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In the present paper we consider a system of linear partial differential
operators with variable coefficients written in matrix notation

m-\

Lu = Dfu-\- Σ Σ AjtP(t, x)D3

tD
p

xu, (πC>\)
j = 0 j + \p\<m

where the AJtP(t9 x) are Nx N matrices whose entries lie in &(H), H being a

slab 0<ίί<ΞΓ, x e Rn. By u e Q)\H) we mean that each component of u lies in

ζb'(H). To simplify the notation, similar abbreviations will constantly be
used for vector distributions. A Cauchy problem for L with ί = 0 as initial
hyperplane has been formulated in a generalized sense in a related paper

[βΓ\: To find in Q)'(H) a solution u satisfying

o

Lu=f in H

under the condition

tio

for preassigned f e ζΰ'(H) and a e Q)'(Rn). Here lim u denotes the distribu-
f 10

tional boundary value of u which was defined in [6] in accord with S. Lo jasie-
wicz H10I). If a solution u exists, / must have a canonical extension over
ί = 0. If this is a case and u satisfies Lu=f in H, then u0 exists if and only

o

if u has an extension over t = 0, that is, u is a restriction t o ^ o f a U e
2)'((-oo5 T)xRn). Most spaces of distributions encountered in the usual
treatments of partial differential equations have such an extension property.
For example, as for dtWtS)(H\ the property is involved in its definition Q4].

The purpose of this paper is to investigate Cauchy problems for L from
our stand-points, imposing on L or Z,* some additional conditions such as
energy inequalities of Friedrichs-Levy type. While we regard such inequa-
lities as a priori estimates, they are usually deduced from the properties
involved in a differential system called hyperbolic.

In Section 2 we deal with energy inequalities with the aid of the lemmas
given in Section 1. The equivalence of E2?(0)H a n ( i D£(s)H a r e shown. In Sec-



76 Mitsuyuki ITANO and Kiyoshi YOSHIDA

tion 3 we consider a Cauchy problem in a generalized sense to make clear
our approach to studying Cauchy problems from our view-points. Section 4
is devoted to some remarks to the spaces dt{σ,s)(H) in connection with distri-
butional boundary value, canonical extension and so on. In Section 5 we
show an approximation theorem, which, together with energy inequalities,
enables us to obtain uniqueness and existence theorems for Cauchy problems.
This was done in Section 6 through a Hubert space approach. The results
are so arranged as to be compared with those recently established by T.
Balaban [1] for a hyperbolic pseudo-differential operator. In Section 7 we
consider more strict energy inequalities which we can deduce from assuming
C2?(o)H ̂ o r both L and L*. In the final section, some investigations are made
on uniqueness and existence of a solution to a Cauchy problem in a general
sense already mentioned.

1. Preliminary lemmas

We denote by x = (xu ••-, xn), y, z points of Euclidean space Rn, and by
p = (pu ~">pn) the multi-indices. We write Ξn for the dual Euclidean space

with points £ = (£i, ••-, ξ»). <χ, ζ> = Σ χj$j is the dual pairing. As usual,

we write | * | = ( Σ \χj\2A \P\ = ΣPj, *>=*{'-**-, 0* = (-O'* n p?\ Pn ,
j = l j = \ OX1 •• OXn

and so on.
In what follows, unless otherwise stated, we shall use the notations of

L. Hδrmander Q4], where the Fourier transform $, φ e y(Rn), is defined by

which is extended by continuity to a temperate distribution u e 6^XRn) by
the formula

<£, φ> = <u, φ>.

Here ^(Rn) denotes the space of complex valued C°°-tunctions on Rn such

that sup sup (1 + I Λ; 12)2" I Dp

xφ(x) \ < oo for all non-negative integers Z. The
\p\<,l χeRn

topology in £?(Rn) is defined by the semi-norms sup sup (1 + | x \ 2ψ \ Dp

xφ(x) \.
\\<1 X6Rn

By Sf'(Rn) we mean the space of the temperate distributions on Rn, that is,
the strong dual of Sf(Rn).

Let £(Rn) denote the space of complex valued C°°-ίunctions defined on Rn

which possess bounded derivatives of all orders. The topology is defined by
the family of all semi-norms



Energy Inequalities and Cauchy Problems 77

= sup sup I Dp
xa I, a e £(Rn).

\P\<1 X€Rn

Let x e Co(Rn) and assume that for some integer k^>0

(i) *tf) = O(|£|*), e -0 ,

but that

(ii) &(tξ) = O for al l r e a l t i m p l i e s ξ = 0ii ξ e ΞH.

For our later purpose we shall need the following three lemmas gene-
ralizing the corresponding results of Hδrmander []4, Corollary 2.4.1, Theorem
2.4.2 and Theorem 2.4.3]. The proofs of these lemmas will be omitted since
it is not difficult to carry out them by modifying the methods exhibited
there.

Let us now recall that dί^ — °o< 5 < + oo5 is the space of temperate
distributions u on Rn such that ύ is a function and

LEMMA 1. // (i) and (ii) are valid and s<k, it follows that there exist
positive constants CΊ and C2, independent of u but depending on 5, a and x,
such that

for s<0

for any u e

LEMMA 2. Let a e &(Rn) and let x satisfy (i). If s<k, there exist a non-
negative integer I and a constant C, independent of u but depending on s and
G such that we have

for any u e dC{σ+s_ly

LEMMA 3. Let a e (β(Rn) and x e C^(Rn). Then for any u e dt{s_^ there
exist a non-negative integer I and a constant C, independent of ε and u but de-
pending on 5, such that when 0 < ε < 1

\\a(u*X€) — (Q

and we have
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a(u*χ£) — (au)*xε-^0 in dC{s) when ε->0.

2. Energy inequalities

Let H be the slab [0, TJxRn, T>0. We shall consider a system of
linear partial differential operators:

m-l

L=Dψ+Σ Σ Aj,p(t, χ)D'tD
p

x,

where each AjtP is an NxN matrix with entries in &(H), the space of C°°-
functions a on H such that a is bounded with its derivatives of every order.
Any function in £(H) is, as easily verified by an argument due to R. T.
Seeley [13], a restriction of function in £(Rn+ι). Thus we assume that the
entries of Aj>p belong to £(Rn+1).

We shall denote by CQ(H) = Q)(H) the space of the restrictions to H of
the functions in Cj(ΛΛ+i), equipped with the quotient topology. For a
vector function u = (uu ..., uN) we write u e C%(Rn+1) if Uj e C°^{Rn+1), j =
1, 2 , . . . , N. T h e n , b y \\u(t, ) l l (o w e m e a n t h e n o r m d e f i n e d b y \\u(t, )II?S) =

ΣJky(ί, Oil?.).

Now we shall introduce an inequality of Friedrichs-Levy type:

Σ)\

[f\\Lu(t',
Jo

where C is a constant independent of u. Similarly, for any s we shall intro-
duce

m— i ?»— i

R s ) ] Σ l|2>ί«(t, )II?.+»-I- ί

['\\Lu(t', )||?*,Λ0,
Jo

where C may depend on 5. In what follows, by C with or without index we
shall denote a constant having a different meaning according to the cases.

In the proof of Theorem 1 below we shall need the following lemma
(cf. [2, p. 72]) which is easily verified.

LEMMA 4. Let r(t) and p(t) be two real-valued functions defined in the
interval 0<;t<LT and suppose that r is continuous and p is non-decreasing.
Then the inequality
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r(t)<:C(p(t) + [ r(tf)dtr) (C>0 is a constant)
Jo

implies

r(t)<,Cectp(t).

THEOREM 1. Ĉ (O)H implies [_E(S)~] and vice versa.

