On the Existence of Solutions of Some Non-linear Parabolic Equations

Nobuyuki Kenmochi (Received September 22, 1970)

1. Introduction

In this paper we consider parabolic equations with boundary conditions:

- (a) $\frac{du}{dt} + Au = f$, $u(0) = u_0$,
- (b) $\frac{du}{dt} + Au = f$, u(0) = u(T),

where A is a non-linear operator

In 1965 J. Leray and J. L. Lions [4] introduced a non-linear operator on a reflexive Banach space into its conjugate space and showed that it is surjective under the condition of coerciveness. Making use of this result, J. L. Lions [5] showed the existence of solutions of (a) and (b) for a certain kind of non-linear operator A.

In 1968 H. Brezis [1] introduced a new operator, called of type M, which is more general than the operator of J. Leray and J. L. Lions, and showed that the operator of type M on a reflexive Banach space into its conjugate space is also surjective under the condition of coerciveness.

The purpose of this paper is to extend J. L. Lions' results in [5] on the existence of solutions of (a) and (b) to the case where A is a bounded coercive operator satisfying conditions which are more general than Lions' [5]. In the proof we shall make use of the result by H. Brezis mentioned above.

The author would like to express his deepest gratitude to Professors M. Ohtsuka and F-Y. Maeda for advice and many helpful suggestions.

2. Notation and statement of theorems

In general, for a Banach space U over C (complex numbers), we shall denote the anti-dual space of U by U'. Let H be a Hilbert space over C, (,)be the scalar product in H, and $|\cdot|$ be the norm in H. One may identify H'with H. Let V be a reflexive Banach space over C, ((,)) the natural pairing between V' and V, $||v||_V$ the norm of $v \in V$ and $||v^*||_{V'}$ the norm of $v^* \in V'$.

Assume that $V \subset H$, V is dense in H and the injection is continuous. Then $V \subset H \subset V'$. Let F be a linear space whose elements are vector-valued functions defined on a fixed real finite interval (0, T) with values in H and $\mathcal{Q}(0, T; V)$ the space of all C^{∞} functions on (0, T) into V with compact support. Assume that F is a reflexive Banach space, that

$$L^{\infty}(0, T; V) \subset F \subset L^{2}(0, T; H)$$

and

 $F' \subset L^1(0, T; V'),$

where all injections are continuous, and that $\mathcal{D}(0, T; V)$ is dense in F. We denote the natural pairing between F' and F by <, >, the norm of $u \in F$ by $||u||_F$ and the norm of $u^* \in F'$ by $||u^*||_{F'}$. For each $u^* = u^*(t) \in L^2(0, T; H)$, consider

$$\int_0^T (u^*(t), u(t)) dt, \qquad u \in F.$$

This is a continuous anti-linear form on F, and hence belongs to F'. We express this fact by $L^2(0, T; H) \subset F'$. For this reason we write

$$< u_1, u_2 > = \int_0^T (u_1(t), u_2(t)) dt$$

for any u_1 , $u_2 \in L^2(0, T; H)$ too.

For $g \in L^1(0, T; V')$ we define $K_1^{\varepsilon} g$ by

$$(K_1^{\varepsilon}g)(t) = \frac{1}{\varepsilon} \int_t^T \exp\left(\frac{t-s}{\varepsilon}\right) g(s) ds, \qquad \varepsilon > 0.$$

Then $K_1^{\varepsilon}g \in L^1(0, T; V')$ for any $\varepsilon > 0$.

We assume that

 (h_1) if $g \in F'$, then $K_1^{\varepsilon}g \in F'$ and if G is a bounded set in F', then $\{K_1^{\varepsilon}g; g \in G, \varepsilon > 0\}$ is bounded in F'.

This condition is satisfied, for instance, when $F = L^{p}(0, T; V), 2 \leq p < +\infty$.

Throughout the paper we shall use the symbols " $_s \rightarrow$ ", " $_w \rightarrow$ " and " $_w^* \rightarrow$ " to denote the convergences in the strong, weak and weak* topology respectively.

Since $F \subset L^2(0, T; H) \subset F'$, any $u \in F$ may be regarded as an element of F'. Hence, u is a continuous anti-linear from on $F \supset \mathcal{D}(0, T; V)$, so that u may be considered to be a V'-valued distribution. Therefore u' exists in the distribution sense.

Let A be an operator on F into F' and assume that A satisfies the following conditions:

(A₁) if $\{u_i\} \subset F$ is such a directed set that $||u_i||_F \leq K$, $u'_i \in F'$, $||u'_i||_{F'} \leq K$,

 $u_i \xrightarrow{w} \dot{u}$ in $F, u'_i \xrightarrow{w^*} u'$ in $F', Au_i \xrightarrow{w^*} \psi$ in F' and $\limsup_i Re < Au_i, u_i > \leq Re$ $<\psi, u>$, then $Au = \psi$;

 (A_2) A is bounded, that is, A maps bounded sets in F to bounded sets in F';

(A₃) (coerciveness)
$$\frac{Re < Av, v >}{||v||_F} \rightarrow \infty$$
 as $||v||_F \rightarrow \infty$.

