")—1 is in the maximal ideal m of 0=0, ¢ for

0<{e; <p” and Z} e;>0, and 1, ., (¢4 ¢tg) is in m for (ey, .-, €,) (e, -,

e,). In other Words the local components of {7, . [0<e;<p’, 2e;>0} is
the canonical basis &,(0) over k with respect to {¢1, ---, t,}. By Corollary of
Proposition 12, 8,(G) is isomorphic to a subspace of &,(0) over k. But from the
above, we see that 8,(G) is isomorphic to &,(0) and hence {I,,.. |0 <e; <p’,

Zn} e; >0} is a basis of 8,(G) over k. Similarly we easily see that {/,, ., |
i=1

0<e; <p/, Zn] e; >0} and {Iy_opro.0li=1, 2, ..., n} is a basis of g,(G) over k.
i=1
q.e.d.

CoroLLARrY 1. Let G and {I,,.. }be as in Theorem 1 and let a be a closed
point tn G. Then {1, .. |0<e;<p’, f e; >0} is a basis of S,(G, a) over O, ¢
i=1

and the local components of this basis at a is a basis of &,(0,,¢) over k.

Proor. If a=e, we see in the proof of Theorem 1 that the local com-
ponents of {Z,, . [0e; <p’, f} e; > 0} is a basis of &,(0, ¢) over k. There-

fore &,(G, e) is equal to )] Oe Gl'e1 e, +m.&,(G, e) and hence to 3, 0. ¢l.,. .,
ei<p” e <p”

by Nakayama’s lemma. In the general cases, {(I.,.. ).|0<e; <p’, 2"3 e; >0}
i=1
is also a basis of &,(0,,¢), since D,=(L,)«D, for D in g(G). Therefore we
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see that {I,,.. 10<e;<p’, éei >0} is a basis of &,(G, a) over 0, ¢ by the

same reason as the case a=e. g.e.d.

COROLLARY 2. Let G be an abelian variety defined over k and D a sema-
derivation of G over k. Then D is invariant if and only if D is regular at
any closed point in G.

Proor. Assume that D is regular at any closed point in G and that D is

in &,(k(G)/k). Since {I,, . |0<e;<p’, > e;>0} is a basis of &, (k(G)/k)
i=1

over k(G), we have D= 3} a.,.c,/.,..,. By Corollary 1 of Theorem 1 {Z, .}

ei<lp
is also a basis of &,(G, a) over 0, for any closed point « in G, these «a., ..,
must be in 0, . This means that each «a., ., is a constant, i.e., an element
of k, because G is a complete variety defined over £. This completes the proof.
g.e.d.

§ 5. Functorial properties of $(G)=k@g(G) as an algebra

First we recall some definitions concerning Hopf algebras over a field &
for convenience’ sake. Let 4 be a vector space over a field .. Then A4 is called
a unitary algebra over k if there exist a k-linear mapping m of 4&), A4 into A4
and a k-linear mapping 7 of k& into 4 such that m(id.Q@m)=m(m & id,), and
that m(y Q@ ids) and m(ida R 7) give the canonical isomorphisms of £ ;4 and
ARk onto A respectively. m is called the multiplication of 4. Let ¢ be the
automorphism of 4,4 defined by t{a @ b)=>b®a. Then the unitary algebra
A is called commutative if mr=m. Let (A’, m’, 7") be another unitary algebra
over k and f a k-linear mapping of 4 into 4’. Then we say that f is an algebra
homomorphism of A4 into A" if m'(f& f)= fm and 7'= fy. Similarly we can
define an augmented coalgebra over %k, which is the dual notion of a unitary
algebra over k. A vector space 4 over k is called an augmented coalgebra over
k if there exist a k-linear mapping 4 of 4 into AR .4 and a k-linear map-
ping ¢ of A4 into £ such that (da& 4)Ad=(4&ids)4 and that (R ids)4 and
(ida®e)d give the canonical isomorphisms of 4 onto £t X4 and 4AR.k
respectively. 4 and e are called the diagonal and the augmentation of 4
respectively. The cocommutativity and coalgebra homomorphisms of aug-
mented coalgebras over k can be defined in the same way as the commutativity
and algebra homomorphisms of unitary algebras over k. Moreover notice
that if (4, m, 7) is a unitary algebra over &, AR, A4 has a structure of a unitary
algebra over k. In fact if we put m=(mRm) ((da Rt Rids) and 7=9R7,
(ARrA, m, ) is a unitary algebra over k. Similary, if (4, 4, ¢) is an aug-
mented coalgebra over k, we see that 4,4 has a structure of an augmented
coalgebra over k defined naturally by that of 4. It is easy to see that £ itself
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is a unitary algebra and an augmented coalgebra over k.

