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Introduction

Let Ω be a bounded domain in the J-dimensional euclidean space (dj>2).
G. Stampacchia [17] (also, C. B. Morrey Jr. [14] and 0. A. Ladyzhenskaya
and N. N. UraΓtzeva [9]) discussed properties of solutions of a second order
elliptic partial differential equation on Ω of the form

(1) Lu^- Σ

with not necessarily continuous coefficients. In fact, Stampacchia only
assumed that coefficients gih α, , bj and q are measurable functions on Ω
satisfying the following conditions (2) and (3):

(2) Σgijξiξj^ I ί 12 for some v>0 and | gij| <;M.

(3) aiζld(Ω), bj6Lr(Ω), qeLrl\Ω) for r>d. (Cf. [9] and [14], in which
it is assumed that αz e Lr(Ω). In case c? = 25 this assumption may be neces-
sary the paper [17] primarily concerns the case d Ξ> 3.)

On the ground of Stampacchia's work, R.-M. and M. Herve [7] develop-
ed a theory of superharmonic functions associated with the equation (1),
under an additional condition:

(4) q~Σ^Γ^^ O a n d ? ~ Σ ^ J ~ ^ 0 in the distribution sense.
UXj (JX{

In fact, they showed that the continuous solutions of (1) form a harmonic
space on Ω in the sense of M. Brelot [1] and then constructed the correspond-
ing Green function on Ω.

In this paper, we take a connected C1-manifold Ω and consider a con-
travariant tensor (gij), contravariant vectors (a1) and (bJ) and a function q
on Ω which locally satisfy conditions (2) and (3). Our differential equation
may be written as

(10 Lu^u-Σa'^ J ^
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with

9 / . — .. du

where G is the determinant of (gij) = (gij)~1- Without assuming any condi-
tion corresponding to (4), we shall show that the continuous solutions of (10
form a harmonic space on Ω (called the L-harmonic structure). Construction
of the corresponding Green function and the integral representation of
superharmonic functions associated with (10 are also discussed on a subdo-
main ω of Ω, following the lines of [Ί]—without the assumption (4), but with
a certain restriction on the domain ω (§3).

The best part of this paper is devoted to discussions of a full-harmonic
structure (in the sense of Ell]]) which is determined by a general boundary
condition and is subordinate to the L-harmonic structure. Its original model
is the theory of full-superharmonic functions associated with the classical
harmonic functions and the Kuramochi boundary, for which boundary condi-
tion is given as vanishing normal derivatives (cf. [3] and CIO]). There is
also a work by S. Itό C8], which is intended to give a generalization of the
theory of Kuramochi boundary in the case where the harmonic structure is
given by an elliptic partial differential equation on a manifold. We shall
consider a general boundary condition (R, B) determined by a class R of in-
harmonic functions and a bilinear form B on R x R. This idea of boundary
condition is a generalization of that given in [12].

We shall show (§4) that, on an "end" on Ω satisfying certain conditions,
we can define a full-harmonic structure in terms of condition (jR, B). Then
(in §5), we construct the corresponding Green function, extending the
methods given in C3], CIO] and [12]. With this Green function we can apply
the general theory given in [IT] and obtain an integral representation
theorem for full-superharmonic functions associated with our full-harmonic
structure. For this integral representation, we consider an ideal boundary.
As was remarked in [IT], in the classical case this ideal boundary can be the
Martin boundary or the Kuramochi boundary according as the choice of
boundary condition. Thus we may generalize the known theorems on these
ideal boundaries to our case. In this paper we give two of such theorems
(§6). The first of them is a characterization of "minimal" points in terms
of the reduced function and the other is on an equivalence of two types of
"thinness" at ideal boundary points (cf. M. Brelot [2] for the case of Martin
boundary).

§ 1. Preliminaries

1.1. Metric tensor.
As a base space Ω, we take a connected non-compact C1-manifold of
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dimension d^>2. We consider a symmetric covariant tensor {g{j) on Ω which
satisfies the following condition (G):

(G): On each relatively compact coordinate neighborhood U in Ω, each
gij is a bounded measurable function on £7 and there exists Λ>0 such that

Σ

for all x e ί/and real numbers ?i, • ••, ξd.

A manifold J2 with such a metric tensor is a locally compact metrizable
space, and hence it is countable at infinity.

Let G{x) be the determinant of {gij) on each coordinate neighborhood.

Then dV=^jGdxι ••• dxd defines a positive measure on Ω. For any open set

ω in Ω, let Lp{ώ) (resp. Lfoc(α))) (/?J>1) be the space of p-th power summable

real functions on ω with respect to the measure dV. We consider the usual

norm \\-\\p,a on L\ω): \\f\\pp,ω=\jf\pdV.

For f, g£ L\oc{ω), we write /<J ^ or / = g on ω7 for an open set ω' C ̂  if
it is so almost everywhere on ω' with respect to dV.

We denote by Cι{ω) the space of continuously differentiate functions on
ω and by C\{ω) the subspace consisting of functions with compact supports
in ω.

For a set A in Ω, its closure in Ω will be denoted by A and its boundary
in Ω by 9A

1.2. The spaces D{ώ) and D0{ω).

Let ω be an open set in Ω. Given / 6 C1{ω),

is well-defined, where {gij) is the inverse matrix of {gij). Let C (̂α>)
= {/eC 1 (α));ΰ f f l [/]<oo}. Obviously C o H ^ C ^ ^ ) .

Now let a) be a domain (connected open set) and let ω' be a relatively
compact domain such that ώr C ω. For / 6 C^{ω), we define

and

For any/€D(α)), Dω\^fJ, \\f\\D,ω,ω' are well-defined. In case ω is a relatively
compact coordinate neighborhood, then the space D{ω) (resp. D0{ω)) may be

(α))=the completion of C^{ω) with respect to the norm ||/||zj,ω,ω',
o («)) = the closure of
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identified with the Sobolev space Hι(ω) (resp. H\(ω)) (see [17] for this nota-
tion). Thus, for / € D(ω\ we have (cf. [5])

(i) / is identified with a function in L\oc(ω)
(ii) In each coordinate neighborhood, grad f=(df/dxu •••, df/dxd) is

defined almost everywhere to be a covariant vector on ω and | grad /1 =

(Σgij'(df/dχd (df/dxj))112 belongs toL2(ω) /)„[/] = J | g r a d / | W .

For any/, geD(ω),

is well-defined and D(ω) is a Hubert space with respect to the inner product

Ao[/, gΊ+[ fgdV (cf. [5]). Also we have

LEMMA 1.1. If fn e #(ω) cmd A ^ t / J ^ O , ίfcew ίfcere exisί constants cn such
that fn + cn^0 in D(ω).

Using this lemma, we obtain

LEMMA 1.2. / / ωf is a relatively compact domain such that ώ/ C o), then the
injection map of D(ω) into L2(ω') is continuous.

LEMMA 1.3. If 1 ί D0(ω), then the norm ||/||z),ω,ω' is equivalent to the norm
on D0(ω).

Remark that if ω is relatively compact, then 1 ( D0(ω).

From the definition of D0(ω), we easily have

LEMMA 1.4. / / ω C a>ι and f 6 D0(ω), then

I f on ω

0 on α>i — ω

defines an element in D0(ωι).

1.3. The space D[oc(ω) and lattice structures.

For an open set ω in Ω, we define

\ 2 for any relatively compact domain
DlΰC(ω) = [ f €Lίoc(ω) ^ ^ ^ $Qm, f\ω> z D(ω')

where / | ω' denotes the restriction of / to ω'. For / e Dio c(^)5 grad / is defined
on ω as a covariant vector.

For a domain ω, we easily have

LEMMA 1.5. If f £ Dιoc(ω) and φ e Cl(ω), then φf e D0(ω).
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COROLLARY. If fa D[oc(ω) and / = 0 outside a compact set in ω, then
faD0(ω).

The following results can be seen by using the corresponding results on
euclidean spaces (see [ΊΓ] also cf. [ΊΓ]):

LEMMA 1.6. (a) // f a D\oc(ω), then / + = max(/, 0) (hence / "=—min
(/, 0)) belongs to D\oc(ω) and

ί grad / a.e. on {x a ω f(x) > 0}
g r a d / + = \

[0 a.e. on {χξω;f(x)<L0}.

(b) Iff, gd D(ω), then max(/, g), min(/5 g) a D(ω) and

i)ω[max(/,

LEMMA 1.7. (a) For feD(ω), f e D0(ω) if and only if \f\ e D0(ω).

(b) If f a D(ω), f^> 0 on ω and if f<^g outside a compact set in ω for some

g 6 D0(ω), then f e D0(ω).

§2. Equation Lu = 0 and its solutions

2.1. Equation Lu = 0 and L-harmonic functions.

Now we consider two contravariant vectors a = (ai) and b = (bJ) on Ω and
a function q on Ω. We assume

\a\eLίoc(Ω\ \b\eL\oc(Ω) and qeL\ι*c(Ω)

for some r > d (if d = 2, then we furthermore assume t h a t \a\ e L\OC(Ω)), where

\a\ =(Σgijaiai)112 and

We formally consider the equation

d βΊJ I d

' ^ 4Σ
i

where

1 d ft ,d ftu

If ω is a relatively compact domain in Ω and if/, g€ D(ω), then

=1

is well-defined and Soblev's lemma implies that the mapping (/, g)^AL>ω\if, g]
is continuous on D(ω) x D(ω) (cf., e.g., [17]]).
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If ω is any domain and u e D\oc(ω), then ΛL>ω[_u, φj is defined for any
φ e Cl(ω) by ΛL>ω[_u, φ~]-=AL^{_u, φj, where ωr is a relatively compact domain
such that ώ'Co) and the support of φ is contained in ω'.

u 6 Dιoc(ώ) is called a solution of Lu = 0 on ω if AL>ω\^u, <p~2 = 0 for all
φ € Cl(ω). u 6 D\oc(ω) is called an L-supersolution on ω if ΛL>ω\jι, <?]Ξ>0
for any φ e Cl(ω) with ^ O o r i f t ) .

It is known (e.g., [17] for d^>3; [9], [14] for d^2) that any solution of
Lu = 0 is equal to a locally Holder continuous function almost everywhere.
Thus, we call a continuous solution of Iiί = 0 on a domain ω an L-harmonic
function on ω. If ω is an open set and u is Z-harmonic on each component
of a), then we say that u is L-harmonic on ω. The set of all Z-harmonic
functions on ω will be denoted by 9tL{ω). By definition, we easily have

PROPOSITION 2.1. Each 9tL(ω) is a real linear space and !QL = {dtL{o))}ω.opcn
is a sheaf of continuous functions.

2.2. Minimum principles on an L-adapted ball.

A domain ω will be called an L-adapted domain (cf. [7]) if it is relatively
compact and AL>ω is coercive on D0(ω), i.e., there is λ>0 such that

for all / e D0(ω). By Lemma 1.4, we see that any subdomain of an Z-adapted
domain is Z-adapted.

By Theoreme 3.1 of [17] (for d = 2, we must modify its proof — see
Theorem 5.1 of [9]), we have

LEMMA 2.1. For any x e J2, there exists an L-adapted coordinate neighbor-
hood of x.

The following lemma is proved in [7] (Lemma 1, a)):

LEMMA 2.2. Let ω be an L-adapted domain and u e D(ω) be an L-supersolu-
tion on ω. Lf u^> goutside a compact set in ω for some ge DQ(ω), then u^>0
on ω.

We shall say that a domain U in Ω is a ball if there is a coordinate
neighborhood U such that UCU and U is expressed as {x; | Λ ; | < Γ } with
respect to the coordinate.

Using Theoreme 3.3 and Theoreme 7.3 of [17] (Theorem 5.2 and Theorem
14.1 of [9] if d = 2; also cf. [14] and the proof of Theorem 1 in [7]), we have

PROPOSITION 2.2. 7/ U is an L-adapted ball in Ω, then for any φ e f,ι(dU),
there exists a unique u e C(U) such that u = φ on dU and u is L-harmonic on
U. Furthermore u e D(U). Here ^(dU) is the set of the restrictions of
g€ Cι(U) to dU for some UrZ)Ό and C(U) is the set of all continuous functions
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on U.
The function u in the above proposition will be denoted by H%>u

PROPOSITION 2.3. Let U be an L-adapted ball in Ω. If u is an L-supersolu-
tion on U and if liminf^ j ; v e[/ u(x) ;>() for all ξ e dU, then u ^>0 on U.