PROOF. First we show that E£(O)H ™Plies D ĉoll Let % be a function
satisfying the conditions (i) and (ii) in Section 1. For any u e C^{Rn+λ) we
put u6(t) = u *' xε, ε>0, where by *' we mean the partial convolution with
respect to the variable x. By our hypothesis u£ satisfies the inequality
[_E(0)J. Hence we have

m—i m—i

Σ \\D'ue(t, )l|g»-i-y,^C( Σ \\Dίueφ, )ll?-i-y,+
j=0 j=Q

Here we can write with a constant Co

\\(L(u*%)-(Lu)*%)(t', .)||?o)

"Σ Σ

i

=C O Σ Σ

We first confine ourselves to the case s<0. Owing to Lemmas 1 and 2
the following estimates are valid:

m—irl

Σ \\Diu6(t,
j=oJo

m-i z l
Σ ||Dίuβ(0,
y-iJo

Σ ||
y=o

Σ ||Dί«(0,
y-o

and

\\Dίu(t', .)||f.+«-1_y,Λ',
i Jo

where constants Cy, y = l, 2, 3 are independent of u but depending on s.
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Now setting r (0= |
j = 0

u(ί', )\\Ldt',

we obtain from these estimates the following inequality

We can therefore apply Lemma 4 to obtain the estimate D£(s)H> a s desired.
We now turn to the case 5 > 0. We assume that % is chosen to satisfy

the condition s<k as in Lemma 2. A slight modification of the arguments
given above will lead us to the same inequality:

m-i

ΣW

mι

Applying Lemma 4 with p(t) replaced by p(ί) + Σ \\DJ

tu(t9 )ll?»-i-i» w e °b-
y=o

tain the estimate D̂ coH a s before.
Conversely, assume that [_E(S)] holds. Put s '=— 5. Making use of the

estimate [E(s)2, we have with a constant C"
m— i

J = 0

ΣT
y=oJo 0J0

+

Suppose 5'<0. Then, applying Lemmas 1 and 2, we shall obtain with a con-
stant C"

m — \ m—\ rt
Σ \\Diu(t, .)H8-i-y,^C"( Σ ||/>ί*(0, )ll?*-i-y)+\ \\Lu(t\

i=o y=o Jo

Consequently, by Lemma 4, we have the estimate [_E(0)^. When s'>0, we
assume that x is chosen to satisfy the condition s' < k as in Lemma 2. If we
take into account the corresponding part of the proof of the implication
[^(oH^C^s)], it is easy to see that the same arguments given above will
lead to the estimate D^oJ Thus the proof is complete.

We also consider the energy inequalities

m1
Σ \\Dίu(t,

y

m— 1

Σ
y=o
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From the above discussions it will be evident that Theorem 1 remains
valid for these energy inequalities.

COROLLARY 1. L satisfies [_E(oχ] if and only if the principal part Lm of
L satisfies [_E(0)~].

PROOF. It is easy to verify the assertion from the arguments given in
the proof of Theorem 1.

3. Some observations about the Cauchy problems

In Q6] one of the authors investigated in a general framework Cauchy
problem for a system of linear partial differential equations with ί = 0 as
initial hyperplane. Let us first recall some notions introduced there to make

o

clear our stand-point. Given a distribution u e Q)'(H) we understand the
distributional boundary value \imu=a e Q)'(Rn) as follows: Let φ e C^(R^)

t i o

be arbitrarily chosen in such a way that φ^>0, \φdt = l and supp ΦCL1>ZJ

We put φ€(i)=—ί(—\ ε>0. If ε is small enough, φ6(t)u is a distribution

6 Q)'(Rn+1). If limφsu exists in Q)'(Rn+1) and equals δζ&a for any choice of φ

with the properties just indicated, we define a = \\mu. Similarly we can
t i o

speak of the boundary value linm.
t\τ

Another important notion is a canonical extension of a distribution

u e Q)'(H). Let ρ(t) = \ φ(t')dt' and p{£)(t) = pf-γ\ where φ is a function cho-

sen as above. p{ε)u will be understood as a distribution c ©'(( — °°5 T) x Rn)

vanishing for ί<ε. If there exists a distribution u^ e 2)'((-oo, T) x Rn) such

that lim p(£)u = u^ in ©'(( — oo, T)xRn) for any choice of φ, u^ is called a
canonical extension of u over t = 0. In this connection we note that if υ —
Dtu in H, then v has the canonical extension over t = 0 if and only if lim u

t i o

exists Q6, p. 14]. Similarly we can speak of a canonical extension over t—T^
denoted by u^, and therefore a two-sided canonical extension which we shall
denote by (uJ)~ or (i*~)— We shall frequently make use of the following
facts which will be easily verified: If lim u exists, then

t i o

lim O*'χ) = (lim u)*x9 x e C°^{Rn),
t i o t i o
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lim (φu) = φ(0> •) lim u, φe C°°(Rn+ι),
t40 t Ϊ0

and

x = Dp

x(lim u).
tio tio

Analogues hold also for canonical extensions.
The Cauchy problem for the differential operator L is formulated in a

generalized sense. It is to find a solution u = (ui, • ••, uN), uj€Q)'(H) to the
equation

Lu =D?u + ™Σ Σ Aj p(t, χ)Dj

tD
p

xu =f in Jϊ,
y=o j+\ρ\<m

with the initial condition

uQ=\im (u, Dtu, ..., D™~ιu) = a,
tio

where / = (fu ..., fN\ fj e ζb'(H) and a = (αθ5 , αw_i)5 ajtk e SZJ'CΛ,,) are given.

For the sake of simplicity, we shall write u e Q)\H) if each component
o

UJ e Q)r(H). A similar abbreviation for a vector distribution will be used
when there occurs no fear of confusions.

Suppose there exists a solution u e ζb'(H). As shown in [6, p. 18], u
and / must have the canonical extensions u^ f^. We shall see that u^ satis-
fies the equation

m-ι

Σ^M<8>r*(0) in (-oo, τ)χRn.

Here we put

= - i Σ

where ^y(ί, Λ, DX) abbreviates Σ ŷ/»(ί, ^ ) ^ for j<m and 4̂W is the unit
\p\<m-j

matrix. In fact, from the identity

p(£)D
J

tu = Di(p(£)u) + Dj

t-\ίφεu) + Ώj

t-\iφaΌtu) + + (ίφeD^u) (1)

it follows that

Consequently

1 = 1
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=f~-i£ Σ

ΣDk

tδ<S>{-i Σ Σ (-iy-'-k(J . L )D't-
l-*A0, x,

yfe-0 j=k+l /=1 \ * /

Before proving the converse, we observe that ym-k-\ is rewritten in the
form:

rm-*- i (0=-iα*+Σ 1 Σ Bk,q>j{t, x)Dlah A = 0, . . . ,m-l, (2)
y=o ki+y<yfe

where 5*,g,y is a linear combination of derivatives of the coefficient matrices
AjtP of order up to at most k — 1. This implies that in a special case τn = l
we have γo(t)= —ia0. In what follows, we shall use the notation

Now it is easy to see that the mapping Q)'(Rn) B a-+γ(O) = (ro(O), ..., r»
e Q)'(Rn) is a linear isomorphism.

Suppose that a vector distribution ι>e2)'(( —ob5 T)xRn) with support
in [Ό, T) x i?w is a solution to the equation

θ). (3)
J = 0

Then, substituting

the equation (3) can be written in the equivalent form

Dtvm=-mΣ Σ A
j = 0 j + \p\<m

If we apply Theorem 1 in [6, p. 18], we can conclude that u = υ \ H is a solu-
tion to the Cauchy problem in question with the initial data α, and that v is
the canonical extension of u.

In view of Proposition 7 in [6, p. 21] we can also conclude the following

o

PROPOSITION 1. Let u, f be vector distributions e Q)f(H) and assume that
f has the canonical extension f^ over t = 0 and that u satisfies the equation Lu
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o

= / in H. Then lim u exists if and only if u can be extended to a vector dis-
f 1 0

tributίon e S) ' ( (- oo, T) x Rn).

Let Z* be the formal adjoint of L, that is,

where

_ £, x) for j<m, A% — I
\p\<im-j "

and by AftP we mean the adjoint of AJtP.
From these considerations we obtain the following

o

PROPOSITION 2. Let f e 2)'(ϋΓ)> a e Q)'(Rn) and assume that f has a cano-
o

nical extension f^. To find a solution u e Q)r(H) to the equation

Lu=f

with the condition
uo=lim(u, Dtu, ..., Dr?~1u)=a

ί l O

is reduced to the problem of finding veQ)r(( — oo5 T)xRn) with supp v
[0, T) x i?« such that

(t , L*w) = (f~9 w) + (Γo(a),wo\ w e C ; ( ( - o o , Γ) x/?«) (4)

o

where ^ 0 = lim («;, Z)^, ••, D™~xw). u and v are related by u = v\H.
/ 1 0

REMARK. We note that (4) leads us to Green's formula

((Lu)^> w) — (u^ L*w)= — (Γo(uo), wo).