A vector space 4 over k is called a bialgebra over k or a hyperalgebra over
k if A4 has both structures of a unitary algebra (4, m, ) and an augmented
coalgebra (4, 4, ¢) such that 4 and ¢ are algebra homomorphisms of 4 into
AR, A and k respectively. It can be seen easily that the last condition is
satisfied if and only if m and » are coalgebra homomorphisms of 4,4 and
k into A respectively. A k-linear mapping f of (4, m, 7, 4, ¢) into another
bialgebra (4', m', %', 4', ¢') is called a bialgebra homomorphism if f is both an
algebra homomorphism and a coalgebra homomorphism of A4 into A’ over k.
If a k-linear endomorphism of a bialgebra (A4, m, %, 4, ¢) over k is called an
antipode of A if yoe=m(c Rids)d=m(ida R c)d, and then (4, m, 5, 4, ¢, c) is
called a Hopf algebra with the antipode c.

If A4 is a vector space of a finite dimension over k£, we denote by A4* the
dual space Hom,(4, k). For a k-linear mapping of 4 into a finite dimensional
vector space B over k, f* will be the dual mapping of B* into 4* defined by
[*(@)=¢of for ¢ in B*. Then if (4, m, v, 4, ¢) is a bialgebra over £ such that
dim, 4 is finite, we can easily see that (4%, 4*, ¢*, m*, »*) is also a bialgebra
over k, where (A4*, 4%, ¢*) (resp. (A*, m*, *)) is the underlying unitary algebra
(resp. the underlying augmented coalgebra). (A%, 4%, e*, m*, 9*) is called the
linear dual of (A, m, 7, 4, ¢) and denoted by 4°. Moreover if a Hopf algebra
A has the antipode ¢, ¢* is the antipode of 4°, and hence A” is also a Hopf
algebra over k.

Now we return to an integral algebraic group scheme G over an algebrai-
cally closed field k. Since the set g(G) of left invariant semi-derivations of
G over k is a subalgebra of Aut.(k(G)), 9(G)=kPDg(G) can be also considered
a subalgebra of Aut,(k(G)). Then $(G) is a unitary algebra over k in the
above sense. We shall denote by m¢ the multiplication of $(G) and by 7 the
mapping of &k into H(G) defined by 7nla)=a@0 in H(G) for « in k. The co-
algebra structure of H(G) is defined as follows. For simplicity we denote by
I,.., the identity mapping of k(G) onto itself. Then $(G) is a vector space
over k such that {/. .. |e;: non-negative integer for :=1, 2, ..., n} is a basis
of H(G) over k. The augmentation ¢ of D(G) is given by the value D(1) of
D in £(G), i.e., the projection of the direct sum (G)=ktPg(G) to the first
factor k. The diagonal 4; of 9(G) can be determined by the values of a basis
of H(G) over k. Therefore we put 4¢(/1, .. )= > I ... Q1. ., where

(e/)+(e”)="(e)
the sum runs over all (ef, .-, e}) and (e, ---, e}) such that e/ +e/=e; for any
i=1,2,...,n. Itiseasy toseethat 4; is cocommutative and that ($(G), 4, ¢c)
is an augmented coalgebra over £, since eg(/l.,.., ) =0 if (e1, ---, ex) #= (0, ---, 0).
We must see that (9(G), mg, 7¢, 4, ¢c) is a bialgebra over k. If it is done,
we see that the subalgebras ©,(G)=tP3,(G) are subbialgebras of H(G) and

that Sg(G)zO 9,(G). Conversely if we see that each ,(G) is a bialgebra over
r=1
k, $(G) is necessarily a bialgebra over k. We shall see later that 9,(G) is



On the structure of bialgebras attached to group varieties 47

a Hopf algebra over £ for each i and postpone there the verification for $(G)
to be a bialgebra over k. But we show here that the multiplication m¢ of
D(6G) is related closely to that of G. For this purpose we show the following.

TueoreM 2. Let G be a group variety over an algebraically closed field k,
and let {t1, -, t,} be a regular system of parametersof 0=0, . Let x and y
be two independent generic points of G over k and put &=1t:(x) and 7;=1t;(y)
fori=1,2, ..., n. Then, for any element f of O and for any r, we have

Flayy= X0 Qoo Lpor)(fE0 Eempsi.. pin

0<ese;<p”
LRy b N AP 44
"f‘.Zlai\x; y)$, +Hlbi<x’ YoNi s
iz iz

where a; and b; are rational functions of G x G regular at e x e and (Lo, .., I.;. c.)e
18 the local component of I, . 1. ., at e.

1€

Proor. Let x, y and z be three independent generic points of G over k
and denote by O the local ring of GXGxG at exexe. Then there exists
a regular system q¢7, ---, ¢5,} of parmeters of 0" such that & =¢,(x)=t/(x, y, 2),
ni=t:{y)=t,.(x, y, 2) and {;=1,(z)=1t5,,,(x, y, z) for i=1, 2, ..., n. Then
we can easily see that 0”/(¢5,.1, ---, t4,) 18 canonically isomorphic to 0'=
Ocxe,cxc. Therefore if gis a rational function of Gx G defined over k and if
g 1s regular at exe, we can expand g(xz, y) to a series in the veriables

&1, -, &n as follows:

glxz, y)=g(x, y)+ _z;prfé,...en(g) (%, y)Cq--
+ 3 e, 3 D,
=

where I/

eleeln

(g) and a; are contained in 0" and 0"’ respectively. It is easy to
see that I, ., is a k-linear mapping of O’ to itself and that the restriction of
I;..,, to the field £(G)=k(Gx e) is I, defined in §4. Putting in particular

g(x, y)=f(xy), we have

1€y

§en, Y= =FCN T L) (5 Pl
+jZZ]1 aj(x, v, 2)C%".