PROOF. Let uo=H£>u. By Proposition 2.2, u0 is continuous on U and
uo = l on dU. Hence there is a compact set Ko in U such that uo(χ)^>l/2 for
XEU—KQ. For any ε > 0, there exists a compact set K^)K0 such that
u(x)>— ε on U—K. Then uJr2eu0^z0 on U—K. Let ω be a domain such
that KCωCώCU. Then z/ + 2εw0 e D(ώ). Hence, by Lemma 2.2 (taking
g=0), we have u + 2euo^>O on ω. Since α) can be taken to contain any point
in Uand since ε is arbitrary, we have ί ί ^ O o n U.

2.3. L-harmonic structure.

Now we prove our main theorem in this section: (Cf. Theoreme 1 of [ΊJ)

THEOREM 2.1. ξ)L= {£6L(ω)}ω:open satisfies Axioms 1, 2 and 3 of M. Brelot
[1J, so that it defines a structure of harmonic space on Ω.

We shall call ξ)z the Z-harmonic structure.

To prove Theorem 2.1, we prepare the following two results, which are
essentially given in [17] (in case d = 2, we must modify the proofs).

PROPOSITION 2.4. (Harnack's inequality; see [17], Theoreme 8.1) // ω is
a relatively compact domain in a coordinate neighborhood in Ω and K is a
compact set in ω, then there exists Λ>0 such that

max u(x) <Ξ λ min u(x)
xζK xeK

for all u e dtL(ω) such that u^>0 on ω.

LEMMA 2.3. (See Lemme 5.2 in [[17] and Proposition 2 in |[7]) Let ω be
a relatively compact domain in a coordinate neighborhood in Ω and let ω' be a
domain such that ώ/Co). Then there exists α > 0 such that

Dω'tuJ<:a{ u2dV

for any u e dtL(ω).
Remark that Lemme 5.2 in [[17] is valid without the assumption (5.2) in

[17].

PROOF of Theorem 2.1. Our Proposition 2.1 is nothing but Axiom 1 of
[1] for § L . To show Axiom 2, let U be any L-adapted ball in Ω and we shall
prove that U is regular with respect to § z . Given φ e C(dU)> we can choose
φn e Cλ(dU) such that <pn-+φ uniformly on dU as TZ-̂ CXD. Let un=H^u on £7,
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Put εn = ma,Xξ€dU\φn(?) — φ(ζ)\ and M = $uvxCuHi >u(χ). Then εw->0 (n^oo) and
M< oo. By Proposition 2.3, we have

I uH(x) - ^ ( * ) I ^ (en + em)Htu{x) ^ (eΛ + εw)M,

so that {&«} converges uniformly on £?. Let u = \\mn^OQun. Then u e C(U)
and u = φ on dll. By Lemma 2.3, we also see that ^ / [ i ^ —ww]->0(τ2,, τ?i-^°o)
for any domain α/ such that ω' C C/". It follows that u e D\oc (U) and
Dω/Qttw — î l̂—>0 for any such ωr. Hence AL,ULU> 0] = lim^oo^z,£/[ww, 0] = O for
any ψeC\(U), so that uedίL{U). By Proposition 2.3, such M is uniquely
determined by φ, and z^;>0 whenever φ^O. Thus Axiom 2 of [1] for fgL is
verified. Finally, Lemma 1 in [4] shows that our Proposition 2.4 implies
Axiom 3 of [1J for § £ . Thus the theorem is completely proved.

REMARK. We can similarly show that an L-adapted domain ω is regular
with respect to ξ>z, if its boundary dω satisfies the following condition (A)
(cf. [ 9 ] ; ω is of type S in [11] or [17]):

(A): For any coordinate ball U= {| x \ O 0 } with center on dω, there are
two constants a and p with 0 < α < l and 0 < p ^ r 0 / 2 such that for any

ξ e 9α)rJ I # | < - ^ - | and for any r with 0 < r ^ p we have mes{i?(f, r) — ω} ^

, r), where B(ξ, r) = {\ x — ξ \ <r} and αmes" means the Lebesgue
measure, with respect to the given coordinate of U.

Superharmonic functions and potentials with respect to the Z-harmonic
structure will be called Z-superharmonic functions and Z-potentials, respec-
tively.

PROPOSITION 2.5. Any lower semicontίnuous L-super'solution is L-super-
harmonic.

PROOF. Let v be a lower semicontinuous X-supersolution on ω. For
any Z-adapted ball U such that Ϊ 7 O and for any continuous function
φeC(dU) such that φ<Lv on dll, v — H%>u is an Z-supersolution on U and

XeU{v(x)-H^u(x)}^0 for all ξedU. Hence, by Proposition 2.3,
{;'u on U. It follows that v is Z-superharmonic on ω.

COROLLARY, (cf. [7]) If q-(X/4G)Σxd{4Gbi)/dχi^^ in the distribu-
i

tion sense on ω, then the constant function 1 is L-superharmonic on ω.

2.4. Domains on which minimum principle holds.

We say that the minimum principle holds on a domain ω if
liminf^a ^ A O ^ O implies z^^O for any Z-superharmonic function u on ω,
where \immfx-+d*ωu(x)7>0 means that given ε>0 there is a compact set K in
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ft) such that u(χ)~^> — ε on ω—K. It is known (see [Γ], Theorem 3, (ii) and its
footnote) that if there is an Z-superharmonic function υ on ω such that
mtx€ωv(x)>0, then the minimum principle holds on ω.

PROPOSITION 2.6. // one of the following conditions is satisfied, then the

minimum principle holds on ω:

(a) There exists an L-adapted domain ω0 such that α>C^o

(b) q — (l/\lG )Σid(\l~Gbi)/dxi^>0 in the distribution sense on ω.

PROOF. If (a) is satisfied, then, by Lax-Milgram's theorem, there is
gζ Do(ωo) such t h a t AL>ωo[g, φ~2 = AL!Cϋo[l, φj for all φ e D0(ω0). Then u = l— g

is L-harmonic on ω0 and Lemma 2.2 implies that u^>0 on ω0. Using
Harnack's inequality, z^>0 on ω0, so that mfx€ωu(x)>0. Hence the minimum
principle holds on ω. If (b) is satisfied, then the corollary to Proposition 2.5
guarantees the existence of an L-superharmonic function with positive
infimum on ω.

We say that the weak minimum principle holds on a domain ω if for an
.L-superharmonic function u on ω, u I> 0 outside a compact set in ω implies
u^>Q on ω. The following result is given in [4J (Theorem 2):

PROPOSITION 2.7. If there exists a positive L-superharmonic function on
ω, then the weak minimum principle holds on ω.

2.5. Proportionality of L-potentials with point supports.

Given an X-superharmonic function v on a domain ω, the complement (in
ω) of the largest open set in which v is Z-harmonic is called the support of v
(see [ I ] , [βj). It is known ([β~J) that if ω admits a positive Z-potential, then
there exists at least one Z-potential whose support is equal to { y} for each
y 6 ω.

Given y e ω, let

^ , , , N u>0 on ω— {γ\ and there are an Z-potential p and)
J a compact set K in ω such that u <=p on ω — K j

By the above remark, P^>ω is not empty if ω admits a positive Z-potential.

PROPOSITION 2.8. Suppose ω is a domain which admits a positive L-
potential on it. Then elements in P^>ω are proportional to each other, and they
are equal to L-potentials on ω with support {y}.

The proof of this proposition may be carried out in the same way as that
of Proposition 4 of [T]. Remark that the minimum principle used in the
proof in [Ί~] may be replaced by the weak minimum principle, which holds
on our domain ω (Proposition 2.7).
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§ 3. L-semiadapted domains and L-Green functions

3.1. L-semiadapted domain.

Given an equation Lu = 0 as in the previous section, we consider the
function QL=\a\2+ \b\2+ \q\. QL is a non-negative function on Ω and
belongs to Lf!

o

2

c(Ω). Let

If QL = 0 on ω, or if ω is relatively compact, then DL(ω)=D(ω). In case
on ω, then DL(ω) is a Hubert space with respect to the inner product

In this case, we define ||/|U,ω==L>z,ω[/,/]1/2 In case QL = 0 on ω, we also
denote by | |/ |U, ω any one of ||/||z>,ω,α/. Thus, in any case, DL(ω) is a Hubert
space with the norm | | / |U, ω .

We denote by DL>0(ω) the closure of Cl(ω) in DL(ω), which coincides with
the space DL(ω)Γ\D0(ω).

Obviously, AL>ω is defined to be a continuous bilinear form on DL(ω)
xDL(ω). A domain ω in Ω will be called L-semiadapted if

(i) QL = 0 on ω and 1 $ D0(ω),
or

(ii) QiφO on ω and ^ i j ω is coercive on DL}0(ω), i.e., there is Λ>0 such

It is easy to see that an i-adapted domain is L-semiadapted. Obviously,
any subdomain of an Z-semiadapted domain is Z-semiadapted. (In particular,
any relatively compact subdomain of an Z-semiadapted domain is Z-adapted.)
Remark that if |α | = | δ | = 0 and </ί>0, qφO on ω, then ω is L-semiadapted.

LEMMA 3.1. Let ω be an L-semiadapted domain and let ω' be any relatively
compact domain such that ώ'Co). The restriction mapping DL(ω)^L2(ωf) is
continuous, i.e., there is ikf >0 such that

for all f e DL(ω).

PROOF. If QL = 0 on ω, then this lemma is nothing but Lemma 1.2.
Suppose QLφ0 on ω and suppose the lemma is not true. Then there would

exist fn e DL(ώ) such that \ f2

ndV=l and \\fn\\L,ω-^Q(n-+°o). By Lemma



Harmonic and Full-harmonic Structures on a Differentiable Manifold 281

1.1, we find constants cn such that \ (fn + cn)
2dV-^ΰ for any relatively com-

pact domain ωλ such that cbiCω. Taking a subsequence, we may assume
fn + Cn^O a.e. on ω as well as/w-*0 a.e. on the set {x e ω; QL>0}. Since the

last set is of positive measure, cw—•(), and hence \ fldV-+0, a contradiction.

3.2. Function hf>ω and the space HL(co).

Let ω be an .L-semiadapted domain. Then, given f e DL(ω), Lax-
Milgram's theorem implies that there exists a unique L-harmonic function
hf>ω on ω such that f—hf'ω e DL>0(ω). Obviously, the mapping f-+hf>ω is linear.

LEMMA 3.2. Let ω be an L-semiadapted domain and let u e DL(ω) be In-
harmonic on ω. If there is g€ DL,O(O)) such that u^> g outside a compact set
in ω, then u ̂ 0 on ω.

PROOF, (cf. the proof of Lemme 1, a) in [T]) Since 0<^~<Jg~ and
g~ <E DL>0(ω), u~ c DL>Q(ω). Hence AL>ω[_u, u~^\ = 0. I t follows from Lemma

1.6 that ΛL>ω[_u~, ii~] = 0. Since AL>ω is coercive on DL,0(ω), u~ = 0. Hence

COROLLARY. Let ω be an L-semiadapted domain. If f ζ DL(ω) and /Ξ>0
outside a compact set in ω, then hf'ω^>0 on ω.

PROOF. Apply the above lemma to u=hf>ω and g=hf'ω—f.

Let HL(ω) = {u e DL(ω); solution of Lu = 0 on ω}. We may identify it
with dtL(ω)Γ\DL(ω). For an Z-semiadapted domain ω, HL(o)) Γ\DL)O(ω)= {0}.
If feDL(ω), then hf>ωeHL(ω) and the mapping f-+hf'ω is continuous from
DL(ω) into HL(ω).

