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Introduction

Let 2 be a bounded domain in the d-dimensional euclidean space (d =2).
G. Stampacchia [17] (also, C. B. Morrey Jr. [14] and O. A. Ladyzhenskaya
and N. N. Ural’tzeva [ 9]) discussed properties of solutions of a second order
elliptic partial differential equation on 2 of the form

0 ou ou
€H) Lu:_;j%(g,‘j%‘l’bju)—i_;ai%‘l_qu—_—o
with not necessarily continuous coefficients. In fact, Stampacchia only
assumed that coefficients g, a;, b, and ¢ are measurable functions on £
satisfying the following conditions (2) and (3):

2 2 giéiéi=v|é|® forsome v>0 and |g;| =M.

(B) a;e LYQ), b;e L'(2), g € L"*(2) for r>d. (Cf.[9] and [14], in which
it is assumed that a; € L'(2). In case d=2, this assumption may be neces-
sary; the paper [ 17 ] primarily concerns the case d =3.)

On the ground of Stampacchia’s work, R.-M. and M. Hervé [ 7] develop-
ed a theory of superharmonic functions associated with the equation (1),
under an additional condition:

0b; Oa; . .. .
4) q— ]Z a—xjg 0 and g¢— ZZ: 5, =0 in the distribution sense.

In fact, they showed that the continuous solutions of (1) form a harmonic
space on £ in the sense of M. Brelot [ 1] and then constructed the correspond-
ing Green function on £.

In this paper, we take a connected C'’-manifold 2 and consider a con-
travariant tensor (g”), contravariant vectors (o’) and (47) and a function ¢
on £ which locally satisfy conditions (2) and (8). Our differential equation
may be written as

, _ 0w 1 0
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with
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where G is the determinant of (g;;)=(g"”)"*. Without assuming any condi-
tion corresponding to (4), we shall show that the continuous selutions of (1)
form a harmonic space on 2 (called the L-harmonic structure). Construction
of the corresponding Green function and the integral representation of
superharmonic functions associated with (1’) are also discussed on a subdo-
main » of £, following the lines of [ 7 ]—without the assumption (4), but with
a certain restriction on the domain w (§3).

The best part of this paper is devoted to discussions of a full-harmonic
structure (in the sense of [117]) which is determined by a general boundary
condition and is subordinate to the L-harmonic structure. Its original model
is the theory of full-superharmonic functions associated with the classical
harmonic functions and the Kuramochi boundary, for which boundary condi-
tion is given as vanishing normal derivatives (cf. [3] and [107]). There is
also a work by S. It6 [ 8], which is intended to give a generalization of the
theory of Kuramochi boundary in the case where the harmonic structure is
given by an elliptic partial differential equation on a manifold. We shall
consider a general boundary condition (R, B) determined by a class R of L-
harmonic functions and a bilinear form B on Rx R. This idea of boundary
condition is a generalization of that given in [127].

We shall show (§4) that, on an “end” on £ satisfying certain conditions,
we can define a full-harmonic structure in terms of condition (R, B). Then
(in §5), we construct the corresponding Green function, extending the
methods given in [8], [10] and [12]. With this Green function we can apply
the general theory given in [11] and obtain an integral representation
theorem for full-superharmonic functions associated with our full-harmonic
structure. For this integral representation, we consider an ideal boundary.
As was remarked in [117], in the classical case this ideal boundary can be the
Martin boundary or the Kuramochi boundary according as the choice of
boundary condition. Thus we may generalize the known theorems on these
ideal boundaries to our case. In this paper we give two of such theorems
(§6). The first of them is a characterization of “minimal” points in terms
of the reduced function and the other is on an equivalence of two types of
“thinness” at ideal boundary points (cf. M. Brelot [ 2] for the case of Martin
boundary).

§ 1. Preliminaries

1.1. Metric tensor.
As a base space 2, we take a connected non-compact C!'-manifold of
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dimension d =2. We consider a symmetric covariant tensor (g;;) on £ which
satisfies the following condition (G):

(G): On each relatively compact coordinate neighborhood U in £, each
gi; is a bounded measurable function on U and there exists 2>0 such that

d d
A2 st= 2 gi(0)éik;
i=1

i,7=1
for all x € U and real numbers &, ..., &,.

A manifold £ with such a metric tensor is a locally compact metrizable
space, and hence it is countable at infinity.

Let G(x) be the determinant of (g;) on each coordinate neighborhood.
Then dV=yGdx: -.. dx, defines a positive measure on £. For any open set
o in 2, let L(») (resp. L{,.(»)) (p=1) be the space of p-th power summable
real functions on v with respect to the measure 4d7. We consider the usual

norm [|l,.. on L@): |15 = 1127

For f, g€ L},.(w), we write f< g or f=gon o for an open set o’ Cw if
it is so almost everywhere on o’ with respect to dV.

We denote by C*(w) the space of continuously differentiable functions on
» and by C}(w) the subspace consisting of functions with compact supports
in o.

For a set 4 in £, its closure in £ will be denoted by 4 and its boundary
in 2 by 04.

1.2. The spaces D(w) and Dy(w).
Let w be an open set in 2. Given f € C'(w),

vasl) Zg”%%dff

is well-defined, where (g”) is the inverse matrix of (g;). Let Ch(w)
={feC"(w); D, f]<eo}. Obviously C}(w)CCH(w).

Now let w be a domain (connected open set) and let o’ be a relatively
compact domain such that ® Cw. For f e Cj(w), we define

| FlIDoor =LDL I+ F13e]"?
and

D (»)=the completion of C}(w) with respect to the norm || f||p,e,0’s
Dy(w)=the closure of C}(w) in D(w).

For any f € D(w), DL f1, || fllp,o,. are well-defined. In case o is a relatively
compact coordinate neighborhood, then the space D(w) (resp. Dy(w)) may be
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identified with the Sobolev space H'(») (resp. Hi(w)) (see [177] for this nota-
tion). Thus, for f € D(w), we have (cf. [5])

(i) f is identified with a function in L}, (v);

(i) In each coordinate neighborhood, grad f=@@f/0x1, ---, 0f/0x4) is
defined almost everywhere to be a covariant vector on w and |grad f|=

(228" f/0x;) (0f /0x;))""* belongs to L? (w); D[ f]= S \grad f|*dV.
For any f, g € D(w),

L 0f 0g
= y_J 9O

is well-defined and D(w) is a Hilbert space with respect to the inner product
D, f, g]—l—g fgadV (cf. [5]). Also we have

Lemma 1.1, If f, € D(w) and D,[ f,]—0, then there exist constants ¢, such
that f»+c,—0 in D(w).

Using this lemma, we obtain

Lemma 1.2, If o is a relatively compact domain such that d’ C v, then the
injection map of D(w) into L*(w") is continuous.

Lemma 1.3. If 1 ¢ Do(w), then the norm || f|lp,... ts equivalent to the norm
D, f1"* on Do(w).

Remark that if o is relatively compact, then 1 ¢ Dy(w).
From the definition of Dy(w), we easily have
Lemma 1.4, If o Cwy and f € Dy(w), then

f on o

- |
0 on w—o
defines an element in Dy(w;).

1.8. The space Diy(w) and lattice structures.
For an open set o in 2, we define

for any relatively compact domain }
o’ such that @' Co, f|o’ € D(»") ’

where f | o’ denotes the restriction of f to w’. For f ¢ Di,.(»), grad f is defined
on o as a covariant vector.
For a domain o, we easily have

Dioc(0) = { f € Lioe();

LemMa 1.5, If f € Dioc(w) and ¢ € C§(w), then ¢f € Do(w).
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CoroLLARY. If f € Dioc(w) and f=0 outside a compact set in w, then
f € Do(w).

The following results can be seen by using the corresponding results on
euclidean spaces (see [5]; also cf. [3]):

Lemma 1.6, (a) If f € Dioc(w), then f*=max(f, 0) (hence f~=—min
(f, 0)) belongs to Dioc(w) and

grad f ae.on {x€cow;f(x)>0}
grad /"=
0 a.e.on {x co; f(x)<0}.
(b) Iff, g€ D(w),then max(f, g), min(f, g) € D(w) and
D, [max (f, g) 1+ D[ min(f, g) J=D,[ f1+D.[ g].

Lemma 1.7. (a) For feD(w), f€Dy(w) if and only if |f| € Dy(w).
(b) If feD(w), f=0on v and if f= g outside a compact set in v for some
g € Do(w), then [ € Do(w).
§2. Equation Lu=0 and its solutions
2.1. Equation Lu=0 and L-harmonic functions.

Now we consider two contravariant vectors a=(¢’) and 5= (") on £ and
a function ¢ on £. We assume

la] € L{,(2),  1b] €Li(2) and gqe€Lii(Q)
for some r>d (if d=2, then we furthermore assume that |a| € L7,.(2)), where
la| =(X gia'a)'®  and || =(Z gib'8)"".
We formally consider the equation

ou 1
0x; \/5

d i 9
Lu—Au——Za ZT(\/GbJu) qu=0,

where

Au= \/1(; Zl 8x]<,zl\/ 6x1>

If v is a relatively compact domain in £ and if f, g€ D(w), then

A, g1=Lf g1+ (S0 2t Sor3Evqre)iv

o Ni=1 i

is well-defined and Soblev’s lemma implies that the mapping (f, @ —>A4: [ f, &]
is continuous on D{(w) x D(w) (cf., e.g., [17]).
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If » is any domain and u € Dj,(0), then A; Ju, ¢ is defined for any
¢ € Ci{w) by Ar Ju, 9 ]1=A4; ,[u, ¢, where ' is a relatively compact domain
such that @ Cw and the support of ¢ is contained in w'.

u € Do (w) is called a solution of Lu=0 on o if A4; [ u, ¢ ]=0 for all
@ € Cl(w). u € Dioc(w) is called an L-supersolution on w if Az [u, ¢ =0
for any ¢ € Ci(w) with ¢ =0 on .

It is known (e.g., [17] for d=3;[9],[14] for d =2) that any solution of
Lu=0 is equal to a locally Holder continuous function almost everywhere.
Thus, we call a continuous solution of Lu=0 on a domain w an L-harmonic
function on w. If w is an open set and z is L-harmonic on each component
of w, then we say that u is L-harmonic on w. The set of all L-harmonic
functions on » will be denoted by & ;:(w). By definition, we easily have

ProrositioN 2.1.  Each & 1 (0) is a real linear space and 1= {H ()} o.open
18 a sheaf of continuous functions.

2.2.  Minimum principles on an L-adapted ball.

A domain o will be called an L-adapted domain (cf. [7]) if it is relatively
compact and A4; , is coercive on Dy{w), i.e., there is 2>0 such that

ArLf, f1=4D.Lf]

for all f ¢ Dy(w). By Lemma 1.4, we see that any subdomain of an L-adapted
domain is L-adapted.

By Théoréme 3.1 of [17] (for d=2, we must modify its proof —see
Theorem 5.1 of [97]), we have

Lemma 2.1, For any x € 2, there exists an L-adapted coordinate neighbor-
hood of x.

The following lemma is proved in [ 7] (Lemma 1, a)):

Lemma 2.2.  Let o be an L-adapted domain and u € D{w) be an L-supersolu-
tion on . If u= goutside a compact set in v for some gec Dy(w), then u=0
on .

We shall say that a domain U in £ is a ball if there is a coordinate
neighborhood U’ such that UC U’ and U is expressed as {x; |x|<r} with
respect to the coordinate.