Since f(xy)=f(®)+ T L., (N8 g50+ 3 0i(x, 18
i=1

ei<p”
we see easily that

Lea(8) (2, y)=1Lope () (%)
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, 7

+ Z (Ielu.en-[e;...e’") (f)(x)"?f;??fzn_i_ Z I;I...en<b;) (xa )’)775’7
J

ei<p” =1

and hence that
VICZZO TN YN € P A 1§ DL VTN TS e

OSeL-,e}<p7'
+121aj<x> Y z)CfT—*—Zl bj(x? Y z)ﬁf:
J= J=

where a; and b; are in 0. Specializing x to e and replacing z by x, we obtain
the following
Fay)= 5 Lo, L) L IE - Emptt i

0<e; e5<p”
+ 'Zl a]’(-xa y)ffr + 2:1‘1 bj(x’ y)ﬁfv,
i= i=

where a; and b; are in O'. q.e.d.

CoroLLARY. Let G be as in Theorem 2. Then G is commutative 1f and
only if the algebra g(G) is commutative.

Proor. G is commutative if and only if xy= yx for any independent
generic points x and y of G over k. If xy=yx, then I, . I =1, ,1.,..,
by Theorem 2 and Corollary of Proposition 12. This shows that g(G) is a com-
mutative algebra over k, since {I,, ., } is a basis of g(G) over k. Conversely
if g(G) is commutative, we see that f(xy)= f(yx) for any function f in O, q.
But this means that x y = yx, since G is reduced. q.e.d.

Next we give some functorial properties of $(G) as an algebra over k.
Let G and G’ be two group varieties defined over £ and let « be a homomor-
phism of G into G’ defined over k.. If D is an element of g(G), ax(D,) is
a local semi-derivation of the local ring O,. ¢ of G’ at the unit point e’, where
as is the tangential mapping at the unit point e of G attached to the k-mor-
phism «. Then there is the unique left invariant semi-derivation D’ such
that the local component D’e” of D' is ax(D,) by Corollary 1 of Theorem 1 and
Corollary of Proposition 12. Putting a«(D)=D’, we obtain a k-linear mapping
ax of g(G) into g(G"), and extend it to a k-linear mapping of H(G) into H(G")
such that the restriction of the mapping to % is the identity mapping of k.
We shall also denote by ax the extended mapping and this ay will be called
the tangential mapping of D(G) to H{G") attached to .

Lemma 11. Let G, G’ and « be as above and D a left invariant semi-deriva-
tion of G. Then we have '

(i) (axD)a@y=ax(D,) for any closed point a in G, and

(i) a*(axD) (f)=Da*(f) for any f in k(G') regular along «(G).
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Proor. By the definition of ay and Proposition 12 we have (ayD) .=
(La@)s(asxD)er = (Laa)x0x (D) = (La@e) (D) =(aLy)(D.) =asD,. This proves
(i). Take a closed point e« in G such that f is regular at a(a). Then we
have, using (i), (@*(axD)f)(a)=(axD)(f)(a(a))=(axD)aw)(f)=(axDo) (f)=
D (a*f)=D(a*f)(a). Since G is reduced, we can easily see that a*(axD)(f)=
D(a*f). q.e.d.

LemMma 12, Let G, G’ and « be as in Lemma 11. Then the k-linear map-
ping ax of O(G) into H(G') is an algebra homomorphism and hence the restric-
tion of ax to g(G) is a Lie algebra homomorphism of g(G) into g(G).

Proor. It is sufficient to see that ay (D1D,).(f)={(ax(D1)ax (D). (f)
for fin 0, ¢ and D; in g(G) (i=1,2). By Lemma 11 and the definition of as
we have (ax(D1)ax(D2)) . (f)=(ax(Di)ax (D:)(f))(e)=(axD)(axD:)(f))=
s (D1o) (s D) (f)) = D1 (a¥as (D) (f)) = D1o(D2(a*f)) = (D1 Do(a* f)) (e) =
as(D1D3) o (f). q.e.d.

ProrosiTioN 13. Let G be a group variety defined over k and let G’ be
a group subvariety of G defined over k. Then jy attached to the tnjection j of
G’ into G is an injective mapping.

Proor. Put 0=0, ¢ and O'=0, ¢- and let p be the prime ideal of O cor-
responding to the subvariety G’ of G. Then O/p is canonically isomorphic to
(' and j* is nothing else but the natural homomorphism of O onto (', if we
identify 0" with O/p. Therefore the tangential mapping j in the sense of §3
is injective. But this means that the mapping ji of $(G) to H(G') is also
injective by Corollary of Proposition 12. q.e.d.

ProrosiTioN 14. Let G and G be two group varieties defined over k, and
a a separable homomorphism of G onto G’ defined over k. Then the tangential
mapping ax attached to a is surjective.