In a similar way we also obtain

o

PROPOSITION 3. Let f e 2)'(ZΓ) crnd α, β 6 Q)'(Rn) cmd assume that f has a
o

two-sided canonical extension (/0~ Γo ./md α solution u e Q)f(H) to the equa-
tion

Lu=f

with the conditions

uo=\im (u, Dtu, . . , D™~1u)=a,
t 10

t\τ
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o

is reduced to the problem of finding v e Q)'(H) such that

(υ, L*w) = ((f^y, «;) + (Γo(α), wo)-(Γτ(β), wτ\ w e C^{Rn+ι\ (5)

where

wo = \im (w, Dtw, ..., D™'1™) and w j ^ l i m (w, Dtw, ••, D^
tiO tϊT

REMARK. We also note that (5) leads to Green's formula

We shall denote by Sf'(H) the set of distributions e ζ£>'(H), which can be
extensible to temperate distributions € Sf'(Rn+i). The quotient topology is
introduced there. Similarly for sr'((-co, TJxRn) or ^ ( [ 0 , oo)χi?w). By

we also mean the space of the restrictions to H of the functions e
I) 3 equipped with the quotient topology. Now let u e Sf'(H). If u has

the canonical extension u^ (resp. u^) and u^ €&*'(( —°o9 TJxRn) (resp.
u~ e y'CQO, co) x j?n))5 we shall say that u has the canonical ^'-extension over
£ = 0 (resp. t=T). A two-sided canonical ^'-extension will be similarly de-
fined.

COROLLARY 2. Let u e £ff(H) and uOy UT 6" yf(Rn) and assume that u, Lu
have two-sided canonical £ff-extensions. Then for any w e y(Rn+ι) we have

(((Z,iO-O~, w)-((uJ)~, L*w) = (Γτ(uτ), wτ)-(Γo(uo\ w0).

PROOF. Take a sequence {0y}5 ψj e C^(Rn+ι), such that it converges in
) to w. Then from the preceding remark

Passing to the limit as j->°o, we obtain the equation which was to be proved.

4. Some remarks on the space dC^σ

In the sequel the space dt{σ>s)(H), — oo<<r5 5 < + oo5 will play a central

role. dt{σ>s){H) is the space of all distributions u eQ)f(H) such that there ex-

ists a distribution U e dt(σ,s)(Rn+ι) with U=u in ,ίΓ. The norm of u is defined

by ||M||(σ,S) = inf ||ί7||(σ,5), the infimum being taken over all such U. We also
o

consider the space dίw>s){H), the space of all u e c%(σ>s)(Rn+1) with supp uCH.

Then dC{σ>s){H) and dC^σ>-s){H) are anti-dual Hubert spaces with respect to

an extension of the sesquilinear form
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jRn)θ
uvdtdx, u 6 C%(H), v 6

The scalar product between them will be denoted by ( , •)• These spaces are
stable under the multiplication by the elements of £(H). In fact, this fol-
lows immediately from repeated use of the interpolation theorem for the
Hubert scales Q8, p. 150]. A similar reasoning will be employed in the proof

of Corollary 4 to Theorem 3 in Section 6. When tf>^ it is known that any
u e gt{σ,s)(H) has a trace ι*(0, •) e dt^s^{Rn) [4, p. 55; 5, p. 14]. From the
definition of the trace it can be easily verified that it coincides with the
boundary value. In the case where 6=k is a non-negative integer, we may
assume that dC{k>s)(H) is equipped with the equivalent norm:

j = Q J θ

which will also be denoted by the same symbol ||^||(fc,S). As shown in Q6,
p. 16] we can see that u e dC{kyS)(H), &>0, has the canonical extension u^ e
^ s ) ( ( - o o 5 TJxRn) if and only if lim u = lim Dtu = --=lim Dk

t~
1u = 0, and

tio tio tio

that every u e dt{0>s)(H) has the canonical extension u^ e <%(o,S)((— °°, T^\ x Rn).
Similar statements about the other canonical extensions remain valid.

We note that dt{0>s)(H) may be identified with
From now on, to simplify notations, we shall denote by u, f vector

distributions. The rest of this section is devoted to show the following

PROPOSITION 4. If u 6 c%(0,k+s+m-i)(H) satisfies Lu=fe dί{k,s-i){H)^ then
u 6 <^(£ + W )

For the proof we need Lemma 6 below. This will in turn be shown by
making use of the following

LEMMA 5. // u e ̂ £(0>k+s+m)(H) and I u = / e ^ ( Λ > S ) ( f f ) , then φu e

rm,s)(Rn+ι) for any φ e

PROOF. This follows by the same argument as used in [4, Theorem
4.3.1].

In what follows, we shall use the notations

U ( s ) ( R n ) = d C { s + m - l ) { R n ) X & t s + m-2)(Rn) X ' " X & < s ) ( R J ,

Owing to the relations (2) we can easily verify that Γt is an isomorphism of
H ( s ) onto Hfs)(Rn) and that the sets {Γt}0^t<τ and {Γ71}0^^r are equiconti-
nuous.
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LEMMA 6. Let u e dt^>k+s+m)(H) and assume that Lu—f e έ%(k>s)(H) and

lim (u, Dtu, ..-, D™-1u)=a€H(k+s+ι_)(Rn) (resp. lim (u, Dtu, • •-, D^u)^
t l O 2 t ] T

β e H ( Λ + ί + i )(!?„)) exists. Then φu e dt{k+m>s)(H) for every φ e C^(Rt) with
2

supp ΦC( — °°, T) (resp. supp ΦC(O, oo)).

PROOF. It will be sufficient to prove the case where Lu=f e 8t{k>s)(H)
and lim (u, Dtu, • •-, D^~1u)=a c H u + s + i)(i? w ). In virtue of the trace theo-

tlO 2 _

rem [j4, p. 55] we can find a v e c%(k+m>s)(Rn+i) such that

lim Dίυ=α,, 0 ^ /^zn- — 1
ί TO

and

/ 5 lim Z>,(Z,i;) = lim Dtf, ..., lim Z)*-1(£v)
t to / l o ί t o ί i o / t o / l o

Let iΓ (resp. (LυY) be the canonical extension of i; (resp. iv) over ί = 0.
If we put w = u^-\-v~, then w c ^ ( 0 ) A + S + O T ) ( ( - C > O , Γ ] x ί » ) and

m—\ m—\

=(La). + Σ Di$®rj(.O) + (£»)- - Σ Dtδ®rj(0)
j=0 j=0

It follows from Lemma 5 that we have only to show that

im /) + (DtLv)~ Q
tio tio

Repeating this procedure, we obtain for /<S

which implies Lw e ^ ) S ) ( ( - o o 5 TJ x Rn), as desired.
We now turn to the proof of Proposition 4. In view of Proposition 1 we

see that lim (u, Dtu, •••, D™-1 u)=a exists. Let w 6 C Q ( ( - c o , T)xRn). Ap-
f JO

plying Green's formula, we obtain

(/^, w) — ( ^ , L*W)= — (Γ 0(α

where wo = (ιι;(O, •), ΰMO, •), •••, ^ " ^ ( 0 , •))•

Let us consider the space X = <$(m,-k-s-m+i)((—°°? T7] x Λ»), where
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CQ(( — OO, T) x Rn) is dense. The anti-linear form

Z: C-((-oo,Γ

is continuous in the topology of X, so it can be continuously extended to the

whole space X.

Let Xo be the set oί v e X such that lim (v, Dtv, • •-, D™~ιv), the trace
ί 40

of (v, Dtv, ..., D^~1v) on ί = 0? vanishes. Then v e Xo can be approximated

in X by a sequence {w, }, wj€C%(( — oo5 T) x Rn) such that w, vanishes

near £ = 0. Indeed, t; can be written as v = vi + v2, vι e dC{mf-k-s-m+\)(H), v2 6
o o

^(«f-ft-s-m+i)(Λ»+i) and we know that CoCff) (resp. CJ(Λ» + i)) is dense in
$>imt-k-8-m+i)(H) (resp. ^(m,_A-5_w+i)(^+i)). Then we must have l(v) = 0.
Since by the trace theorem X/X0^H(_^_s_w+3)(JRw), we can conclude that

) , wo) can be continuously extended to an anti-linear form on

H ( _ Λ _ f i _ m + 3 ) ( - R « ) . I t t h e n f o l l o w s t h a t Γ 0 ( ά ) e H * ( Λ + s _ i ) ( Λ « ) = ^ ( Λ + s - i ) x ••• x
2 2 2

^ α + s + w _ 3 ) and then from the relations (2) we can see that a e H ( Λ + s_i)(Λn).