Given u9 veHL(ω), let u\/v = h^x{u>v) and uAv = h^niu>v). Then, uVv,
(ύ 03 (ύ

uf\υ e HL(ω) and u + v = uVv + uΛv. HL(ω) is a, vector lattice with respect
ω ω ω

to these operations. By Lemma 3.2, we have

We write u±v if [ ( M V 0 ) - ( M Λ 0 ) ] Λ [ ( V V 0 ) - ( V Λ 0 ) ] = 0. Note that
ω ω ω ω ω ω

for any u € HL(ω).

3.3. Green operator GL>ω and existence of positive potentials.

By the same method as Lemme 3 and Proposition 5 of pΓ]5 we obtain the
following extension of Lemma 3.2.:

PROPOSITION 3.1. Let ω be an L-semiadapated domain and let u be an
L-supersolution on ω. If there is ge DL>0(ω) such that u^> g outside a compact
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set in ω, then u^>0 on ω.

COROLLARY. / / ω is an L-semiadpted domain and if g is a lower
semicontinuous L-supersolution belonging to DL!o(ω), then g is an L-potential.

PROPOSITION 3.2. Let ω be an L-semiadapted domain. For any bounded
measurable function φ with compact support in ω, there exists a continuous
function g belonging to DL>0(ω) such that

(*) ALιωlg,φ} = \ φφdV
Jω

for all φ e DL>0(ω). Furthermore, if 0^>O, then g is an L-potential on ω.

PROOF. By Lemma 3.1, the linear functional /—M fψdV is continuous

on DL>0(ω). Hence, by Lax-Milgram's theorem, there is ge DL>0(ω) such that

(*) is satisfied for all ψ e DL>0(ω). On each coordinate neighborhood, g is a

solution of the equation Lu = ψ, so that, by Theoreme 7.3 of [17] (also see [7],

p. 310; [9], Theorem 14.1; [141, Theorem 4.7), g may be taken to be contin-

uous. If 0^>O, then ΛLtJϊg, φ^ = \ ψφdV^>0 for φ~^>0. Hence g is an L-

supersolution on ω. Then the above corollary implies that g is an .L-potential.

The function g in the above proposition will be denoted by GL>ω(φ).
Obviously, the mapping ψ^>GL>ω(ψ) is linear and non-negative. If ψ^>0 and
0 ^ 0 , then GL>ω(φ) cannot vanish identically, so that it is a positive L-
potential. Thus we have:

COROLLARY 1. An L-semiadapted domain admits a positive L-potential
on it.

COROLLARY 2. The weak minimum principle holds on an L-semiadapted
domain.

3.4. L-Green function g^>ω.

In the sequel of this section (§3), we shall assume t h a t \a\ e Lr

ioc(β)> so
t h a t \a\, \b\, \q\1/2 e L\OC(Ω) ( r > J ) . Under this assumption, the adjoint
equation

can be treated in the same way as the equation Lu = 0 and we obtain in-
harmonic structure on Ω. We remark that an L-semiadapted domain is also
L*-semiadapted, DL±(ω) = DL(ω) and AL*>ω[f, gJ = AL>ω[_g, / ] for /, ge DL(ω).

We may apply the arguments in sections 5 and 6 of [7] to our case and
obtain
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THEOREM 3.1. Let ω be an L-semiadapted domain and let y e ω. Then
there exists a unique positive potential, denoted by gy'ω, having the following
property: If {φk} is a sequence of non-negative bounded measurable functions
on ω such that the supports of φk are compact and decrease to the point set {y}

and \φkdV=l for each k, then GL'ω(φk) tends to g^>ω locally uniformly on
ω~{y}' Furthermore, gy>ω e L\oc(ω) and for any bounded measurable func-
tion φ with compact support in ω, we have

(y).

Remark that Proposition 2.8 plays an essential role in proving the above
theorem. The function g^>ω may be called the Z-Green function of ω with
pole at y.

The following corollaries are easy consequences of this theorem:

COROLLARY 1. gy

L>ω{x) = g^'ω(y) for any x, yeω (xφ y).

COROLLARY 2. y—• gy

L>ω(x) is continuous on ω— {x} for each x c ω.

COROLLARY 3. For any bounded measurable function φ with compact

support in ω, we have

ry

L>ωφ(y)dV(y)=GL>ω(φ).

Also, the following lemma is easily shown:

LEMMA 3.3. If (ύiCo) and ye ω1, then there is an L-harmonic function
uy on ωι such that

3.5. Integral representation of L-potentials.

Now that we obtained the Z-Green function, the next theorem follows
from Theoreme 18.2 of [~6]:

THEOREM 3.2. // v is an L-potential on an L-semiadapted domain ω, then
there corresponds a unique non-negative measure β on ω such that

for all x e ω.

From this theorem and Lemma 3.3, we see that for any L-superharmonic
function v on ω, there corresponds a non-negative measure μ on ω such that
if ωr is a relatively compact domain with ω'Ccύ then
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(x) (x e ώ)

with a function w which is Z-harmonic on ω'. The measure μ is called the
measure associated with υ (or, the associated measure of v). If v has an
Z-harmonic minorant on ω, then the above expression also holds for ω' = ω,
which is the Riesz representation of v. Note that v^O implies w^>0.

REMARK. We may proceed to apply the arguments in sections 6 and 7
of [7] and obtain the following results:

a) An Z-superharmonic function belonging to Dioc(α>) is an Z-supersolu-
tion on ω;

b) If ω is an Z-semiadapted domain, then an Z-superharmonic function
belonging to DL>0(ω) is an Z-potential on ω;

c) If ω is an Z-semiadapted domain, then an Z-superharmonic function
v belonging to DL(ω) has an Z-harmonic minorant and the greatest Z-harmonic
minorant of υ is equal to A£ ω.

§ 4. Full-harmonic structures subordinate to the L-harmonic
structure and determined by boundary conditions

4.1. Subspaces of DL(ω) for an end ω.

A domain ω in Ω will be called an end of Ω if it is not relatively compact
and its relative boundary dω is compact (may be empty). Given two ends ω
and ω\ we shall say that ωr is a subend of ω if ω' Cω and dωf Γ\ω is compact.

In case ω is an end of Ω, we define

Chω(ω) = {φ e C 1 ^ ) ; φ = Q on VίΛω for a neighborhood V oί dω}

and

.. N φ = 0 on an open set ω' such that
ω — ω' is compact

The closure of CL(o))r\DL(ω) (resp. C}{ω)(ω)Γ\DL(ω)) in Z>z(a>) is denoted by
DL>3ω(ω) ( resp . DL>β(ω)(ω)).

Let α/ be a subend of ω and let

c£(ω') (ω) = {̂  e c 1 ^ ) ^ I ω7 e c^o/jCa/)}

and

^ 1 / x ^ = 0 on an open set ω" such l
3 that α> — ώ)' — ω/7 is compact J '

The closure of C^^^ω)r\DL(ω)(τesp. C1

β{ω)-β{ω>)(ω)ίλDL(ω)) in DL(ω) is denoted
by DL>β(ω^(ω) (resp. DL}β(ω)^β(ω^(ω)). If ω — ω' is compact, in particular if



Harmonic and Full-harmonic Structures on a Differentiable Manifold 285

ω' = ω, then DL>β(ωΊ(ω)=DL>βCω)(ω) and DL>β(ω)_β(ωΊ(ω)=DL(ω). The spaces

DL>dω(ω), DL>β(ω)(ω), BL>β{ωΊ{ω) and DL>β(ω)_β(ω^(ω) are closed subspaces of

DL(ω) containing DLι0(ώ). It is easy to see that

DLιβ(ω)(ω)r\DL>dω(ω)=DL>0(ω)

and

DL>β(ωΊ(ω)Γ\DL>β(ω)_β(ωΊ(ω)=DL>β(ω)(ω).

We can easily obtain results corresponding to Lemmas 1.4, 1.5 and 1.7
for the spaces DL>Q(ω), DLίdω(ω), DLjβ(ω)(ω), DLίβ(ωΊ(ω) and DL>β(ω)_β(ωΊ(ω). In

particular we have the following:
(a) If ω is an end, ω' is a subend of ω and f ζ DL}dω^{ω')^ then f*(=f on

ωf and = 0 on ω — ωf) belongs to DL>β(ω)_β(ωΊ(ω)r\DL>dω(ω).
(b) Let φ e C1(ω) and suppose there is a compact set K in ω such that

φ is constant on each component of ω~K. If, furthermore, φ e C\ω(ω)
(resp. Ck(ω)(a>), Ck(ω')(α>), Cjg(o»_0(o/)(α))), then fφcDL>dω(ω) (resp. DZjy3(ω)(ω),
DL,β(ω')(ώ), DL,β(ω)-/3(ω')(ω)) for any/eD z ( to) .

(c-1) If / e DL(ω) and 0 <̂  | / | ̂  ^ on FΠft) for some neighborhood V of

^ω and g e Z>L,aω(ω), then / e DL>dω(ω).
(c-2) Let a/ be a subend of ω. If feDL(ω) and 0 ^ | / | ^ ^ on α)//Γ

for some open set ω" such that ά)' — ω" is compact (resp. ά> — ωf — ωπ is
compact) and g e DL>β(ωΊ(ω) (resp. # e D i . ^ - ^ o W ) , then / e DLιβ{ωΊ(ω)
(resp. / e D L ) / 3 ( , ) - ^ ) M ) .

Next, we define the subspaces HL>dω(cύ), HL>β(ω)(ω), HL>β(ωΊ(ω) and
Hz,^αo-^α,')(α>) a s ^ e intersections of HL(ώ) with the spaces DL>dω(ω),
DLιβ(ω)(ώ), DL>β(ωΊ(ω) and DL,/3(ω)-β(ω')(ώ), respectively. By the continuity of
the mapping f-^ALjCύ[_f, φ~} on DL(ω) for each ^ e C^(ω), we infer that these
are closed subspaces of DL(ω).

4.2. L-full-adapted end.

An end ω is called L-full-adapted if it is Z-semiadapted and l£Ddω(ω)
(=DA>dω(ω)). The latter condition implies that dωφϋ. Obviously, any end
contained in an L-ίull-adapted end is L-full-adapted. Remark that if K is a
closed ball in Ω and if Ω — K is I-semiadapted, then Ω — K is an L-full-adapted
end. Thus, for instance, if \a\ = \b\ =0 and g^>0 on Ω, then any end ω such
that Ω — ω contains an open ball is L-ί ull-adapted.

LEMMA 4.1. Let ω be an L-full-adapted end and let ω' be a subend of ω.
Then

[ flU(β)(fl))Λffi|9βW = {0},
(1)

I HL>β(ω^(ω)Γ\HL>β(ω)_β(ω^(ω) = HL,β^ω)(o)),
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and

{ , β ( ) ,
(2)

I HL>β(ωΊ(ω)+HL>β(ω)_β(ωΊ(ω)=HL(ω).

PROOF. By definition

HL>/3(ω)(ω)ίΛHL>dω(ω)=HL(ω)r\DL>0(ω)

and
HL>β(ωΊ(ω)rλHL)β(ω)_β(ωΊ(ω)=HL(ω)rΛDL)β(ω)(ω)=HL)β(ω)(ω).

Since ω is Z-semiadapted, we have HL(o))Γ\DL>0(ω) = {0}.
Next let φ be a function given in (b) in 4.1. We can choose φ in

such a way that φeCι

β{ω){ω) and 1 — φeCiω(ω) (resp. ^6C^,(c i)) and
l — φeC1

β{ω)^β{ω^)(ω)). For u e HL(ω), we have uφ e DL>β{ω)(ω) and a(l —#>)
^DL>dω(ω) (resp. w<? e DL>β(ωΊ(ω) and ^ ( l - 0 6Di i / 3 ( ω )^K )(ft))). Since a> is

Z-semiadapted, Lax-Milgram's theorem asserts the existence of geDL>0(ω)
such that AL>ω\igτ ψ~] = ΛL>ω\jιφ^ φ~] for all φ € DL,o(o)). Then uι = uφ — g be-
longs to HL(ω)Γ\DL>β(ω)(ω)=HLyβ(ω)(ω) (resp. HL(ω)rΛDLιfKω')(ώ)=HL,βiω')(ώ)).
Furthermore, u — ui = u(l — φ) +g belongs to HL(ω) Γ\DL>dω(ω) = HL>-dω{ω)
(resp. HL(ω)nDLtβ(ω)-β(ω')(ώ)=HL,β(ω)-β(ω')(ώ)). Hence we have (2).