Proor. We may identify k(G") with the subfield a*(k(G")) of k(G). By
assumptions, there exists a separating transcendence basis {si, -, s,} of k(G)
over k(G"). If {¢, .-, t,} is a separating transcendence basis of £(G’) over &,
{t1, -, try S1, ---5 Smy 18 that of k(G) over k. Then there exist non-empty open
subsets U and 7 of G and G’ respectively such that {¢;,—¢.(a), -, t,—¢,(a),
si—si(a), -, sm—sn(a)} is a regular system of parameters of the local ring
0,.¢ at any closed point e of U and that {¢;, —¢,(b), ..., t,—¢t,(b)} is that of the
local ring 0, ¢ at any closed point b of V. Let a be a closed point of the non-
empty set UNa '(V) and put b=a(a). Then we see that {L*:(t; —t1(a), -,
L¥i:(¢,—1t,(a))} is a regular system of parameters of the localing O, ¢ and
that {Li-(t1—1t1(a), -, LI(t,—t,(a)), LE(s1—51(a)), ---, LF1(sw—sm(a))} is
that of the local ring 0, ;. Therefore we may assume that {zy, ..., ¢,} is
a regular system of parameters of 0,/ ;- and that {¢y, ..., ¢,, 51, ---, s,} is that
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of O, . If {I,,.,.} is the canonical basis of g(G) with respect to {t1, ---, ¢,,
51, -5 Sm}, then we see easily that {ax(I.,..,o.,)} is that of g(G") with respect
to {t1, -, t,+. This shows that a. is surjective. q.e.d.

We terminate this section by giving an interpretation of ay attached to
a surjective homomorphism «.

ProrositioN 15.  Let G and G’ be group varieties defined over k and « a
homomorphism of G onto G’ defined over k. Let k(G") be identified with the
subfield a*(k(G")) of k(G). Then if D is in &(G), the restriction D |, of D to
k(G is in B(G') and we have ax(D)=D|xcH and asx(D,)=ax(D)qq for any
closed point a in G.

Proor. By (ii) of Lemma 11, we have a*(ax(D))(f)=D(a*(f)) for any
fin O, ¢, since « is surjective. By the definition of a4 and Proposition 12
ax(D) is regular at e’, and hence ay(D)(f) is in O, .. This means that
D(a*(0,¢)) is in a*(0,. ) and hence D(k(G')) is in k(G’). Moreover the
above equality shows that D|, is ax(D). The last assertion is easily seen.

q.e.d.

§ 6. Bialgebra structure of $(G) and purely inseparable isogenies of G

First we summarize the Cartier’s results on isogenies of group varieties
given in [ 3], which are necessary for determining the structure of $(G) of
a group variety G. For convenience we state them in our terminologies.

Let G be a group variety defined over an algebraically closed field £ and
let L be a subfield of £(G) containing k such that [k(G) : L]=r <oo. Assume
that L is stable under the automorphism L} of k(G) attached to the left
translation L, of G for any closed point a of G. Let A; be the set of L-linear
endomorphisms of £(G) and N; the subset of the elements u in A; such that
uL¥=L}¥u for any closed point ¢ of G. Moreover denote by N;* the set of
L-multilinear mappings u of the product space £(G) x - x k&(G) with s factors
into £(G) such that L¥u(f, -, f)=u(L¥(f1), ---, L¥(f,)) for any closed point
a of G and for any f; in £(G) (i=1,2, ..., s). Then Cartier obtained the fol-
lowings.

(A) A;isaring containing k(G) (as translations) and a vector space over
k(G). Np is a subring of A; containing ¥ and a vector space over k. There-
fore N; is a unitary algebra over k. Moreover any basis of N; over k is that
of A4 over k(G). In particular r=dim,N,=dimy4;.

(B) The tensor product N; Xy .- XN of copies of N, is isomorphic to
Ni® by a k-linear mapping 7, such that 7, (u.&Q--Ru;) (f1, -, f)=uw1(f1) -
us(fs) for u; in Ny and f; in k(G) (i=1,2, ..., s). We shall identify N, & ..
RN, with N,
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(C) N; is a bialgebra over k, where the diagonal 4; and the augmenta-
tion ¢; are defined as follows. For any f1 and f in k(G) we put 4.(u) (f1, f2)=
u(fif2). Then 4, is a k-linear mapping of N, into N; &N =N®. The
augmentation ¢; is given by ¢;(u)=u(1).

(D) Let M be an algebra eith identity of k-linear endomorphisms of £(G)
satisfying the following conditions: (i) M is of finite dimension over k.
(i1) uL¥=L*u for any v in M and any closed point a in G, and (iii) for any u
in M, there exist u; and u!(i=1, 2, ..., t) such that u(flfz)zZt: wi fOui(f2)

i=1
for any f; in k(G) (i=1, 2). Let M* be the set of u of M such that u(1)=0
and let L be the subfield consisting of the elements f in £(G) such that u(f)=0

for any u in M*. Then L is stable under the automorphisms L} of £(G) for
any closed point @ in G and M=N;. In particular we have [k(G): L ]=dim,M.

