Commutative Rings for which Each Proper Homomorphic Image is a Multiplication Ring. II

Craig A. Wood and Dennis E. BERTHOLF (Received October 30, 1970)

This paper is an extension of Wood's results in [4]. All rings considered are assumed to be nonzero commutative rings. A ring R is called an AMring if whenever A and B are ideals of R with A properly contained in B, then there is an ideal C of R such that A = BC. An AM-ring in which RA = A for each ideal A of R is called a multiplication ring. Wood characterized in [4] rings with identity for which each proper homomorphic image is a multiplication ring. Such rings are said to satisfy property (Hm). An example is given in [4] to show that a ring satisfying (Hm) need not be a multiplication ring. In fact, a general method is given for constructing such examples. This paper considers u-rings satisfying property (Hm) where a ring S is called a u-ring if the only ideal A of S such that $\sqrt{A} = S$ is S itself. Section 2 shows that the characterization of rings with identity satisfying (Hm) carries over to u-rings safisfying (Hm).

The notation and terminology is that of [5] with two exceptions: \subseteq denotes containment and \subset denotes proper containment, and we do not assume that a Noetherian ring contains an identity. If A is an ideal of a ring R, we say that A is a *proper ideal* of R if $(0) \subset A \subset R$ and that A is a *genuine* ideal of R if $A \subset R$.

1. Rings Satisfying Properties (H*) and (H**).

Let R be a ring. We say that R satisfies property (*) (satisfies property (**)) if each ideal of R with prime radical is primary (is a prime power). If each proper homomorphic image of R satisfies (*) (satisfies (**)), we say that R satisfies porperty (H^*) (satisfies property (H^{**})). In [3] it is shown that an AM-ring satisfies (*) and (**) and that if S is a u-ring, S satisfies (**) if and only if S satisfies (*) and primary ideals are prime powers. Therefore, in a u-ring, (H^{**}) implies (H^*) . We give here a partial characterization of u-rings satisfying (H^{**}) is the same as the characterization of rings with identity satisfying (H^{**}) .

DEFINITION. A ring R is said to have dimension n or to be n-dimensional if there exists a chain $P_0 \subset P_1 \subset \cdots \subset P_n$ of n+1 prime ideals of R where $P_n \subset R$, but no such chain of n+2 prime ideals exists in R. LEMMA 1.1. Let R be a ring satisfying (H*) such that $\sqrt{(0)} = P$ is a genuine nonmaximal prime ideal of R. If $P=P^2$, R is either a zero-dimensional or one-dimensional domain. Hence, R satisfies (*).

PROOF. This follows from the proof of [4; Lemma 1.3] using [2; Theo-rem 1].

LEMMA 1.2. Let R be a ring satisfying (H*). If P is a genuine nonmaximal prime ideal of R and if $P^2 \neq (0)$, then $P = P^2$.

PROOF. Since $P^2 \neq (0)$, R/P^2 satisfies (*). Thus, P^2/P^2 is P/P^2 -primary since $\sqrt{P^2/P^2} = P/P^2$. [2; Theorem 1] implies that $P^2/P^2 = P/P^2$, and it follows that $P = P^2$.

DEFINITION. A ring R is said to be a primary ring if R has at most two prime ideals.

LEMMA 1.3. If S is a primary u-ring, then S contains an identity. Hence, S satisfies (*).

PROOF.¹ Let $M = \sqrt{(0)}$. Since S is a u-ring, $M \subseteq S$. Also, since S is a primary ring and since $\sqrt{(0)}$ is the intersection of all prime ideals of S, M is a prime ideal of S. Let $s \in S \setminus M$. Since M is prime, $s^2 \notin M$ and it follows that $\sqrt{sS} = S$. Therefore, sS = S. For some $e \in S$, se = s. If $t \in S$, then t = sx for some $x \in S$ and et = esx = sx = t. Hence e is the identity of S.

LEMMA 1.4. Let R be a ring such that $\sqrt{(0)}$ is not a nonzero maximal ideal of R. Then R satisfies (H*) and each genuine nonmaximal prime ideal of R is idempotent if and only if R satisfies (*).

PROOF. (\leftarrow) If R satisfies (*), R clearly satisfies (H*). Also, if P is a genuine nonmaximal prime ideal of R, P^2 is P-primary. Thus, [2; Theorem 1] implies that $P=P^2$.

 (\rightarrow) This follows from cases 1 and 3 in the proof of [4; Theorem 1.5].

