Note on the Span of Certain Manifolds

Toshio Yoshida
(Received February 14, 1970)

§ 1. Introduction

For a real vector bundle ξ, we denote by $\operatorname{Span} \xi$ the maximum number of the linearly independent cross-sections of ξ. Especially, we denote Span $M=\operatorname{Span} \tau M$, where τM is the tangent bundle of a C^{∞}-manifold M.

In this note, we prove the following theorem, which is the conjecture of D. Sjerve [4, p. 104, (4.6)].

Theorem 1. Let π denote any finite group of odd order, not necessarily abelian, acting freely as diffeomorphisms on some standard sphere S^{n}, and M^{n} $=S^{n} / \pi$ be the orbit manifold. Then

$$
\operatorname{Span} M^{n}=\operatorname{Span} S^{n}
$$

holds for $n \neq 7$.
Also, we shall give counter examples to the following conjecture of E . Thomas [7, p. 655, Conjecture 5] by $S^{1} \times P_{n}(C)$ and the mod 3 standard lens space $L^{3}(3)$, where $n=u \cdot 2^{2+4 d}-1(u$: odd, $d \geqq 1)$ and $P_{n}(C)$ is the complex n-dimensional projective space.

Conjecture of E. Thomas: Let M be a compact n-manifold, n odd, and let k be a positive integer such that $k \leqq$ Span S^{n}. If $w_{1} M=\cdots=w_{k} M=0$, then Span $M \geqq k$, where $w_{i} M$ is the i-th Stiefel-Whitney class of M.

§ 2. Proof of Theorem 1

Theorem 2. [5, p. 551], [6, p. 53]. Let ξ^{n} be an orientable n-dimensional real vector bundle over an n-dimensional complex X. Then,

$$
\text { Span } \xi^{n}<\operatorname{Span} S^{n} \text { implies Span }\left(\xi^{n} \oplus 1\right)=1+\operatorname{Span} \xi^{n},
$$

where $\xi^{n} \oplus 1$ is the Whitney sum of ξ^{n} and 1-dimensional trivial bundle over X.
Proof. Put $k=\operatorname{Span}\left(\xi^{n} \oplus 1\right)$, then there exists an $(n+1-k)$-dimensional vector bundle η over X such that $\xi^{n} \oplus 1=\eta \oplus(k-1) \oplus 1$. So, by [6, Theorem $1], \operatorname{Span}(\eta \oplus(k-1))=\operatorname{Span} \xi^{n}$. This implies $\operatorname{Span}\left(\xi^{n} \oplus 1\right) \leqq 1+\operatorname{Span} \xi^{n}$. And, $\operatorname{Span}\left(\xi^{n} \oplus 1\right) \geqq 1+\operatorname{Span} \xi^{n}$ is clear.
q.e.d.

Next, we notice that the following theorem holds for the odd-dimensional manifold of Theorem 1. This theorem is Theorem A in [3, p. 545] where π
is assumed to be the cyclic group of odd prime order, and is proved by the same methods.

Theorem 3. Let $p: S^{2 n+1} \longrightarrow M^{2 n+1}$ be the projection map. If $\xi \in \widetilde{K O}$ $\left(M^{2 n+1}\right) \cap \operatorname{Ker} p^{*}$, then g.dim $\xi \leqq 2[n / 2]+1$ for the geometric dimension g.dim ξ of ξ.

Proof. As in [3], we consider the following lifting problem of ξ.

where $B S O(m)$ is the classifying space of orientable m-dimensional real vector bundles, and $B S O(2[n / 2]+1) \longrightarrow B S O(d)$ is the fiber bundle induced by the inclusion map $S O(2[n / 2]+1) \longrightarrow S O(d)$ for some sufficiently large integer d. The fiber V of this bundle consists of the orthonormal ($d-2[n / 2]-1$)-frames in the d-dimensional Euclidean space.

The i-th homotopy group $\pi_{i}(V)$ of V consists of 2-primary components for $i \leqq 2 n$, and the order of π is odd by the assumption. So, by [4, p. 98, (2. $1)], H^{i}\left(M^{2 n+1} ; \pi_{i-1}(V)\right)=0$ for $0 \leqq i \leqq 2 n$. Thus the last obstruction $\theta(\xi)$ to lifting ξ is the element of $H^{2 n+1}\left(M^{2 n+1} ; \pi_{2 n}(V)\right)$. The last obstruction to lifting $\xi \circ p$ is $p^{*} \theta(\xi)$, and this is zero by the assumption $\xi \in \widetilde{K O}\left(M^{2 n+1}\right) \cap \operatorname{Ker} p^{*}$. As, $p^{*}: H^{2 n+1}\left(M^{2 n+1} ; \pi_{2 n}(V)\right) \longrightarrow H^{2 n+1}\left(S^{2 n+1} ; \pi_{2 n}(V)\right)$ is an isomorphism, $\theta(\xi)$ is zero.