Let G’ be another group variety defined over k£ and « an isogeny of G onto
G’ defined over k. Then we may identify k(G") with the subfield a*(k(G")) of
k(G) and k(G’) is stable under the automorphisms L and R} of £(G) for any
closed point « in G, where R, is the morphism of G onto G such that R,(x)=xa
for any point x in G (cf. Proposition 7 in [3]). We denote by N(«) the bial-
gebra N, attached to the subfield £(G’) of k(G). We put adg,(u)=R*"uR¥*
for any closed point a in G and a k-linear endomorphism u of £(G). Then the
operator ad is called the adjoint representation of G.

(E) Let G, G and a be as above. Let M be a subalgebra of N(«). Then
M is the corresponding subalgebra N(8) to an isogeny @8 of G onto G if and
only if M is a subbialgebra of N(«) over k& which is stable under the adjoint
representation of G. Then if so, 8 is determined uniquely up to isomorphisms,
and there exists an isogeny 7 of G’ onto G’ such that a«=7y-B8. Conversely if
a=7of8, N(B) is a subbialgebra of N(«) stable under the adjoint representa-
tion of G.

Now we apply these results to purely inseparable isogenies of group
varieties. Let G be a group variety defined over k. Then it is well known
that there exists a purely inseparable isogeny 7, of G onto a group variety
G, defined over k, isomorphic to G over &, such that 7¥(%4(G,)) is the subfield
k(G)?" of k(G) and that such 7, is uniquely determined up to isomorphisms.
We call 7, the Frobenius morphism of height r of G. Moreover we easily see
that a purely inseparable isogeny « of G onto a group variety G’ decompose
a 1, 1.e., m,=Boa for some isogeny 2 of G’ onto G,, if and only if 7*(k(G,))=
k(G)?" is contained in a*(k(G")). Such an isogeny a will be called of height <r.

Lemma 138, Let G be a group variety defined over k. Then k(G)PS,(k(G)/k)
s the set A, of all the k(G)?"-linear endomorphisms of k(G).

Proor. Since an element f of £(G) operates on £(G) as a left translation,
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k(G) is contained in 4,. On the other hand &,(k(G)/k) is contained in A4, by
Lemma 3, Moreover we have dim,) &, (k(G)/k)=p"" —1 if dimG=n by
Proposition 3, and hence dim,) (k(G) D€, (k(G)/k) = p"’, which is equal to
dimg g 4,, since it is easy to see that [k(G) : k(G)?"J=p"” g.e.d.

Prorosition 16.  If 7, is the Frobenius morphism of height r of a group
variety G defined over k, then N(r,) is equal to ,(G)=k P 3,(G).

Proor. By Lemma 13 and the definitions of 8,(G) and N(=x,), N(x,) con-
tains £@P3,(G), whose dimention over £ is p”” by Theorem 1. On the other
hand dim,N(z,) is equal to dim,,4,=p"” by (A). This shows that N(z,)=
kD3,(6)=9,(G). q.e.d.

Prorosition 17. Let G be a group variety defined over k. Then (H(G),
me, Yc, dc, €c) defined in §5 s a bialgebra over k, and N (r,) with the structure
defined in (C) is a subbialgebra of H(G).

Proor. As noticed in §5, it suffices to show that 9,(G)=kP3,(G) is
a bialgebra over k. Since N(7,)=9,(G) by Proposition 16, we show that
4cls,c) and egl g, () are nothing else than the diagonal 4, and the augmenta-
tion ¢, of N(7,) in (C) of this section. By the definitions es |y (s is equal to
¢, On the other hand let f and g be two elements of £(G) regular at the unit
point e of G, and let x and y be two independent generict points of G over k.
Then we easily see that

fry)glay)=f(x)g(x)+ egpr( IR DI A G DR BIC- )L S

(e”)=1(e)
n pr
+'Zl aj(xa }’)77; )
i=

where a; is in O,., 6x¢ for any j=1, 2, ..., n. This means, putting J,.., = the
identity map of £(G), that I, .. (fg)= I...(f)1,....(g), where the
(e)+(e”)=C(e)

sum ), runs over all (ef, .-, e;) and (ef, .-, es) such that e;+el/=e¢;

(e")+(e”)=(e)

for each i=1, 2, ..., n. From this we have 4,(I, .)(f, g)=1I, . (fg) =
Ie;~-~8;»(f)lei"--e'/¢(g): ( )(Iei...g’"®1ei’...e;) (f) g):AG(Iel...en) (f> g)
q.e.d.

