
HIROSHIMA MATH. J.
1 (1971), 373-404

On Regularity of Boundary Points for Dirichlet

Problems of the Equation Ju=qu (q^O)

Fumi-Yuki MAEDA

(Received September 20, 1971)

Introduction

Regularity of boundary points for Dirichlet problems became an impor-
tant subject as soon as the notion of generalized solutions was introduced by
0. Perron and N. Wiener (1923). We now know various characterizations
of regularity for the Laplace equation Δι* = 0 (see, e.g., [9; Chaps. 8 and 10]).
Perron-Wiener's method has been applied also for Dirichlet problems of a
more general elliptic partial differential equation Lu = 0; and, more generally,
with respect to an axiomatic harmonic structure (see M. Brelot [2], R.-M.
Herve CIO]], N. Boboc, C. Constantinescu and A. Cornea [1], etc.).

There are many investigations to determine under what conditions the
regularity for the given equation Lu = 0 coincides with that for Δ^ = 0. Some
of the recent results in this direction may be found in G. Stampacchia [19
§10] and R.-M. and M. Herve [11; Theoreme 3]. However, in these in-
vestigations, boundary points are assumed to be on the relative boundary of
the domain which is contained in a larger domain where the equation is de-
fined. For instance, consider the case where the domain Ω is a bounded one
in the Euclidean space Rd (d^>2) and the equation is

(1) Lqιι = Au — qu = 0

with q^>0. For this equation, Perron-Wiener's method can be applied when-
ever q e L\OC(Ω) for some/?>d/2. The results by Stampacchia and Herves,
however, only imply that if q e LP(Ω) (or, q e L\OC(Ω') for some domain Ωr Z> Ω\
then the regularity of ξ e dΩ for (1) is equivalent to that for Au = 0.

The main purpose of this paper is to investigate under what conditions
on the function q, regularity of a boundary point for (1) follows from that
for Δ^ = 0, in case q does not necessarily belong to LP(Ω). We note that some
results in this direction were obtained by M. Brelot ([ΊΓ], [4Γ] and [5]), but
our results are more general and finer.

In the first chapter, we shall develop a general theory concerning re-
gularity of ideal boundary points with respect to Brelot's axiomatic harmonic
structures. Then, in the second chapter, we shall discuss regularity for the
equation (1) on a Riemannian manifold Ω, where Δ is the Laplace-Beltrami
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operator, still considering an ideal boundary Γ of Ω. We shall say that ξ e Γ
is (/-regular if it is regular for the equation (1). Given two non-negative q\
and q2, we shall give a necessary and sufficient condition that a locally q\-
regular point on Γ is also locally ^-regular (Corollary 1 to Theorem 2.4).
The condition will be given in terms of the Green function for the equation
Δu = qιu. This condition is then applied in Chapter 3 to the special case
where Ω is a bounded domain in Rd and the boundary is the usual relative
boundary. We shall obtain conditions on the growth of q near the boundary
point ξ under which we can assure ^-regularity of ξ (Theorems 3.2, 3.3, 3.4
and 3.5) and ^-irregularity of ξ (Theorem 3.6).

CHAPTER I Regularity of ideal boundary points of a hamonic space

§1.1. Dirichlet problems on a harmonic space.

Let (ifl, &)={c%>(ω)}ω:opcnCΩ be a harmonic space satisfying Axioms 1, 2
and 3 of M. Brelot [2J. By definition, Ω is a connected, locally connected,
locally compact Hausdorff space. For an open set ω in Ω, the set of all
superharmonic (resp. non-negative superharmonic) functions on ω with res-
pect to (J2, §) is denoted by d%(ω) (resp. c$J(ft))). The set of all potentials
with respect to (Ω, φ) is denoted by 5 V We furthermore assume

Axiom 4. 1 e dJGfl) and §>t,φ{0}.

Let Ω* be a compactification of Ω and let Γ = Ω* — Ω. For an open set
ω in Ω, let to* be the closure of ω in Ω* and d*ω be the set ω* — ω. In
particular, d*Ω = Γ. Given an extended real valued function σ on 9*^, we
define

> i c \ ( \ bounded below on ω,
^ σ ( x ) f o r a l l e € d*ω

\\ is

and Mϊ*=-<U°'*. If inf ί/ϊ'§ = sup ^ ' § and it belongs to dt(ω\ then we say
that 6 is φ-resolutive with respect to ω and denote this harmonic function by
HZ**. In case ω = Ω,we simply say that σ is φ-resolutive and write Hί=H!f*.
The following lemma is easily obtained by standard arguments (cf. [2] and
[7]):