By the above lemma, any u e HL)dω(ω) can be decomposed into u = u1 + u2

with ιn£ HL>β(ωΊ(ω) Γ\HL>dω(ω) and u2 e HL>β(ω)_β(ωΊ(ω)r\HL!dω(ω) and this
decomposition is unique. We shall denote uλ by uβ(ωΊ and u2 by uβ^ω)-β^y
Obviously, the mappings u->uβ(ωΊ and u^uβ(ω)_β(ωΊ are linear.

The spaces HLydω(ω\ HL>β(ωΊ(ω) and HLtβ(ω)^βiωΊ(ω) are closed under opera-
tions V and Λ. Furthermore we have

ω ω

LEMMA 4.2. If u e HLjβ((y)(ω)ίΛHL>dω(ω) and v e HL>β(ω^β(ωΊ(ω)r\HL)dω(ω\
then u±v.

PROOF. It is enough to show the case ^Ξ>0 and v^O. Then
0 ^ m i n ( ^ , v)<,u and 0 ^ m i n ( u , v)<>v imply that min(u, v) e DL, β(ω')(<*))
Γ\DL)β(ω)_β(ωΊ(ω)r\DL>dω(ω)=DL)0(ω). Hence uΛv = 0.

ω

4.3. Operator S%'ω.

LEMMA 4.3. Let ω be an L-full-adapted end. For a given f e DL(o)),
there exists a unique u e HL>β(ω)(ω) such that u—fe DL}dω(ω).

PROOF. Choose φ0 e C^{Cu)(o)) such that φo = l on Vίλω for some neighbor-
hood V of dω. Then fφ0 G DL>β(ω)(ω) and fφo—f e DL>dω(ω). Hence u=hfζ
belongs to HL>β(ω)(ω) and u— fe DL>dω(ω). If uι and u2 both satisfy the
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condition of the lemma, then uλ — u2 e HL>β(ω)(ω)r\HL>dω(ω)= {0}, so that

The function u in the above lemma will be denoted by Sξ>ω(f). Obvi-
ously, the mapping /-*S'o"ω(/) is linear. Furthermore, the above proof shows
that this mapping is continuous from DL(ω) into HL>β(ω)(ω). In case / e DL(ω0)
for some ωo^>ω, we also write S%>ω(f) in place of S^>ω(f\ω).

LEMMA 4.4. Let ω be an L-full-adapted end and let f e DL(ω). If / ; > g on

VίΛω for some g e DL>dω(ω) and a neighborhood V of dω, then S%>ω(f)^>0.

PROOF. Let φ0 be the function in the proof of the above lemma. Then
So'ω(f)^So'ω(f)~f(PoJrgφo on V Γ\ω for a neighborhood V of dω and also
outside the support of φ0. Since S o'ω(f) — fφo + gφo e DL>0(ω), Lemma 3.2
implies that S%

4.4. Space R for boundary condition.

Let ω0 be an L-full-adapted end and fix it throughout the rest of this
section. We consider a subspace R of HL>dωo(ωo) which satisfies the following
set of conditions:

(i) R is a closed subspace of HL>dcύQ(ω0) closed under operations V

and Λ.

(ii) AL>ωQ is coercive on R + DL,Q(O>O\ i.e., there is λo>O such that
^ o , 0 [ / , / : ^ A o | | / | | U f o r a l l / e Λ + J D z , o ( ω 0 ) .

(iii) For any subend ω of ω0, uβ(ω) e R whenever u e R.

For example, jR={0} satisfies (R). If |α | = | έ | = 0 and ^ ^ 0 on ω0, then
R = HL>dωo(ωo) satisfies (R).

Given R satisfying (R) and a subend ω of ω0, we define

I l l P rr r,,v t h e r e a r e v e R a n d geD
I such that ι r = *; + g

where u^ = u on α) and =0 on ω0 — α). Obviously, R(ωo) = R. Note that
u* e DL!β(ωQ)-β{ω)(ω0)rλDL>dωQ(ω0). For each u e R(ω\ the corresponding v e /?
is uniquely determined and belongs to HL)β(ωQ)^βiω)(ωQ)rΛHL)dωQ(ω0). In fact,

Next, let α> be a subend of ω0 and let

/ f π rnV t h e r e a r e * e β n H u w ^ ( > o ) and
g e DL, β{ω)(ω) such that ^ = v + g on 6

For each u e R(ω\ the corresponding v 6 RΓΛHLtβ(ωQ)-β(ω)(ω0) is uniquely deter-
mined. For, if vi + #i = v2 + g-2 on ω with vl5 v2 ζ Rr\HL>β(ωQ)^β(ω)(ω0) and #i,
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g2^ DL>β(ω)(ω\ then v1-v2 e HL>dωQ(ωo) r\HL!β(ωo)_β(ω)(ωo)Γ\HL>β(ω)(ωo) = {0}.
The mapping u^>v is obviously linear.

LEMMA 4.5. (a) R{ω) is a linear subspace of HL(ω) and is closed under
operations V and A In fact, vι\fυ2 corresponds to uιVu2, if v^e R corres-

ω ω CUQ ω

ponds to Ui e R(ω), ί = l, 2.

(b) R(ω)=R(ω)ΓλHL>dω(ω) and is a closed subspace of HL>dω(ω).
(c) AL>ω is coercive on R(ω) + DL>0(ω).
PROOF, (a) It is obvious that R(ω) is a linear subspace of HL(ω). Now,

let u e R(ω) and u = v + g on ω wi th v e Rr\HLί/3(ωQ)_β(ω)(ω0) and g e DL>β(ω)(ω).
Let f=uVθ — max(iί, 0). Then f<EDL}O(ω\ and hence /* e DL>o(ωo). Next

ω

l e t g=max(g, — υ) — m a x ( 0 , — υ) on ω. S i n c e I g l ^ l ^ l , g e DL>β(ω)(ω). On
t h e o t h e r h a n d

g = max (υ+ g, 0) — max (v, 0) = max (u, 0) — max (v, 0) on ω.

Hence, uVO — ? ;Vθ=/+g + max(ΐ;, 0) — vVO on a). Since

/ + ^ + [ m a x ( i ; , 0) — υV0J\ω 6 DLtβ(ω)(ω)

and Ϊ VO e RΓ\HLyβ(ωo)_β(ω)(ω0), we conclude that uVO 6 β(α>) and vVO corres-

ponds to uVO. Thus we have (a).
ω

(b) The equality R(ω)=R(ω)Γ\HL>dω(ω) is easily seen from the defini-

tions. Since ω0 is Z-semiadapted, the mapping u->huf° is continuous from

HL>dω(ω) into HL>dωQ(ω0). Since

R(ω)={ueHL>dω(ω);hL

uϊ
ω°ϊR}

and R is closed in HL>dωQ(ω0), we see that Λ(α>) is closed in HL>dω(ω).
c) Since ^ z , ω [ / , / ] = ^ Z ) ω o [ / , / t f ] , | | / | U , ω = | | / | U , ω o a n d / t f e i ? + l>Zjo(ωo)

for any f e R(ω) + DL,o(o)), the coerciveness of Jz j ω on jR(ίθ) + Dz,o(ft>) follows
from that of AL>ωQ on /? + Dz)0(ω0).

4.5. Bilinear form B for boundary condition.

Next we consider a bilinear form B\ji, v~] on RxR satisfying the follow-
ing set of conditions:

(i) B[jι, v^\ is continuous on RxR.
(ii) B\jι, u ] ^ 0 for any u e JR.

(iii) If w, v e JR and w±v, then B[u, v^\ = 0.
ω

For a subend ω of ίθ0? we define a bilinear form i?ω on R(ω) x R(ω) by
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where v\ and υ2 are functions in R corresponding to u\ and u2, respectively.
It is easy to see that Bω[_uu u2~} is continuous on R(ω)xR(ω). Furthermore,
Bω\jι, w];>0 for any u e R(ω).

4.6. Operator Sk\%

Let ω be a subend of ω0. By Lemma 4.5, c) and the above observation,
we see that the bilinear form AL>ω\jι^ u2~} + Bω[u^ ^H * s continuous and
coercive on R(ω). Thus, given / e DL(ω), there is a unique u0 e R(ω) such that

for all ueR(ω\ by Lax-Milgram's theorem. The function Sξ ω(f) — u0 will
be denoted by Sk?B(f). Obviously, if JR= {0} (and hence 5 = 0), then Sfo},o(/)

w=Sk'tB(f) is characterized by the following two conditions:
(a) w-SJrω(f)€R(ω);
(b) ΛL>ω[w, υΓ\ + Bω[_w, uΊ = 0 for all u e R(ω).

Here we remark that S^>ω(f) 6 R(ω) with the corresponding function 0 e R,

so that w 6 R(ω). The mapping f^S^fB{f) is obviously linear. Since

f-^S%>ω(f) is continuous, it also follows from Lax-Milgram's theorem that the

mapping f-^Sk',ω

B(f) is continuous from DL(ω) into HL(ω).

4.7. Minimum principles.

PROPOSITION 4.1. Let ω be a subend of ω0. If f e DL(ω) and f^g on
Vίλω for some g e DL>dω(o)) and a neighborhood V of dω, then 0<,S%>ω(f)
< Sk:ω

B(f) on ω.

PROOF. Let w = Sk:ω

B(f) and u=w-S%>ω(f). Since S%>ω(f)^0 by Lemma
4.4, w^>u. Hence 0<,—(w\/0)<,—(uΛ0). Since -(uΛθ)c R(ω) (Lemma

4.5), —(wAθ)e HL>dω(ω). Since w e R(ω), Lemma 4.5 implies that (wAO) e R(ω).
ω ω

Hence

(1) ALiXw,

Let v e RίΛHL,β(ω0)-β(ω)(o)o) correspond to w. Then, by Lemma 4.5 again, vΛθ

corresponds to wAO. Since (t Λ θ ) l ( ί Vθ), we have

Hence, (1) implies

(2) AL>ω\:w,w AOJ^O.
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Now, since wΛθ + w~ e DL)O(ω\

Thus, (2) and the coerciveness of AL>ω on R(ω) + DLι0(ω) imply that w~ = 0 on
a). Hence w>0. It follows that u^-S^Xf). Thus, 0 : > u Λ O ^ -S£ ' ω (/) .

ω

Since S^ω(f) e DL>β(ω)(ω\ uΛO e HL>β(ω)(ω). Hence uAO e HL>β(ω)(ω)ίΛR(ω)

CHL)β(ω)(ω)r\HL>dω(ω)={0}, i.e., z^Λθ = O. Therefore, u^>0 and the proposi-
ω

tion is proved.

PROPOSITION 4.2. Let ω be a subend of ω0 and let f e DL (o)). If
liminf^) :v6ω/(Λ;)^>0 for all $ € dωΓ\ωo and if there is g e DL>d(ύQ(ω0) such that

^>g on VΓ\ω for some neighborhood V of dω0, then Sk'ί
ω

B(f)^>0.

PROOF. Let φ0 6 Cl(ω0) be non-negative on ω0 and equal to 1 in a
neighborhood of dωΓ\ωQ. Then, for any ε>0, f+eφo^>O on VΓ\ω for a
neighborhood V of dωr\ω0 and f + εφo^g on Vr\ω. Hence Sί\ω

B{f)
(^o)^O on ω by the above proposition. Since ε is arbitrary,

COROLLARY. Let ωbea subend of ω0. Iffu fi £ DL(ω)Γ\C(ώΓ\ω0), f\—fi
on dωΓ\ω0, and if there are gu g2 e DL!d(ύQ(ω0) such that fx = gu f2 = g2 on Vί\ω
for some neighborhood V of dω0, then Sk\B(fi) = Sk\B(f2). In particular, if fu

fi c DL>dωQ(ωo)Γ\C(ωo) and fι=f2 on dωΓ\ω0, then we have the same conclusion.