(e + (e =(e) e +e =1(e

TueoreM 3. Let G be a group variety defined over k and H(G) its bialgebra
generated by left invariant semi-derivations on G. Then there exists one to
one correspondence between isomorphism classes of purely inseparable isogenies
of G and finite dimensional subbialgebras of H(G) which is stable under the
adjoint representation of G. Moreover a purely inseparable isogeny « of G
18 of height <r t1f and only +f the corresponding bialgebra N («) s contained
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Proor. Let a be a purely inseparable isogeny of G onto a group variety
G’ defined over k. Then there exists an isogeny 8 of G’ to G, defined over k
such that 7,=pBa. Then the bialgebra N(«) of « is a subbialgebra of ©,(G)=
N(z,) by (E), and hence a subbialgebra of $(G), which is of a finite dimension.
Conversely if M is a subbialgebra of O(G) of a finite dimension, there exist
an subbialgebra 9,(G) containing M, since H(G) is the union of $.(G) (n=1,
2, ...). Then if M is stable under the adjoint representation of G, M is equal
to N(«) for an isogeny « of G onto G’ such that =, = S, where g is an isogeny
of G’ onto G,. Then correspondence of « and N(«) is evidently a bijection
between isomorphism classes of isogenies of G defined over k£ and invariant
subbialgebras of finite dimensions of $(G) under the adjoint representation
of G. The last assertion follows from the above. q.e.d.

§ 7. Kernels of purely inseparable isogenies

The aim of this section is to determine the kernel of a purely inseparable
isogeny « of a group variety G as a closed group subscheme of G whose un-
derlying space consists of the unique point e of G, and to show that the kernel
of « is isomorphic to Spec (N(a)?) of the linear dual N(a)® of the bialgebra
N(«) defined in §6. .

Let G be a group variety defined over & and « a purely inseparable isogeny
of G onto a group variety G’ defined over k. If we denote by O and m (resp.
(’ and nt') the local ring of G (resp. G’') at the unit point e (resp. e’) and its
maximal ideal, there exists a local homomorphism a* of ¢ into O attached to
the morphism «. Since G and G’ are group schemes over £, there exist k-mor-
phisms # and 4’ of GX G and G' X G’ to G and G’ respectively which define the
multiplications of G and G’. Therefore there exist local homomorphisms ¢
and 0" of O and O’ to the local rings 0:=0,., 6x¢ and 0{=0, .,/ ¢'xc' 0f GXG
and G’ x G’ respectively such that da*=(a x a)*¢".

Now we put R=0/a, where a is the ideal of 0 generated by the image
a*(m’) of the maximal ideal m’ of O’ by a*, and let ¢ be the canonical homo-
morphism of O onto R=0/a. On the other hand it is easy to see that O,
(resp. (1) is isomorphic to the quotient ring (0®.0). (resp. (O'R,0).)
with respect to the prime ideal 2l (resp. '), where n (resp. 1) is the ideal
m&, 0+ 0Rm of 0,0 (resp. v’ Q0+ 0 @’ of 0’ ®,0), and hence if we
identify O] with the subring (« x a)*(0;) of U1, 0’ ®,J’ is a subring of 0&),0
and 1’ is equal to n N\ (0’ ®;0). Therefore 0;/n'0; is isomorphic to (0&),0/
(O (0gi0y = 0&K:0/1'(0R,0), since 0&,0/n'(0®,0) is a local ring.
Moreover 0®,0/n'(0&;0) is equal to 0X:0/(a@:0+0&) = 0/aR:0/a =
R&,R. This means that there exists a canonical homomorphism ¢ of 0,=
Oexecxc 1o RQR whose kernel is the ideal ;. Then we see that the kernel
of the homomorphism ¢o6 of U to R QR containsa. In fact a*(m’) generates
a and we have (¢da*) (') = ¢ (axa)*(0'(m")) C ¢laxa)*(n)) C p(m'0;) =0,
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where mj, is the maximal ideal of 0. Hence there exists a homomorphism
dg of R into R®:R such that drop=¢o0d. Since R is equal to O/a, there
exists a canonical homomorphism ¢; of R onto k= R/mz, where my is the
maximal ideal m/a of R. Then we can easily see that (R, 4z, ¢r) is a coal-
gebra over k, since 4 and ¢z are defined by dualizing the multiplication of G
and the injection of the unit point e into G. We omit the detail proof. This
means that (R, mg, 7z, 4z, €z) is a bialgebra over k, where my and 7z are the
multiplication of the ring R and the injection of k& into R respectively.

Moreover let y (resp. v") be the k-morphism of G (resp. G') onto itself such
that 7(x)==x"" for any point x in G (resp. ' (x")==x"" for any point x’ in G’).
Then there exist automorphisms y* and y'* of O and O’ respectively such that
r*a*=a*r*., From this we see that a =7*(c) and hence there exists an
automorphism cr of R, which is an antipode of the bialgebra (R, mg, 7z, 4z, €r)
over k, since cp is obtained from the morphism y. Therefore Spec(R) has
a structure of an affine group scheme over & and there exists a closed im-
mersion j, of Spec(R) into G such that j, is a morphism of group schemes
over k (cf. Chap. Iin [107]). The group scheme Spec (R) over k is called the
kernel of the purely inseparable isogeny « of G and denoted by Kera. We
also say that R is the bialgebra (or Hopf algebra) of the group subscheme Kera
of G. )

Lemma 14. Let G, G’ and « be as above. Then the dual space R* of the
bialgebra R of Ker « is canonically isomorphic to the subbialgebra N(a) of H(G)
corresponding to the isogeny « as vector spaces over k.