LEMMA 1.1. (i) J/0Ί, tf2 are ξ)-resolutive with respect to ω and if λu λ2

are reals, then î(Ti + ̂ 2̂ 2 (this function may take any value at a point where
+ oo — oo or —oo + oo occurs) is ΪQ-resolutive with respect to ω and

•" λίσ 1 + λ2σ-2 — Λl/3 σ-j + Λ2^2 σ2

(ii) / / tfi, σ2 α^β $Q-resolutive with respect to ω and (Jι^62 on 9*to, then HZ'®
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<,Hω

σf on ω. In particular, if σ is &-resolutive with respect to ω and σl>0 on
d*ω, then Hω

σ>^0.
(iii) Constant functions on d*ω are $Q-resolutive with respect to ω and

Hΐ *<:i on ω.

Also, we have (see, e.g., [2; Part IV, Theorem 10] or [13; pp. 286-287]):

LEMMA 1.2. Let ω and ωf be two non-empty open sets in Ω such that ω C a>\
Let ύ be a ξ)-resolutive function on 9* a/ and put

( σ on d*ω'Γ\d*ω

[ H?'® on ω'rλd*ω.

Then, 61 is ^-resolutive with respect to ω and

Z j ω , § _ TTω',%

on ω.

If every 6 e C(Γ) ( = the set of all finite continuous functions on Γ) is ξ>-
resolutive, then Ω* is called a fe-resolutive compactification of Ω. By
Corollary 3 and Theorem 8 of [1], we have

LEMMA 1.3. Let Ω* be a ΪQ-resolutive compactification of Ω and let ω be a
non-empty open subset of Ω. Then α)* is a fe-resolutive compactification of ω
in the sense that every ΰ e C(β*ω) is ξ)-resolutive with respect to ω.

§1.2. ξ)-regular boundary points.

In this section, let Ω* be a ξ)-resolutive compactification. For a non-
empty open set ω in Ω, a point ξ 6 d*ω is called ^-regular with respect to ω
(or, more precisely, with respect to (£*, ω)) if

lim Hϊ*(x)

for all ΰ 6 C(d*ω). ζ e Γ is called simply ^-regular if it is ξ>-regular with
respect to Ω. ξ e Γ is called locally ^-regular if there is a fundamental sys-
tem fβf of open neighborhoods of ξ such that ξ is ^-regular with respect to
VΓ\Ω for any VeWf.

PROPOSITION 1.1. Let ζ e Γ and let V, V be two open neighborhoods of ζ
such that VC V. If ξ is ^-regular with respect to Vr\Ω, then it is ^-regular
with respect to V Γ\Ω. Thus, if ξ 6 Γ is locally ^-regular, then it is ^-regular.

PROOF. Given σ e C(d*(Vfr\Ω)), let
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ί σ on d*(V'Γ\β)r\d*(VίΛΩ)

I Hΐ'™Λ on V'Γ\Ωr\d*(VΓ\Ω).

Then, by Lemmas 1.2 and 1.3, r is φ-resolutive with respect to VΓ\Ω and
jjvnaΛ=Hv'rsΩΛ o n VΓΛΩI Obviously, r is bounded on d*(VΓ\Ω) and con-
tinuous on VΓ\d*(VΓ\Ω) {Cd*(VΓ\Ω)r\d*(Vr\Ω)). Then, we can find r u

r2 € C(d*(VΓλΩ)) such that r ^ r ^ r 2 on d*(VΓ\Ω) and Γi(£) = r2(#) = r(f). By
assumption,

lim

Hence, using Lemma 1.1, (ii), we see that

lim

and hence

lim Hv/ΓλΩ'%(r}
11111 ±± j- \^Λι J
x—*ζ xfzV'fΛΩ

Thus, ξ is ^-regular with respect to VΓ\Ω.

COROLLARY. // ξ e Γ is locally ^-regular, then it is ^-regular with
respect to Vr\Ω for any open neighborhood V of ξ.

REMARK 1.1. The converse of the above proposition is not always true.
For example, if Ω= {x e Rd; 0< | x | <1} (cQ>2) and ώ* is the one point com-
pactification, then the point at infinity is regular (for the classical harmonic
structure) but is not locally regular. However, it is known (see, e.g., [2; Part
IV, Proposition 20]) that if Ω is a relatively compact domain in a larger har-
monic space Ωf and Ω* is the closure of Ω in Ω\ then local ^-regularity of
ζ 6 Γ is equivalent to ^-regularity.