Under the above hypotheses we shall establish the following theorem.

THEOREM 1. For given $f \in F'$ and $u_0 \in H$, there exists $u \in F$ such that u(t)is a continuous function on [0, T] into V', $u' \in F'$, u' + Au = f and $u(0) = u_0$. For $g \in L^1(0, T; V')$ we set

$$(K_{2}^{\varepsilon}g)(t) = \frac{1}{\varepsilon} \int_{0}^{t} \exp\left(\frac{t-s-T}{\varepsilon}\right) g(s) ds, \quad \varepsilon > 0.$$

Then $K_{2g}^{\varepsilon} \epsilon L^{1}(0, T; V')$ for any $\varepsilon > 0$.

In addition we suppose that

(*h*₂) if $g \in F'$, then $K_{2g}^{\varepsilon} \in F'$ and if G is a bounded set in F', then $\{K_{2g}^{\varepsilon}; g \in G, \varepsilon > 0\}$ is bounded in F'.

This condition is satisfied, for instance, when $F = L^{p}(0, T; V), 2 \leq p < +\infty$. Then we have the following theorem.

THEOREM 2. For given $f \in F'$, there exists $u \in F$ such that u(t) is a continuous function on [0, T] into V', $u' \in F'$, u' + Au = f and u(0) = u(T) in H.

For the method of proof we essentially follow J. L. Lions [5].

3. Lemmas

Let *B* be a refiexive Banach space, t_0 a positive real number and $\mathcal{D}'(0, t_0; B')$ the space of all distributions on $(0, t_0)$ with values in *B'*, that is, the space of all continuous anti-linear forms on $\mathcal{D}(0, t_0; B)$.

If $u \in L^1(0, t_0; B')$ and the distributional derivative $u' \in L^1(0, t_0; B')$, then there exists a strongly absolutely continuous function $\tilde{u}(t)$ on $[0, t_0]$ into B'such that $\tilde{u}(t) = u(t)$ almost everywhere on $(0, t_0)$ and the strong derivative of \tilde{u} is equal to u' in the distribution sense (cf. Chap. I, 11 of [2]; Chap. III, 3.7, 3.8 of [3]; IV, §5 of [6]). Therefore we assume that such a function u(t) is strongly absolutely continuous on $[0, t_0]$ and u'(t) is the strong derivative of u(t). Let v(t) be a strongly absolutely continuous function on $[0, t_0]$ with values in B such that the strong derivative $v'(t) \in L^1(0, t_0; B)$. Then we have the formula for integration by parts for u and v:

(3.1)
$$\int_{0}^{t_{0}} ((u'(t), v(t))) dt + \int_{0}^{t_{0}} ((u(t), v'(t))) dt$$
$$= ((u(t_{0}), v(t_{0}))) - ((u(0), v(0))),$$

Nobuyuki Kenmochi

where ((,)) is the natural pairing between B' and B.

Making use of this formula, we shall prove the following lemmas.

LEMMA 1. Let $\{u_i\}$ be a directed set, $u_i \in L^1(0, t_0; B')$, $u'_i \in L^1(0, t_0; B')$, $u_i \xrightarrow{w} u$ in $L^1(0, t_0; B')$ and $u'_i \xrightarrow{w} u'$ in $L^1(0, t_0; B')$. Then $u_i(t) \xrightarrow{w^*} u(t)$ in B' for all $t \in [0, t_0]$.

PROOF. Let α be any element of *B* and set $v(t) = t\alpha$. Clearly *v* is strongly absolutely continuous on $[0, t_0]$ and $v' \in L^1(0, t_0; B)$. Therefore, by integration by parts we have for any $t' \in (0, t_0]$

$$\int_{0}^{t'} ((u_{i}'(t), v(t))) dt + \int_{0}^{t'} ((u_{i}(t), v'(t))) dt = t'((u_{i}(t'), \alpha))$$

and

$$\int_{0}^{t'} ((u'(t), v(t))) dt + \int_{0}^{t'} ((u(t), v'(t))) dt = t'((u(t'), \alpha)).$$

Since

$$\int_{0}^{t'} ((u'_{i}(t), v(t))) dt \to \int_{0}^{t'} ((u'(t), v(t))) dt$$

and

$$\int_{0}^{t'} ((u_i(t), v'(t))) dt \to \int_{0}^{t'} ((u(t), v'(t))) dt,$$

we obtain $((u_i(t'), \alpha)) \rightarrow ((u(t'), \alpha))$. The arbitrariness of α implies that $u_i(t') \xrightarrow{w^*} u(t')$ in B'. Considering the function $v(t) = (t_0 - t)\alpha$, we obtain $u_i(0) \xrightarrow{w^*} u(0)$ in B'. q.e.d.