In virtue of Lemma 6, if φ 6 C^(( — oo, Γ)) such that 0 = 1 near ί = 0, we

can conclude that φu e 0C^+m,s-i){H). Similarly we can show that (l — φ)u 6

&(k+m,s-i)(H). It then follows that u = φu + (l-φ)u e 9t{k+m,s_X)(H). The

proof is complete.

5. Approximation theorem

It will be shown in the next section that the energy inequalities com-

bined with the following approximation theorem will play an essential role

in our approach to the Cauchy problem for differential operators. We shall

apply this theorem to obtain some generalizations of the energy inequalities

considered in Section 2.

Let A: be a non-negative integer, m the order of differential operator L

and 5 a real number.

THEOREM 2 (Approximation Theorem). Let u e dC{Q}k+s+m-i)(H) and as-

sume that

Lu=fe£6(k>s)(H),

uo^lim (u, Dtu, •• ,D™-1u)=a€H(k+s)(Rn
t 40

Then there exists a sequence {uj}, uj e C^(Rn+ι) such that

( i ) uj~+u in dt{k+mfS_λ){H),

(ii) (a/0, χ\ Dtu0, *),..., D^uj (0, x))-^a in
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(ϋi) L(uj)^f in dt{k,s){H)

as y->oo.

Furthermore if a=0, we can take uj in CQ(RΪ+1).

PROOF. In view of Proposition 4, we see that u e dt{k+m,s-i)(H). Let

xeC^(Rn) be so chosen that x^>0 and \xdt = l. If we put uε = u*'xε, ε>0,

then u€ e c%(k+m>oc)(H) and uε tends to u in c%{k+m,s-i)(H) as ε->0. F u r t h e r -

more the distributional limit of D3

tuε, / = 05 , m, — 1, exists and will be writ-
ten as

lim (i^Me) (
f 10 ί 10

Now we can write

L{uε) -f= (L(u£) - {Lu)

i

= y - {Aj>pD
j

tD
p

xu)*'x£}

f*%-f tends to 0 in dt(kt8)(H) as ε->0. Since Dί'Dfu 6 ̂ (^s_i)(i7), it follows
from Lemma 3 that

as ε->0.
From these considerations we have only to show that, for any fixed ε > 0,

there exists a sequence {vi\, vι e C%(Rn+ι), such that uε = lim vt in dC^k+m,^){H).

Indeed, in view of the trace theorem []4, p. 55], (D^/)(0, Λ;) tends to αy*r%6 in
dt{oc)(Rn) as Z->oo. The existence of {Vj- is evident since C^(H) is dense in

Let us denote by &°t(£C(s)) the space of <^(s)(7^)-valued continuous func-
tion of t defined on the interval Q0, T7]. Applying the approximation theo-
rem to the case k = 0, we obtain the following

PROPOSITION 5. Suppose that the energy inequality {^E(0)J holds for L and
hat u e dtm s+m-\)(H) satisfies Lu=f ξ c%r0 S)(H) and uo=lim (u,Dtu, ..^D^"1)

110

6 H(S)CRW). Then u 6 ^ ( W ) S _i)(/Γ). Furthermore u possesses the properties:

(ii) Σ \\D}

tu(t,
y=o

\o\\f(t',')\\l)dt'). (7)
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Therefore if / = 0 , and uo = O, then u must be 0.

PROOF. Applying Theorem 2 for the case & = 0, we can find a sequence
{uι}, uι 6 CQ(RU+I), with the properties mentioned there. It then follows
from Theorem 1 that

m-ι
Σ \\D{u,{tty=o

m-ι
Σ W

(8)

y=o

\\(L(ui))(t', -) — (L(uι>))(t\ -)\\2

{s)dt'). (9)

(9) means that {Dj

tuι{t, •)} is a Cauchy sequence in δ?(^ ( s + w _i_ y ) ) . Let v be
the limit of the sequence {uι}. Clearly u^v. It follows from (8) that the
inequality (7) must hold true.

COROLLARY 3. Suppose that the energy inequality Ĉ (O)H holds for L and
that u 6 d6(o,k+s+m-i)(H) satisfies Lu—f e dt{kyS)(H) and u o = l i m ( u , Dtu, ...,

/ i 0

D™~lu) e H(k+s)(Rn). Then u e dt{k+m,s-i)(H). Furthermore u possesses the
properties:

( i ) (u,Dtu, ..., Dk+m~xu) €80
t(£6ik+s+m-i))x- x&°t(M(s))> (10)

(iί) k+Σl\\D3

tu{t, -^s+m-^j^cCilWDiuiO, .)||?Λ + * + m - W , +
y=o y=o

+ Σ Ί ^ ? \'\
y = o

Therefore i / / = 0 αncί uo = O, ί/iew u must 6e 0.

Σ \'\\Dif(t',

PROOF. Let u e ̂ {0>s+m)(H) and assume that Lu = f c ̂ (1>S)(H) and
eH ( s +i)(Λn). Then it follows from the preceding proposition that Dj

tu e
Wc+m-»\j^m-l, and that

m—i m—i

Σ llPίuCί, Ollf.+.-^^CtC Σ WDiuφ, )ll?.+»-y) +
y=o y=o

)ll?,+i,Λ0. (12)

Put v—Dtu. Then v e dC(ynίS-i){H)C.dCφ,s+m-\){H) and we have
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Lv=Dtf-"£ Σ Dt(ALt>(t,
j = 0 j+\p\<m

and therefore

(i;, Dtv, ..-, Dm

t-
λv) 6 g ? ( ^ + « - i ) ) x - x

m-ι m-\

Σ \\Diυ(t, 0ll?.+*-i-y>^C2( Σ \\D'v(0, 0ll?.+«-w>

y = o

where C2 is a constant.
Applying Lemma 4, we obtain with a constant C3

Σ \\D{υ{t, )ll?.+«-i-y,^C3( Σ ||/>ί»(0,
y=o y=o

From (12) and (13) we have with a constant C

w m-ι

Σ \\Diu(t, .)ll?.+»-y)^C( Σ l|/>ίu(0, )ll?.+»-y) +11/(0, 011?.)
y=o y=o

Repeating this procedure, we obtain the inequality (11).

6. First main theorems on the Cauchy problems

For our later purpose we first show the following

LEMMA 7. Let u e 91^^(11*)= \Jdt{s)(H) and assume that Lu=fe
s

£6(o,s)(H) Then u e 96(mίSΊ(H) for some real s'.

PROOF. Let I be a positive integer such that u e dt{_2i)(H). Now we

consider a U e dC{-2i)(Rn+ι) with u = U\H, and define V e dtm(H) by the equa-
o

tion U=(l — J)ιV, where Δ is the Laplacian in Rn+i. Then v=V\H satisfies
the equation L(l — A)ιv—f. If we let Lι = L(l — Δ)\ it follows from Pro-
position 4 that v 6 dt(m+2i,8')(H), sf = min (5,-771 — 21). This implies that

Throughout this section we assume that DE(O)H holds for L.

PROPOSITION 6. Let she a fixed real number. The Cauchy problem
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o

Lu =f in H,

uQ=\\m (u, Dtu, ..., D™-ιu)=a
itio

has a solution u e ^(o|S+m-i)(ff) for any given f e c%,(0)S)(H) and a e H(s)(i?w)
if and only if

L*w=0 inH

WT = \im (w, Dtw, ..., D™-ιw) = Q

has a unique solution 0 in c%(0>_s)(H).

PROOF. Necessity. Consider a w e £6iOt_s)(H) such that L*w = 0 and
lim (w, Dtw, ..., Dΐ^~1w) = 0. Since w e 9t{m _s_w)(Jίί) by Proposition 4, there

exists lim (w, Dtw, ..., D™~λw) = β. First we show that β = 0. Let ^ e

be a solution to the equation Lu = 0 under the condition
•••, D™-1u)=a, a e Co(Rn). Then, for any 0 e CQ(H) vanishing

110

near t = T, Green's formula gives

where ψo = (ψ(O, •)? Dtφ{Q, )? ---j D^~τφ(0, •))• I n view of the approximation
theorem for L*5 we have

Since Γ0(ά) may be taken an arbitrary vector function in C^(Rn), it follows
that β — 0. Now for any vector function φ e C%(H), we have from Green's
formula

(Lφ, w) = 0.