Proor. If u is an element of N(«), u maps 0=0, ¢ into itself, since any
left invariant semi-derivation is regular at any closed point of G. Then if = is
the natural homomorphism of 0 onto k=0/m, ¢, mo(u|,) is a k-linear mapping
of 0 to k. Moreover, since u is a*(k(G"))-linear by the definition of N(«), the
image of a=a*(m")0 by u is in a, where m’ is the maximal ideal of 0'=0, ;.
This means that 7o(u|,) induces a k-linear mapping of R=0/a to k, which
will be denoted by 1(z). We shall show that the mapping 1 of N(a) to R* is
an isomorphism over k. First we see that 2 is injective. In fact any element
u of N(x) is decomposed to £+ u;, where ¢ is in £ and u, is in g(G), and
mo(uy|s) is the local component u,, of u,. Therefore 1 is injective by Corol-
lary of Proposition 12 and the surjectivity of #. As to show the surjectivity
of 2, it suffices to see that dim,N(a)=dim,R=dim,R*. Identifying O’ with
a*(0) in O, we easily see that O is a finite (’-module, since « is a purely
inseparable isogeny. Therefore the relative multiplicity rm (m'0O:0’) of
the primary ideal m’'0O of O with respect to O is defined and equal to
e(m'D[O0/m: 0 /m’] by definitions, where m and m’ are the maximal ideals of
0 and O’ respectively (cf. §4 in[9]). Moreover rm (m’0; ') is equal to [£(G):
k(G") Je(m) by Corollary 2 of Theorem 2 in [9]. Since O is a regular local
ring, the multiplicity e(in’) is equal to 1 and hence [ £(G): k(G')] is equal to the
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multiplicity e(in’O) of the primary ideal m’O of 0. On the other hand any sys-
tem of parameters of O is a distinct system of parameters of J by Theorem 4
in [97], since O is a regular local ring. m'’is generated by a regular system of
parameters of O’ and hence m’0O is a primary ideal generated by a system of
parameters of 0. This means by the definition of a distinct system of para-
meters that e(m’'0)=1(0/nw'0)= I(R) =dim,R. Therefore we have dim,R=
[&(G) : k(G)]. On the other hand we see dim,N(a)=[k(G): k(G’)] by (A) in
§6, and hence dim,N () =dim,R=dim,R*. q.e.d.

TueoreM 4. Let G and G’ be group varieties defined over k and let a be
a purely inseparable isogeny of G onto G’ defined over k. Then the bialgebra
R of the group subscheme Ker o of G 1is isomorphic to the linear dual N(a)®
of the subbialgebra N(«) of (G) corresponding to c as bialgebras over k.

Proor. Since RP?=R, it suffices to show that R?=(R*, 4%, ¢k, m%, v%) is
isomorphic to N(a)=(N(a), me, 76, 4¢, €c). We may identify R* with N(«)
by 4 in the proof of Lemma 14. If u is in N(a), 46(u) (/iR [f2) = u(f1f2)
by (C) in §6 for any f, and f> in k(G). Therefore, for any u in R*=N(a),
mE(w) (/1R f2)=(umg) (/1Q f2)=u(f1f2)=4c(u) (f1&f2). This means that
4¢(u)=m§(u) and hence that 4¢|, =m§ Next we show that dE=mc|, .
If f is an element of R represented by an element f in 0=0, ¢, 4z([) is the
class of #*(f) of 00 mod.a®@0+0&a, where u is the k~-morphism of
Gx G onto G defining the multiplication of . Now we identify the field
k(G x G) with k(x, y), where x and y are independent generic points of G over
k. Let {ty, -, t,} be a regular system of parameters of 0 and let {I, ..} be
the canonical basis of $(G) with respect to {71, ---, t,}. Then #*(f)=f(xy)
is equal to, by Theorem 2,

T Lo Laat) (IEP - Exmyst i

eiej<p”
+ 25 ailx, y)«f?”r_;l bi(x, y)nt,
and hence 4z(f) is equal to

Y Tapo, L) o(f)ES Bl 7o

e e <pT
for a large r, where &;=¢;(x) and 7;=¢;(y) for i=1, 2, ..., n. Let u and v be
in R*. Then we have
A3 R@v)(fH)=(u&v)dr(f)
= X (Lo Ly o)e(fulEs - Emv(psi. pgh).

eief<p”

As we see in the proof of Theorem 1, we have (I, . ).(t{.--ti") =1 and
(Ley..e,)e #5315y =0 for (ey, -, en) 7= (e}, -, e,), and hence
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A)Ig(-[el...en ® Ie{...e;) (f) = (Iel...enlei...g;)e (f)
sz(Iel...en® Iei...e;) (f)

This shows that 4f=m¢, since {I., ..} is a basis of $(G). The equalities
ec=7% and ¢ =¢% can be also varified easily, but we omit the proof. q.e.d.

CoroLLARY 1. D(GC)=kPDS(G) is a Hopf algebra over k.

Proor. $(G) is the union of $,(G) (r=1, 2, ...), which are equal to N(x,)
corresponding to the Frobenius isogeny r, of height . By Theorem 4, N(x,)
is isomorphic to the linear dual R? of the Hopf algebra R of Ker 7z,. There-
fore N(=z,) is a Hopf algebra over £ with the antipode ¢,. Then it is clear
that ¢, |ne, =c, if " >r. Therefore ©(G) has an antipode c¢ such that
6|y, =Cr q.e. d.