LEMMA 2. Let $\{u_i\}$ be a directed set, $u_i \in L^1(0, t_0; B')$, $u'_i \in L^1(0, t_0; B')$, $u_i \xrightarrow{s} u$ in $L^1(0, t_0; B')$ and $u'_i \xrightarrow{s} u'$ in $L^1(0, t_0; B')$. Then $u_i(t) \xrightarrow{s} u(t)$ in B' for all $t \in [0, t_0]$.

PROOF. Let U be the closed unit ball in B, X the family of functions $\{v_{\alpha}(t)=t\alpha; \alpha \in U\}$ and Y the family $\{v'_{\alpha}(t)=\alpha; \alpha \in U\}$. Clearly X and Y are bounded in the anti-dual space of $L^{1}(0, t_{0}; B')$. Since for any $t' \in (0, t_{0}]$

$$\int_{0}^{t'} ((u'_{i}(t), v_{\alpha}(t))) dt \to \int_{0}^{t'} ((u'(t), v_{\alpha}(t))) dt$$

uniformly on X and

$$\int_{0}^{t'} ((u_{i}(t), v_{\alpha}'(t))) dt \to \int_{0}^{t'} ((u(t), v_{\alpha}'(t))) dt$$

uniformly on Y, using the formula for integration by parts again we infer

that $((u_i(t'), \alpha)) \rightarrow ((u(t'), \alpha))$ uniformly on U. Thus $u_i(t') \xrightarrow{s} u(t')$ in B'. Considering the family $\{v_{\alpha}(t) = (t_0 - t)\alpha; \alpha \in U\}$, we obtain $u_i(0) \xrightarrow{s} u(0)$ in B'. q.e.d.

To show THEOREM 1 we consider the space $W = \{v \in F; v' \in L^2(0, T; H)\}$. Define a norm in W by $||v||_W = ||v||_F + ||v'||_{L^2(0,T;H)}$. Then W is a reflexive Banach space. It follows from (3.1) that

$$< u', v > + < u, v' > = (u(T), v(T)) - (u(0), v(0))$$
 for $u, v \in W$.

In particular,

(3.2)
$$2\operatorname{Re} < u', u > = |u(T)|^2 - |u(0)|^2 \quad \text{for } u \in W.$$

Given $\varepsilon > 0$, we set for $u, v \in W$

$$(3.3) \qquad [A_{\varepsilon}u, v] = \varepsilon < u', v' > + < u', v > + (u(0), v(0)) + < Au, v >,$$

where [,] is the natural pairing between W' and W. By this formula A_{ε} is defined to be an operator on W into W'.

We have the following lemma.

LEMMA 3. For given $\varepsilon > 0$,

(1) A_{ε} is a bounded operator on W into W',

(2) if $\{u_i\} \subset W$ is a directed set such that $||u_i||_W \leq C$, $u_i \xrightarrow{w} u$ in W, $A_{\varepsilon}u_i \xrightarrow{w^*} \psi$ in W' and $\limsup \operatorname{Re}[A_{\varepsilon}u_i, u_i] \leq \operatorname{Re}[\psi, u]$, then $A_{\varepsilon}u = \psi$,

(3)
$$\frac{\operatorname{Re}[A_{\varepsilon}v, v]}{\|v\|_{W}} \to \infty \qquad as \ \|v\|_{W} \to \infty.$$

PROOF. To prove (1) we first observe that the mapping $v \to v(0)$ is bounded linear on W by LEMMA 2. Hence there exists a positive constant Msuch that $|v(0)| \leq M ||v||_W$ for all $v \in W$. If $||u||_W \leq K$, then for all $v \in W$

$$\begin{split} |[A_{\varepsilon}u, v]| \leq \varepsilon ||u'||_{L^{2}(0,T;H)} \cdot ||v'||_{L^{2}(0,T;H)} \\ + ||u'||_{L^{2}(0,T;H)} \cdot M'||v||_{F} + KM^{2} ||v||_{W} + ||Au||_{F'} ||v||_{F}, \end{split}$$

where M' is a positive constant. Since A is a bounded operator, $\{||Au||_{F'}; ||u||_{W} \leq K\}$ is bounded. Consequently for a sufficiently large N>0, we have

$$|[A_{\varepsilon}u, v]| \leq N ||v||_{W}.$$

This implies that A_{ε} is bounded.