Owing to our hypothesis and the approximation theorem for L, we have
(/, w) = 0 for any vector/c c%(0>s)(H). This implies that w = 0, which is the
desired result.

Sufficiency. From the fact that DE^J holds for L, it is sufficient to show
that the set

G={(Lu,Γo(uo)): u 6 Q ( # ) }

is dense in ^ ( 0 , 5 ) ( # ) ><H(5)(i^). Let w e <SK(o,-s)CEO, β e H (_ s_w +i }(i?w) such
that for any M e CJ (if)
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We have only to show that w = 0, β = Q. If φeC°^{H), the relation is re-
duced to

o

which implies (0, L*w) = 0, that is, L*w = 0 in H.
If φ e CQ(H) and 0 = 0 near t=0, then by Green's formula

where φτ = (φ(T, •), DtΦ(T, •), •••, D?-ιΦ(T, •))• Since Γτ(φτ) may be taken
arbitrary in C^(Rn), it follows that wr = 0.

Now for any w. e C%(H), we have

This implies /? = 0 by the same reason as above, which completes the proof.
We shall say that (CP)(S) holds for L if the Cauchy problem considered

in Proposition 6 is always solvable in the sense given there.

PROPOSITION 7. / / (CP)(S) holds for some 5, then it does also for any s.

PROOF. Let s, s' be any two real numbers. Suppose (CP)(S) holds for L.
If s'<s, it follows from Proposition 6 that (CP) ( s 0 holds. Therefore we have
only to show that (CP) ( s + 2 ) holds for L.

Given fe ^ ( 0 , 5 + 2 ) ( ^ r ) and a eH(s+2)(Rn\ we put h = (l-Ax)f a 3t{0>s)(H)
and γ = (l — Δx)a e H(s)(i?w), where Δx denotes the Laplacian in Rn. Let us
consider the Cauchy problem of finding υ e ^ ( 0 , 5 + m-i)(^) such that

o

Lv + Mv = h in H

under the condition

where

=lim 0 ,
t 40

m-i
y y S(Λ Λ \ A. A. (Λ

j = 0 j+\ρ\<m

First we observe that there exists a constant C such that for any (t;, Dtv,

\\Mv(t, ')\\ω^CΣ\\Div(t, )ll(.+»-W).

In fact, this follows from the following estimates with constants C, Cλ
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Γ Σ Σ \\Q.-Jx)-1D>Dί

tυ(t, ) I U D
y=o j+\ρ\<m

Γ Σ Σ t
y=o y i ι <

^ Σ I | M , O I I ( + w )

Let t>° e dt(QtS+m-i)(H) be chosen in such a way that

This is possible because of our hypothesis. If there exists awe dt^l8+m-i
such that

(Lw=-Mw-Mv°

Uo-lirn (w, Dtw, ..., D™~1w) = 0,
ί 40

then i; = t;0 + tί; will be the solution to be found. The method of successive
approximations will be successful to this end. Put w° = 0 and determine

5 Z = 1, 2, ..., successively by

(L(wι+1)=-Mwι-Mv°

1(«; / + I )o=lim (wι+\ Dtw
ι+\ ..-, Z ? ? - V

no

Consequently

i(w l + 1-u^)=-Λf(w/-w'-1).

In view of Proposition 5, we have with a constant C2

r

J

Σ:ιι^(

oy=o

o (ί — 1 ; ! y-o
y=o

From this we see that {Dj

tw
1} is a Cauchy sequence in < o J ( ^ ( s + m _ W ) ) . If we

let w = lim w\ then w will be the solution as desired. If we put u = (l — Δ^)~λv
l
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>(o,s+m+i)(H), it is easy to verify that u satisfies Zu = /and lim (u, Dtu,
140

• •-, ^'^u) — a. Thus the proof is complete.

REMARK. Using the method of successive approximations, as stated in
the proof of Proposition 7, it is readily shown that the property "(CP)(S)

holds for Z" depends only on the principal part of L. This is because of
the fact that the same is true of DE(0)I|.

Now we can state a uniqueness and existence theorem for the Cauchy
problem for L (cf. [12, p. 221]).

THEOREM 3. Assume that, for some s, any solution w e dt^>s)(H) to the
equation Z*w = 0 under the condition lim (w, Dtw, •••, D™~1w) = 0 must be 0.

tϊT

Then for any non-negative integer k and for any real s, the solution u to the
Cauchy problem

(Lu —f in H,

Uo^lim (u, Dtu, ..., D™-1u)=a,
t l Q

where f € <£fc{k>s)(H), a eH(k+s)(Rn) are arbitrarily given, uniquely exists in
and has the properties:

(ii) ^Σ^lDίuit, 'Wli+t+m-i-J)^CcS\\

+ ΣX||0ί/(θ> )ll?*+.-i-,)+]

PROOF. It follows from Propositions 6 and 7 that the uniqueness hypo-
thesis for L* implies that, for any real s, given fe £C(o>s)(H) and a e H(s)(Rn),
there exists a solution u e < (̂o,5+w_i)CfiΓ) to the problem Lu=f with ^ 0 = α .
Thus, if we take into account the fact that 06(kfS)(H)C^(o,k+s)(H), then the
existence of a solution u e ^^tk+s+m.1)(H) to our Cauchy problem is trivial,
and the properties (i) and (ii) follow from Corollary 3. It remains to show
the uniqueness in dC^^H). Let u 6 dC^^H) be such that Lu = 0 and
lim(zi, Dtu, •••, D^~ιu) — 0. From Lemma 7 we see that u e dC^miS^{H) for
t 40

some / . Since lim (w, Z>^, ••, D™~ιu) = 0, it follows from Proposition 5 t h a t
f 40

ι̂  = 0, completing the proof.

REMARK. Let f e Sf(H) and a e S?(Rn). Then there is a unique solution
u 6 Sf(H) to the Cauchy problem associated with / and α. In fact, from the
preceding theorem, there exists a unique solution u
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Let A: be a positive integer and put v = (l + \ x \ 2)ku. Then Dψv = (l + \ x \ 2)k-
Dfu and

where (1+ \x \ yDt~9-(p^γψ e &(R«)- If we define L by

then L can be written in the form

l=L

where Lm is the principal part of L and Q is a lower order differential opera-
tor. The coefficients of L are matrices whose entries lie in £(Rn+i), Now,

let us consider the Cauchy problem: Lw=(l+\x\2)kf in H with wo =

I x 12)ka. Then there exists a solution w e dt^H). If we put u' =
o

then u' e dC{^)(H) and ^' satisfies Lu=f in // with ô = α From the unique-
ness of a solution it is easy to verify that u — u. Since k is arbitrarily
chosen, u must be in Sf(H). The spaces .^(ίf) and S?(Rn) are of type (F).
Owing to the closed graph theorem it follows that the mapping ^(H) x
sr(Rn) 5 (/, αO-*M e ̂ (fl") is continuous.

EXAMPLE 1. Here we consider only L with constant coefficient matrices.
Recall that a Kowalevsky system L is hyperbolic if and only if the Cauchy

problem Lu = 0, uo=a e C^(Rn) is always solvable in ©'(#), and note that
the uniqueness theorem is valid for any Kowalevsky system. Assume that
C2?(o)I] holds for L. In view of Theorem 3, L will be hyperbolic. That D̂ (o)H
holds for L remains valid under any perturbation of lower order terms.
Consequently the principal part Lm is strongly hyperbolic. The converse is
also true. In fact, this is a consequence of the results due to K. Kasahara
and M. Yamaguti [7], H. 0. Kreiss [9] and G. Strang [14].

If [£"(0): I ] holds for X*, the requirement for Z,* in Theorem 3 is satisfied
by Proposition 5 with [i^oH replaced by [_E(0): I ]].

With the aid of the interpolation theorem for the Hubert scales [8,
p. 150], we can show

COROLLARY 4. With the same assumption as in Theorem 3, there exists
for any f € <ζfc(a.>s)(H) and a e H(σ.+s)(Rn), β being a positive number, a unique
solution u e ̂ (_oo)(JfiΓ) to the Cauchy problem for L associated with f and a.
u belongs to ^(σ.+Wj5_i)(ϋO and the mapping (/, a)->u is continuous from
M(σ,s)(H)xn(σ+s)(Rn) into <#(σ+mf
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PROOF. Since ^(σ,s)(iΓ)C^(o,σ+5)C£0, Theorem 3 implies the uniqueness
in dt^^iH) and the existence in <^(m)σ+s_:L)(ϋΓ) of the solution u. Here the
mapping dCiσ>s){H) x U{σ+s)(Rn) B (/, a)-+u e £C{m>σ+s-i)(H) is continuous.