Using Théoréme 3.3 and Théoréme 7.3 of [17 ] (Theorem 5.2 and Theorem
14.1 of [97] if d=2; also cf. [14] and the proof of Theorem 1 in [7]), we have

ProrosiTion 2.2. If U is an L-adapted ball in 2, then for any ¢ € C*(BU),
there exists a unique u € C(U) such that u=¢ on 0U and w is L-harmonic on
U. Furthermore ue D(U). Here C'(0U) 1s the set of the restrictions of
g€ C'(U) to oU for some U DU and C(U) 1s the set of all continuous functions
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on U.
The function » in the above proposition will be denoted by HZ Y

Prorosition 2.8.  Let U be an L-adapted ball v 2. If u is an L-supersolu-
tion on U and if liminf, . o u(x) =0 for all £ € 92U, then u =0 on U.

Proor. Let u,=HZU., By Proposition 2.2, u, is continuous on U and
uo,=1o0n 0U. Hence there is a compact set K, in U such that u,(x) =>1/2 for
x € U—K,. TFor any e¢>0, there exists a compact set KD K, such that
w(x)>—ec on U—K. Then u+2:u,=0 on U—K. Let » be a domain such
that KCwCaoCU. Then u-+2ecu, € D(w). Hence, by Lemma 2.2 (taking
g=0), we have u+2eu,—=0 on w. Since » can be taken to contain any point
in U and since ¢ is arbitrary, we have u =0 on U.

2.3.  L-harmonic structure.

Now we prove our main theorem in this section: (Cf. Théoreme 1 of [ 7))

TurorREM 2.1. D1 ={H1(0)} v:0pen Satisfies Axioms 1, 2 and 3 of M. Brelot
[17, so that it defines a structure of harmonic space on 2.

We shall call ; the L-harmonic structure.

To prove Theorem 2.1, we prepare the following two results, which are
essentially given in [17] (in case d =2, we must modify the proofs).

Prorosition 2.4. (Harnack’s inequality; see [ 17, Théoreme 8.1) If wis
a relatively compact domain in a coordinate neighborhood in £ and K is a
compact set in w, then there exists >0 such that

max u(x) < 2 min u(x)
Y€K Y€K

Sor all u € 1 (w) such that u=>0 on w.

Lemma 2.8, (See Lemme 5.2 in [17] and Proposition 2 in [7]) Let o be
a relatively compact domain in a coordinate neighborhood in 2 and let v be a
domain such that ® Cw. Then there exists a>0 such that

Dd[ujggag w2dv

Jor any u € L (0).
Remark that Lemme 5.2 in [17] is valid without the assumption (5.2) in

177,

Proor of Theorem 2.1. Our Proposition 2.1 is nothing but Axiom 1 of
[1] for z. To show Axiom 2, let U be any L-adapted ball in £ and we shall
prove that U is regular with respect to ;. Given ¢ € C(0U), we can choose
¢, € C'(0U) such that ¢,—¢ uniformly on 0U as n—>co. Let u,=HEY on U.
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Put e,=maxicov | 0.(8) — (&) | and M=sup,.gyH{Y(x). Then ¢,—0 (n—><0) and
M < eo. By Proposition 2.3, we have

[wn(x) —um(x) I < (ent+ 5m>H1L’U(x) = (en+en)M,

so that {u,} converges uniformly on U. Let u=lim,,.u,. Then u ¢ C(T)
and u=¢ on 0U. By Lemma 2.3, we also see that D, [u,—u, |—>0(n, m—oco)
for any domain o’ such that & C U. It follows that u e Dy, .(U) and
D, [u,—u -0 for any such »’. Hence 4; y[u, ¢ |=lim, .4 v[u, ¢ ]=0 for
any ¢ € Ci(U), so that v e X;(U). By Proposition 2.8, such u is uniquely
determined by ¢, and u =0 whenever ¢ =>0. Thus Axiom 2 of [17] for ;. is
verified. Finally, Lemma 1 in [4] shows that our Proposition 2.4 implies
Axiom 3 of [1] for ;. Thus the theorem is completely proved.

Remark. We can similarly show that an L-adapted domain o is regular
with respect to $; if its boundary 0w satisfies the following condition (A4)
(cf. [9]; w is of type Sin [11] or [17]):

(4): For any coordinate ball U= {|x| <r,} with center on 0w, there are
two constants a and p with 0<a<1l and 0<p<r,/2 such that for any
e me{lxl <l2°—} and for any r with 0<r <p we have mes{B(¢, r)—o} =«
mesB(&, r), where B(&, r)={|x—¢&|<r} and “mes” means the Lebesgue
measure, with respect to the given coordinate of U.

Superharmonic functions and potentials with respect to the L-harmonic
structure will be called L-superharmonic functions and L-potentials, respec-
tively.

Prorosition 2.5.  Any lower semicontinuous L-supersolution is L-super-
harmonic.

Proor. Let v be a lower semicontinuous L-supersolution on w. For
any L-adapted ball U such that UCw and for any continuous function
¢ € C(OU) such that ¢ <v on 90U, v—HV is an L-supersolution on U and
liminf, ¢ yev{v(x) —HLY(x)} =0 for all £ e€dU. Hence, by Proposition 2.3,
v=HEU on U. It follows that v is L-superharmonic on o.

Cororrary. (cf. [7]) If g—QA/NG)IZONG ') /0%, =0 in the distribu-
tion sense on w, then the constant function 1 is L-superharmonic on o.
2.4. Domains on which minimum principle holds.

We say that the minimum principle holds on a domain o if
liminf, z+,u(x) =0 implies v =0 for any L-superharmonic function z on o,
where liminf, s, u(x) =0 means that given ¢>0 there is a compact set K in



Harmonic and Full-harmonic Structures on a Differentiable Manifold 279

o such that u(x)=—c¢on w—K. It is known (see [ 1], Theorem 3, (ii) and its
footnote) that if there is an L-superharmonic function » on o such that
inf e, v(x) >0, then the minimum principle holds on w.

Prorosition 2.6. If one of the following conditions is satisfied, then the
minimum principle holds on o:

(a) There exists an L-adapted domain w, such that ® C w,.

®  ¢—A/NGC)XONG b)/02;,=0 in the distribution sense on .

Proor. If (a) is satisfied, then, by Lax-Milgram’s theorem, there is
g € Do(wo) such that A, , [ g ¢]=41.[1, ¢]forall ¢ ¢ Dy(w;). Thenu=1—g
is L-harmonic on w, and Lemma 2.2 implies that © =0 on w,. Using
Harnack’s inequality, u >0 on w,, so that inf,,u(x)>0. Hence the minimum
principle holds on w. If (b) is satisfied, then the corollary to Proposition 2.5
guarantees the existence of an L-superharmonic function with positive
infimum on w.

We say that the weak minimum principle holds on a domain o if for an
L-superharmonic function z on o, u =>0 outside a compact set in o implies
©=>0on w. The following result is given in [4] (Theorem 2):

Prorosition 2.7. If there exists a positive L-supef'harmonic function on
o, then the weak minimum principle holds on o.

2.5.  Proportionality of L-potentials with point supports.

Given an L-superharmonic function v on a domain w, the complement (in
w) of the largest open set in which » is L-harmonic is called the support of »
(see [1],[6]). Itis known ([6]) that if w admits a positive L-potential, then
there exists at least one L-potential whose support is equal to { y} for each
¥y €.

Given ye€ o, let

u=0on w—{y} and there are an L-potential p and}

L,m: . 1Y .
P {u ¢ Aulo—=A5}); a compact set K in o such that « <pon w—K

y

By the above remark, P1* is not empty if » admits a positive L-potential.

Prorosition 2.8. Suppose o is a domain which admits a positive L-
potential on it. Then elements in PL° are proportional to each other, and they
are equal to L-potentials on o with support {y}.

The proof of this proposition may be carried out in the same way as that
of Proposition 4 of [7]. Remark that the minimum principle used in the
proof in [7] may be replaced by the weak minimum principle, which holds
on our domain o (Proposition 2.7).
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§ 8. L-semiadapted domains and L-Green functions
3.1. L-semiadapted domain.

Given an equation Lu=0 as in the previous section, we consider the
function Q,=a|’+|b|*+|g]. Q; is a non-negative function on £ and
belongs to L¢2(2). Let

D1(w)= {f € D(0) ;SQQLde V< oo}.

If ;=0 on v, or if w is relatively compact, then D;(w)=D(w). In case Q.0
on o, then D;(w) is a Hilbert space with respect to the inner product

DL,w[f> g]:Dm[f) g]‘l‘ngLfng

In this case, we define || f||z,.=D..[f, f1'?. In case Q;=0 on o, we also
denote by || f]|z,. any one of || f||p,...r. Thus, in any case, D;(») is a Hilbert
space with the norm || f]|z,..

We denote by D; (w) the closure of C}(») in D;(w), which coincides with
the space D;(w) "\Dy(w).

Obviously, 4; ., is defined to be a continuous bilinear form on D ()
X Dr(w). A domain w in £ will be called L-semiadapted if

(i) Qr=0o0n wand 1¢ Dy(w),
or

(i) Qr+0on wand 4;, is coercive on Dy ¢(w), i.e., there is 1>0 such
that 4, [ f, f1=2llf]I},. for all fe Dy o(w).

It is easy to see that an L-adapted domain is L-semiadapted. Obviously,
any subdomain of an L-semiadapted domain is L-semiadapted. (In particular,
any relatively compact subdomain of an L-semiadapted domain is L-adapted.)
Remark that if |a|=[b]|=0 and ¢=>0, ¢==0 on o, then w is L-semiadapted.

Lemma 3.1,  Let o be an L-semiadapted domain and let o’ be any relatively
compact domain such that @ Cw. The restriction mapping Di(w)—L*(w") 1s
continuous, t.e., there ts M >0 such that

[ rrar=misi.

Sor all f € Di(w).

Proor. If Q;=0 on w, then this lemma is nothing but Lemma 1.2.
Suppose Q70 on w and suppose the lemma is not true. Then there would

exist f, € D;(o) such that g 24V =1 and ||fsllz..>0(n—>c0). By Lemma
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1.1, we find constants ¢, such that S (fu+c,)?dV—0 for any relatively com-

pact domain o, such that @, Cow. Takmg a subsequence, we may assume
futc,i—>0ae. on v as well as f,—0 a.e. on the set {x € w; Q;>0}. Since the

last set is of positive measure, ¢,—0, and hence S f2dV—0, a contradiction.

3.2. Function h%° and the space H(»).

Let w be an L-semiadapted domain. Then, given f ¢ D;(w), Lax-
Milgram’s theorem implies that there exists a unique L-harmonic function
h%° on w such that f—h%* € D, o(w). Obvicusly, the mapping f—h% is linear.

Lemma 3.2. Let o be an L-semiadapted domain and let u ¢ D {(w) be L-
harmonic on w. If there is g€ Dy o(w) such that u = g outside a compact set
m w, then u >0 on o.

Proor. (cf. the proof of Lemme 1, a) in [7]) Since 0=u =g and
g €D (), u ¢ D o(w). Hence A; [u, u ]=0. It follows from Lemma
1.6 that 4; Ju~, u~]=0. Since 4., is coercive on D; ((»), u"=0. Hence
u=>0.

CoroLLARY. Let o be an L-semiadapted domain. If fe Di(0) and f=0
outside a compact set in o, then h%° =0 on o.

Proor. Apply the above lemma to u =A%t and g=hF"—f.

Let H;(w)={u € D;(»); solution of Lz=0 on »}. We may identify it
with L (w)\D(w). For an L-semiadapted domain w, H;{w) "Dy o(w)={0}.
If feDr(w), then h}° € H () and the mapping f—hf” is continuous from
D;(w) into Hz(w).