To prove (2) we choose a subdirected set $\{i_{\alpha}\}$ such that

$$\limsup_{i} \operatorname{Re}[A_{\varepsilon}u_{i}, u_{i}] = \lim_{\alpha} \operatorname{Re}[A_{\varepsilon}u_{i_{\alpha}}, u_{i_{\alpha}}].$$

By hypothesis (A_2) , we may choose $\{i_{\alpha}\}$ in such a way that $Au_{i_{\alpha}} \xrightarrow{w^*} \eta$ in F'. Since $u_i \xrightarrow{w} u$ in F and $u'_i \xrightarrow{w} u'$ in $L^2(0, T; H)$, it follows from LEMMA 1 that $u_i(0) \xrightarrow{w} u(0)$ in H. By (3.3), $[A_{\varepsilon}u_{i_{\alpha}}, v] = \varepsilon < u'_{i_{\alpha}}, v' > + < u'_{i_{\alpha}}, v > + (u_{i_{\alpha}}(0), v(0)) + < Au_{i_{\alpha}}, v >$, and, taking limit in α , we also have

(3.4)
$$[\psi, v] = \varepsilon \langle u', v' \rangle + \langle u', v' \rangle + (u(0), v(0)) + \langle \eta, v \rangle$$
 for all $v \in W.$

Hence, by (3.2),

(3.5)
$$\operatorname{Re}[A_{\varepsilon}u_{i_{\alpha}}, u_{i_{\alpha}}] = \varepsilon ||u_{i_{\alpha}}'||_{L^{2}(0,T;H)}^{2} + \frac{1}{2} ||u_{i_{\alpha}}(0)||^{2} + \frac{1}{2} ||u_{i_{\alpha}}(T)||^{2} + \operatorname{Re} \langle Au_{i_{\alpha}}, u_{i_{\alpha}} \rangle$$

and

(3.6) Re[
$$\psi$$
, u]= ε || u' || $_{L^{2}(0,T;H)}^{2}$ + $\frac{1}{2}$ | $u(0)$ | 2 + $\frac{1}{2}$ | $u(T)$ | 2 +Re< η , u >.

On the other hand, since $\liminf_{\alpha} ||u_{i_{\alpha}}'||_{L^{2}(0,T;H)}^{2} \ge ||u'||_{L^{2}(0,T;H)}^{2}$, $\liminf_{\alpha} |u_{i_{\alpha}}(0)|^{2} \ge |u(0)|^{2}$ and $\liminf_{\alpha} |u_{i_{\alpha}}(T)| \ge |u(T)|^{2}$, we have by (3.5)

$$\begin{split} &\lim_{\alpha} \sup \operatorname{Re} < Au_{i_{\alpha}}, \ u_{i_{\alpha}} > \\ &= \lim_{\alpha} \sup \left\{ \operatorname{Re} \left[A_{\varepsilon} u_{i_{\alpha}}, \ u_{i_{\alpha}} \right] - \varepsilon ||u_{i_{\alpha}}'||_{L^{2}(0,T;H)}^{2} - \frac{1}{2} ||u_{i_{\alpha}}(0)|^{2} - \frac{1}{2} ||u_{i_{\alpha}}(T)||^{2} \right\} \\ &\leq \lim_{\alpha} \operatorname{Re} \left[A_{\varepsilon} u_{i_{\alpha}}, \ u_{i_{\alpha}} \right] - \varepsilon ||u'||_{L^{2}(0,T;H)}^{2} - \frac{1}{2} ||u(0)|^{2} - \frac{1}{2} ||u(T)||^{2}. \end{split}$$

Thus, by (3.6) and the hypothesis that

$$\lim_{\alpha} \operatorname{Re}[A_{\varepsilon}u_{i_{\alpha}}, u_{i_{\alpha}}] \leq \operatorname{Re}[\psi, u],$$

we obtain

$$\limsup_{\alpha} \operatorname{Re} < Au_{i_{\alpha}}, u_{i_{\alpha}} > \leq \operatorname{Re} < \eta, u >.$$

Therefore, by hypothesis (A_1) we have $Au = \eta$. Then by (3.4)

$$[A_{\varepsilon}u, v] = [\psi, v]$$
 for all $v \in W$.

Hence $A_{\varepsilon}u = \psi$.

Finally to prove (3) we use the relation

On the Existence of Solutions of Some Non-liuear Parabolic Equation

$$egin{aligned} & \operatorname{Re}[A_{arepsilon}v,\,v]\!=\!arepsilon||v'||_{L^{2}(0,T;H)}^{2}\!+\!rac{1}{2}|v(0)|^{2}\!+\!rac{1}{2}|v(T)|^{2}\!+\!\operatorname{Re}<\!Av,\,v\!> \ &\geq & arepsilon||v'||_{L^{2}(0,T;H)}^{2}\!+\!\operatorname{Re}<\!Av.\,v\!>, \end{aligned}$$

which follows from (3.2). Hence

$$rac{\operatorname{Re} \llbracket A_{arepsilon} v, v
floor}{\|v\|_W} \!\!\geq \! rac{arepsilon \|v'\|_{L^2(0,T;H)}^2 \!+ \operatorname{Re} \!<\! Av, v \!>}{\|v'\|_{L^2(0,T;H)}^2 \!+ \|v\|_F}$$

Then, using (A_2) , we see that (3) is valid.