Let k be a positive integer such that k>σ. Put ξ)o = c%(o>s)(H) and φχ =
dί{k,S){H). If we denote by || ||0 and || ||i the norms of φ 0 and ξ>i respect-
ively, §i is dense in φ 0 and | |H||O£S||M||I for any u e ξh. Then there exists an
unbounded self-ad joint operator / in φ 0 (called a generating operator) with
domain φ l 5 which generates a Hubert scale {ξ)λ}_oc<λ<+oc, where we denote by
|| | |λ the norm of ξ>λ. On the other hand, if μ runs through (-00, oo),
dCiμ>s){Rn+ι) (resp. Ή(μ+s)(Rn)) forms a Hubert scale. Let S be the restriction
mapping of U e £6(μ)S)(Rn+1) to the slab H. With an obvious modification of
Seeley's method [Ί.3, p. 625], we can construct a continuous linear extension
T of CQ(H) into Co(Rn+1) such that for any H <r C

Consequently it follows that T can be continuously extended to a mono-
morphism of ξ>0 into ^ ( 0 , s ) (i? w + i), which we denote by the same symbol T
and that T is also a monomorphism of §1 into c%(k>s)(Rn+ι). S is a conti-
nuous linear mapping of ^(o,S)(i?w+i) into £>o and of dC{k,S)(Rn-γi) into φi as
well. In view of the interpolation theorem applied to the mappings S and T
and to the families {c%(μ>S)(Rn+ι)}o<μ<k and {§λ}o<λ<i? we can conclude that
&λ = g6(λk>s)(H) within the equivalent norms. In fact, Γ(φλ)C^(λ*,5)CR*+i)>
SG^(Λ>s)CRn+i))CΦλ and 5 Γ i s the identity on ξ>λ. This implies that T is a
monomorphism and S an epimorphism. From Theorem 3 we know that the
mapping (/, a)->u, which assigns a solution u to the data (/, a), is conti-
nuous for

and for

Applying again the interpolation theorem we shall reach the conclusion of
Corollary 4.

COROLLARY 5. If u e Q)'(H) has a bounded support, Lu = 0 in H, and uo =

lim(a, Dtu, . . , Z ^ i O ^ O , then u = 0 in H.
tϊo

PROOF. Let u^ be the canonical extension of u over t = 0. Let 0(ί) 6
C~(R) be such that supp φ C (— °°, Γ) and 0 is equal to 1 for t^t0 < T. Clear-
ly "0(0(0 * § K i ) C « ( - Λ i ) and
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J)) = L(uJ) = O for

Applying Theorem 3 to u in a slab 0 < ί < ί 0 , we have u = 0 for t<t0. Since

ί0 is arbitrarily chosen, u = 0 in H.
We can now prove an existence theorem for the Cauchy problem for £*.

THEOREM 4. Given ge dί{o,-s-m+i)(H) and β = (β0, •• ,β»-i) 6 H (_ 5_w + υ(i?w),
exists a solution υ e dt^t_s){H) to the Cauchy problem:

o

I L*v= g in H,

PROOF. Consider the subspace ACdt{ots){H)xH{s)(Rn) consisting of
(Lu, a) such t h a t u e dί{Q>s+m_λ){H), Lu e 9t^ S)(H\ and uo=lim(u, Dtu> ...,

t 40

i ) ^ " 1 ^ ) ^ 1 ^ f Hω(Rn). Consider the anti-linear form

Z: A 9 (La, α)-Kiι
(£α, α ) ^ u (resp. uτ) is, by Proposition 5, continuous from A into ^(0>s+m^
(resp. H(s)(Rn)). It follows that I is continuous. Owing to the Hahn-Banach
theorem, we see that there exist v e dii0^s){H) and γ e H(_s_m+i)(i?w) such
that

(a, g) + (Γ Γ (ur), t^r) = (Lu, v) + (Γ0(α), r), (14)

and that

with a constant C. Thus for any u e C J((0, <=>o) x i?w) we have

\ β).

In virtue of Proposition 2 with Z and t = 0 replaced by Z* and t=T respect-
ively, we see that v is a solution to L^v— g with vr^β, and this proves the
theorem.

REMARK. For our later purpose we shall give an estimate for ||Z||.
First recall that Γt is an isomorphism of Hω(Rn) onto ΈLfs)(Rn) and that the
sets {Γt}Q<t<τ and {Γ71}0^^r are equicontinuous. Then, from the estimates

\(u, g) + (Γτ(uτ\β)\
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|H ( i ) + \\Lu\\l>s))k\\g\\l^m+1) + H/9II i ( _ . _ m + 1 ) ) * ,

where Ci, C2 are constants, we obtain with a constant C

\\ι\\^c(\\g\\i0,_s_m+1)+\\β\\Ή{_s_m+1)ι

Before stating the next result let us introduce notations. By SfΛJEΐ) and
S?'+(H) we mean the subspaces of S?(H) and &'(( — °o, TJxRn) respectively
defined in accordance with the conditions: for the former u e ̂ (ϋΓ),
DJ

tu(T, .) = 0,/=0, 1, , and for the latter u e ^ ( ( - o o , Γ]xΛn), supp < E
Then y+(H) and ̂ -(H) are regarded as anti-dual spaces with respect to an
extension of the sesquilinear form

where Q)+(H) is the subspace of C^(H) defined according to the conditions:
u e CQ(H), D{U(0, .) = 0 for y = 0, 1, 2, .... Similarly for ©_(#).

THEOREM 5. Assume that Ê (o)H wnd Ĉ co) I U hold for L and Z* respect-
ively. Let f e Sf'(H) and a e S?'(Rn) and assume that f has the canonical ̂ / -
extension f^ €&"(( — oo? Γ ] χ f i s ) , TΛe ,̂ ίfeere exists a unique solution u e

with the canonical &"-extension u^ e Sf'(( — C<D, T^\xRn) to the Cauchy
problem Lu=f with wo = lini (&, Dtu, ••, D™~ιu) = a. Here the mapping (/^, a)

tio

-+u^ is continuous under the topology of y+(H)x6^XRn) and the topology

PROOF. Because of the remark after Theorem 3, given g e SfJJI\ there

can be uniquely determined a weSf-(H) such thatZ,*w=g in H. It then
follows that the mapping g-^w is a topological automorphism of ^_(ϋΓ).
Now, for any given/' e &"+(H) we consider the anti-linear form g->(f, w)
The continuity is easily verified. So we can find a unique υ e y+(H) satisfy-
ing (i;, g) = (f\ w). Since (v, g) = (v, L*w) = (Lv, w\ it follows that (Lv> w) =
(f, w), which implies that Lv = f and such a v is unique. In virtue of the
closed graph theorem, the mapping f-+v of 6f+(H) into itself is a topological
automorphism.

We now turn to the proof of the statements of the theorem. If we put

f=f~+ ΣDJ

tδ®(Γo(a))j and consider a υ e Sf+(H) associated with it in the

above arguments, then, as observed in Section 3, v \ H is a desired solution
and v is the canonical extension of u over ί = 0. The converse is also true.
Thus we see that u is unique. Since the mapping (/^, a)^u^ is decom-

m-\

posed into the product of the mappings (/^, α)->/ / =/^+ ΣDJ

tδ®(Γo(a))j,

f-+υ and v-+u~ = (v\H)^, we can conclude that the last statement of the
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theorem is true. Thus the proof is complete.

7. Some remarks on energy inequalities

Owing to Proposition 5, we know that generalized energy inequalities
remain valid for L if we assume [£"(0)] for L. Now we show that if, in addi-
tion, C ô)]] is assumed for Z*, we shall obtain more precise inequalities.

PROPOSITION 8. Suppose that [_E(0)2 holds for L and £*. Then for any
fixed real s, there exists a constant C such that if Lu e c%(0)S)(H) and uo==

u, Dtu, ..., Dm

t-
λu) €Hω(Rn)for u c g6(0,s+m-i)(H), then

110

\tl\\Lu(t',
JtQ

for any ίθ5 tu O<;to<;tι<;T, where constant C does not depend on u.