REMARK. In Proposition 4.2 and its corollary, the conditions involving
g£ DLtdωQ(ω0) is superfluous in case

4.8. Consistency.

PROPOSITION 4.3. If ω is a subend of ω0 and ω' is a subend of ω, then

sk:ω

B(sk:ω

B(f))=sk:ω

B(f) on ω'

for any f e DL(ω).

PROOF. Let f0 = SL

Q>\f\ fλ = 5έ;S(/) and

{ fι on ω — ω

Then, /o, flt ft e DL(jύ). By the definition of SkfB(f), (/i -/<>)' = v0 -hgo with
v0 e RΓ\HL s w .β { ω ) {ω 0 ) and g0 e DLi0(ω0). Now
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It is easy to see that (fQ—f2f e DL>β(ωΊ(ω0). Hence

o + (/o ~/ 2 )

Obviously w-S%>ω'(fλ)eTherefore w - S^ω\fλ) = (fι-f2)\ω/ e £(«/).
HLι3Xω'). Hence w - ^ ' ω / ( / i ) * «(">')•

Next, we shall show t h a t AL>ω^w, u] + Bω'\jjϋ, υΓ\ = Q for all u e R(ωr).

Given a e R(ω'\ let w# = i; + ^ with v e RίλHL)β{ω(])^β{ωΊ{ωr) and geDL>0(ω0).

P u t MI = V — ̂ o'ω(^) o n ω The MI e HL>dω(ω)r\R(ω)=R(ω). Therefore

by t h e definit ion o f / i . N o w , ^ # — ^ i = ^ +5^ > ω (z;) on α> a n d w # | ίθ e DL>dω{ω)^

uι e HL>dω(ω). H e n c e ^ # | ω — u i e DL!U(ω). S ince fi = S^fB(f) is Z - h a r m o n i c

on a) a n d = w on α/,

On t h e o t h e r h a n d , f1 = vo

Jrgo+fo on co w i t h ^ 0 e JRniϊz>/s(ωo)-yS(ω)(^o) a n d

(^o + / o ) I ω e D/:, ̂ ( ω )(β)). H e n c e

Also, by the argument far above, we have

Bω'\jw, u^ = B[_(v0)β(ωo)-β(ω'), vj.

Since v £ HLίβ(ω{)yβ(ωΊ(ω0), B\Xvo)β(ωΊ, v] = 0 by Lemma 4.2. Hence

Therefore, (*) is equivalent to

which is the required relation. Hence w= S« ;B(/I)= ^«;S

4.9. Full-harmonic structures associated with (R, B).

Let ft)θ5 i?? 5 be as above, i.e., ω0 is an Z-full-adapted end, R is a closed

subspace of HLydωQ(ω0) satisfying condition (R) and B is a bilinear form on

Λ x JR satisfying condition (B).

For an end ω contained in ω0, an L-harmonic function u on ω is called

Z-f ull-harmonic with boundary condition (R, B), or (L, R, B)-full-harmonic, on

α) if there exist a finite number of ends α>i, •••, ωk such t h a t ft>yC^5 /— 1, ••-,&,

ft) — \Jj=i(Oj is compact and

S£;BJ(U)=U on α)y
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for each/ = 1, ..., k. Let d(ω)^£(L,R>B)(ω) be the class of all (L, R, JS)-full-
harmonic functions on ω. By this definition and Proposition 4.3, the follow-
ing property is easily verified:

Axiom S: (i) If u e 9ί(ω) and ω' is an end contained in ω, then
u I ωr e i V ) .

(ii) If ^ e dtL(ω) a n d if t h e r e a r e e n d s α)i, •••, ωk s u c h t h a t ώjCω a n d
a I % e < (̂ft)y) for e a c h y = l , •••, k a n d t h a t ώ — \Jk

j=ιωj is c o m p a c t , t h e n
α 6 fό(ω).

An end α) is called regular with respect to {9ί (ft))} if ώCω0 and for any
/ e C(dω) there exists a unique w, e C(ft>) such t h a t u = / on dω, u\ω e 9ί(ω) and
/ I > 0 implies w^>0. We have

PROPOSITION 4.4. // ω is an end such that ώCo)o and if dω satisfies
condition (A) in the Remark in 2.3, then ω is regular with respect to {&t(ω)}.

PROOF. If φ e Cι(dω), then there is f e Cl(ω0) which is equal to φ on dω.
By the corollary to Proposition 4.2, Sέ;£(/) depends only on ψ. Thus we
denote it by Sω(φ). By Theoreme 7.3 of [17] (also see [9], Theorem 14.1),
we see that Sω(φ) is continuously extended to ώ by φ on dω, since u = Sω(φ)—f
is a solution of Lu=— Lf on ω vanishing on dω. By Proposition 4.3,
Sω(φ) e dt'yώ). Proposition 4.2 shows that Sω(φ)^0 it φ^O.

Next suppose φ e C{dώ) and <^I>0. Since Cλ(dώ) is dense in C(dω), we
find ψn e C^idώ) such that φn^>0 for each n and <^̂ ->^ uniformly on dω. By
Proposition 4.2, we have

( Sω(φn -φm)\<{ sup I φn{ξ) - φm(ξ) |} Sω{l).
ξedω

Hence, {Sω(φn)} converges uniformly on any compact set in ω. Let
u = limn^Sω(φn). Then u€c%L(ω), u^O on ω and u can be continuously
extended to dω by φ. Let α/ be any end such that ωfCω. Since un=Sω(φn)
converges to u uniformly on dω'\

u(x)= lim Sω(φn) (x)= lim Sk:%(un) (x)

for any Λ; e to' by Proposition 4.3. Now, Proposition 4.2 implies t h a t
SR,B(un)^Sk:ωB(u) on ω'. Hence u = SkfB\u) on ω'. It follows t h a t H e ^(β>).

Finally, we shall show t h a t for each φ e C(dω) there is at most one
u e C(ώ) such t h a t u = φ on dω and u\ω e 9ί{ω). I t is enough to prove the
case φ = 0. Thus suppose u e C(ω) vanishes on dω and u\ω e 9t(ω). There
are ends ω^ ..., ω^ such t h a t ώjCω, / = 1, •••, A, ^ — V7y=î y is compact and
S£;p(u) = u on α)y for each y. Let α = i n f ^ a ω i W . . . w a ω χ ^ ( f ) / 5 ω ( l ) ( ? ) ] . Since
5 ω ( l ) > 0 on ίo and 5 ω (l), w are continuous, there is ζ0 e dωι\j \Jdωk such
t h a t ^(fo) = <^Sω(l) (f 0). Since u — aSω(l)~^>0 on 9α)y, Proposition 4.2 implies

l) on ω; for each/ . If α < 0 , then (u-aSω(l)) (x)^» — a>0 as Λ;->9O>.
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Hence u — aSω(l)^>0 by the minimum principle on ω — \Jk

j=λώj (cf. Proposition
2.6). Since u(ξ0) — aSω(l) (fo) = O, it follows that u = aSω(l) on ω, which is
impossible. Hence α^>0, so that ^ ^ 0 on dωχ\J •••KJdωk. It follows from
Proposition 4.2 and the minimum principle on o) — \J^=1ώj that ^^>0 on ω.
By considering — u, we also obtain u<,0. Hence u = 0.

By this proposition, the following Axiom T is immediately verified:

Axiom T: For any end ω C ̂ o5 there are a finite number of ends ωι, , ωk

such that each o)j is regular with respect to {9l(ω)}, ώjCco for each j and
& — \Jj=ιθ)j is compact.

Thus we have seen that &°l>R>B)^{M(L>R}B)(ω)}ω.endcω0 defines a full-har-

monic structure on ω0 in the sense of [11] which is subordinate to the
Z-harmonic structure on Ω. The corresponding full-superharmonic functions
(cf. CUD) will b e called ( i , R, B)-full-superharmonic. In case ω is an open
subset of ω0 such that dω is compact, a function on ω is called (Z, i?, 2?)-full-
harmonic (resp. (L, J?, i?)-full-superharmonic) on ω if it is L-harmonic (resp.
.L-superharmonic) on any relatively component of ω and is (L, R, 5)-full-
harmonic (resp. (Z, R, 5)-full-superharmonic) on any end component of ω.
The set of all (L, R, 5)-full-superharmonic functions on ω will be denoted by

^(L,R,B)(o)), or simply by c3(ω). The set of all υ e <3(ω0) which are of potential
type on ω0 (cf. [11]) is denoted by Φ{L,R,B), or simply by φ. Also the set of
all v e °P which are L-harmonic on ω0 is denoted by §>b=^{LtR,B)tb'

4.10. A minimum principle for (Z, JR, B)-full-superharmonic functions.

PROPOSITION 4.5. Let ω be an end contained in ω0. If υ e ό(ω) and if
there exists g £ DL>dω(ω) such that v~^>g on VfΛω for some neighborhood V of
dω, then v^>0 on ω.

PROOF. Choose φ0 e C\ω) ΓλDL(ω) such that φo=l on Vίλω, Since
1 i Ddω(ω), we see t h a t φoίDL>dω(ω). I t follows t h a t uo = Sk:ω

B(φo) i DL>dω(ω),

and hence u0φ0. Since uo^>O on ω by Proposition 4.1, we have uo>O on ω.
To prove the proposition, we may assume that υ is (L, R, i?)-full-harmonic

on an open set ωr such that ω'Co) and ω — ωf is compact. Let ω" be another
open set consisting of a finite number of ends such that ω"' Qωr and ω — ω" is
compact, and let σ be a relatively compact neighborhood of dω". Then,
α=min^e-[i;(x)/wo(^)Il exists as a finite value. Since v — au0 is (L, R, ^-full-
harmonic on ω' and v — auo^O on σ, v — auo = Sϊϊt%

t(v — auo)^>O on ωb for each
component ωt of ω". Hence υ — auo^>O on ω".

Now suppose α < 0 . Then v — auo^:v^>g on Vίλω. Hence, applying
Proposition 3.1 to each component of ω — ώ", we conclude that v — auo^O on
ω — ω". Thus, in this case, v — ctuo]>O on ω. Since v—au0 attains zero on σ,
we have v = au0 on ω. Then 0<,u0<,( — l/a)g on VfΛω, which implies
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u0 6 DL>dω(ω), a contradiction. Therefore αJ>0. Then v^>auo^>O on β and
v^g on FίΛω imply, by the same arguments as above, that v^OonίO.

COROLLARY 1. d(ωo)r\DL>dωQ(ωo)Cd)

PROOF. If υ e d(ωo)r\DL>dωQ(ωo), then the above proposition implies v^>0.
If u is an (L, R, i?)-full-harmonic minorant of v, then the above proposition
also implies that u <I 0. Hence v is of potential type.

COROLLARY 2. Le£ ω be an end contained in ω0 and let ωf be a subend of ω.

Then for any v e ά(ω)Γ\DL(ωf) (resp. u e 9i(ω) Γ\DL{ωr)), υ^S^\ω

B{υ) on ω'
(resp. u = Sk:%(u) on ω').

% 5. (L, JR, B) -Green functions and (L, R, B) -ideal boundary

I n t h i s s e c t i o n , w e s h a l l a l w a y s a s s u m e t h a t | α | , | 5 | , \q\1/2 6 L\OC(Ω)
f o r s o m e r>d a n d ω0 i s a f ixed L - f u l l - a d a p t e d e n d i n Ω.

5.1. Properties of L-Green functions for an end.

LEMMA 5.1. Let ye ω0 and let ω be a subend of ω0 such that c ό C ^ - {γ}.
Then

on ω.

PROOF. Let {φk} be a sequence of non-negative bounded measurable
functions on ω0 such that their supports are compact and decrease to {y} and

\φkdV=l for each k. We may assume that the supports of φk do not inter-

sect with ώ. Since gk=GL'ω°(φk) e Di jO(α)o) and gk is L-harmonic on ω, we

have gk=S^'ω(gk). Theorem 3.1 states that gk-*gy>ω° locally uniformly on

ωo-{y}. Hence S% ω(gk)-*S%>ω(g$'ω°) in ω (cf. the proof of Proposition 4.4).