THEOREM 1.5. Let S be a u-ring. Then S satisfies (H^*) and each genuine nonmaximal prime ideal of S is idempotent if and only if S satisfies (*).

PROOF. The proof of this is an immediate consequence of Lemmas 1.3 and 1.4.

THEOREM 1.6. Let S be a u-ring. If S is not a primary ring, then S satisfies (H^{**}) if and only if S satisfies (**).

PROOF. This follows immediately from the proof of [4; Theorem 2.2] and the following observation. Let P be a nonmaximal prime ideal of a u-

^{1.} The authors are grateful to Professor Kanroku Aoyama for suggesting a shorter proof of Lemma 1.3.

Commutative Rings for which Each Proper Homomorphic Image is a Multiplication Ring. II 3

ring T satisfying (**). Then T satisfies (*) and P^2 is P-primary. Thus, $P = P^2$ by $\lceil 2 \rceil$; Theorem 1].

REMARK 1.7. Since Lemma 1.3 shows that a primary *u*-ring must contain an identity, Theorem 1.6 and [4; Theorems 2.3 and 2.5, Lemma 2.4] give a characterization of *u*-rings satisfying (H^{**}) .

2. Rings Satisfying Property (Hm).

We now are able to show that the characterization of *u*-rings satisfying (Hm) is the same as the characterization of rings with identity satisfying (Hm). Theorem 2.4 shows that in a nonprimary *u*-ring *S*, *S* satisfying (Hm) is equivalent to *S* being a multiplication ring.

THEOREM 2.1. Let A be an ideal of a ring R satisfying (Hm) such that $A \not\subseteq \sqrt{(0)}$. If B is an ideal of R containing A, there exists an ideal C of R such that A = BC. Therefore, if $\sqrt{(0)} = (0)$, R is a multiplication ring.

PROOF. See the proof of [4; Theorem 3.1].

LEMMA 2.2. If R is an indecomposable multiplication ring, R contains an identity and is either a Dedekind domain or a special primary ring.

PROOF. Since R is a multiplication ring, $R = R^2$. Thus, [3; Lemma 7] shows that R contains a nonzero idempotent element. Since R is indecomposable, [4; Lemma 3.7] implies that R contains an identity. Therefore, R is either a Dedekind domain or a special primary ring. [3; Theorem 16].

THEOREM 2.3. Let S be a u-ring satisfying (Hm). If $\sqrt{(0)} = P$ is a genuine nonmaximal prime ideal of S, then P = (0) and S is a Dedekind domain.

PROOF. Since $\sqrt{(0)} = P$ is a genuine nonmaximal prime ideal of S, the proof of Lemma 1.3 shows that S is not a primary ring. Thus, S satisfies (**) by Theorem 1.6. But S also satisfies (*) so that (0) is a P-primary ideal of S. Hence, [2; Theorem 1] shows that P=(0) and it follows that S is a multiplication domain by Theorem 2.1. Since an integral domain is indecomposable, S is a Dedekind domain by Lemma 2.2.

THEOREM 2.4. Let S be a u-ring. If S is not a primary ring, then S satisfies (Hm) if and only if S is a multiplication ring.

PROOF. This proof follows from the proof of [4; Theorem 3.8] and Lemma 2.2 and Theorem 2.3.

REMARK 2.5. Again using Lemma 1.3, we see that [4; Theorem 3.12] characterizes primary *u*-rings satisfying (Hm). This together with Theorem 2.4 gives a characterization of *u*-rings satisfying (Hm).

References

- 1. Robert W. Gilmer, Eleven nonequivalent conditions on a commutative ring, Nagoya Math. J, 26 (1966), 183-194.
- 2. Robert W. Gilmer, Extention of results concerning rings in which semiprimary ideals are primary, Duke Math. J., 31 (1964), 73-78.
- 3. Robert W. Gilmer and Joe L. Mott, Multiplication rings as rings in which ideals with prime radical are primary, Trans. Am. Math. Soc., 114 (1965), 40-52.
- 4. Craig A. Wood, Commutative rings for which each proper homomorphic image is a multiplication ring, J. Sci. Hiroshima Univ., Ser. A-I, 33 (1969), 85-94.
- 5. Oscar Zariski and Pierre Samuel, Commutative Algebra, Vol. I, Van Nostrand, Princeton, 1958.

Oklahoma State University Stillwater, Oklahoma