PROOF. Consider a slab # i = [0, t J x Rn. In view of Theorem 4, we can

find, for any given β e H(_5_OT+i)(i?w), a v 6 ^ ( 0 , - s ) ( ^ i ) such that L*v = 0 in Hu

vt =lim (v, Dtv, -•-, D™~1v) = β. From the arguments given in the remark
t r / i

after Theorem 4, we may assume that there exists a constant Cι independent
of tι such that

In the rest of the proof,C2, ••, C5 will denote constants independent of t0 and
ίi. That [£(())] holds for L* yields

Applying Green's formula, we obtain

(Γh(utl), β) = (Γtΰ(utΰ), vh) + [\Lu(t', -), υ{t\ ))dt',
Jt

and consequently

This implies that we have
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proving the result.
Using these inequalities we can deal with Cauchy problems for L in the

case where / is assumed to be ^(5)(i?w)-valued and integrable in the sense of
Bochner.

In the preceding section we have dealt with the conditions under which
Cauchy problems for L with initial hyperplane t — 0 are solvable in the sense
given there. In this connection we can show the following

PROPOSITION 9. Suppose that Ĉ (o)H holds for L and Z*. The assumption
made in Theorem 3 for L* is equivalent to the following:

m-\ m-ι

Ύ] \\DJ'u(tr) OIL <^~C( 5"1 \\DJ'u(t-[ OIL • 4"
y=0 ' ' $ + m J =

 J = o

L*ll(t\ 011(5)^05 U € Cθ(Rn+l),

for any t0, tu O<^to<;tι<;T, where constant C does not depend on u.

PROOF. Since we can proceed along a similar line as in the proof of
Proposition 8, the proof will be omitted.

REMARK. Suppose L is a linear differential operator, that is, JV=1. L is
regularly hyperbolic if and only if [_E(0)J holds for L. Indeed the "only if"
part is well known. So we shall consider the "if" part. The complex con-
jugation of coefficients transforms the principal part of L into that of Z,* so
that [£(0)11 holds for L and Z*. It follows from Proposition 8 that we have
for any u e CQ(Rn+1)

w-i

J = 0

\tl\\Lu(t',.)\\mdt') (15)
JtQ

for any t0, tu O<,to<;tι<,T, where constant C does not depend on u.
Let M be the principal part of L. When the variables are fixed, we ob-

tain differential operators with constant coefficients. Denote by M(ίo,*o) such
an operator associated with M when the point (ίθ5 χo) £ H is fixed. We shall
show that for 0<^ 0 < T the following inequalities must hold with a constant
C* independent of (ί0, xo):

Σ \\D\u(t, )ll(«-i-Λ^C( Σ ll^«(θ, )II(»-
y=o y=o
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J|Af(/o,,>(ί', OII(0)Λ0, u 6 Cΐ(RΛ+ι). (16)

We shall confine ourselves to the case (ί0, #o) = (O, 0) and write Mo instead of
M(o,o). The other cases will be treated with an obvious modification.

Put φx(t> x) = u(λt> lx\ λ>l. For any fixed t with 0 < ί ^ Γ , we define tι
by λtι = t. Consider (15) with u replaced by φλ and divide both sides by

λm~x~~ϊ. In view of the relations

Djώ (t, Λ\\2 — V ; 2 ( / + | / > j -
\p\<m-l-j

ί', ')\\mdt'=\'λ-'-liWλ^fu(t',
Jo

n-i

Σ
-\P\:

and, letting A->oo5 we obtain the estimate

mγ( y
y = 0 \p\=m-l-j

ΓΞ~o \\p\=m-ι-j

or, in terms of Λ,

m—l # w — i

2 ||^ίw~1~ 7'i)j'u(ί, 0ll(0)^c{ 2 Γ
y=o y=o

Ifo^Cί', Ollco)^7}, (17)

where τl is defined by (Λuy= \ξ\ ύ(t> ξ). If we take u(t> x)ei<x>ξo>, ξo =
(1, 0, ..., 0), instead of u(t, x\ its partial Fourier transform can be written
ύ(t, $ — ?o)j and therefore we shall obtain

m-ι m-\
Σ \\{Λ{Dx + ξQ)T-ι-jDj

tu(t, OII(o)^C( Σ
y=o y=o

y , Oll(θ)rfί05 (18)

where ^(D^ + ίo) is defined by (^(Z)Λ + f0)M)Λ= | f + fol u-

From (17) and (18), together with the estimates with constants CΊ, C2,
where Cλ depends on max | Aj p(0, 0) |,

j + \p\=m,j<m

m-ι

\\M0(Dt, Dx + ξ0)u(t', OII(θ)^||M0«(ί', 011(0) + Cx Σ \\D'tu(t', Oll^-i-/),
y=o
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we obtain

1
-jr- Σ \\Diu(t, ) l l ( « - i Λ ^ ( Σ I
t/2 y=o y=o

rt m-ιrt

HJI/oaCί', OllwΛ'+Ci Σ \\D'tu{t',
Jo y=oJo

+ 2
J

Consequently, owing to Lemma 4, we obtain the estimate (16).
Now, by letting t0 f Γ, we see that (16) holds for any (ί0, #0) 6 if with

the same constant C*.
Λί(,0,Xo) is strongly hyperbolic as shown in Example 1. Hence the coeffi-

cients of M are real. Let K be a constant such that sup sup | ΛJtP(t,x) |
j + \p\=m,j<m (t,x)€H

<K and let 3K represent the set of all differential operators with constant
real coefficients

Σ Σ
j = Q j + \p\=m

such that

and

Σ \\DJ

tu(t, ) I I ( « - I - Λ ^ C ( Σ \\DJ,u(P, )ll(«-i-Λ +
3=0 j=0

OII(0)Λ0,

Every P(D) e Wl is strongly hyperbolic. Let Z be the number of the indices
(j\p) such that j+\p\=m, j<m. It is easy to see that the points {αjtP}
form a compact subset of Rh For each £, | f I = 1, -P(r, f) is a polynomial in
r with simple real zeros only. Let ΔP(ξ) be its discriminant. Since it is a
continuous function of {αj)P} and f, it follows that Jp(?);>d>0 for a cons-
tant d. Thus we see that L is regularly hyperbolic.

8. Further existence and uniqueness theorems for Cauchy problems

By 9ί^iS){H\ loc) we mean the set of all u e Q)'(H) with the property that
φu e 9t^>s)(H) for any φ e C^(Rn) Here the topology is given as a local
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space. Then 3C{Q>S)(H: loc) is an (F)-space. Let ^ ( 0 , - s _ i ) ( # : comp) be its
antidual. We also consider H(s)(Rn: loc) and U(s)(Rn: comp) which are defined
in a similar fashion.

We can prove the analogue of Proposition 4 for these local spaces:

PROPOSITION 4'. If u e c%(0>k+s+m)(H: loc) satisfies Lu—fedC{k,S){H: loc),

then u e dC(k+m,s)(H'

The proof can be obtained with slight modifications of the arguments
made in the proof of Proposition 4, and so will be omitted.

Throughout this section we assume that D^coJ a n d Ko) j H hold for L
and Z* respectively.

PROPOSITION 10. Let s be a fixed real number. Then the following condi-
tions are equivalent:

(1) Given f e dt{Q>s)(H:loc) and aeH{s){Rn\loc), there exists a unique
solution u 6 c%(o,s+m-i)(H'' loc) to the problem

o

Lu — f in H, and ^ 0 = l i m (u, Dtu, •••, Drΐ~~1u) = a.
tio

(2) The condition (1) with a replaced by 0.
(3) Given g e £6(0>_s_m+1)(H: comp) and β e H (_ s_w + : L )(i?w: comp), there ex-

ists a solution v e dC^f_s){H\ comp) to the problem

, and ^ r ^ l i m O , Dtυ, •••, D^1) = β.
t\τ

(4) The condition (3) with β replaced by 0.

PROOF. It suffices to prove the implications (2)=^(3) and (4)=^(1).
Ad (2)=»(3). Let u be the solution indicated in the condition (2) for

given/. Let φ e C^(Rn). Actual calculation will show that L(φu) — φLu e
). Then,

L(φu)=φf+(L(φu)-φLu) e dC{o

and

lim (φu, Dt(φu\ ..., D'?-1(φu)) = φa e U(s)(Rn).
t 10

Consequently, on account of Theorem 3, we obtain

It then follows that

(u, Dtu, ••-, D^u) e SK^(S+m-i)(Rn: loc))x ••• x8%£6ω(Rn: loc)).