CoroLLARY 2. Let G, G’ and G” be group varieties defined over k, and let
a and B be purely inseparable isogenies of G onto G’ and G defined over k
respectively. Then there exists an isogeny v of G' onto G such that 3=roa 1f
and only if there exists a k-morphism o of Ker « to Ker B as group k-schemes
such that j,=jgo0, where j, and js are the closed immersions of Ker a and
Ker 8 into G respectively.

Proor. Assume that there exists an isogeny 7 of G’ onto G’ such that
B=7roa. Then we see that the local homomorphism g* of 0”= 0, ¢ into
0=0,, ¢ decomposes into a*or*. Let m’ and m” be the maximal ideals of
0'=0,, and 0" respectively. If we put a=a*(m)0 and b= g*(m")0, O
contains B, since 7r*(m”)m’. Therefore there exists a natural homomor-
phism ¢ of S=0/b onto R=0/a, which defines a k-morphism ¢ of Ker a=
Spec (R) to Ker 8=S8Spec(S). Then it is easy to see that ¢ is a morphism of
group schemes over £ and that j,=jzc0. Conversely assume that there exists
a morphism ¢ of Ker a=Spec(R) to Ker 3=8pec(S) such that j, = jzo0.
Then ¢* is a bialgebra homomorphism of S onto R and hence the dual map-
ping & of ¢* is an injection of R? into SP. This means by Theorem 4 that
N(«) is a subbialgebra of N(B), and hence that there exists an isogeny 7 of
G’ onto G’ such that =yoa by (E) in §6. q.e. d.

Next we give a characterization for a group subscheme of a group variety
G to be the kernel of a purely inseparable isogeny of G. Let G be as above
and X a group k-subscheme of G with the underlying topological space consist-
ing of one point e. Then X is Spec(0, ¢/a), where a is a primary ideal
belonging to the maximal ideal of 0, . Such a group k-subscheme will be
called a group k-subscheme with one point. Let g be a closed point of G and
7 the k-morphism R,L,-1=L, 1R, of G onto itself. Denote by % the automor-
phism of 0, ¢ attached to r,. Then X=Spec(0, ¢/a) is called an tnvariant
group subscheme with one point of G if v%(a)=a for any closed point g of G.
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Then we have the following

TuEOREM 5. Let G be a group variety defined over k. Then a group
k-subscheme X with one point of G is invariant if and only 1f X is the kernel
of a purely inseparable isogeny of G defined over k.

Proor. First we assume that X is Ker a = Spec(0/a), where 0 =0, .
If N(«) is the subbialgebra of H(G) corresponding to «, v(a) is contained in a
for any v in N(«) as seen in the proof of Lemma 14. Moreover if u is in N{«x),
R*"'uR* is in N(«) by Theorem 3. Therefore we see that R* 'uR*(a) Ca for
any v in N(a). This means that «wR%(a) CR%(a) for any v in N(«). Since
u commutes with L* and ¥=L%.R%, we have utk(a) Cc¥(a). On the other
hand if a proper ideal b of O is such that »(b)Cb for any » in N(a), b is
contained in a. In fact if otherwise, there exists an element f in b but not
in a. Then there exists an element u in N(«) such that u(f) is not in the
maximal ideal m of O, since N(«) is canonically isomorphic to the dual space
of O/a by Lemma 14. This means that u(b) is not contained in B. A con-
tradiction. Therefore c%*(a) is contained in a, and hence X = Spec(0./a) is
invariant.

Conversely we assume that X=Spec(0/a) is an invariant group k-sub-
scheme with one point of G. Then a is an m-primary ideal and hence a
contains the ideal a,=(@", ..., t2))O for some r >0, where {t;, ---, t,} is a
regular system of parameters of . Then X,=Spec(0/qa,) is the kernel of
the Frobenies morphism 7, of height r and there exists a k-morphism 7 of X
to X, which is a morphism of group k-schemes. Then composite morphism
j«,o7 is the natural injection of X into G. On the other hand 9,(G)=N(x,)
is isomorphic to the linear dual of O/a, and hence the bialgebra (0/a)” is
considered as a subbialgebra of 9,(G) which consists of the elements u in
©,(G) such that u(a) Cm. Since X is invariant by our assumption, % (a)=a
for any closed point g of G. Therefore if u is in (0/a)”, we have uc(a)=
u(a) Cm and hence ¥ 'uck(?) ¥ 'm=m. However we have ¥ 'uck=
R*'uR*, since c¥=L%R* and L¥*-u=uL*. This means that R* 'uR*(a) Cm
and hence R* 'uR* is in (O/a)P. Therefore (0/a)” is a subbialgebra of 9,(G)
which is stable under the adjoint representation of G. By Theorem 3 this
shows that (0/a)” is N(«) for some purely inseparable isogeny a of G. Then
it is clear that X=Spec (0/a) in Kera. g.e.d.
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