Proof of Theorem 1.
Theorem 1 is clear for n even, because $\operatorname{Span} S^{n}=0$.
By Theorem 3, $\quad \operatorname{Span}\left(\tau M^{2 n+1} \oplus 1\right)=2 n+2-g . \operatorname{dim}\left(\tau M^{2 n+1}-2 n-1\right) \geqq 2 n$ $+1-2[n / 2]$. But, for $n \neq 0,1,3,2 n+1-2[n / 2] \geqq 1+\operatorname{Span} S^{2 n+1}$ by $[1, \mathrm{p}$. $603]$. So, by Theorem 2 , $\operatorname{Span} M^{2 n+1} \geqq \operatorname{Span} S^{2 n+1}$. On the other hand, Span $M^{2 n+1} \leqq \operatorname{Span} S^{2 n+1}$ is clear since $\tau S^{2 n+1}=p^{*} \tau M^{2 n+1}$. q.e.d.

§ 3. Counter examples

Lemma 4. $\operatorname{Span}\left(S^{1} \times P_{n}(C)\right)=1+2 v$, where $n+1=u \cdot 2^{v}(u$: odd $)$.
Proof. $\tau\left(S^{1} \times P_{n}(C)\right)=p_{1}{ }^{*} \tau_{1} \oplus p_{2}{ }^{*} \tau_{2}=p_{2}{ }^{*}\left(1 \oplus \tau_{2}\right)$, where p_{i} is the projection map onto the i-th factor and $\tau_{1}=\tau S^{1}, \tau_{2}=\tau\left(P_{n}(C)\right)$. So

$$
\operatorname{Span}\left(S^{1} \times P_{n}(C)\right)=\operatorname{Span}\left(p_{2} *\left(1 \oplus \tau_{2}\right)\right)
$$

As $p_{2} \circ i$ is the identity map for the inclusion map $i: P_{n}(C) \longrightarrow S^{1} \times P_{n}(C)$,

$$
\operatorname{Span}\left(S^{1} \times P_{n}(C)\right)=\operatorname{Span}\left(1 \oplus \tau_{2}\right)=2 n+1-g . \operatorname{dim}\left(\tau_{2}-2 n\right)
$$

By $[2, \mathrm{p} .69]$, g. $\operatorname{dim}\left(\tau_{2}-2 n\right)=2 n-2 v$, and we have the lemma. q.e.d.
Example 1. $S^{1} \times P_{n}(C)$, where $n=u \cdot 2^{2+4 d}-1(u:$ odd, $d \geqq 1)$.
By the above lemma and [1, p.603],

$$
\begin{aligned}
& \operatorname{Span}\left(S^{1} \times P_{n}(C)\right)=5+8 d, \\
& \operatorname{Span} S^{1+2 n}=7+8 d .
\end{aligned}
$$

The easy calculations for the Stiefel-Whitney classes of $S^{1} \times P_{n}(C)$ show that

$$
w_{i}\left(S^{1} \times P_{n}(C)\right)=0 \text { for } 1 \leqq i \leqq 2\left(2^{2+4 d}-1\right) .
$$

It is clear that $2\left(2^{2+4 d}-1\right) \geqq 7+8 d=\operatorname{Span} S^{1+2 n}$. q.e.d.
Example 2. The mod 3 standard lens space $L^{3}(3)=S^{7} / Z_{3}$.
By [8, p. 14], Span $L^{3}(3)=5$ and $w_{i} L^{3}(3)=0$ for $1 \leqq i \leqq 6$. q.e.d.

References

[1] J.F. Adams, Vector fields on spheres, Ann. of Math., 75 (1962), 603-632.
[2] K. H. Mayer and R. L. E. Schwarzenberger, Non-embedding theorems for Y-spaces, Proc. Camb. Phil. Soc., 63 (1967), 601-612.
[3] D. Sjerve, Geometric dimension of vector bundles over lens spaces, Trans. Amer. Math. Soc., 134 (1968), 545-557.
[4] -, Vector bundles over orbit manifolds, Trans. Amer. Math. Soc., 138 (1969), 97-106.
[5] W. Sutherland, Fibre homotopy equivalence and vector fields, Proc. London Math. Soc., 15 (1965), 543-556.
[6] E. Thomas, Cross-sections of stably equivalent vector bundles, Quart. J. Math. Oxford, 17 (1966), 53-57.
[7] , Vector fields on manifolds, Bull. Amer. Math. Soc., 75 (1969), 643-683.
[8] T. Yoshida, A remark on vector fields on lens spaces, J. Sci. Hiroshima Univ. Ser. A-I Math., 31 (1967), 13-15.

Department of Mathematics,
 Faculity of Science, Hiroshima University