Given u, v e Hy (w), let u\/v hL? . and u/\v hE? wm- Then, u\ v,
u/\v €H;(w) and u+v= u\/v—l— u/\v H;(vw)is a vector lattice with respect
to these operations. By Lemma 3 2, we have

v Av=<min (u, v) <max (u, v) <u\Vo.

We write u Lo if [(uV0)—@AO)IA[(2V0)—(»A0)]=0. Note that
(wV0)L(uAO0) for any u € H;(w).

3.3.  Green operator GL:° and existence of positive potentials.

By the same method as Lemme 3 and Proposition 5 of [ 7], we obtain the
following extension of Lemma 3.2.:

ProrosiTion 3.1. Let w be an L-semiadapated domain and let u be an
L-supersolution on w. I1f thereis g€ Dy o(w) such that u = g outside a compact
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set in o, then u=0 on .

CoroLLaRY. If w is an L-semiadpted domain and tf g is a lower
semicontinuous L-supersolution belonging to Dy (), then gis an L-potential.

ProrosiTioN 8.2. Let w be an L-semiadapted domain. For any bounded
measurable function ¢ with compact support in o, there exists a continuous
Sunction g belonging to Dy o(w) such that

* 4L ¢1={ poav

for all ¢ € Dy o(w). Furthermore, if ¢ =0, then gis an L-potential on o.

Proor. By Lemma 3.1, the linear functional f—»S f¢dV is continuous

on D; o(w). Hence, by Lax-Milgram’s theorem, there is g€ D o(») such that
(*) is satisfied for all ¢ € D; o(w). On each coordinate neighborhood, g is a
solution of the equation Lu=¢, so that, by Théoréme 7.3 of [17] (also see [ 7],
p. 310; [9], Theorem 14.1; [14], Theorem 4.7), g may be taken to be contin-

uous. If ¢ =0, then 4; [ g @]:S ¢pdV =0 for ¢ =0. Hence g is an L-

supersolution on . Then the above corollary implies that g is an L-potential.

The function g in the above proposition will be denoted by G"“(¢).
Obviously, the mapping ¢—G%2(¢) is linear and non-negative. If ¢ >0 and
¢ =0, then GX°(¢) cannot vanish identically, so that it is a positive L-
potential. Thus we have:

CoroLLarYy 1. An L-semiadapted domain admits a positive L-potential
on it.

CoroLLARY 2. The weak mintmum principle holds on an L-semiadapted
domain.

3.4. L-Green function gi~.

In the sequel of this section (§3), we shall assume that |a| € L},.(2), so
that |al, |b], |q|"* € L],.(2) (r>d). Under this assumption, the adjoint
equation

. 0w 1 0 =
L* = A — J— —_ - > al — g
w=Aw ;b @xj—I_\/G;Z@x;(\/Gaw) quw=0
can be treated in the same way as the equation Lx=0 and we obtain L*-
harmonic structure on 2. We remark that an L-semiadapted domain is also
L*-semiadapted, D;.(w)=D;(») and A;..[ f, g]=A41..[ g f]for f, ge D(w).

We may apply the arguments in sections 5 and 6 of [7] to our case and

obtain
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Turorem 8.1. Let o be an L-semiadapted domain and let ycw. Then
there exists a unique positive potential, demoted by gl®, having the following
property: If {¢.}; is a sequence of non-negative bounded measurable functions
on o such that the supports of ¢, are compact and decrease to the point set {y}

and Sg/zk dV=1 for each k, then G*°(¢,) tends to gk locally umiformly on

o—A{yt. Furthermore, gk ¢ L, (v) and for any bounded measurable func-
tton ¢ with compact support in w, we have

[ gt (@0 arH=L6"*)] (.

Remark that Proposition 2.8 plays an essential role in proving the above
theorem. The function gZ°° may be called the L-Green function of » with

pole at y.
The following corollaries are easy consequences of this theorem:

CororLrary 1. gFl(x)= gl *(y) for any x, y€ v (x5 y).
CorOLLARY 2. y— gl “(x) is continuous on o — {x} for each x € .

CororLLARY 8. For any bounded measurable function ¢ with compact
support in v, we have

[ g 0(ar(y=c-).

Also, the following lemma is easily shown:

Lemma 3.3, If o, Co and y € vy, then there is an L-harmonic function
uy On w, such that

gy =8yt uy on 1.
3.5. Integral representation of L-potentials.

Now that we obtained the L-Green function, the next theorem follows
from Théoréme 18.2 of [6]:

Turorem 3.2. If v is an L-potential on an L-semiadapted domain o, then
there corresponds a unique non-negative measure i on o such that

0=\ gfe(du(y)

for all x € w.

From this theorem and Lemma 8.3, we see that for any L-superharmonic
function v on w, there corresponds a non-negative measure x on o such that
if »’ is a relatively compact domain with @ Cw then
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=\ gl @duTut)  (@ew)

with a function w which is L-harmonic on »’. The measure x is called the
measure associated with » (or, the associated measure of v). If » has an
L-harmonic minorant on o, then the above expression also holds for o' =w,
which is the Riesz representation of v. Note that v=0 implies w=>0.

Remark. We may proceed to apply the arguments in sections 6 and 7
of [7] and obtain the following results:
a) An L-superharmonic function belonging to Di..(w) is an L-supersolu-

tion on w;

b) If o is an L-semiadapted domain, then an L-superharmonic function
belonging to D; ((w) is an L-potential on w;

¢) If wis an L-semiadapted domain, then an L-superharmonic function
v belonging to D;(w) has an L-harmonic minorant and the greatest L-harmonic
minorant of v is equal to AL-°.

§ 4. Full-harmonic structures subordinate to the L-harmonic
structure and determined by boundary conditions

4.1. Subspaces of D{(w) for an end o.

A domain o in 2 will be called an end of 2 if it is not relatively compact
and its relative boundary 0w is compact (may be empty). Given two ends w
and o', we shall say that o’ is a subend of w if o’ Cw and 0w’ N is compact.

In case w is an end of £, we define

Ci.(0)=4{p € C'(w); ¢=0 on V'Nw for a neighborhood ¥ of dw}
and

¢=0 on an open set o’ such that }

C1 N :{ 1 . X
B (0) =19 € C1(0); ®—o’ is compact

The closure of C3,(w)N\Dr(w) (resp. Ch, (0)N\Dz(w)) in D;(») is denoted by

DL,aa)(w) (resp' DL,B(m)(w>)‘
Let o’ be a subend of » and let

Chy(0)=1{0 € C'(0); g0’ € Chu\ ()}
and

¢=0 on an open set v’ such }

Chio s (0)={¢ € €'(); .
p-ge) (@) =19 € C1(0); that ®—w'—o” is compact

The closure of Ck ., () D1 (0)(resp. Ch ) _ g0 (@)D (0)) in D;(v) is denoted
by Dy, swy(®) (xesp. Dy swy-ser(@). If @—w’ is compact, in particular if
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CO/—_—(,L), then DL,B@,/)(CD):DL,B(Q,)((D) and DL’/g(w)_ﬁ(m/)(a)):DL(a)). The spaces
D; .(0), Dr puy(w), Digwn(w) and Dy g pey®) are closed subspaces of
D;(») containing D; o(w). It is easy to see that

DL,B((U)<a)>mDL,am<a)> :DL,()((D)
and
D1, (@) NDr, po)-pon(@) =D, ga)(0).

We can easily obtain results corresponding to Lemmas 1.4, 1.5 and 1.7
for the spaces D o(®), D1 5,(0), D1, 5y(®), D1, sn(®) and D1 - pn(@). In
particular we have the following:

(a) If v is an end, o is a subend of » and f € D, 5, (0), then f*(=f on
o’ and =0 on w—ow") belongs to D, sy- (@) NDy 5,(0).

(b) Let ¢ € C*(w) and suppose there is a compact set K in o such that
¢ is constant on each component of w—K. If, furthermore, ¢ € C3,(w)
(resp. Chw (), Chw)(®), Chu-pw)(®), then fo e Dy s, (0) (resp. Dy, swm(w),
D 50y (0)y D1 gy pwn(@)) for any f e Di(w).

(c-1) If feDi(w)and 0=|f|= g on V"o for some neighborhood 7 of
0w and g€ Dy 5, (w), then € Dy 5,(w).

(c-2) Let o be a subend of w. If feD;(w) and 0| f|< g on 0"
for some open set o’ such that ® —o” is compact (resp. ®—ow —ow” is
compact) and g € Dy gy (w) (xesp. g € Dy puy—peny (@), then f € Dy g (®)
(resp. f € Dy, geo)-peon(@)).

Next, we define the subspaces H; 5,(w), H; pwy (@), Hr gy (0) and
H; p)-pen () as the intersections of H;(w) with the spaces D; ;. (),
D 5y (0), D1 gr(w) and Dz g py(®), respectively. By the continuity of
the mapping f—A4; [ f, ¢ on D(») for each ¢ € C{(w), we infer that these
are closed subspaces of D;(w).

4.2.  L-full-adapted end.

An end w is called L-full-adapted if it is L-semiadapted and 1 ¢ D,, ()
(=Dx s,(w)). The latter condition implies that dw=@. Obviously, any end
contained in an L-full-adapted end is L-full-adapted. Remark that if K is a
closed ball in £ and if 2 —K is L-semiadapted, then 2 — K is an L-full-adapted
end. Thus, for instance, if |a|=1[6|=0 and ¢—=0 on £, then any end o such
that £ —w contains an open ball is L-full-adapted.

Lemma 4.1, Let o be an L-full-adapted end and let o' be a subend of w.
Then

O H; sy (0)NH| 5,(0)= {0},
H, ooy (0) NH L, g0y g (@) = Hz, gy (0),
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and
H; py(0)+H; 5, (0)=H(0),

(2
H;, 5(0) +Hp, goy- (@) =H (o).

Proor. By definition
H; sy (@)NHp o,(0) =Hr(0) D7y o(w)
and
H;, B(m’)(w) NH;, B(w)—ﬁ(m’)(w) =H;(w)N\Dy, B(m)(w) =H;, ﬂ(w)(w)'

Since o is L-semiadapted, we have H(w) \D; o(»)={0}.

Next let ¢ be a function given in (b) in 4.1. We can choose ¢ in
such a way that ¢ € Ch,(») and 1—¢ € Cl,(w) (resp. ¢ € Ch. (w) and
1—¢p€eChiuy-pw)(®). For uweH;(w), we have ug € Dy g.y(») and u(l—¢)
€Dy 5, (0) (resp. ug € Dy gy (0) and u(l—¢) € D sy sn(@)).  Since o is
L-semiadapted, Lax-Milgram’s theorem asserts the existence of g¢ D; ()
such that 4, [ g, ¢]=41 . ue, ¢] for all ¢ € D; o(w). Then ui=ug—g be-
longs to Hz(0) N\ Dy, pey(0) =Hz, gwy(@) (xesp. H(0) Dy, s (0) =Hp, g (0)).
Furthermore, u—u;=u(l—¢)+ g belongs to H, (w) N\D; s,(0) =H;, 5, (0)
(resp. Hz(0) N\D1, gy-pwy (@) =H1 gwy-pwy(@)). Hence we have (2).

By the above lemma, any u € H; 5,(w) can be decomposed into u=u;+u;
with w; € Hr py(©) "Hpo,(0) and uwy € Hy gy pen (@) NHL 5(0) and this
decomposition is unique. We shall denote u; by uwgwy and uws by wpy- sy
Obviously, the mappings u—u sy and u—u - s are linear.

The spaces H; 5,(0), Hz, pry(w) and Hy .- sr(@) are closed under opera-
tions V and A. Furthermore we have

Levmma 4.2. If u € HL,B(,D/>(w)/\HL,am(a)) and v € HL,,3((0)_B(wg(w)f\HL,aw(w),
then u 1 v.

