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§ 1. Introduction

For a real vector bundle f, we denote by Span ξ the maximum number
of the linearly independent cross-sections of ξ. Especially, we denote Span
M = Span τM, where τM is the tangent bundle of a C-manifold M.

In this note, we prove the following theorem, which is the conjecture of
D. Sjerve [4, p. 104, (4.6)].

THEOREM 1. Let π denote any finite group of odd order, not necessarily
abelian, acting freely as diffeomorphisms on some standard sphere Sn, and Mn

= Sn/π be the orbit manifold. Then

Span Mn = Span Sn

holds for n^7.
Also, we shall give counter examples to the following conjecture of E.

Thomas [7, p. 655, Conjecture 5] by Sι x Pn(C) and the mod 3 standard lens
space Z3(3), where n = u 22+id-l(u: odd, d^ΐ) and Pn(C) is the complex
^-dimensional projective space.

Conjecture of E. Thomas: Let M be a compact n-manifold, n odd, and let
k be a positive integer such that k<^Span Sn. If w\M= =wkM=0, then
Span M^>k, where W{M is the ί-th Stiefel-Whitney class of M.

§ 2. Proof of Theorem 1

THEOREM 2. [5, p. 551], [6, p. 53]. Let ξn be an orientable n-dimensional
real vector bundle over an n-dimensional complex X. Then,

Span ξn < SpanSn implies Span ($n@l) = 1 + Span ξn,

where ξn φ 1 is the Whitney sum of ξn and 1-dimensional trivial bundle over X.

PROOF. Put k = Span ( ί w 01), then there exists an (τι + 1 — ̂ -dimension-
al vector bundle -q over X such that ξn@l = -η@(Jc — l)@l. So, by [6, Theorem
1], Span (>η(B(k-l)) = Span ξn. This implies Span (ξn © 1) <; 1 + Span ζn.
And, Span (ξn φ 1) :> 1 + Span ξn is clear. q. e. d.

Next, we notice that the following theorem holds for the odd-dimensional
manifold of Theorem 1. This theorem is Theorem A in [3, p. 545] where π
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is assumed to be the cyclic group of odd prime order, and is proved by the
same methods.

THEOREM 3. Let p: S2n+1 >M2n+1 be the projection map. If ξeKO
(M2n+ι) ΓλKer jo*, then g.dim $<>2[_n/2^] + l for the geometric dimension
g.dim ξ of ζ.

PROOF. AS in [3], we consider the following lifting problem of ξ.

BSO(2[_n/2~]Λ-l)

where BSO(m) is the classifying space of orientable 7?ι-dimensional real vector
bundles, and BSO(2[>/2] + l) >BSO(d) is the fiber bundle induced by the
inclusion map SO(2|>/2I] + 1) >SO(d) for some sufficiently large integer d.
The fiber V of this bundle consists of the orthonormal (d — 2[_n/2~] — l)-frames
in the <i-dimensional Euclidean space.

The i-th homotopy group π{(V) of V consists of 2-primary components
for ί<;2n, and the order of π is odd by the assumption. So, by [4, p. 98, (2.
1)], HXM2n+1; πi-ι(V)) = 0 for 0<,ί<,2n. Thus the last obstruction θ(ξ) to
lifting ξ is the element of H2n+x{M2n^ι\ π2n(V)). The last obstruction to lift-
ing ξop is jo*0(f), and this is zero by the assumption ξ c KO(M2n+1) r\ Ker />*.

As,p*:H2n+ι(M2n+ι; π2n(F)) >H2H+1(S2H+1; π2n(V)) is an isomorphism, β(ξ)
is zero. q.e.d.

Proof of Theorem 1.

Theorem 1 is clear for n even, because Span Sn = 0.
By Theorem 3, Span (rM2n+ιφl) - 2^ + 2 - g. dim (vM2n+1-2n-l)^2n

+ 1-2[V2] . But, for ^ 0 , 1, 3, 2n + l-2[_n/21^1 + Span S2n+1 by [1, p.
603]. So, by Theorem 2, Span M2n+ι^Span S2n+1. On the other hand, Span
M2n+1<,Span S2n+1 is clear since vS2n+ι =P*τM2n+1. q.e.d.

§ 3. Counter examples

LEMMA 4. Span^S1 x Pn(C)) = l + 2ι;, where n + l = υ»2v(u: odd).

PROOF. t(SιxPn(C)) = j pi*riφp2*r 2 = j p2*(lΘr 2 ) 5 where p{ is the projec-
tion map onto the ϊ-th factor and ri = rS1, r2 = r(Pw(C)). So

Span (Sι x Pn(C)) = Span(p2*(l 0 r2)).

As p2°ί is the identity map for the inclusion map i: PW(C) > Sι xPn(C),

Span(Sι x P»(C)) = Spcm(l 0 r2) = 2τι + 1 - g . dim (r2 - 2 ή ) .
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By [2, p. 69], g.dim(v2 — 2n) = 2n — 2v, and we have the lemma. q.e.d.

EXAMPLE 1. S1 x Pn(C\ where n = u-22+4d-l(u: odd, d^
By the above lemma and PL, p. 603],

Span S1+2n = 7 + 8d.

The easy calculations for the Stiefel-Whitney classes of S1 x Pn(C) show that

WiiS1 xPn(C)) = 0 ΐoΐ 1 ^ ^ 2 ( 2 2 + 4 r f - l ) .

It is clear that 2(2 2 + 4 ΰ ? -l);>7 + 8d = Span Sι+2n. q.e.d.

EXAMPLE 2. The mod 3 standard lens space L3(S) = S7/Z3.

By [8, p. 14], Span L3(3) - 5 and tι>,Z,3(3) = 0 for 1 <;i <|6. g.β.d.
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