Hence we have the lemma.

LEMMA 5.2. Let y and ω be as in the previous lemma. Then

for any u e HL>dω((ύ), where u} — u on ω and =0 on ωo — ω.

PROOF. Let {φk} and {gk} be as in the proof of the previous lemma.
For simplicity, we write g=g^>ω°.

First we shall show that ak^\\g— ^IU,ω-*0 (k-+°o). Choose <po e Cl(ω0)
such that <^oΞl on a neighborhood of dω, = 0 o n a neighborhood of y. Since
gk-^-g uniformly on the support of φ^ Lemma 2.3 implies that βk = \
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ω->0 (k^Oθ). NOW,

(1) ak<,βk + Kg- g<Po) - (gk-gk<Po)\\L,ω

Obviously, (gk — gkφo))\ ω e DL>Q(ω) and, by Lemma 5.1, we also have
(g— gφo)\ω 6 DL>0(ω). Since AL>ω is coercive on DL>0(ω), there is λ>0 such
that

(2) A L t J i f

for any f 6 DL>0(ω). Also, since g—gk is Z-harmonic on ω,

(3) AL>ωtg-ghf-] = 0

for feDL>0(ω). Thus, taking f=L(g- g<Po)-(gk- gk<Po)1\<i> in (2) and (3)
and applying (1), we have

- gkφ0) - (g- gk)J112.

By the continuity of AL>ω on DL>0(ω) xDLt0(ω), we obtain

for some M > 0 . Since /9Λ-»0 (̂ C^CXD), this inequality implies that
Now we have

Since w# = 0 on the support of φk and since h^'ω° is continuous at j , we have

On the other hand, since ||^— ^|U,ω->0, ^ z > ω [ ^ , if\-+AL>Jig, uj. Hence we
have the lemma.

5.2. (X, i?, B)-Green functions.

Now, we consider a boundary condition (JR, 5) satisfying conditions (R)
and (5) in §4. For a point ye ωOi the (i, JR, i?)-Green function of ω0 with
pole at y is a function gy on α)0 having the following properties:

(a) There is an Z-harmonic function Uy on ω0 such that

gy = gy'ωoJrUy on ωo;

(b) ^ is (X, JR, 5)-full-harmonic on ίθ0— {y}
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(c) gye§>.
It is easy to see that gy having the above properties is unique if it exists.

Now we shall show the existence of gy:

THEOREM 5.1. There exists Uy e R such that

for all v e R and gy = gy'
ω° + Uy is the (L, JR, B)-Green function of ω0 with pole

at γ.

PROOF. First, we observe that the linear functional v-+h%*'ω°(γ) is con-
tinuous on HL>dωQ(ω0). For, the coerciveness of AL>ωQ (hence, of AL*t<0Q) on
DL,0(0)0) implies that the mapping v^h^>ω° is continuous from HL>dωo(ωo) into
HL*)dωQ(ϋ)o), and our Lemma 3.1 and Corollary 5.2 plus Remarque 5.1 of Q17]
imply the continuity of w->w(y) on HL*>dωQ(ω0). Hence, from our assumption
that ALfCύQ + B is coercive on JR, it follows the existence of Uy satisfying (*).

Next, we shall show that gy = gy'ω°+Uy is (Z, R, i?)-full-harmonic on
^0 — {y} Let ω be any end such that toC^o—{y} We consider the func-
tion u0 = S%'ω(gy) — gy\ω. By Lemma 5.1, u0 = Sξ'ω(Uy) — Uy\ω. Hence
uoζR(ω) with corresponding function —UyeR. For any u e R(ω) with

corresponding v e R (i.e., v = h^f°),

u-]-AL>ωtgϊω\ u3-ALtωZUy9 u] + Bω[_uQ, uj

, vj)

where the last equality follows from Lemma 5.2 and the equality h^'ω° = h^'ω°.
Thus, we have gy= S^igy) on ω (see the definition of S^',% in 4.6). Therefore,
gy is (L, JR, ^)-full-harmonic on ω0— {j}.

Since Uy is Z-harmonic on ω0, it follows that gy e d(ω0). On the other
hand, by Proposition 4.1 and Lemma 5.1, —gy'

ω° is (£, JR, i?)-full-superhar-
monic on ωo — {y}. Hence Uy is (Z, R, 5)-full-superharmonic on ω0 — {j},
and hence on ω0. Since Uy e RCHL)dωQ(ω0), Corollary 1 to Proposition 4.5
implies that Uy e §>. Since g^>ω° is an Z-potential on ω0, it also follows that

COROLLARY. Uy e φb in particular, Uy ^ 0, so that gy ^ gy'ω°>

5.3. Adjoint full-harmonic structure.

If ω0 is i-full-adapted, then it is also Z*-full-adapted and we have
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5 DL*tdωQ(ω0) = DLtdωQ(ω0), etc. Given (R, 5) as above, let,
R*={Af ω°; vcR} and 5*[A^ ω°, A^ω°] = 5[>2, v j for i>i, t>2 e R. Then R*
is a subspace of HL*>dωQ(ω0) satisfying condition (R) for Z* and 5* is a bilinear
form on R*xR* satisfying condition (B). Thus we can define the (L*, R*,
i?*)-full-harmonic structure on ω0 as the adjoint structure of the (L, R, B)-
full-harmonic structure.

Let g* = gy*'ω°+ U* be the corresponding (£*, R*, Z?*)-Green function of
ω0. By Theorem 5.1, we have

for all w e R*. If w=h^'ω° for ι> e R, then h^'ωQ = v and we have

where Vy=h{jf° e R. Hence

Letting v = Ux, we have

Since hfy

>ω°= U*y the lefthand side is equal to U*(x) by Theorem 5.1. Hence
we have

THEOREM 5.2. For any x, ye ω0, Ux(y) = U*(x) and hence gx(y) = #*00

COROLLARY. The mapping χ^gx(y) is continuous on ωo—{y} for each
ye ω0.

5.4. Integral representation of functions in °p.

THEOREM 5.3. Let v € °P and let v= \g^>ω°dβ(y) + h be the Riesz represen-

tation of the L-superharmonic function v on ωQ (cf. 3.5). Then w=\gydju(y)

belongs to §> and v — weΰph.

PROOF. Let K be a compact set in ω0 and let

vκ=\ gydβ(y) and uκ=\ Uydβ(y).
J K j K

Obviously, υκ e Φ and vκ f w as K | ω0. Also, we see that uκ e ^όL(ωQ)r\d(ω0)

and v — vκe d(ω0). If we show that uκ £ °Pb^ then the inequality v — vκ~^> — uκ
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implies υ— vκ 22 0 (Proposition 4.5), and the rest of the proof goes in the same
way as that of Theorem 3 in [10].

In order to show that uκ e {<Pb, it is enough to consider the case Uy>0.
Let ω be an open set such that ώC^o and ώo — ω is compcat, and let σ be a
relatively compact neighborhood of dω such that a C α)0. By continuity of the
mapping y->Uy(x) and by Harnack's inequality (Proposition 2.4), there are
wι, M> 0 such that m ^ Uy(x) <Ξ M for all y e K and x e σ. Fix y0 e K. Then
(M/m)UyQ—Uy^>0 on σ for any yeK. Since Uy^ Uy e HL>dωQ(ω0), it follows

from Proposition 3.1 that (M/m)Uy^ Uy on ω0 — ώ for any yzK. Hence

on ωo — ώ. Since Uyo e §)b, this inequality implies uκ £ ζPb>

COROLLARY. // υ e °P and if υ is (L, K, B)-full-harmonic on an open set

0 such that ώo — ω is compact, then

with a non-negative measure μ on ωo — ω.

Next, let x0 e ω0 be a fixed point and let γ(y) be a (finite) positive
continuous function on ω0 which is equal to l/gy(x0) outside a compact
neighborhood of χ0 contained in ω0. Then the function Ky(x) = γ(y)gy(x)
defined for x, y e ω0 is a kernel on ω0 with respect to the (Z, R, B)-ίull-
harmonic structure in the sense of [ l l ] , i.e.r Ky(x) satisfies conditions (i), (ii)
and (iii) in 6.3 of [11] (cf. the above corollary for (iii)). Let Δ = Δ"ltRtB) be
the ideal boundary associated with this kernel Ky(x), i.e., ωo\JJ\Jdωo is the
compactification of ω0 for which the functions y-^Ky(x) are continuously
extended to A and points of Δ are separated by these functions. For -η e Δ,
let Kv(x) = limy^η>y€ωQKy(x). Obviously, Kη e Φb and Kη(xQ) = l for any -η e A.

By Theorem 8 of [11H, we have the subset Δγ of Δ which is the image of
e($Vo) by the homeomorphism given in this theorem. In fact, Δι={τj e Δ; Kv

is extremal in @>b, i.e., u e ύβh, Kη—ueφb imply u = aKv for some constant a}.
By Theorem 7 of [11], we obtain

THEOREM 5.4. Ifue φb, then there exists a unique non-negative measure
β on Δ such that ju(Δ — Δι) = 0 and

u(x)=\ Kη(x)dβ(τ]) for x 6 ω0.

Thus, combining this theorem with Theorem 5.3, we obtain the complete
integral representation theorem for v e φ:

For any v e φ, there exists a unique non-negative measure v on ,ωo\jΔ such
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that v(J— Ji) = 0 and

v(x)=

Here, (dv)\ωo = (l/r)dβ, where β is the measure on ω0 associated with the
Z-superharmonic function v.

REMARK. The ideal boundary Δ for the case R= {0} (i.e., Δ = Δ™Q

L>{0})0)) is
the Martin boundary of ω0 for the Z-harmonic structure (cf. the examples at
the end of [11]; also cf. Chap. X of [1]).

If | δ | =0, then the boundary condition determined by R=HL>dωQ(ω0) and
B = 0 may be regarded as the condition of vanishing normal derivatives on
the ideal boundary of ω0 (cf. [12]). Thus, in this case we may say that the
ideal boundary J * Ξ J j ί ) ί f £ ^ (ωo) 0) is the Kuramochi boundary of ω0 associated
with the equation Lu = 0 (with | δ | =0) (cf. [8]).

5.5. Properties of the ideal boundary J.

First, we remark that ωo\JΔ is a metrizable space, since ω0 is metrizable
(cf. Lemma 17 of [11]; also cf. Satz 12.1 of [3]).

For a set A in ωo\J Δ, its closure in ωo\jΔ will be denoted by A*. The
following proposition is generally true in the axiomatic theory of [11]:

PROPOSITION 5.1. The ideal boundary Δ is of Stoilow type, i.e., if ω1 and
ω2 are subends of ω0 such that ώιΓ\ω2 = 0, then ώfr\ώ$ = 0.

Next we show

PROPOSITION 5.2. If w is a positive (L*, K*, B*)-full-superharmonic func-
tion on ω0 and is (Z*3 /?*, B*)-full-harmonic on a subend ω of ω0, then f=γw
has positive continuous extension to Δίλω*.

PROOF. We can choose w\ e JP*(=JP(L*,R*,B*)) which has the following two
properties: (i) w\ — w on an open set ωλ such that ωx(iω and ώ — ωλ is com-
pact; (ii) there is a compact set K in ω0 such that w\ is (Z,*, /?*, ΰ*)-full-
harmonic on ωo — K. By the corollary to Theorem 5.3, applied to the adjoint
structure, we have

for some non-negative measure β (φO) on K. Let fι = γwL. Then

fi(γ)=[κy(χ)dβ(χ).

By Harnack's principle (i.e., Axiom 3' of Brelot [1] also cf. Lemma 1 of [11]),
we see that as y->ξ e Δ, Ky(x)-^Kξ(x) uniformly for x e K. Hence \imy^ξfι(γ)
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exists and is equal to \Ks(x)dju(x)>0. If ξ e Aίλώ*, then, by virtue of the

previous proposition, \imy^f(y) = \imy^fi(y). Thus we have the proposi-
tion.