Proor. It is enough to show the case u>0 and »=0. Then
0=<min(u, v)=<u and 0=min(u, v)<v imply that min(u, v) € D;, g (v)
[\DL,Ig(w)_lg@’)(ﬂ))ml)[,,aw(w):DL’0(60). Hence U/\’UZO.

4.3. Operator S§.

Lemma 4.3. Let w be an L-full-adapted end. For a given f ¢ Di(w),
there exists a unique u € Hy g.)(0) such that u—f € Dy 5, (0).

Proor. Choose ¢ € Ck.y(w) such that ¢,=1 on Vv for some neighbor-
hood 7 of dw. Then fy,€ Dy swyw) and foo—f € Dy s(w). Hence u=hk?
belongs to Hj gy (w) and uw—f € Dyol(w). If w; and wu, both satisfy the



Harmonic and Full-harmonic Structures on a Differentiable Manifold 287

condition of the lemma, then wi;—u;€ Hy gy (@)NHz o,(w0)=10}, so that
Ui=1us.

The function »z in the above lemma will be denoted by S{°(f). Obvi-
ously, the mapping f—SZ-“(f)islinear. Furthermore, the above proof shows
that this mapping is continuous from D;(w) into H;, .\ (»). In case f € D(w,)
for some w, D w, we also write S§°(f) in place of S{°(f|w).

LemmMa 4.4, Let o be an L-full-adapted end and let f € Dy(0). If f=g on
Vo for some g€ Dy s.(0) and a neighborhood V of 0w, then St °(f)=0.

Proor. Let ¢y be the function in the proof of the above lemma. Then
Sy =St f)— foo+ gpo on V' Nw for a neighborhood 77 of 9w and also
outside the support of ¢,. Since SI°(f)— foo+ gpo € D o(w), Lemma 3.2
implies that S&“(f)=0.

4.4. Space R for boundary condition.

Let w, be an L-full-adapted end and fix it throughout the rest of this
section. We consider a subspace R of H; ;, () which satisfies the following
set of conditions:

(i) R is a closed subspace of H; ,,(»,) closed under operations Vv
and A. '
@0

Aro[ [y f1= 20l f117,0, for all fe R+Dy,o(wo).

(R) (ii) Ar., is coercive on R+Dy o(wo), i.e., there is 1, >0 such that
(iii) For any subend w of w,, ug(.) € R whenever u ¢ R.

For example, R={0} satisfies (R). If |a|=[b|=0 and ¢=0 on w,, then
R=H; ;. (0,) satisfies (R).
Given R satisfying (R) and a subend o of w,, we define

there are v € R and g ¢ Dy o(w,) }

R(w):{ u € HLol0)5 cuch that ut=v+g

where w*=u on » and =0 on w,—w. Obviously, R(w,)=R. Note that
u? € D1, ploy- (@)D s50(00). For each u € R(w), the corresponding v € R

is uniquely determined and belongs to Hy s(.,)-sw@)(@o) VHz 20 (wo). In fact,

L,oq
v="h,s .

Next, let o be a subend of w, and let

there are v € RNHL gy - p)(®0) and }

R(w)= { u € Hi(w); g €Dy p)(w) such that u=v+ g on »

For each u € R(w), the corresponding v € RNH, oy —A@(@o) 18 uniquely deter-
mined. For, if vi+g1=v,+ g2 on o with v1, vz € RNH g(oy-pw)wo) and g1,
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82 € DL,ﬂ(w)(a))) then v;—v,¢€ HL,acoo(wO) NHp ,B(mo)fﬁ’(m)(wo> A HL,,e(m)(U)o) = {0}.
The mapping u—v is obviously linear.

Lemma 4.5, (a) R(w) is a linear subspace of Hi(w) and is closed under
operations \/ and A. In fact, vi\ vy corresponds to u;\ u,, tf v; € R corres-
ponds to u; € ﬁ(a)), i=1, 2.

(b) R(w)=R(w)NH 1.0a{®) and is a closed subspace of Hr o.(®).

(¢) Ar.1s coercive on R(w)+ Dy o(w).

Proor. (a) It is obvious that R(») is a linear subspace of H;(w). Now,

let uc .ﬁ(a)) and u=v—|—g on w with ve RmHL,ﬁ(ma)_/g(w)((Do) and 8 € DL,E(Q)O,D).
Let f=uV0—max(u, 0). Then fe€ D; (w), and hence f*e€ D; o(w,). Next

let g=max(g, —v)—max(0, —v) on w. Since |g|=<|gl, &€ D. pwy{»). On
the other hand

Z=max (v+ g, 0) — max (v, 0) = max (z, 0) —max (v, 0) on o.

Hence, «\V0—vV0=f+ g+max(v, 0)—vV0 on w. Since
[+ &+ [max(v, 0)—vV0]|w e D guyw)

and vV 0 € RNH s,)-pw)(00), we conclude that w0 € R(») and v\/0 corres-

ponds to ©\VV0. Thus we have (a).

(b) The equality R(w)=R(0)"\H; 5.,(w) is easily seen from the defini-
tions. Since w, is L-semiadapted, the mapping u—»hfg,’w” is continuous from
H; 5., (») into H; 5, (wo). Since

R(0)={u € Hy 5,(00); hys" ¢ R}

and R is closed in H; 5,(®,), we see that R(w) is closed in H; o.().

(¢) Since AL [f, [1=Aro [ f% [*1 1/ 1|2.0=lf*l2.0, and f* € R+Dy o(w20)
for any f € R(w)+ Dy «(»), the coerciveness of A; ., on R(w)+D; (w) follows
from that of 4; ., on R+D; o(wo).

4.5. Bilinear form B for boundary condition.

Next we consider a bilinear form B[ u, v ] on R x R satisfying the follow-
ing set of conditions:

(i) Blu, v] is continuous on Rx R.
(B) (i) Blu, u]=0 for any u € R.
(iii) If u, ve R and u_L v, then B[ u, v]=0.

For a subend o of w,, we define a bilinear form B, on R(»)x R(») by
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Bm[ula u2:| :B[Uh vZ]a

where v; and v, are functions in R corresponding to u; and u,, respectively.
It is easy to see that B[ ui, us | is continuous on R(w)x R(w). Furthermore,
B, u, u]=0 for any u € R(w).

4.6. Operator Sk3.

Let o be a subend of w,. By Lemma 4.5, ¢) and the above observation,
we see that the bilinear form A4; Jui, us ]+ B, u1, us] is continuous and
coercive on R(w). Thus, given f € D;(w), there is a unique u, € R(») such that

AL,w[u‘J! u:|+Ba>|:u0) u’]:AL,m[SOL’w(f)a lL:I

for all u € R(w), by Lax-Milgram’s theorem. The function S{°(f)—u, will
be denoted by Sk:3(f). Obviously, if R={0} (and hence B=0), then Sf3 ,(f)

= SE(f).

w=Sk;3(f) is characterized by the following two conditions:

(@) w—S§°(f) e Rw);
(b) Az w, ul]+ B, w, u]=0 for all u € R(w).

Here we remark that S{“(f)e R(») with the corresponding function 0 € R,

so that we R(w). The mapping f—>Sk%(f) is obviously linear. Since
f—>SE(f) is continuous, it also follows from Lax-Milgram’s theorem that the
mapping f— Sk;3(f) is continuous from D (w) into H;(w).

4.7. Minimum principles.

Prorosition 4.1. Let w be a subend of w,. If fe D (w) and f=g on
Vo for some geDpo(0w) and a neighborhood V of 0w, then 0= S§°(f)
= Sk3(f) on .

Proor. Letw=Sk3(f)and u=w—Sk*(f). Since S&*(f)=0 by Lemma
44, w=u. Hence 0= —(wV0)<—(uA0). Since —(uA0)e R(w) (Lemma

4.5), —(wA0) € Hy 5.(w). Since w € R(»), Lemma 4.5 implies that (wA0) € R(w).
Hence

(D Az Jw, wAO ]+ B[ w, wAN0]=0.

Let v € RNH sy - s (00o) correspond to w. Then, by Lemma 4.5 again, v A0
corresponds to wA0. Since (vA0)L(vV0), we have '

B.[w, wA0]=B[v, v A0]=B[v A0, v A0]=0.

Hence, (1) implies

@) Ap,ofw, wAN0]=0.
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Now, since wA0+w~ € Dy o(w),

AL,Q['M), M)/\O___I = AL’w[w, —"w_] - AL,m[w_, u)_]‘
Thus, (2) and the coerciveness of 4;, on R(w)+D; o(») imply that w =0 on
w. Hence w=0. It follows that u = —S&-°(f). Thus, 0=uA0=—SE°(f).
Since Sg,,w(f) € DL, B(w) (Cl)), uNOe HL)/\;(@(CD). Hence uAOe€ HLUB(Q,) ((,0) N R(a))
CH1 puyf@)NH 5,(0)={0}, i.e., u A0=0. Therefore, u =0 and the proposi-
tion is proved.

ProrosiTioN 4.2.  Let o be a subend of w, and let f € D;(w). If
liminf, ¢ ce. f(2) =0 for all & € dvNw, and if there is g € Dy 5,(w,) such that
f=gon Vo for some neighborhood V of 0w, then Sk:3(f)=0.

Proor. Let ¢, € C}(w,) be non-negative on w, and equal to 1 in a
neighborhood of dwNw,. Then, for any >0, f+epo—=0 on V"Nw for a
neighborhood 7’ of 9w Nw, and f+epo—=g on VNw. Hence Sg3(f)
+eSk%(po)=0 on o by the above proposition. Since e is arbitrary,
Sk3(f)=0.

CoroLLARY. Let w be a subend of wo,. If f1, fo € Di(0)NC(DNwo), fr=f>
on 0w N w,, and if there are g1, 82 € Dy o,(wo) such that f1=g1, fz=g: 0m VNo
for some neighborhoed V of dwo, then Sk3(f1)=Sk:3(f2). In particular, if fi,
2 € Dz 50,(00)NC(0o) and f1=f> on 0w Nwo, then we have the same conclusion.

Remark. In Proposition 4.2 and its corollary, the conditions involving
g € D; 5, (0o) is superfluous in case @ Cw.

4.8. Consistency.
Prorosition 4.3. If o is a subend of v, and o’ is a subend of w, then
Sky(Ska(fN="Sks(f) on o
Sfor any f € Di(w).
Proor. Let fo=Si(f), f1=Sk3(f) and
Sé'“"(fl) on o
. { f1 on w—ow’

Then, f,, f1, f2 € D(w). By the definition of Sk:3(f), (f1—fo)f=vo+go With
Vo € RmHL,ﬁ(mg)—B(w)(a)0> and 8o € DL,o((Do). NOW

(fl—f‘z)#zvo‘l‘go‘l‘(fo—fz)#F
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=(0) p(og)- 8o + (V0 gy + g0+ (fo—f2)%.
It is easy to see that (fo—f2)* € Dz g (wo). Hence
(vo)sn+ got+(fo—f2)t € Dy, sy (00).

Therefore w — Sg"”'(fl) =(fi—f)|o € R(w). Obviously w— Sé"“’(fl) €
H; .., (0). Hence w—SE(f1) € R(w).