We can apply the closed graph theorem to conclude that the mapping
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9t^yS){H\ loc) B /-*(a, uτ) e ̂ ( O f ί + w -i)( ίΓ: loc) x H(S)(ΛΛ: ίoc)

is continuous, because this is possible since these spaces are of type (F).
Let ge dC{Q>_s_m+l){H: comp) and β €H(_s_m+1)(Rn: comp) be given, and

consider a linear form

3t{Q,s)(H: loc)*f-»(u, g) + {Γτ(ur\ β).

In virtue of the above arguments, the linear form will be continuous.
Therefore we can find a v e dt{Q>_s)(H: comp) such that

It follows from Proposition 2 that L*v = g, and vτ = β.
Ad (4)=»(1). Let v be the solution in the condition (4) for any given

g, and consider the mapping

I: £6(0>_s-m+1)(H: comp) B g-+v e dt{0)_s)(H: comp). 4

In view of Theorem 3, the mapping is continuous from ^ ( O f- s-O T+i)(ίf: comp)
to dtφt-s){H). Since c%(0>_s^m+1)(H: comp) is of type (LF), we can apply Theo-
rem B in A. Grothendieck [3, p. 17] to infer that I is continuous. Let / e
dt{Q)S)(H\ loc) and α e H(s)(Rn: loc) be given. Then the anti-linear form

06(o,s-m+i)(H> comp) B g->(/, υ) + (Γ0(α), v0)

will be continuous, and therefore we can find a u e dC{Q>s+m-i)(H: loc) such
that

which implies by Proposition 2 that Lι^=/and uo=α, completing the proof.
Another equivalent result is the following

PROPOSITION 11. The conditions in Proposition 10 are equivalent to each
of the following ones:

(5) Given f B C°°(H) and a € C°°(Rn), there exists a unique solution u 6
C°°(H) to the problem

o

Lu—f in H, and uo=a.

(6) The condition (5) with a replaced by 0.
(7) Given ge CQ(H) and β e C°^{Rn), there exists a solution υ e CQ(H) to

the problem

o

L*v = gin H, and VT = β-

(8) Given g e ©_(#), there exists a solution v e Q)_(H) to the problem
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L*v = gin H.

PROOF. If the condition (8) holds, then so does the condition (4) for any
s. To see this, let v e Q)_(H) be the solution associated with geQ)_(H) as
indicated in the condition (8). Then, owing to Theorem A in Grothendieck
[β, p. 16], there exists for any given compact subset KCRn& compact subset
KiCRn such that suppg C[0, TJxK implies supp^C[0, TJxKi and the
mapping g-+v will be continuous from 2)_(ϋΓ) into itself. Now, let g' e
<^(o,_s-w+i)CίΓ) and assume that supp gr is bounded. We can find a se-
quence {#;}, g'j €©_(#) such that g'^ g' in gC(Q,_s_m+1)(H) as j-+°o. Here
we may assume that suppg y CEO, TJxK for some compact subset K. Let
vj € Q)-(H) be the solution corresponding to g) as indicated above. It fol-
lows from Theorem 3 that vfj converges in dC{Qt_s){H) to a v'. Clearly Lvf=gf

and v;

τ = 0. This shows that (4) holds for any real s. As the implication
(4)=»(8) is trivial, we can conclude that the conditions in Proposition 10 hold
for any real s whenever one of those does hold for some s.

Assuming that (1) holds for any real s, we shall prove (5). Let / e
C°°{H) and a e C°°(Rn). Then / 6 £6(0>s)(H: loc) and a e U(s)(Rn: loc) for any
real s, and therefore (1) implies that there exists a unique solution u e
<̂ (o,oo)Cff: loc) to the problem Lu=f with uQ— a. Proposition 4' shows that
u 6 dt{oo)(H\ loc).

The implications (5)=Φ(6) and (7)=»(8) are trivial and (6)=»(7) will be
proved by a similar reasoning as in the case (2)=»(3). Thus the proof is
complete.

Now we introduce some notations with the aid of which Theorem 6 will
be stated.

By Q)f(H) we mean the set of distributions e ζύ'(H) which can be
extensible to distributions eQ)\Rn+ι). The quotient topology is intro-
duced in Q>\H). Similarly for 2)'((-oo5 T~]xRn). It is to be noted that
2>'(( — 00, T) x Rn) has a different meaning.

By Q>'+(H) we mean the set of all distributions e ©'((-00, T] x Rn) with
support contained in [0, T) x Rn. Q)'+(H) is equipped with the induced to-
pology. The space is the strong dual of S)_(fl").

By Q)'+(H) we mean the set of all distributions e ©'((- 00, T) x Rn) with
support contained in Q0, T) x Rn. Q)'+(H) is equipped with the induced to-
pology. The space is the strong dual of ©(( —co? T)xRn)\H, the space of
the restrictions to Hoi the functions in ©(( —oo? T)xRn).

All these spaces are ultrabornological (or (/?)-) Souslin spaces. We shall
make use of the Borel graph theorem of L. Schwartz Qll, p. 49].

THEOREM 6. Suppose that equivalent conditions in Proposition 11 hold.

Then there exists a unique solution u € Q)\H) to the Cauchy problem
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o

Lu=f in H

under the condition

ιiQ=\im (u, Dtu, . . . ,
t 10

for any preassigned f e Q)r(H) and a e Q)r(Rn), where we assume that f has the
canonical extension f^ over ί = 0. The mapping (/., α)—•ẑ  is continuous

under the topologies of Q)r

+{H) x Q>'(Rn) and Q)'+(H).
In addition,
(i) if f e Ω)f(H), that is, f is extensible over t=T, then u e 3)'(H) as well,

and the mapping (/^, a)-+u^ is continuous under the topologies of Q)+(H)x
Q)f(Rn) and Q)f

+(H).
(ii) if f has the canonical extension /~, then UT exists.

o

PROOF. First we show that if f e Q)r

+(H), then there exists a unique
uf e Q)'+(H) such that Luf=f. Take an arbitrary Tu 0<Tλ<T, and consider
a slab HTl = [0, ΓJxΛ n . For any given ψ eQ)_(HTl) we can find a unique
φ eQ)_(HTl) such that L*φ = ψ. Since [7?«»: j D holds for L*? ψ^»φ defines a
topological automorphism of Q)_(HTl) and therefore of ©(( —oo5 T)x Rn)\H
as well. Thus the anti-linear form φ^(f\ ψ) on ®((-oo5 T)xRn)\H is con-
tinuous, and we can find a unique ur e Q)+(H) such that (u\ 0) = (//

? ^), that
is, (u\ L*φ) = (f, φ). This implies Lu'=f. It is easy to see that ur is a
unique solution of Luf=f. Consequently the linear mapping L is a bijective

o

and continuous endomorphism of ζb'+{H). Owing to the Borel graph theo-
rem of Schwartz, we can infer that f-*uf is a topological automorphism of

To prove our statement, we put / / = / ^ + Σ/>ίί®(Γ0(α))y. Then the
o

solution 1/ 6 Q)+(H) considered above gives rise to the unique solution to the
o

Cauchy problem, that is, u = vf \Hsatisfies Lu—f and uo = a. Here we note
that vf = u^. The continuity of the mapping (/^, a)-^u^ is evident from the
above considerations.

Now we shall show the statement (i). If we consider / ' 6 Q)+(H) and
take Γi = Γ, then the linear mapping φ->φ is a topological automorphism of
©_(jfiΓ). Thus the anti-linear form φ-+(f, φ) is continuous, and we can find
a unique v' 6 Q)'+(H) such that Lvf —f. Then a similar reasoning leads to the
conclution of (i).

(ii) follows from Proposition 1.
Thus the proof is complete.

REMARK. Making use of Propositions 10 and 11 and applying Theorem
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6 we can show the following: Suppose the equivalence conditions of Pro-
position 10 holds. Then for any given f c dt{k>s)(H: loc) and a c H(k+S)(H: loc),
k being a non-negative integer, the solution u to the Cauchy problem

(Lu=f inH,

{uo=lim(u, Dtu, ..., D™~1u)=a
no

uniquely exists in Q)\H) and u € ^(k+m>s_1)(H: loc). In addition, u may be
chosen so tha t Dj

tu e <o?(^(A+s+OT_1_; )(i?w: loc)), ; = 0, 1, •••, k + m — 1.
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