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§1. Introduction

For a real vector bundle & we denote by Span & the maximum number
of the linearly independent cross-sections of £&. Especially, we denote Span
M = Spam tM, where M is the tangent bundle of a C*-manifold M.

In this note, we prove the following theorem, which is the conjecture of
D. Sjerve [4, p. 104, (4.6)].

TuEOREM 1. Let w denote any finite group of odd order, not necessarily
abelian, acting freely as diffeomorphisms on some standard sphere S*, and M"
=S"/7 be the orbit manifold. Then

Span M" = Span S”

holds for n 1.

Also, we shall give counter examples to the following conjecture of E.
Thomas [7, p. 6565, Conjecture 5] by S'x P,(C) and the mod 3 standard lens
space L3(8), where n = u-227*"—1(u: odd, d=>1) and P,(C) is the complex
n—-dimensional projective space.

Conjecture of E. Thomas: Let M be a compact n-manifold, n odd, and let
k be a positive integer such that k<Span S". If wiM= - =w,M=0, then
Span M=k, where w;M is the i—th Stiefel-W hitney class of M.

§2. Proof of Theorem 1

THEOREM 2. [ 5, p. 5517, [6, p. 53]. Let &” be an orientable n-dimensional
real vector bundle over an n-dimensional complex X. Then,

Span &” < SpanS” implies Span (§"P1l) =1+ Span £,
where £" D1 is the Whitney sum of &" and 1-dimensional trivial bundle over X.

Proor. Put £ =Span (¢”"@1), then there exists an (n+1—%)-dimension-
al vector bundle 5 over X such that &"Pl=7PH(k—1)P1. So, by [6, Theorem
1], Span (7@ (k—1)) = Span £". This implies Span(&"P1) <1+ Span £
And, Span (6" 1) =1+ Span &" is clear. q.e.d.

Next, we notice that the following theorem holds for the odd-dimensional
manifold of Theorem 1. This theorem is Theorem A in [3, p. 545] where =«



14 Toshio YosHIDA

is assumed to be the cyclic group of odd prime order, and is proved by the
same methods.

Tueorem 3. Let p: S*""'—— M*"*! be the projection map. If ¢ € KO
(M**Y) N\ Ker p*, then gdim £=<2[n/2]+1 for the geometric dimension
gdim & of &.

Proor. As in [87], we consider the following lifting problem of ¢.

BSO2[n/2]+1)

SZ’Hl—p—?MZ'HlL)BSO(d) ’

where BSO(m) is the classifying space of orientable m-dimensional real vector
bundles, and BSO(2[ n/2]+1)—— BSO(d) is the fiber bundle induced by the
inclusion map SO(2[ n/2]+1)——S0(d) for some sufficiently large integer d.
The fiber V of this bundle consists of the orthonormal (d—2[n/2]—1)-frames
in the d-dimensional Euclidean space.

The i-th homotopy group z;(¥) of V consists of 2-primary components
for i <2n, and the order of 7 is odd by the assumption. So, by [4, p. 98, (2.
1, HM* Y 7,_,(V)) =0 for 0=i <2n. Thus the last obstruction 6(¢) to
lifting & is the element of H***}(M?*"'; n3,(V)). The last obstruction to lift-
ing &op is p*0(£), and this is zero by the assumption ¢ ¢ I?O(Mz”“) N Ker p*.
As, p*: H*" Y(M** Y5 mp,(V))—— H*" 1 (8% 1 m4,(V)) is an isomorphism, ()
is zero. q.e.d.

Proof of Theorem 1.

Theorem 1 is clear for n even, because Span S” = 0.

By Theorem 8, Span (tM***'Pl)=2n+2— g dim (tM*"''—2n—1)=>2n
+1—2[n/2]. But, for n=x0, 1, 3, 2n+1—2[n/2] =1+ Span S***! by [1, p.
6037]. So, by Theorem 2, Span M***'_>Span S***'. On the other hand, Span
M*"+1 < Span S*"*! is clear since r S*" "' = p*cM***. g.e.d.

§3. Counter examples

Lemma 4. Span(S!x P,(C)) = 1+ 2v, where n+1=u-2"(u: odd).

Proor. ¢(S'x P,(C)) = pi*t1PBps*r.=p.*(1Pr,), where p; is the projec-
tion map onto the i-th factor and r; = ¢ S*, 2 = t(P,(C)). So

Span (S'x P,(C)) = Span(p:*(1 P r2)).
As pjoi is the identity map for the inclusion map i: P,(C)— S' x P,(C),
Span(S* x P,(C)) = Span(1@P ;) =2n+1— g dim (r2—2n).
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By [2, p. 691, gdim(r;—2n) =2n—2v, and we have the lemma. g.e.d.

ExampLE 1. S'x P,(C), where n = ©+2?"*—1(u: odd, d >1).
By the above lemma and [1, p. 6037,

Span(Stx P,(C)) =5+8d,
Span S+ =T+8d.
The easy calculations for the Stiefel-Whitney classes of S*x P,(C) show that
wi(S'x P,(C)) =0 for 1-<i=12(2%%—1).
It is clear that 2(22+%—1) >7+8d = Span S'**". g.e.d.

ExampLE 2. The mod 3 standard lens space L3(8) = S7/Zs.
By [8, p. 147, Span L3*3) =5 and w;L*(3) =0 for 1 <i<6. q.e.d.
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