Next, we shall show that A; ,[w, u ]+ B,[w, u]=0 for all u € R(w").
Given u € R(0"), let u*=v+g with v € RNH] gep-pewr(0) and g€ Dy o(w).
Put uy=v—S¢“v) on w. The u;€ HL,aa,(w)mf{(w)zR(a)). Therefore
*) Ar o f1, wr ]+ B[ f1, u1]=0

by the definition of /1. Now, u*—u;=g+Si*(v) on w and u*|w € Dy 5.(0),
uy € Hy 5,(w). Hence u*|w—u; €Dy o(w). Since fi=Sk%(f) is L-harmonic
on w and =w on w’,

AL,wI:fl’ ul]:AL,m[f].) u#]:AL,w'[wﬂ u]'

On the other hand, flzvo+go+fo on o with ’l)o(:‘RmHL”@(wo)_/g(w)(wo) and
(got+fo)lwe Dy gww). Hence

B,[f1, ui]=B[ v, v].
Also, by the argument far above, we have
B Lw, u]=B[(v0)swp-pwr» V-
Since v € Hy, pey- por(®0)s B[(v0)pwy, v]=0 by Lemma 4.2. Hence
B, [w, ul= B[ v, v]=B,[ [1, u1].
Therefore, (*) is equivalent to
Ar,o[w, ul+ By [w, u]=0,
which is the required relation. Hence w= Sk%(f1)=Sk%(Sks( D))
4.9. Full-harmonic structures associated with (R, B).

Let wo, R, B be as above, i.e., v, is an L-full-adapted end, R is a closed
subspace of H; ,,(wo) satisfying condition (R) and B is a bilinear form on
R x R satisfying condition (B).

For an end o contained in w,, an L-harmonic function z on w is called
L-full-harmonic with boundary condition (R, B), or (L, R, B)-full-harmonic, on
o if there exist a finite number of ends vy, ---, w, such that »;,Cw, j=1, ...k,
®—\J*_,w; is compact and

SEpi(u)=u on w;
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for each j=1, ..., k. Let gz(msgc*@,ﬂ,m(w) be the class of all (L, R, B)-full-
harmonic functions on w. By this definition and Proposition 4.3, the follow-
ing property is easily verified:

Axiom S: (1) If uegz(a)) and o’ is an end contained in o, then
ulw € Hw.

(ii) If ue d () and if there are ends wi, ---, w; such that ®; Co and
ulo; € H(w;) for each j=1, ..., k and that ®—\J*.,0; is compact, then
u € Hw).

An end o is called regular with respect to {JE ()} if @ Cwo and for any
f € C(0w) there exists a unique u € C(®) such that u=f on dw, u|w ¢ H(w) and
f=0 implies © =>0. We have

Prorosition 4.4. If o is an end such that ® Cw, and if 0w sgtisﬁes
condition (A) in the Remark in 2.3, then o is regular with respect to {H(w)}.

Proor. If ¢ € C'(0w), then there is f € C(w,) which is equal to ¢ on dw.
By the corollary to Proposition 4.2, Sk:3(f) depends only on ¢. Thus we
denote it by S“(¢). By Théoreme 7.3 of [17] (also see [9], Theorem 14.1),
we see that S°(¢) is continuously extended to @ by ¢ on dw, since u= S°(¢p)—f
is a solution of Lu=—Lf on o vanishing on dw. By Proposition 4.3,
S°(¢) € H{w). Proposition 4.2 shows that S°(¢) =0 if ¢ =0.

Next suppose ¢ € COw) and ¢=>=0. Since C'(0w) is dense in C(Ow), we
find ¢, € C'(0w) such that ¢,=>0 for each n and ¢,—¢ uniformly on dw. By
Proposition 4.2, we have

| Sw(gpn_(ﬂm) I g {ESE%{’) | @n(f) - @m(g) I } S‘"(l)

Hence, {S°(¢,)} converges uniformly on any compact set in ®. Let
u=lim,...S°(¢,). Then uwe X, (v), u=0 on v and u can be continuously
extended to 9w by ¢. Let o’ be any end such that @ Cw. Since u,= S"(¢,)
converges to u uniformly on dw’,

u(x)=lim S$°(¢,) (x)=1lim SE'% (u,) (x)

for any x € o’ by Proposition 4.3. Now, Proposition 4.2 implies that
Sk (u)— Sk (u) on w'. Hence u=Sk%(u) on »'. It follows that u € H(w).

Finally, we shall show that for each~gp € C(0w) there is at most one
u € C(®) such that u=¢ on 9w and u|w € H(w). It is enough to prove the
case ¢=0. Thus suppose u € C(®) vanishes on 0w and u|w € H(w). There
are ends oy, -, w; such that @,Cow, j=1, ..., k, o—\/%_,0; is compact and
Sgp(w)=u on w; for each j. Let a=inf:ecs, .00, 1(£)/S°(1) (§)]. Since
S°(1)>0 on w and S°(1), u are continuous, there is &, € 0w,\U...\Udw, such
that (&) =aS*(Q) (&,). Since u—aS*(1)=0 on dw;, Proposition 4.2 implies
u—=aS°(1) on w; for each j. If <0, then (v —aS°(1)) (x)—>—a>0 as x—>0v.
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Hence u—aS°(1) =0 by the minimum principle on v —\ /%_,®; (cf. Proposition
2.6). Since u(&y)—aS°(1) (&,)=0, it follows that u=aS*(1) on w, which is
impossible. Hence a0, so that © =0 on dw;\J...\Udw;. It follows from
Proposition 4.2 and the minimum principle on w—\/%_,®, that © =0 on o.
By considering —u, we also obtain z < 0. Hence u=0.

By this proposition, the following Axiom 7' is immediately verified:

Agxiom T: For any end o Cw,, there are a finite number of ends 1, -, w;
such that each w; is regular with respect to {#(w)}, » Cw for each ; and
®—\J%_,0; is compact.

Thus we have seen that 7Y &, B)E{QZ( LR, B} o.cndco, defines a full-har-
monic structure on w, in the sense of [11] which is subordinate to the
L-harmonic structure on £. The corresponding full-superharmonic functions
(cf. [11]) will be called (L, R, B)-full-superharmonic. In case w is an open
subset of w, such that 0w is compact, a function on o is called (L, R, B)-full-
harmonic (resp. (L, R, B)-full-superharmonic) on o if it is L-harmonic (resp.
L-superharmonic) on any relatively component of w and is (L, R, B)-full-
harmonic (resp. (L, R, B)-full-superharmonic) on any end component of w.
The set of all (L, R, B)-full-superharmonic functions on o will be denoted by

3( L&, By (®), or simply by 3((0). The set of all v € é(wo) which are of potential
type on w, (cf. [117]) is denoted by P s r 5y, or simply by 9. Also the set of
all v € P which are L-harmonic on w, is denoted by 2,=P 1. r 5y

4.10. A minimum principle for (L, R, B)-full-superharmonic functions.

Prorosition 4.5. Let w be an end contained in w,. If ve é(w) and if
there exists g€ Dy 5,(w) such that v=g on Vo for some neighborhood V of
dw, then v =0 on .

Proor. Choose ¢, € C'(w) "D;(w) such that ¢,=1 on Vo Since
1¢ D, (0), we see that ¢, & Dy »,(0). It follows that u,=Sk%(0o) ¢ Dz s.(w),
and hence u,5-0. Since u,=>0 on » by Proposition 4.1, we have u,>0 on .

To prove the proposition, we may assume that v is (L, R, B)-full-harmonic
on an open set w’ such that @ Cw and ®— o’ is compact. Let »” be another
open set consisting of a finite number of ends such that @” Cw’ and ®—o" is
compact, and let ¢ be a relatively compact neighborhood of 0w’””. Then,
a=min,{ v(x)/u,(x)] exists as a finite value. Since v—au, is (L, R, B)-full-
harmonic on o’ and v—au, =0 on ¢, v—au,= Sky(v—auy) =0 on v, for each
component w, of w”’. Hence v—au,=0 on »”.

Now suppose «<0. Then v—au,=v=g on VNw. Hence, applying
Proposition 3.1 to each component of w—a"/, we conclude that »—au,=>0 on
ow—a". Thus, in this case, v—au,=0 on w. Since v—au, attains zero on 7,
we have v=au, on w. Then 0=u,<(—1/a)g on VNw, which implies
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uy € Dy 5,(0), a contradiction. Therefore «—>0. Then v_—=au,—=0 on ¢ and
v=gon Vo imply, by the same arguments as above, that v =0 on w.

CoroLLARY 1. d?wo)ﬂDL,amn(wo) 9.

Proor. If ve S(wy)ND 1,20,(®0), then the above proposition implies v —=0.
If u is an (L, R, B)-full-harmonic minorant of v, then the above proposition
also implies that » <<0. Hence v is of potential type.

CorROLLARY 2. Let w be an end contained in v, and let o’ be a subend of o.
Then for any v € S(w)NDz(0") (resp. u € %(w) NDL (o), v=Sk% @) on o
(resp. u=Sk% (u) on o).

§ 5. (L, R, B)-Green functions and (L, R, B)-ideal boundary

In this section, we shall always assume that |al|, |6], |¢|'/* € L],.(2)
for some r>d and w, is a fixed L-full-adapted end in 2.

5.1. Properties of L-Green functions for an end.

Lemma 5.1. Let y€ v, and let o be a subend of wo such that ® Cwo— {y}.
Then

g = S5 (g ™)

on w.

Proor. Let {¢,} be a sequence of non-negative bounded measurable
functions on w, such that their supports are compact and decrease to {y} and

Sg[)kd V=1 for each k. We may assume that the supports of ¢, do not inter-

sect with @. Since g,=G"*(¢;) € Dy o(») and g, is L-harmonic on o, we
have g,=S{"“(gz). Theorem 3.1 states that g,— gl locally uniformly on
wo—{y}. Hence S§“(g,)—>S§*(gf*) in w (cf. the proof of Proposition 4.4).
Hence we have the lemma.

Lemma 5.2.  Let y and o be as in the previous lemma. Then

L*,0p

ArJLgE™, ul=—h " (y)
Sfor any u € Hy 5,(0), where u*=u on v and =0 on w,—o.

Proor. Let {¢,} and {g:} be as in the proof of the previous lemma.
For simplicity, we write g= gl

First we shall show that a,=|/g— gtllz,,—0 (k—>c=). Choose ¢, € C}(w,)
such that ¢,=1 on a neighborhood of 9w, =0 on a neighborhood of y. Since
g+—g uniformly on the support of ¢,, Lemma 2.3 implies that 5.=|/g¢,
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—g1pollz,0—>0 (k—>o0). Now,
W = Bitl(g—gpo) — (gr—grgo)llL.0-

Obviously, (gi—gi¢o) | ®w €Dy o(») and, by Lemma 5.1, we also have
(g§—g@o)|w e Dy o(w). Since A, is coercive on D, ((»), there is 2>0 such
that

2) AL fs F1Z2 1130
for any f € D; o(»). Also, since g— g is L-harmonic on o,
©)) A Lg—gr f1=0

for feD;o(w). Thus, taking f=[(g—go)—(gr—grvo)]l|® in (2) and (8)
and applying (1), we have

1
ap < Bk+ﬁAL,wEg¢70— g100, (80o— greo) —(g— g ]2

By the continuity of 4; , on D; () x D; (), we obtain
= Brt+M(Bi+arBi)''?

for some M >0. Since §,—0 (k—oo), this inequality implies that a;;—0.
Now we have

A JLgwn ul=Ar. [ gw u']
:AL,wDEgka u#—-hf;'%]

= Sm Gu(uf —hL ™) dv.
Since u*=0 on the support of ¢, and since h,f;’m" is continuous at y, we have
ArLgn ul=={ gV >—hE"y) o).
On the other hand, since ||g— gullz,o=>0, A1, g v]—>A41. g u] Hence we
have the lemma.

5.2. (L, R, B)-Green functions.