COROLLARY 1. For any x, x' e ω0, f(y) = gy(χ)/ gyty) has continuous
extension to A.

COROLLRAY 2. The ideal boundary A does not depend on the choice of xQ.

5.6. Semi-continuous extension of certain functions to A.

Let iί be a positive continuous function on ω0 which is equal to some
uι e φ* on a neighborhood of A (i.e., on an open set ω such that ώo — ω is
compact), where it is also (Z*, 2?*, i?*)-full-harmonic. Given such a function
u, let

Since u — l/γ has the above property, the function y->Ky(x) belongs to §>f!Ύ

for each x e ω0.
Let {ωn} be a decreasing sequence of open sets in ω0 such that each ωn is

regular with respect to the (L*5 R*, £*)-full-harmonic structure, ώn+ιCo)m

ώo — ωn is compact for each n and f\ωn = 0. For w e Φ*, let
n

w(y) if j6ft)0-ft)^

c//rf% if Y6 60w

where β^n is the full-harmonic measure for ωn with respect to the (Z*, JR*5

5*)-full-harmonic structure (cf. [11]). Then, wn e Φ* (Theorem 2 of [11])
and wn is (L*, JR*5 5*)-full-harmonic on ωn. Now let f=w/u 6 fP* and let
fn = Wn/u. By Proposition 5.2, we see that /„ has continuous extension to A.
Let fn be the extended function on ωo\JA. Since wn | ^ as ^->oo5 /=lim»_00/M

exists, / is lower semi-continuous on ^ 0 W J and / = / on ft>0. It is easy to see
that the definition of / does not depend on the choice of {ω0}. Obviously, if

= Ky(x\ then

§ 6. Reduced functions and thin sets at ideal boundary points

In this section, we fix L and ω0 as in §5 and boundary condition (JR, B)
as in §4.

6.1. Operation f-+fκ for compact sets K and f € DL)dωQ(ω0).

Let I b e a compact set in ω0. For any / e DL)dωo(ωo), we define



cK _

Harmonic and Full-harmonic Structures on a Differentiable Manifold 301

/ onK;

hf'ω on ω if ω is a relatively compact component of ωo — K;

SkfB(f) on α) if α) is an end component of ωo — K.

By the definition of S^%(f), we see that fκ e R + DL!o(ωo). For simplicity,
we shall write DR = R + DLy0(ω0) and f=hf>ω°( e R) for / e DR. The mapping
f-^fκ (resp. f-^fκ) is linear continuous from DL,dωQ(ω0) into DR (resp. into
R). If / is continuous and /Ξ>0 on K, then fκ^>0 on ω0 (see Proposition
4.2).

We shall say that a compact set K in ω0 is regular if fκ is continuous
whenever / is continuous. Remark that if ω satisfies condition (A) in the
Remark in 2.3 for each component ω of ωo — K, then K is regular. From this
fact, we can show that given an open set ΰ there is an increasing sequence
{Kn} of regular compact sets such that \Jlnt(Kn) = (j, where Int(Kn) means

n

the interior of Kn.

LEMMA 6.1. If f € DR, then

PROOF. If ω is a relatively compact component of ω0 — K, then
(fκ-f)\ωeDLι0(ω). Hence ΛL>ωlfκ, fκ-f3 = 0.

Next, let ω be an end component of ωo — K. Since S£;%(f) — hf'ωeR(ω)

with corresponding function in R being/^/3(ωo)_y9(ω)-//3(ωo)_/3(ω), we have, by

the definition of Sk:l(f),

/

Since hf'ω-f\ωcDL>0(ω), ΛL>ωlfκ, fκ-h^ω^ = ΛLχf\ fκ-fj On the
other hand, by Lemmas 4.1, 4.2 and by condition (B), (iii) in 4.5, we have

/3(ωo)-/8(ω),

Hence,

Noting that/δ"=Σ/&"/9(ωo)_/5(a>), where the sum is taken over all end com-

ponents ω of ωo — K, we obtain the lemma.

LEMMA 6.2. There is a constant M>0 which is independent of K such
that
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for all f e DR.

PROOF. By coerciveness of AL>ωςi on DR (condition (j?), (ii) in 4.4) and by

Lemma 6.1, we have

Since the mapping/-^/ is continuous from DR into R, the continuity of AL>ωo

and B implies

where Mi is independent of K. Hence, we have the lemma with M=Mi/λ0.

6.2. Function φκ for general φ.

Given a compact set K in α)0, we shall define φκ for more general func-
tions φ on K, as a generalization of fκ defined above. We follow the argu-
ments given in [16].

Let CL(K) be the set of all continuous functions φ on K for which there
i s / e DL)dcύQ(ωo) such thsit f\K=φ and / is continuous on a neighborhood of
K. Then, by virtue of the corollary to Proposition 4.2, fκ depends only on φ,
so that we denote it by φκ. Obviously, the mapping φ->φκ is non-negative
linear on CL(K). Since CL(K) is dense in C(K), for each % e ω0 there is a
non-negative measure μ.ξ=μξ>{L>R>B) on K such that

for all φ e CL(K). If x e K, then μξ = δx, the unit point mass at #. If
xeωo — K, then the measure /̂ f is supported by dω(Co>K), where ω is the
component of ωo — K containing x\ furthermore, μξ = μω

x in case ω is regular
(cf. [11] for the measure μ%).

Given a function φ on K, if it is /if-summable for any x e ωo — K, then
we define φκ = φ on K and

for x e ωo — K. In this case ^^ is (Z, 1?, 5)-full-harmonic on ωo — K.
The following lemma can be proved in the same way as Theorem 3 of

[16], using our Proposition 4.3:

LEMMA 6.3. Let KCLKf and suppose φ is βξ-summable for any x e ώo — K.
Then φκ (restricted on K') is βξ'-summable for any x e ω0 — K! and
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6.3. Properties of vκ for v e φ.

LEMMA 6.4. Any υ e φ (restricted on K) is μξ-summable for any
xeωQ — K. If v, w e φ and w^>v on K, then w^>vκ on ωo; in particular,
v~^>vκ on ω0.

PROOF. We can choose φn e Cl(ω0) such that φn \ min (v, w) on a neighbor-
hood of K. For any component ω of ωo — K, {cpξ — φn) \ω e DL>dω(ω). Since
w—φξ is (Z,, R, 5)-full-superharmonic on ω, Proposition 4.5 (or Proposition
3.1, if ω is relatively compact) implies that w^φξ. If follows that υ is βf-
summable for % e ω and / ^ w o n ω.

LEMMA 6.5. If va°P and K C K\ then vκ ^ vκ\

PROOF. By Lemma 6.3 and the above lemma, we have for any x e ω0

vκ(x) = (υκ)κ\x) = \vκdjuf ^ [vdfif = υκXx).

LEMMA 6.6. If v e §> and if K is a regular compact set, then vκ e @>.

PROOF. By a standard discussion (cf. e.g., the proof of Theorem 7 in
C16H), we see that υκ is lower semi-continuous in case K is regular. Then,
by Lemma 6.4, we see that vκ is (L, R, 5)-full-superharmonic on ω0. Since
0<,vK<v and υ a Φ, υκ e Φ.

6.4. Reduced function of υ e Φ for open sets.

For v € Φ and an open set ΰ in ω0, we define

vσ— inf {w e Φ; w^>v on a}.

Obviously, 0<,υσ^υ and vσ = v on σ. First we prove

PROPOSITION 6.1. vσ= sup {υκ K: compacted and υσ e φ.

PROOF. Let v0 = sup {vκ K: compact Qύ}. It is easy to see that
vQ(x) = υ(x) for x a a. By Lemma 6.4, we see that vσ^>vκ for any i £ O , and
hence we have vσ^v0. To show the converse inequality, choose an increas-
ing sequence {Kn} of regular compact sets in σ such that \J Int (Kn) — G. By

n

Lemmas 6.5 and 6.6, {vKn} is an increasing sequence of functions in φ and
VQ^Wmn^v1^71. Since O ^ / ^ ^ e f , voeφ. It also follows that vo~^>vσ.
Hence vσ = vQ and vσ e φ.

Properties of υσ:

a) vι <.v2 on 6 implies (vι)σ ^ (v2)σ \
b) σiCσ2 implies (vσi)σ2=(vσ2)σi = v
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Proofs of these properties are easy and standard. Note that, in proving
c), we use Proposition 6.1 and the fact that (vi + v2)

K = (v{)K + (v2)
κ for a

compact set K.

LEMMA 6.7. Let ΰ be an open set such that a C α)0 αwcί let v e §). Then
there exists a non-negative measure v supported by σ* (the closure of a in

\ cf. 5.5) such that

for all x e ωo — σ.
The proof of this lemma is similar to that of Theorem 14 in [16J (or, the

original proof by R. S. Martin [JL3]]). Namely, first choose an increasing
sequence of regular compact sets {Kn} such that W Int (Kn) = a and express
vKn in the form

(cf. the corollary to Theorem 5.3). By considering the values of both hand
sides at a point xλ e ω0 where ?;(Λ;I)<OO5 we see that {vn(Kn)} is bounded.
Taking a vague limit v of {vn} and using Proposition 6.1, we obtain Lemma
6.7.

LEMMA 6.8. Let σ be an open set in ω0. If v e DRΓ\§), then υσe DRίΛ§)

and, for any increasing sequence {Kn} of compact sets in ΰ such that vKn | vσ,
we have

PROOF. For simplicity we write vn = vKn. By Lemma 6.2, {υn} is bound-
ed in DR. Hence it is weakly compact. It is easy to see that any weak limit
function of {vn} must be equal to vσ. It follows that υσeDR and vn-+vσ

weakly in DR. Let n>m. Since (vm)Kn = υm Lemma 6.1 implies

Lett ing w->oo? we have

A L > ω Q

Hence,

[υn—vσi vn—υσ~]

From the coerciveness of AL>CύQ, it follows t h a t \\vn — vσ\\L>ωQ-+0 (n->oo).
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6.5. Reduced functions of v e IP for closed sets on the ideal boundarry.

We now consider the ideal boundary Δ of ω0 given in 5.4. Let e be a
closed subset of Δ. For v e φ, we define

vβ= inf {vσΓλωo; σ is an open neighborhood of e in ωo\JΔ}.

Obviously, 0<;Ve<^v. It is easy to see that veeφb. Since ωo\J Δ is
metrizable, we can choose a decreasing sequence {<Jn} of open neighborhoods
of e in ωo\JΔ such that Λσ* = e. Then vσnίλωo j ve (ra->oo),

Properties of ve:

a) vi ̂  #2 implies (vχ)e <^ (t;2)e

b) ei C e2 implies vβl ̂  i;e2

These are easy to see from the corresponding properties of vσ.

PROPOSITION 6.2. If υ ζ §> and e is a closed subset of J, then there exists
a non-negative measure v on e such that

υβ=

on ω0.

This proposition follows from Lemma 6.7 by an argument similar to the
proof of Theorem 16 of [16] or Theorem II in §3 of [13].

Also, by the same methods as Theorems 15 and 17 of [16], we have

PROPOSITION 6.3. If v € Φ is expressed as

v(x)=\ Ky(x)dβ(γ) (x 6 ίθ0),
JωQ\jJ

then for an open set 6 in ω0 and a closed subset e of J, we have

vσ(x) = \ (Ky)σ(x)dju(y) (x e ω0)

and

Ve(x)=\ (Ky)e(x)dju(y) (x e ω0).