Now we recall the results by H. Brezis [1]:

DEFINITION. (H. Brezis [1]). Let E be a Banach space and E' the dual space of E. A mapping $T: E \to E'$ is said to be of type M if T satisfies the following conditions (M_1) and (M_2) .

(M₁) If $\{x_i\}$ is a directed set such that $x_i \xrightarrow{w} x$ in E, $||x_i||_E \leq C$, $Tx_i \xrightarrow{w^*} g$ in E' and $\limsup(Tx_i, x_i) \leq (g, x)$, then Tx = g.

 (M_2) The restriction of T on any finite dimensional subspace of E is continuous with respect to the weak^{*} topology.

Remark: If T is bounded, then condition (M_1) implies (M_2) . We shall use

THEOREM. (H. Brezis [1]) Let E be a Banach space, E' be the dual space of E and T be an operator of type M on E into E'. Suppose that

$$\frac{|(Tx, x)|}{||x||_E} \to \infty \qquad as \ ||x||_E \to \infty.$$

Then T is surjective, that is, the range R(T) = E'.

Remark: The above definition and theorem were given in real Banach space in [1]. However, it is easy to extend them to the case of complex Banach spaces replacing (,) by Re(,).

LEMMA 3 and the above Remark show that A_{ε} is a bounded operator of type M on W into W'. Thus we have

LEMMA 4. For given $f \in F'$ and $u_0 \in H$, there exists $u_{\varepsilon} \in W$ such that

(3.7) $[A_{\varepsilon}u_{\varepsilon}, v] = \langle f, v \rangle + (u_0, v(0))$ for all $v \in W$.

PROOF. The functional $v \to \langle f, v \rangle + (u_0, v(0))$ is a continuous anti-linear form on W. Therefore this lemma is an immediate consequence of the above THEOREM by H. Brezis. q.e.d.

For the family $\{u_{\varepsilon}; \varepsilon > 0\}$ of solutions of (3.7), we prove

q.e.d.

LEMMA 5. Let $\varepsilon_0 > 0$ be a constant. Then

- (1) The set $\{u_{\varepsilon}; 0 < \varepsilon \leq \varepsilon_0\}$ is bounded in F.
- (2) The set $\{u_{\varepsilon}(0); 0 < \varepsilon \leq \varepsilon_0\}$ is bounded in H.
- (3) The set $\{\sqrt{\varepsilon}u_{\varepsilon}^{\prime}; 0 < \varepsilon \leq \varepsilon_{0}\}$ is bounded in $L^{2}(0, T; H)$.
- (4) The set $\{u_{\varepsilon}'; 0 < \varepsilon \leq \varepsilon_0\}$ is bounded in F'.

PROOF. From (3.7) we obtain (cf. (3.5))

$$\begin{aligned} \operatorname{Re}[A_{\varepsilon}u_{\varepsilon}, u_{\varepsilon}] &= \varepsilon ||u_{\varepsilon}'||_{L^{2}(0,T;H)}^{2} + \frac{1}{2} |u_{\varepsilon}(0)|^{2} + \frac{1}{2} |u_{\varepsilon}(T)|^{2} + \operatorname{Re} \langle Au_{\varepsilon}, u_{\varepsilon} \rangle \\ &\leq ||f||_{F'} \cdot ||u_{\varepsilon}||_{F} + |u_{0}| \cdot |u_{\varepsilon}(0)| \\ &\leq ||f||_{F'} \cdot ||u_{\varepsilon}||_{F} + |u_{0}|^{2} + \frac{1}{4} |u_{\varepsilon}(0)|^{2}. \end{aligned}$$

Hence

$$\frac{\operatorname{Re} < Au_{\varepsilon}, u_{\varepsilon} >}{\|u_{\varepsilon}\|_{F}} \leq \|f\|_{F'} + \frac{\|u_{0}\|^{2}}{\|u_{\varepsilon}\|_{F}} \,.$$

This together with (A_3) implies (1). Then (2) and (3) are easily obtained.