Now, we consider a boundary condition (R, B) satisfying conditions (R)
and (B) in §4. For a point y€ wo, the (L, R, B)-Green function of w, with
pole at y is a function g, on w, having the following properties:

(a) There is an L-harmonic function U, on w, such that

~ L, .
&=8y"+U, on  wo;

(b) &, is (L, R, B)-full-harmonic on wo— {y};
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© &2
It is easy to see that #, having the above properties is unique if it exists.
Now we shall show the existence of g,:

Treorem b.1.  There exists U, € R such that
™ Az,0 Uy, v]+BLU,, v]=hi""(y)

Sfor all ve R and g,= gh*+ U, is the (L, R, B)-Green function of w, with pole
at y.

Proor. First, we observe that the linear functional v—AZ"*(y) is con-
tinuous on Hj s.,(w,). For, the coerciveness of A4;, (hence, of A;:,) on
D o(wo) implies that the mapping v—hL"* is continuous from H; ,, (»,) into
H 5.,(0,), and our Lemma 3.1 and Corollary 5.2 plus Remarque 5.1 of [17]
imply the continuity of w—w(y) on Hy«,,, (w,). Hence, from our assumption
that 4; , + B is coercive on R, it follows the existence of U, satisfying (*).

Next, we shall show that g,=gl-*+ U, is (L, R, B)-full-harmonic on
wo—{y}. Let » be any end such that ® Cw,—{y}. We consider the func-
tion wo= S¥°(g)—&/|o. By Lemma 5.1, uo=S{°(U,)— U,|o. Hence
uo € R(w) with corresponding function —U, e R. For any u € R(w) with

corresponding v € R (i.e., v=h3"),
Ar, [ wo, u]+ B[ wo, u]
=ArJLSF°(&y), ul—Ar . gk u]—Ar [ Uy, u]+Bu[uo, u]
=A1,[S5°(8y), ul—Ar[g5™, ul—(ALe[ Uy, v]+BLU,, v])
=Ar[S§°(8y), ul—ArLgh™, ul—h{""(y)
= A1, S§(&), ul,
L*,0q

where the last equality follows from Lemma 5.2 and the equality AL"*0=4h, s
Thus, we have g,= Sk:3(&,) on o (see the definition of Sk:% in 4.6). Therefore,
&y is (L, R, B)-full-harmonic on w,—{y}.

Since U, is L-harmonic on o, it follows that g, € S(w,). On the other
hand, by Proposition 4.1 and Lemma 5.1, —g%* is (L, R, B)-full-superhar-
monic on wo—{y}. Hence U, is (L, R, B)-full-superharmonic on w,—{y},
and hence on w,. Since U, € RCH;] o,,(»o), Corollary 1 to Proposition 4.5
implies that U, € . Since gZ* is an L-potential on w,, it also follows that
g .

CororrArY. U, € Py; in particular, Uy, =0, so that g,= gk.
5.3. Adjoint full-harmonic structure.

If w, is L-full-adapted, then it is also L*-full-adapted and we have
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Dy o(w0) = Dy o(00), D+ s.,(00) =Dy 5, (00), ete. Given (R, B) as above, let,
R*={ht"*; v ¢ R} and B*[hl*, hl )= Blv,, v:] for v, v, ¢ R. Then R*
is a subspace of H;« 5, (o) satisfying condition (R) for L* and B* is a bilinear
form on R* x R* satisfying condition (B). Thus we can define the (L*, R*,
B*)-full-harmonic structure on w, as the adjoint structure of the (L, R, B)-
full-harmonic structure.

Let g¥=gL"*+ U} be the corresponding (L*, R*, B*)-Green function of
wo. By Theorem 5.1, we have

Aro w, UF 1+ B*LUF, w]=hgy*(y)

for all we R*. If w=hl"* for v ¢ R, then hl-*=v and we have
Arofw, UF]=Aro[v, Uf J=A1,0[v, V],
B*LUY, wl=B[v, V,],
where V,=h{y™ ¢ R. Hence
Aol v, Vy]+Blo, V,]=v(y).

Letting v=U,, we have

Ar,o [ Uz, V14 BLU:, V1= U(y).

Since hf;®= U, the lefthand side is equal to U} (x) by Theorem 5.1. Hence
we have

Tueorem 5.2, For any x, y € v, U.(y)=U)(x); and hence g.(y)= & (x)
(x == y).

CoroLLARY. The mapping x— g.(y) is continuous on wo—{y} for each
y € Wy,

5.4. Integral representation of functions in P.

THEOREM 5.3. Let v € P and let v= Sg§>“’°dﬂ(9f) +h be the Riesz represen-

tation of the L-superharmonic function v on w, (cf. 3.5). Then w:ggyd/z( ¥)
belongs to P and v—w € P,.

Proor. Let K be a compact set in o, and let
szgKg"yd,a(y) and Ug= SKUyd,u(y).

Obviously, vx € P and vg t was K1 w,. Also, we see that ug € T (06) NS(wo)
and v—uvg € S(wo). If we show that ux € P, then the inequality v —vg=—ux
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implies v—vx =0 (Proposition 4.5), and the rest of the proof goes in the same
way as that of Theorem 3 in [107].

In order to show that uyx € 9P, it is enough to consider the case U,>0.
Let » be an open set such that @ Cw, and @y—w is compcat, and let ¢ be a
relatively compact neighborhood of 0w such that ¢ Cw,. By continuity of the
mapping y—U,(x) and by Harnack’s inequality (Proposition 2.4), there are
m, M>0 such that m < U,(x) <M for all ye Kand x€5. Fix y,€ K. Then
(M/m)U,,—U,=0 on ¢ for any ye K. Since U,, U, € Hy s, (), it follows
from Proposition 8.1 that (M /m)U,, = U, on w,—® for any y e K. Hence

Vo=

M) g, = U,dn(y)=ux
m K

on wy—a. Since Uy, € Py, this inequality implies ux € P,.

CoroLLARY. If ve D and if v is (L, R, B)-full-harmonic on an open set
o Cwy such that o,— w is compact, then

v= ggyd/x(y)

with a non-negative measure 1 on wo— o.

Next, let x,€ w, be a fixed point and let 7(y) be a (finite) positive
continuous function on w, which is equal to 1/g,(x,) outside a compact
neighborhood of x, contained in w,. Then the function K,(x)=7r(y)g,(x)
defined for x, y€ wy is a kernel on w, with respect to the (L, R, B)-full-
harmonic structure in the sense of [117, i.e., K,(«x) satisfies conditions (i), (ii)
and (iii) in 6.3 of [117] (cf. the above corollary for (iii)). Let 4=4% g 5 be
the ideal boundary associated with this kernel K,(x), i.e., wo\U4\Udw, is the
compactification of w, for which the functions y—K,(x) are continuously
extended to 4 and points of 4 are separated by these functions. For 7€ 4,
let K,(x)=1im,.,,, e, Ky(x). Obviously, K, € 9, and K,(x,)=1 for any 7 € 4.

By Theorem 8 of [117], we have the subset 4, of 4 which is the image of
e(Ds. o) by the homeomorphism given in this theorem. In fact, 41={y¢€ 4; K,
is extremal in 9Py, i.e., u € Py, K,—u € P, imply u=aK, for some constant a}.
By Theorem 7 of [11], we obtain

TreoreM 5.4, If u € 9Dy, then there exists a unique non-negative measure
n on 4 such that pu(d— 4,)=0 and
w)=| K,dutp  for weon

Thus, combining this theorem with Theorem 5.3, we obtain the complete
integral representation theorem for v e 9:
For any v € P, there exists a unique non-negative measure v on wo\J 4 such
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that y(4—4,)=0 and

v(x)zg Ky (x)dv(y).
wy\Jd4

Here, (dv)|wo=(1/7)du, where x is the measure on w, associated with the
L-superharmonic function v.

Remark. The ideal boundary 4 for the case R= {0} (i.e., 4=4% (4}.,0) i
the Martin boundary of w, for the L-harmonic structure (cf. the examples at
the end of [117]; also cf. Chap. X of [17)).

If [6]=0, then the boundary condition determined by R=H; ,,,(»,) and
B=0 may be regarded as the condition of vanishing normal derivatives on
the ideal boundary of w, (c¢f. [127]). Thus, in this case we may say that the
ideal boundary 4*=47}« u, ,, wy,0 1S the Kuramochi boundary of w, associated
with the equation Lu=0 (with |6]=0) (cf. [8]).

5.5. Properties of the 1deal boundary 4.

First, we remark that w,\U4 is a metrizable space, since w, is metrizable
(c¢f. Lemma 17 of [117]; also c¢f. Satz 12.1 of [37]).

For a set 4 in w,\U 4, its closure in w,\U4 will be denoted by A*. The
following proposition is generally true in the axiomatic theory of [117]:

Prorosition 5.1.  The ideal boundary 4 is of Stoilow type, i.e., if w1 and
wy are subends of wy such that @ N\, =10, then dF NoF=0.

Next we show

Prorosition 5.2. If w is a positive (L*, R*, B*)-full-superharmonic func-
tion on wo, and is (L*, R*, B*)-full-harmonic on a subend o of wo, then f=rw
has positive continuous extension to dNa*.

Proor. We can choose w, € P*(=P .+ g+ pv) Which has the following two
properties: (i) w;=w on an open set w; such that @ Cw and @—w; is com-
pact; (ii) there is a compact set K in w, such that w;, is (L*, R*, B*)-full-
harmonic on w,— K. By the corollary to Theorem 5.3, applied to the adjoint
structure, we have

()= £2(r)dntx)
for some non-negative measure # (5~0) on K. Let fi=7w;. Then
S =Koy d().

By Harnack’s principle (i.e., Axiom 3 of Brelot [1]; also c¢f. Lemma 1 of [117),
we see that as y—¢ ¢ 4, K,(x)—>K;(x) uniformly for » ¢ K. Hence lim,_; f1(y)
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exists and is equal to SK;(x)d/z(x)>0. If ¢ € Ano*, then, by virtue of the

previous proposition, lim,_;f(y)=lim,_;f1(y). Thus we have the proposi-
tion.

CoroLrLARY 1. For any x, x' € wo, f(y)= &;(x)/&,(x") has continuous
extension to 4.

CoroLLRAY 2. The ideal boundary 4 does not depend on the choice of x,.
5.6. Semi-continuous extension of certain functions to 4.

Let u be a positive continuous function on w, which is equal to some
u; € P* on a neighborhood of 4 (i.e., on an open set » such that @,—o is
compact), where it is also (L*, R*, B*)-full-harmonic. Given such a function
u, let

@;“:{%; we g)*}.

Since v =1/7 has the above property, the function y—K,(x) belongs to 25,
for each x € w,.

Let {w,} be a decreasing sequence of open sets in w, such that each o, is
regular with respect to the (L*, R*, B*)-full-harmonic structure, d,.; Cw,,
do— w, 18 compact for each n and Nw,=@. For w e P*, let

w(y) if ye€wo—w,

wy(y)=
Swdﬂy”" if yeow,

where #%°* is the full-harmonic measure for w, with respect to the (L*, R,
B*)-full-harmonic structure (ef. [117]). Then, w, € P* (Theorem 2 of [117])
and w, is (L*, R*, B*)-full-harmonic on w,. Now let f=w/u € P} and let
fa»=w,/u. By Proposition 5.2, we see that f, has continuous extension to 4.
Let f, be the extended function on w,\U4. Sincew, t w as n—oco, f=lim,_. f,
exists, f is lower semi-continuous on w,\U4 and f=/ on w,. It is easy to see
that the definition of f does not depend on the choice of {w,}. Obviously, if

F(y)=K,(x), then f(&)=K(x).
§ 6. Reduced functions and thin sets at ideal boundary points

In this section, we fix L and v, as in §5 and boundary condition (R, B)
as in §4.