LEMMA 6.9. If v 6 DRΓ\§), then ve 6 ΏκΓ\°Ph for any closed subset e of Δ
and if {σn} is a decreasing sequence of open neighborhoods of e such that

vσnrΛωQ i ve, then

PROOF. For simplicity, let vn = v<ΓnriωQ. By Lemma 6.8, vneDRr\P and
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by Lemma 6.2, we also see that {vn} is bounded in DR. It follows that υe e DR

and vn-^ve weakly in DR. Now, let n<m and K, K! be compact sets such that

and K'CK- Then, by Lemma 6.1,

Letting K f GnΓΛω0, and then K! \ ΰmΓ\ω^ it follows from Lemma 6.8 that

Hence

Since vm-^ve weakly as TTÎ -OO, we have

Q<^\im(ΛL>ωQ[_vm—ve, vm—υe~] + B[ym—ve, vm—ΰβj)

υβ, υj)

Therefore, by coerciveness of AL>ωQ we have \\vm— ve\\L>ωQ->0 (m-^

PROPOSITION 6.4. If v e DRΓ\§)> then for any dosed set e in

PROOF. Let {βn} be a decreasing sequence of open neighborhoods of e

such t h a t vσnΓλωQ j υe. Let vn = vσnrΛωQ. Lemma 6.2 shows t h a t for any com-

pact set K in ωQ,

\\(vH-υβ)
κ\\LtωQ<LM\\υn-υβ\\L,ωo.

Since (vn-ve)
κ = (vn)

κ-(ve)
κ and since (υn)

κ-+(υn)σm^ and (ve)
κ-+(υe)σm^ in

DR as X" f GmΓ\ω0 by Lemma 6.8, we have

If n >my then (ί; w ) σ m Λ ω o = i;w by property b) of vσ. Hence

0 < Ξ l i m s u p \\vn-(veXmrλωQ\\L,ωo<^M lim \\vn-vβ\\LtωQ = 0

by the above lemma. Hence vn—>(υe)σmΓλωo in DR (τι->oo)5 which implied, again

by the above lemma, (ve)σmΓλωQ = ve. Finally, letting m ^ o o , we have (ve)e = ve.

Now t h a t we have Proposition 6.4, we can prove the following lemma in
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a way similar to the proof of Theorem 20 of [16]:

LEMMA 6.10. Let e be a closed set in Δ such that for some u e DRΓΛ§> with

u>0, we have ue = 0. Then for any v e φ, (ve)e = ve.

Sketch of the PROOF. We decompose υ into v = υb + Vi, where υb e °Pb and

Vi=\ Kydβ(γ). By virtue of property c) of ve, it is enough to show that

((vb)e)e = (vb)e and ((vi)e)e = (vi)e. To prove the first equality, we show that if
v e °Ph then vσίλωG — υe is ( i , R, 2?)-full-superharmonic on ω0 for any neighbor-
hood G of e, by the same argument as that in the proof of Theorem 20 of [16],
and making use of the assumption ue = 0. Then, for another neighborhood
& of e such that G' C G, properties b) and c) for vσ imply

Now letting G' \ e, and then a \ e, we obtain (ve)e = ve.
In order to prove that ((«>;)*)« = 0>, )e, we first show that if yeωQ, then

(Ky)e = Q. This can be seen by the fact that Ky^au in a neighborhood of Δ
for some a and by the assumption ue = 0. Then, by Proposition 6.3, we have
(vi)β = 0, and hence ((v/)e)e = 0 = (^)e-

REMARK. DRΓ\§) always contains a positive function. For, if R={0}
then any GL>ωiψ) (0I>O) belongs to DRr\@ = DL>0(ω0)r\9; if K=^{0}, then
any Uy given in Theoerem 5.1 is positive and belongs to RΓλjPbCDRΓ\jP.

6.6. Characterization of Δλ.

The results in the above section 6.5 allow us to prove the following
characterization of the set Δι (see 5.4 for the definition of Δy)\

THEOREM 6.1.

and

For the classical harmonic structure, this result is well known in case Δ
is the Martin boundary (see e.g., Theorem I in §4 of [13]) or the Kuramochi
boundary (see, the corollary to Theorem 21 and Theorem 26 of [16]). For
the proof of Theorem 6.1 we can essentially follow the arguments in [16].

Sketch of the PROOF of Theorem 6.1. Let Δr={ηeΔ\ (Kη){η} = Kη}.
Using property c) of ve and Proposition 6.2, we easily see that J ' C ^ i (cf. the
proof of Theorem I in §4 of [13] and that of Theorem 26, 3) of [16]). On the
other hand, Propositions 6.2 and 6.4, together with Lemma 6.10 imply that
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(Kη){v} = 0 for 7] a Δ-Δr (cf. the proof of Theorem 21 of [16]). Thus, it
remains to show ΔxQΔ1. Suppose -η e Δ\ and yi Δr. Then there is an open
neighborhood G of η such that (Kη)σfΛωϋφKη. Let {ωn} be a sequence of
relatively compact open sets in ω0 such that dωn^)dω0, dωnΓ\ω0 is compact,

&nΓ\ωoC(t>n+i and \Jωn = ωQ. If (Kη)ωn=\Kydβn(γ) with a positive measure μn

n J

on dωnΓ\ω0, then it is easy to see that {βnφ^n)} is bounded. Since (Kη)ωn-+Kη

as 7i—>oo5 it follows from the assumption ^ e Δx that AW vaguely converges to
the unit point mass δη at η. Let Gr be another open neighborhood of rj such
that σ* C G. Then /^ | a* also vaguely converges to δη (cf. the proof of Theorem
24 in [16]). Hence, using the relation (Ky)σnωQ = Ky for yeβfr\dωn and
Proposition 6.3, we have

=lim\_ Kydβn{y)
n-+oo Jσ/Γ\dωn

= lim\_
»->oo Jσ'Γ\da>n

which contradicts the choice of σ. Hence ?y e z/χ implies rj e Δr.

6.7. Thin sets at ideal boundary points.

Following Naϊm [15] (Theorem 2), we give the following definition:
An open set X in ω0 is called thin (more precisely, (Z, /?, 2?)-thin) at ξ e

if there is an open neighborhood G of f in ωo\JΔ such that

Obviously, if X is thin at ξ and Xf CX> then Xr is thin at f. Thus, for any
set X in ω0, X is called thin at ζ if it is contained in an open set Xf which is
thin at ξ in the above sense.

If ξ £ Z* , then X is thin at ξ. Theorem 7.1 shows that ω0 is thin at ζ e Δ
if and only if $ e Δ— Δx.

In [15], the definition of thin sets was given in terms of a class of func-
tions instead of the above form. The equivalence of two types of definition
of thin sets was generalized by M. Brelot [2] to an axiomatic theory. It can
be applied to the present theory in case R={0}, i.e., in the case of Martin
boundary. We can also establish a similar equivalence even in case RΦ {0}
in fact we shall prove:

THEOREM 6.2. Let u be any positive continuous function on ω0 satisfying
the condition given in 5.6, i.e., there are a neighborhood ω of Δ and uλ e §>*
such that u — uι on ωΓ\ω0 and u is (Z,*, #*, 5*)-full-harmonic on ωΓ\ω0. Let
XC O)Q and ξ e J π ϊ * . Then X is thin at ξ if and only if there is f e ίP* (see
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5.6 for'this class of functions) such that

To prove this theorem, we need some preparations.

LEMMA 6.11. Let a be an open set in ω0 and x e ω0. Then the function
y-+(gyX(χ) belongs to °P*.

PROOF. For a compact set K in ω0,

and hence the function y-+(gy)
κ(χ) belongs to $>*. Since (gyX(χ)

= \imn^(gy)
Kn(x) for some increasing equence {Kn} of compact sets and since

\ w e s e e t h a t t h e function y-+(gy)σ(x) belongs to ̂ >*.

COROLLARY. (gyX(x) = (gtX(y)> where, in the right hand side, the reduced
function is taken with respect to the (£*, R*, B*)-full-harmonic structure.

PROOF. If yeσ, then (gyX(χ)= gy(χ)= g%(y). Hence, by the above
lemma, (gyX(χ)^>(g*X(y). Starting from the adjoint structure, we obtain
the converse inequality.

For an open set ΰ in ω0 and a point x e ω0, let

By the above lemma, Fσ>x € ΦfιΎ. We now show

LEMMA 6.12. Fσ>x(ξ) = (KξX(x) for ξ 6 Δ.

PROOF. For a compact set K, let Fκ,x(γ) = (Ky)
κ(x). Since

we have

Fκ,x(ί) =

for any ξ e Δ. Hence, it is enough to show that Fσ>x(ξ)=svφKCσFKίX(ξ).
Let wκ(γ) = (gy)

κ(χ) ^nάw{y) — {gy)Xx). Then WK, W e °P* and Fκ>x = γwκ,
Fσ>x = γw. For a compact set K! in ω0 and u e §>*, we shall write uξ\y)

By definition,
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Hence, for any λ<Fσ>x(i), we find a compact set K! in ω0 such that f{κ'\ξ)>λ.
We may assume that x e Kf and γ(y)=l/gy(x0) on ωQ — K' (so that χ0 e K').
Choose another compact set K!' in ω0 whose interior contains K'. Then

If yeωQ-K'\ then the support of μK"ΛL^R\B*) j s contained in aK". Hence
for ye ωo-K",

^ sup {(wξXz)-(wκ)ξ'(z))r(z)}\ g*0(z)d/if'<L*'R*>B\z)

Thus,

for all yecϋo-K". It follows that

^ sup {f(K'\z)-fψ\z)}
ZζdK"

Ψ'XS)^ sup

for any ί e A. Since w^ f w, (WK)*' t w*' as i^ | σ. Since (wκ)*\ wξ' are both
L*-harmonic on ω0 — K!', {yoκ)%' converges to wξ' uniformly on dK!' as K\ ΰ.
Thus, given ε>0, there is KQΰ such that snpzedK^ {f(K/\z)-fψ/](z)} <e.
For such K, we have

Since A (<Fσ>x($)) and ε (>0) are arbitrary, we have

Λ.*(f)= sup/*,,(£).

PROOF of Theorem 6.2. Once we obtain the above lemma, we can prove
Theorem 6.2 by a method similar to that of Theoreme 2 in |JL5]. First observe
that, by virtue of Proposition 5.2, it is enough to prove the theorem in case
u = l/γ. Also, we may assume that X is an open set.

If X is thin at ξ, i.e., if there is an open neighborhood ΰ of ξ such that
(Kξ)σίλχφKξ, then choose x e ω0 such that (Kξ)σnX(x)<Kξ(x) and consider
f=FσrλX)X. T h e n / e ^ f / 7 . Since f(y) = (KyχnX(x) = Ky(x) for

l i m i n f / ( y ) = liminf χ - ^ ) = ^
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where we used Lemma 6.12 in the last equality.
Conversely, suppose there is f € JP*JΎ satisfying (*) of the theorem.

Choose λ such that limmίy^ξ!y€χ f(γ)> λ >/(?). Then there is an open
neighborhood ΰ of ξ such that f^>λ on 6Γ\X. We may assume that
γ(γ) = l/gy(x0) for γζ ar\ωo. Let f=γw with M / 6 ^ * . Since w(γ)^>λgy(x0)
= λg*0(γ) for γ6(TΓ\X, we have w^λ(g^0)σ/Λχ. By the corollary to Lemma
6.11, w(γ)^>λ(gyXnχ(x0) for all γeω0. Hence f^>λFσΓλX}XQ. Therefore,
again using the above lemma, we have / ( f l ^ l ( ζ ) f f Π i ( ^ o ) . It follows that

). Hence X is thin at ξ.

COROLLARY 1. Let u be as in Theorem 6.2 and let ξ e A. Then ξ e Δ\ if
and only if f(ζ) = \immiy^ξf(y) for all f e °P*.

COROLLARY 2. The set Aλ and the notion of thin sets do not depend on the
choice of x0

COROLLARY 3. // Xu X2 are thin at ξ e J, then Xχ\JX2 is thin at ξ.

Corresponding to the notion of ( i , R, i?)-thinness, there is a notion of (L,
R, B)-fme limit at a point in Ax. Namely, for ξ e Au let

3-ξ = {ω0 -X Xis thin at ξ}.

Then 3-ξ is a filter. Limits with respect to this filter is the (L, JR, 2?)-fine
limits at ξ. By Theorem 6.2, we have

COROLLARY 4. Any f e §)* has an (L, JR, B)-fine limit f(ξ) at every ξ e Δι.
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