Let us prove (4). Substitute $\phi \in \mathcal{D}(0, T; V)$ for v in (3.7). Then

$$\varepsilon < u_{\varepsilon}', \phi' > + < u_{\varepsilon}', \phi > + < Au_{\varepsilon}, \phi > = < f, \phi >.$$

Thus in the distribution sense

$$(3.8) -\varepsilon u_{\varepsilon}^{\prime\prime} + u_{\varepsilon}^{\prime} + A u_{\varepsilon} = f,$$

and hence $u_{\varepsilon}^{\prime\prime} \in F' + L^2(0, T; H) = F' \subset L^1(0, T; V')$, so that (3.8) holds in F'. For $\alpha \in V$, we set $v(\iota) = \iota \alpha$. By integration by parts

$$-\varepsilon < u_{\varepsilon}'', v' > = \varepsilon < u_{\varepsilon}', v' > -\varepsilon((u_{\varepsilon}'(T), v(T))).$$

Using (3.8),

$$\epsilon \! < \! u_{\varepsilon}', \, v' \! > \! + \! < \! u_{\varepsilon}', \, v \! > \! + \! < \! A u_{\varepsilon}, \, v \! > \! - \! \epsilon((u_{\varepsilon}'(T), \, v(T))) \! = \! < \! f, \, v \! > \! .$$

On the other hand, since v(0) = 0, (3.7) implies that

$$\varepsilon < u_{\varepsilon}', v' > + < u_{\varepsilon}', v > + < Au_{\varepsilon}, v > = < f, v >.$$

Therefore $((u_{\varepsilon}'(T), v(T)))=0$, and hence $((u_{\varepsilon}'(T), \alpha))=0$. Since α may be any element of V, we have

$$(3.9) u_{\varepsilon}'(T) = 0 in V'.$$

(3.8) and (3.9) imply that

$$u_{\varepsilon}'(t) = \frac{1}{\varepsilon} \int_{t}^{T} \exp\left(\frac{t-s}{\varepsilon}\right) (f - Au_{\varepsilon})(s) ds$$
 in V' .

In fact, we have

$$\begin{split} \frac{1}{\varepsilon} \int_{t}^{T} \exp\left(\frac{t-s}{\varepsilon}\right) (f - Au_{\varepsilon})(s) ds \\ &= -\int_{t}^{T} \exp\left(\frac{t-s}{\varepsilon}\right) u_{\varepsilon}^{\prime\prime}(s) ds + \frac{1}{\varepsilon} - \int_{t}^{T} \exp\left(\frac{t-s}{\varepsilon}\right) u_{\varepsilon}^{\prime}(s) ds \\ &= -\int_{t}^{T} \exp\left(\frac{t-s}{\varepsilon}\right) u_{\varepsilon}^{\prime\prime}(s) ds - \exp\left(\frac{t-T}{\varepsilon}\right) u_{\varepsilon}^{\prime}(T) + u_{\varepsilon}^{\prime}(t) \\ &+ \int_{t}^{T} \exp\left(\frac{t-s}{\varepsilon}\right) u_{\varepsilon}^{\prime\prime}(s) ds \\ &= u_{\varepsilon}^{\prime}(t). \end{split}$$

Since $\{f - Au_{\varepsilon}\}$ is bounded in F' by (A_2) , hypothesis (h_1) implies that $\{u'_{\varepsilon}\}$ is bounded in F'.

§4. Proof of the theorems

PROOF OF THEOREM 1: It follows from LEMMA 5 that there exists a suitable directed set $\{\varepsilon\}$ tending to zero such that

$$(4.1) u_{\varepsilon} \xrightarrow{w} u in F,$$

(4.2)
$$u_{\varepsilon}' \xrightarrow{w^*} z \quad \text{in } F',$$

- (4.3) $\sqrt{\varepsilon}u_{\varepsilon}' \xrightarrow{w} \rho \quad \text{in } L^2(0, T; H),$
- (4.4) $u_{\varepsilon}(0) \xrightarrow{w} \xi_0$ in H,
- (4.5) $Au_{\varepsilon} \xrightarrow{w^*} \chi \quad \text{in } F'.$

For any $\phi \in \mathcal{D}(0, T; V)$, $\langle u_{\varepsilon}', \phi \rangle = -\langle u_{\varepsilon}, \phi' \rangle \rightarrow -\langle u, \phi' \rangle$ as $\varepsilon \rightarrow 0$. Hence, (4.2) implies that $-\langle u, \phi' \rangle = \langle z, \phi \rangle$ for all $\phi \in \mathcal{D}(0, T; V)$. Thus u' = z in F'. By (4.1) and (4.2) LEMMA 1 implies that $u_{\varepsilon}(0) \xrightarrow{u^*} u(0)$ in V', so that $u(0) = \xi_0$ on account of (4.4). From (4.3) we see that as $\varepsilon \rightarrow 0$, $\varepsilon u_{\varepsilon}' \rightarrow 0$ weakly in the distribution sense. In fact, for any $\phi \in \mathcal{D}(0, T; V)$

$$< \varepsilon u_{\varepsilon}^{\prime\prime}, \phi > = -\sqrt{\varepsilon} < \sqrt{\varepsilon} u_{\varepsilon}^{\prime}, \phi^{\prime} > \rightarrow 0.$$

Thus letting $\varepsilon \rightarrow 0$ in (3.8), we have

Nobuyuki Kenmochi

$$(4.6) u' + \chi = f$$

in the distribution sense. Since $\mathcal{D}(0, T; V)$ is dense in F, (4.6) holds in F'.