6.1. Operation f—f*% for compact sets K and [ € D L,90,(0)-

Let K be a compact set in w,. For any f € D, 5,,(00), we define
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f on K;
fE= 4 hke on o if w is a relatively compact component of w,—K;
Sk3(f) on wif w is an end component of w,— K.
By the definition of Si%(f), we see that f¥ ¢ R+D; o(w,). For simplicity,
we shall write D®=R+D; ((0,) and f=h}*(¢ R) for f ¢ D®. The mapping

f—f% (resp. f— f7{) is linear continuous from D; ;, (wo) into D® (resp. into
R). 1If / is continuous and f==0 on K, then f*>0 on w, (see Proposition
4.2).

We shall say that a compact set K in w, is regular if f¥ is continuous
whenever f is continuous. Remark that if » satisfies condition (4) in the
Remark in 2.3 for each component w of w,— K, then K is regular. From this
fact, we can show that given an open set ¢ there is an increasing sequence
{K,} of regular compact sets such that \ /Int (K,)=0, where Int (K,) means

the interior of K,,.

Lemma 6.1, If fe D% then

Ap o[ f5, fX—f1+BLfE, fE—F]=0.

Proor. If o is a relatively compact component of w,— K, then

(ff—f)|o €Dy o(w). Hence Ay [ f%, f5—fI1=0.

Next, let » be an end component of w,—K. Since Sp(f)—h%* € R(w)

with corresponding function in R being /% s s —f Blo-@) We have, by
the definition of S&%(f),

Az LS5, fE—=RET4 BLEE st s FX w0080 — Faw-sw 1=0.

Since hle—f|we Dy o(w), ArJLf5 fX—hbI=A4; f% fX—fJ. On the
other hand, by Lemmas 4.1, 4.2 and by condition (B), (iii) in 4.5, we have

BL FE gty IX o 2 — Faton-s 1= BLFE stop - SX—F -
Hence,
A L5 5= 14 BLFE pop-pp [E—F1=0.

Noting that fX=Y /% s, sw)» Where the sum is taken over all end com-

ponents w of w,— K, we obtain the lemma.

Lemma 6.2, There is a constant M >0 which is independent of K such
that

15N 2oy = M1 f 1| 2,0,
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Sfor all f e D

Proor. By coerciveness of A, ,, on D¥ (condition (R), (ii) in 4.4) and by
Lemma 6.1, we have

Aol FEN o= Ao [ f5, 51+ BLFE, 5]
=A; . [f%, f1+BLf5 FI.

Since the mapping f—f is continuous from D® into R, the continuity of 4,
and B implies

| Az, o 5 FI4+BCAE FI ML 2ol £ 2o

where M, is independent of K. Hence, we have the lemma with M= M,/2,.
6.2. Function ¢ for general ¢.

Given a compact set K in w,, we shall define ¢ for more general func-
tions ¢ on K, as a generalization of f* defined above. We follow the argu-
ments given in [167].

Let €.(K) be the set of all continuous functions ¢ on K for which there
is f € Dz 5,,(wo) such that f|K=¢ and f is continuous on a neighborhood of
K. Then, by virtue of the corollary to Proposition 4.2, f* depends only on ¢,
so that we denote it by ¢*. Obviously, the mapping ¢—¢* is non-negative
linear on C.(K). Since C.(K) is dense in C(K), for each x € w, there is a
non-negative measure g% =% L-®B on K such that

0¥ ()= |pd

for all p € Cz(K). If x¢€K, then gf=¢,, the unit point mass at ». If
x € wo— K, then the measure I is supported by 0w (C0K), where o is the
component of w,— K containing x; furthermore, /7% =4} in case v is regular
(cf. [117] for the measure x3).

Given a function ¢ on K, if it is ZX-summable for any x € w,—K, then
we define ¢®=¢ on K and

o ()= [pdns

for x € wo— K. In this case ¢* is (L, R, B)-full-harmonic on w,—K.
The following lemma can be proved in the same way as Theorem 3 of
[16], using our Proposition 4.3:

Lemma 6.3. Let KC K and suppose ¢ is jaX-summable for any x € w,— K.
Then ¢ (restricted on K') is X -summable for any x € w,— K’ and
K)K’

(™) =X,
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6.8. Properties of v% for ve 9.

Lemma 6.4. Any ve P (restricted on K) s af-summable for any
x€wo—K. If v, weP and w=v on K, then w=v% on w,; in particular,
v=>v% on w,.

Proor. We can choose ¢, € Ci(w,) such that ¢, 1 min (v, w) on a neighbor-
hood of K. For any component v of w,—K, (¢pX—¢,)|w € D 5,(w). Since
w— ¢k is (L, R, B)-full-superharmonic on o, Proposition 4.5 (or Proposition
3.1, if w is relatively compact) implies that w=¢%. If follows that v is #%-
summable for x € » and v <w on .

LemmA 6.5. If ve P and KCK/, then v <%,

Proor. By Lemma 6.3 and the above lemma, we have for any x € w,
VE () = 0 () = (o aE = ot =0 (a).

LemMa 6.6. If ve D and if K is a regular compact set, then vE € P.

Proor. By a standard discussion (cf. e.g., the proof of Theorem 7 in
[167]), we see that v is lower semi-continuous in case K is regular. Then,
by Lemma 6.4, we see that v* is (L, R, B)-full-superharmonic on w,. Since
0<vf<vandve D, v¥ecP.

6.4. Reduced function of v € 9P for open sets.

For v € 9 and an open set ¢ in w,, we define
v,=1inf {we P; w=v on c}.
Obviously, 0 <v,<<v and v,=v on 6. First we prove
ProrosiTioN 6.1. v, = sup {vX; K: compact Cd} and v, € P.

Proor. Let v,=sup{vX; K: compact Co}. It is easy to see that
vo(x)=v(x) for x ¢ 6. By Lemma 6.4, we see that v, =% for any Ko, and
hence we have v, —>v,. To show the converse inequality, choose an increas-
ing sequence {K,} of regular compact sets in ¢ such that \ / Int (K,)=0. By

n
Lemmas 6.5 and 6.6, {+“»} is an increasing sequence of functions in % and
vo=lim, . v5" Since 0<vE*<ve D, voeP. It also follows that v,=uv,.
Hence v,=v, and v, € 9.

Properties of v,:

a) vi=<wv; on ¢ implies (v1), < (v2),;

b) 010, implies (v,,),,= (Vs,)e, = Vo, =Vs,;
¢) (vitv2)e=(v1);+ (v2),.
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Proofs of these properties are easy and standard. Note that, in proving
¢), we use Proposition 6.1 and the fact that (v, +v.)%= )%+ (v))X for a
compact set K.

Lemma 6.7. Let ¢ be an open set such that ¢ Cw, and let ve D. Then
there exists a non-negative measure v supported by ¢* (the closure of ¢ in
wo\J 4; cf. 5.5) such that

v@)={ K @dv(y)

for all x € wy—a.

The proof of this lemma is similar to that of Theorem 14 in [167] (or, the
original proof by R.S. Martin [137]). Namely, first choose an increasing
sequence of regular compact sets {K,} such that U Int(K,)=¢ and express
v%= in the form

Ko _
v SKnKydvﬂ( ¥

(cf. the corollary to Theorem 5.3). By considering the values of both hand
sides at a point x; € wy where v(x;)<oo, we see that {v,(K,)} is bounded.
Taking a vague limit v of {v,} and using Proposition 6.1, we obtain Lemma
6.7.

LemMa 6.8. Let ¢ be an open set in w,. If ve DEND, then v, ¢ DRND
and, for any increasing sequence {K,} of compact sets in ¢ such that v~ 1% v,,
we have

HvKn_vn'HL,wg__)O (n—)oo)

Proor. For simplicity we write v,=v%». By Lemma 6.2, {v,} is bound-
ed in D®. Hence it is weakly compact. It is easy to see that any weak limit
function of {v,} must be equal to v,. It follows that v, € D® and v,—wv,
weakly in D®. Let n>m. Since (v,)%»=v,, Lemma 6.1 implies

Az o[ Vny Vo—Vp |+ B[ Vpy U= ]=0.
Letting m—> oo, we have
Az, o[ Vny Vu—v, ]+ B[ ¥n, 0,—7,]=0.
Hence,
0=A; o[V Vo, V2=, ]+ B[0n—Ts, Un— 7,
=A1,0, Vor Vo= Vp ]+ B[ Vs, Bo— 0,0 (n—oo0).

From the coerciveness of A4; , it follows that |[v,—v,[|7,.,—0 (n—>o0).
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6.5. Reduced functions of v € 9 for closed sets on the ideal boundarry.

We now consider the ideal boundary 4 of w, given in 5.4. Let e be a
closed subset of 4. For v € P, we define

v.=inf {v,~,,; 0 is an open neighborhood of e in wy\U 4}.

Obviously, 0<v,<wv. It is easy to see that v,€%,. Since w,\U 4 is
metrizable, we can choose a decreasing sequence {5,} of open neighborhoods
of e in wo\U4 such that Ng;=e. Then v, n,, § v, (n—>00).

Properties of v,:

a) v = vz implies (v1), < (v2),;

b) e1Ce, implies v, < v,,;

C) (vl+vz)e=(”l)e+(vz)e'

These are easy to see from the corresponding properties of v, .

Prorosition 6.2. If v e D and e 1s a closed subset of 4, then there exists
a non-negative measure y on e such that

vgzgeK,,dv(vy)

on wy.
This proposition follows from Lemma 6.7 by an argument similar to the
proof of Theorem 16 of [16 ] or Theorem II in §3 of [137].

Also, by the same methods as Theorems 15 and 17 of [16 ], we have

ProrosiTiON 6.83. If ve€ D is expressed as
w0 =] K®daty)  Geon,
then for an open set ¢ in w, and a closed subset e of 4, we have
v)=|  W)@duy) (e
and
v(=  (K)du(y)  (xeoo).

LemMa 6.9. If v € DRND, then v, € DEN\D, for any closed subset e of 4
and if {0.,} s a decreasing sequence of open neighborhoods of e such that
Voo rap ¥ ey tHET

Hva'nf\wo_veHL.wg_)O (n_)oo)

Proor. For simplicity, let v,=v, ., By Lemma 6.8, v, € D*N\% and
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by Lemma 6.2, we also see that {v,} is bounded in D®. It follows that v, € D®
and v,—v, weakly in D®. Now, let n <m and K, K’ be compact sets such that
KCo,Nwy, K'ConNwye and K’ CK. Then, by Lemma 6.1,

Ay 0", oE — oK+ B[vE, oK — K] =0.
Letting K 1 6,N\w,, and then K’ 1 ¢,,N\wy, it follows from Lemma 6.8 that
AL o) Vmy Vm— 0y ]+ B[ Dy T— 0, ]=0.
Hence
Az o[ Vn—ve, V= Ve |+ B[Op—Ve, On— Ve
= AL o Vs Vu ]+ B[ Uy 0 |— AL o Vey Vi ]— B[ V¢, U]
—Ar,0 Vs ve]— B[ Tm, e+ AL o[ ve, vo |+ B[ 0., b,
Since v,—v, weakly as m— oo, we have

0="lim (A o[ Vmn—Ve, V= Ve |+ B[ Op—0e, UV )

= (Ap [0 04 B0y 5 — (Apu[ 00y 0]+ B30, 3.
—0 (n—>o0).
Therefore, by coerciveness of 4; ., we have ||v,—v.||z,,,—0 (m—o0).
Prorosition 6.4. If v e DRN\D, then for any closed set e in 4,
(vo)e=v,.