For $\beta \in V$, we set $v(t) = (T-t)\beta$. Then we have by (4.1) \sim (4.4),

$$arepsilon < \! u_arepsilon', \, v\! > \!
ightarrow \! 0, \, <\! u_arepsilon', \, v\! > \!
ightarrow \! <\! u', \, v\! >, \, <\! A u_arepsilon, \, v\! > \!
ightarrow \! <\! x, \, v\! >$$

and $(u_{\varepsilon}(0), v(0)) = T(u_{\varepsilon}(0), \beta) \rightarrow T(u(0), \beta)$. Hence by (3.7) we have

$$< u', v > + T(u(0), \beta) + < x, v > = < f, v > + T(u_0, \beta).$$

By (4.6) the left hand side is equal to $T(u(0), \beta) + \langle f, v \rangle$. Thus we infer that $(u(0), \beta) = (u_0, \beta)$. The arbitrariness of β implies that $u(0) = u_0$.

It remains to prove that $Au = \alpha$. There exists a sequence $\{\varepsilon_n\}$ such that $\varepsilon_n \to 0$ and

$$X \equiv \liminf_{\varepsilon \to 0} [\operatorname{Re} \langle u_{\varepsilon}', u_{\varepsilon} \rangle + |u_{\varepsilon}(0)|^{2}]$$
$$= \lim_{n \to \infty} [\operatorname{Re} \langle u_{\varepsilon_{n}}', u_{\varepsilon_{n}} \rangle + |u_{\varepsilon_{n}}(0)|^{2}].$$

By (3.2) in the proof of LEMMA 3, for any k, j

$$\operatorname{Re} < \! u_{\varepsilon_k}' - u_{\varepsilon_j}', \, u_{\varepsilon_k} - u_{\varepsilon_j} > + | u_{\varepsilon_k}(0) - u_{\varepsilon_j}(0) |^2 \geq 0,$$

that is,

$$\begin{split} & [\operatorname{Re} < u_{\varepsilon_{k}}^{\prime}, \, u_{\varepsilon_{k}} > + | \, u_{\varepsilon_{k}}(0) \, | \, {}^{2}] + [\operatorname{Re} < u_{\varepsilon_{j}}^{\prime}, \, u_{\varepsilon_{j}} > + | \, u_{\varepsilon_{j}}(0) \, | \, {}^{2}] \\ & - \operatorname{Re} < u_{\varepsilon_{k}}^{\prime}, \, u_{\varepsilon_{j}} > - \operatorname{Re} < u_{\varepsilon_{j}}^{\prime}, \, u_{\varepsilon_{k}} > - (u_{\varepsilon_{k}}(0), \, u_{\varepsilon_{j}}(0)) \\ & - (u_{\varepsilon_{j}}(0), \, u_{\varepsilon_{k}}(0)) \ge 0. \end{split}$$

Letting $k \rightarrow \infty$ and then $j \rightarrow \infty$, we have

$$2[X - \text{Re} < u', u > - |u(0)|^2] \ge 0.$$

Thus

(4.7)
$$X \ge \operatorname{Re} \langle u', u \rangle + |u(0)|^2.$$

On the other hand, by (3.3), (3.7), (4.1), (4.4) and (4.6), we obtain

(4.8)
$$\limsup_{\varepsilon \to 0} \operatorname{Re} \langle Au_{\varepsilon}, u_{\varepsilon} \rangle$$
$$= \limsup_{\varepsilon \to 0} [\operatorname{Re} \langle f, u_{\varepsilon} \rangle + \operatorname{Re}(u_{0}, u_{\varepsilon}(0)) - \varepsilon ||u_{\varepsilon}'||_{L^{2}(0,T;H)}^{2}$$
$$- \operatorname{Re} \langle u_{\varepsilon}', u_{\varepsilon} \rangle - ||u_{\varepsilon}(0)||^{2}]$$

On the Existence of Solutions of Some Non-linear Parabolic Equation

$$\leq \operatorname{Re} < f, \ u > + | u(0) |^{2} - X$$

= Re < u', u > + Re < x, u > + | u(0) |^{2} - X.