Proor. Let {5,} be a decreasing sequence of open neighborhoods of e
such that v, ~,, | v.. Let v,=v, .. Lemma 6.2 shows that for any com-
pact set K in w,,

Vp— VU, Loy — V= Ve|l L,
Ii( V¥l 20y = M| 12,0,

Since (v,— v,)* =(v,)* —(v,)¥ and since (v,)*>(v,),, r0, a0d (V.)F>(v.),,~0, IN
D®as K1t 0,Nw, by Lemma 6.8, we have

|| (U?l>zrmf\m0_ (ve)a'mf\mOHL,mo g M ||vﬂ — VU, | t L,wg
If n>m, then (v,), ~.,=v. by property b) of »,. Hence

0 << limsup ||v,— (vo)o, ropll 2,0, = M lim |jv,—v,]|2,,,=0
N—oo oo

by the above lemma. Hence v,—>(v.),, o, in D® (n—>c0), which implies, again
by the above lemma, (v.), ~.,=v.. Finally, letting m—co, we have (v.).=v..

Now that we have Proposition 6.4, we can prove the following lemma in
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a way similar to the proof of Theorem 20 of [ 16 ]:

Lemma 6.10.  Let e be a closed set in 4 such that for some v € DEND with
u>0, we have u,=0. Then for any ve P, (v,),=v,.

Sketch of the Proor. We decompose v into v=wv,+v;, where v, € 9, and
”f:S K,du(y). By virtue of property c¢) of v,, it is enough to show that

((vy))e=(vy). and (v;).),=(v;).. To prove the first equality, we show that if
v € P, then v,n,,—v, is (L, R, B)-full-superharmonic on o, for any neighbor-
hood ¢ of e, by the same argument as that in the proof of Theorem 20 of [16 ],
and making use of the assumption z,=0. Then, for another neighborhood
¢’ of e such that ¢’ Cq, properties b) and ¢) for v, imply

Voo, Ve Z (Uo'('\mo_ 'Ue>a-/('\a,0: (Uu'f'\mo>a'//\wﬂ— (ve)a"/\mn
= vo'/('\mo— (1}8)0'/\0)0 2 0'

Now letting ¢’ | e, and then ¢ | e, we obtain (v,),=v,.

In order to prove that ((v).).=(v;)., we first show that if y € w,, then
(K;),=0. This can be seen by the fact that K, <au in a neighborhood of 4
for some « and by the assumption u,=0. Then, by Proposition 6.3, we have
(v).=0, and hence ((v;).).=0=(v,),.

Remark. DEN9D always contains a positive function. For, if R= {0}
then any G%°(¢) (¢ ==0) belongs to DENP=D; (wo)NP; if R+~ {0}, then
any U, given in Theoerem 5.1 is positive and belongs to RN\P, CD*NP.

6.6. Characterization of 4.

The results in the above section 6.5 allow us to prove the following
characterization of the set 4, (see 5.4 for the definition of 4,):

TuHEOREM 6.1,
di=A{y ¢ 4; (K=K}
and
d—d1={y€ 4;(K,);=0}.
For the classical harmonic structure, this result is well known in case 4
is the Martin boundary (see e.g., Theorem I in §4 of [187]) or the Kuramochi

boundary (see, the corollary to Theorem 21 and Theorem 26 of [16]). For
the proof of Theorem 6.1 we can essentially follow the arguments in [16].

Sketch of the Proor of Theorem 6.1. Let 4'={y¢ 4; (K, =K,}.
Using property c¢) of v, and Proposition 6.2, we easily see that 4’ C 4, (cf. the
proof of Theorem I in §4 of [137] and that of Theorem 26, 3) of [167]). On the
other hand, Propositions 6.2 and 6.4, together with Lemma 6.10 imply that
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(K,)y=0 for ye 4—4" (cf. the proof of Theorem 21 of [16]). Thus, it
remains to show 4, C4’. Suppose 7 € 4, and y ¢ 4’. Then there is an open
neighborhood ¢ of 7 such that (K,),~.,,#K,. Let {w,} be a sequence of
relatively compact open sets in w, such that 0w, D 0w, 0w,Nw, is compact,

D, N wo Cwpi1 and \ Jo,=wo. If (K), = gKydu,z(y) with a positive measure x,

on 0w, Nw,, then it is easy to see that {x,(0w,)} is bounded. Since (K,), —K,
as n—oo, it follows from the assumption » € 4, that x, vaguely converges to
the unit point mass 0, at y. Let ¢’ be another open neighborhood of 7 such

that >Co. Then x,|6” also vaguely converges to d, (cf. the proof of Theorem
24 in [16]). Hence, using the relation (K,),~.,=K, for ye€d Now, and
Proposition 6.3, we have

K,=lim g  Kydp(y)

N— o0 oM

= llmS (Ky)gnmudﬂﬂ(y>

a’Nwy,

é ];zi_r,g (<K17>wn)a'f\wo g (Kq)o-f\woa

which contradicts the choice of 6. Hence 7 € 4; implies 7 € 4.
6.7. Thin sets at ideal boundary points.

Following Naim [15] (Theorem 2), we give the following definition:
An open set X in v, is called thin (more precisely, (L, R, B)-thin) at £ € 4,
if there is an open neighborhood ¢ of & in wy\U 4 such that

(Ke)onx =K.

Obviously, if X is thin at &é and X' C X, then X’ is thin at &. Thus, for any
set X in wy, X is called thin at ¢ if it is contained in an open set X’ which is
thin at & in the above sense.

If £¢ X*, then X is thin at £&. Theorem 7.1 shows that w, is thin at ¢ ¢ 4
if and only if €€ 4— 4.

In [157), the definition of thin sets was given in terms of a class of func-
tions instead of the above form. The equivalence of two types of definition
of thin sets was generalized by M. Brelot [ 2] to an axiomatic theory. It can
be applied to the present theory in case R= {0}, i.e., in the case of Martin
boundary. We can also establish a similar equivalence even in case R=~ {0} ;
in fact we shall prove:

THEOREM 6.2. Let u be any positive continuous function on v, satisfying
the condition given in 5.6, i.e., there are a meighborhood w of 4 and u, € P*
such that u=u, on wNw, and u s (L*, R*, B¥)-full-harmonic on wNw, Let
XCuwoand § € ANX*. Then X is thin at & if and only if there is f € P} (see
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5.6 for this class of functions) such that
* liminf F(8).
® Jimint /(37>
To prove this theorem, we need some preparations.

Lemma 6.11.  Let 0 be an open set in wo and x € wo. Then the function
y—(&;).(x) belongs to P*.

Proor. For a compact set K in w,,
(@) 0=\ g, an5 = [g2(0dpr),

and hence the function y—(g,)*(x) belongs to P*  Since (g,).(x)
=lim,_..(&,)%"(x) for some increasing equence {K,} of compact sets and since
(&).(x)= g,(x)=g¥(y), we see that the function y—(g,),(x) belongs to P*.

CorROLLARY. (&,),(2)=(&F).(y), where, in the right hand side, the reduced
Sunction is taken with respect to the (L*, R*, B*)-full-harmonic structure.

Proor. If yeo, then (§,),(x)= g,(x)= g¥(y). Hence, by the above
lemma, (&,).(x)=(g¥).(y). Starting from the adjoint structure, we obtain
the converse inequality.

For an open set ¢ in w, and a point x € w,, let
Fo (y)=(K,), (2).
By the above lemma, F, , € 5,. We now show
Lemma 6.12. F, (&)=(K,).(x) for & € 4.

Proor. For a compact set K, let Fx .(y)=(K,)*(x). Since
Fr ()= K ()45,
we have
Pr ()= K2 ()= (K ()
for any & € 4. Hence, it is enough to show that F, .(&)=supxc, Fx .(£).

Let wx(y)=(g,)*(x) and w(y)=(g,).(x). Then wg,w € P*and Fg ,=rwg,
F,.=yw. For a compact set K' in w, and u € P*, we shall write uf’( y)

=\udgk LoRBY Let fiF ) =1(wg)k and f¥7=7ywf. By definition,

F, (&)= sup FEAL).
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Hence, for any 1<F, (&), we find a compact set K’ in w, such that f?K E)> A
We may assume that x € K’ and 7(y)=1/g,(x0) on wy—K’ (so that x, € K').
Choose another compact set K in w, whose interior contains K’. Then

w¥ ()= (w)¥ (7)) =wENE (5)— (w)EHE (y)
— @ — o Vg,
If yewo—K", then the support of Z&"“E“E" is contained in 9K”. Hence
for y€ w,—K",

0<w'(y)—wr)¥ (y)

< sup W ()~ ) | ghndas e

T z€0K”

= sup {/")—fE @ g5

ZEOK"

Thus,
0 éf(K’)(y)_f%f’)(y)é Sg}g {f(lf’)(z>_f}{1(’)(z)}
ZE€ ”
for all y € wo—K". It follows that
0< /I~ @)= sup {fF@D—f K E0(2)}

for any £ € 4. Since wx 1t w, (wg)X 1t wE as K1 0. Since (wg)X’, wk  are both
L*-harmonic on w,—K”, (wg)X " converges to wX  uniformly on 0K” as K 1 o.
Thus, given e>0, there is Ko such that sup.cox {f*(2)— /¥ (2)} <e.
For such K, we have

A< f(K GRS E(e) e < FK,x<5)-+e§§(ucp Fr (&) +e.

Since 1 (< F, (&) and ¢ (>0) are arbitrary, we have
F,(8)=sup Fi,.(8).
KCo

Proor of Theorem 6.2. Once we obtain the above lemma, we can prove
Theorem 6.2 by a method similar to that of Théoréme 2 in [15]. First observe
that, by virtue of Proposition 5.2, it is enough to prove the theorem in case
uv=1/y. Also, we may assume that X is an open set.

If X is thin at &, i.e., if there is an open neighborhood ¢ of & such that
(K¢)enx =K¢, then choose x € w, such that (Ky),~x(x)<K:(x) and consider
f=F.nx,.. Then feP¥,. Since f(y)=(K,),nx(x)=K,(x) for yeoNX,

liminf f(y)= hmlnf Ky(x) Ke(%)>(Ke)onx (x)= f(&),

I-EyeXx I-E5€
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where we used Lemma 6.12 in the last equality.

Conversely, suppose there is fe€ 9%, satisfying (*) of the theorem.
Choose 4 such that liminf, .. ,.x f(y)> 41> f(&). Then there is an open
neighborhood ¢ of ¢ such that f>=2 on ¢n\X. We may assume that
7(y)=1/g,(x,) for yeoNw,. Let f=7w with we P*. Since w(y)=2g,(x0)
=28Xy) for yeonX, we have w=1(g¥),nx. By the corollary to Lemma
6.11, w(y)=4(&yenx(x0) for all yew,. Hence f=21F, x .. Therefore,
again using the above lemma, we have f (&)= A(Ke)onx(x0). It follows that
(Ke)enx(20)<1=K:(x,). Hence X is thin at ¢.

COROLLAARY 1. Let u be as in Theorem 6.2 and let £ € 4. Then &€ 4, if
and only if f(&)=liminf, . f(y) for all f € Pk.

CoRrOLLARY 2. The set 4, and the notion of thin sets do not depend on the
choice of x,

CororLrary 8. [f Xi, X, are thin at € € 4, then X,\UX, 1s thin at &.

Corresponding to the notion of (L, R, B)-thinness, there is a notion of (L,
R, B)-fine limit at a point in 4,. Namely, for ¢ € 4,, let

Fe={wo— X; X is thin at &}.

Then d; is a filter. Limits with respect to this filter is the (L, R, B)-fine
limits at &. By Theorem 6.2, we have

CoroLLARY 4. Any f € ¥ has an (L, R, B)-fine limit (&) at every & ¢ 4,.
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