Hence, from (4.7) and (4.8), we derive

$$\limsup_{\varepsilon \to 0} \operatorname{Re} < Au_{\varepsilon}, \, u_{\varepsilon} > \leq \operatorname{Re} < \mathfrak{x}, \, u >.$$

Then it follows from (A_1) that Au = x.

PROOF OF THEOREM 2: We consider the space $\tilde{W} = \{v \in F; v' \in L^2(0, T; H), v(0) = v(T)\}$. Define the same norm in \tilde{W} as in \tilde{W} . Then \tilde{W} is a reflexive Banach space. For given $\varepsilon > 0$, we set for $u, v \in \tilde{W}$

$$\llbracket \tilde{A}_{\varepsilon}u, v \rrbracket = \varepsilon < u', v' > + < u', v > + < Au, v >.$$

Then we can show that \tilde{A}_{ε} is a bounded coercive operator of type M on \tilde{W} into $\tilde{W'}$ in the same way as LEMMA 3. Thus by H. Brezis' result, for given $f \in F'$ there exists $u_{\varepsilon} \in \tilde{W}$ such that

$$\llbracket \widetilde{\mathcal{A}}_{\varepsilon} u_{\varepsilon}, v
floor = < f, v > \quad ext{ for all } v \in \widetilde{\mathscr{W}}.$$

Just as in the proof of Theorem 1, there exists a suitable directed set $\{\varepsilon\}$ tending to zero such that

(4.9) $\{u_{\varepsilon}\}$ is bounded in F and $u_{\varepsilon} \xrightarrow{w} u$ in F,

(4.10)
$$\sqrt{\varepsilon}u_{\varepsilon}' \xrightarrow{w} \rho \text{ in } L^{2}(0, T; H),$$

(4.11)
$$u_{\varepsilon}(0) = u_{\varepsilon}(T) \xrightarrow{w} \xi \text{ in } H_{\varepsilon}(T)$$

We can show as in the proof of Theorem 1 that, for any $\varepsilon > 0$,

$$(4.13) \qquad \qquad -\varepsilon u_{\varepsilon}^{\prime\prime} + u_{\varepsilon}^{\prime} + A u_{\varepsilon} = f$$

and

(4.14)
$$u_{\varepsilon}(0) = u_{\varepsilon}(T)$$
 in V' .

Also as in the proof of THEOREM 1, (4.13) and (4.14) imply that

$$u_{\varepsilon}'(t) = \frac{1}{\varepsilon} \exp\left(\frac{T}{\varepsilon}\right) \left(\exp\left(\frac{T}{\varepsilon}-1\right)^{-1} \left[\int_{0}^{t} \exp\left(\frac{t-s-T}{\varepsilon}\right) (f-Au_{\varepsilon})(s) ds\right] + \int_{t}^{T} \exp\left(\frac{t-s}{\varepsilon}\right) (f-Au_{\varepsilon})(s) ds \right].$$

365

q.e.d.

This implies by hypotheses (h_1) and (h_2) that $\{u_{\delta}\}$ is bounded in F'. Therefore we may assume that

$$(4.15) u' \xrightarrow{w^*} u' \text{ in } F'.$$

By (4.9) and (4.15) LEMMA 1 implies that u(0) = u(T) in H.

In the same way as in the proof of THEOREM 1, we obtain

$$\limsup_{\varepsilon \to 0} \operatorname{Re} < Au_{\varepsilon}, \ u_{\varepsilon} > \leq \operatorname{Re} < \varkappa, \ u >,$$

and, by hypothesis (A_1) , $Au = \alpha$. On the other hand, for all $\phi \in \mathcal{D}(0, T; V)$,

$$\varepsilon < u_{\varepsilon}', \phi' > + < u_{\varepsilon}', \phi > + < Au_{\varepsilon}, \phi > = < f, \phi >.$$

Letting $\varepsilon \to 0$, we have u' + Au = f in the distribution sense. Since $\mathcal{D}(0, T; V)$ is dense in *F*, the equality u' + Au = f holds in *F'*. Thus *u* is a solution.

q.e.d.

References

- H. Brezis, Équations et inéquations non linéaries dans les espaces vectoriels en dualité, Ann. Inst. Fourier, Grenoble, 18 (1968), 115-175.
- [2] R. W. Carroll, Abstract methods in partial differential equations, Harper & Row (1969).
- [3] E. Hille and R. C. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Pub., Vol. 31 (1957).
- [4] J. Leray and J. L. Lions, Quelques résultats de Višik sur les problémes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107.
- [5] J. L. Lions, Sur certaines équations paraboliques non linéaires, Bull. Soc. Math. France, 93 (1965), 155–175.
- [6] G. Marinescu, Espaces vectoriels pseudo-topologiques et théorie des distributions, VEB deut. Verlag d. Wiss. (1963).

Department of Mathematics, Faculty of Science, Hiroshima University