REMARK 1.2. If 1 is harmonic and there exists a barrier at ξ e Γ, then ξ
is locally regular. Here a barrier means a positive superharmonic function w
defined on VQΓ\Ω for some neighborhood Vo of ζ such that mix€(vQ-v)r\s2^M>0
for any neighborhood V of ξ and \imx^ξw(χ) = ΰ. Proof of the above fact may
be carried out in the same way as in the classical case (see, e.g., [Ί20 Theorem
1.9] or the proof of [9 Lemma 8.20]). In particular, in case Ω is a Green
space or a hyperbolic Riemann surface with the classical harmonic structure,
a non-minimal Kuramochi boundary point is locally regular if and only if it
is regular (see [6; Satz 17.25] in case Ω is a Riemann surface).

§1.3. Comparison of ^-regularity for comparable harmonic structures.

We now consider two harmonic spaces (Ω, ξ>i) and (i2, φ2) with the same



On Regularity of Boundary Points for Dirichlet Problems of the Euqation Ju=qu(q^0) 377

base space Ω and assume that both satisfy Axioms 1̂ -4. Let Ω* be a com-
pactification of Ω. As for resolutiveness, we have the following:

LEMMA 1.4. Let ω be an open set in Ω. If there is a compact set K in ω
such that

(1.1) c^Oo-tfKdkCα)-*),

then any bounded function on d*ω which is ίQi-resolutive with respect to ω is
^2-resolutive with respect to ω.

The proof of this lemma is similar to the proofs of Theorems 1 and 2 of
C15]. (Note that condition (1.1) may be replaced by a weaker condition C)
in [15J on each component of ω.)

LEMMA 1.5. Let ω be an open set in Ω. If d^(α)) C d§2(α>) and ύ is a non-
negative function on d*ω which is ^ι-resolutive with respect to to, then

This lemma is easily verified by the definition. Observe that ΰ is
resolutive with respect to ω by the previous lemma.

In the rest of this section, let Ω* be a compactification which is both
and §

THEOREM 1.1. Let ω be an open set in Ω and ξ0 e d*ω. If d J2(ίθ) C d J2(α>
and ζ0 is ^-regular with respect to to, then ξQ is ξ>ι-regular with respect to ω.

PROOF. We shall prove

(1.2) lim ff; *i(*) = σ(?0)
ξ

for all σ e C(d*ω). If σ̂ >0 on d*ω and σ(fo) = sup^ea*ωσ(ί)5 then, by Lemmas
1.1 and 1.5, we have

Since H"'®2(x)->σ(ξ0) (χ^>$0) by assumption, (1.2) holds for such σ. By virtue
of Lemma 1.1, (i), if (1.2) holds for σx and σ2, then it also holds for σ±— σ2.
Therefore, by the above result, (1.2) holds for σ for which σ(£o) = sup!€a*ωσ(£)
or σ(ζo) = mΐξea*ωσ(£). Finally, an arbitrary σ e C(d*ω) can be written as

σ= max (σ-σ(?0)5 0)H- min (σ-σ(ίo)5 O)-f-σ(fo).

Since each term of the right hand side has the above property, (1.2) holds
for σ.

COROLLARY. // there is an open neighborhood V of ξ0 e Γ such that
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όl1(VΓ\Ω)C^l2(Vr\Ω) and if ξQ is locally ^-regular, then ζ0 is locally §1-
regular.

The converse of Theorem 1.1 is not true in general. As for the converse
direction, we have the following theorem:

THEOREM 1.2. Let ω be an open set in Ω and suppose dJX^CcJJ^ω). //
ξQ e d*ω is $Qi-regular with respect to ω and

lim HϊM*) = l
X-+ξo,X€ω

for some 6X e C{d*ω) such that σi(ίo) = l ? then ξ0 is ^-regular with respect
to o).

PROOF. If σ^O on d*ω and σ(ξo) = O, then

by Lemma 1.5. Hence, lim*_^0#2'§1(>)==0 implies \imx^ξQH"'®2(x) = 0. If
ύ e C(d*ω) and σ(f 0) = 0, then, by considering σ+ and <r~, the above result im-
plies lim^^o H°'®2(x) = 0. For an arbitrary σeC(d*ω), we write it in the
form

Then

lim
x-+ξ0

by the above results and the assumption on σx.

Finally we prove:

PROPOSITION 1.2. Suppose there is an open neighborhood Vo of ξ0 e Γ such
that <dξ,1(VoΓ\Ω)Ccϋ%2(VoΓ\Ω). If ζ0 is locally Qi-regular and {Q2-regular,
then it is locally tQ2-regular.

PROOF. Let V be any open neighborhood of ζQ contained in Vo. By
assumption, ξ0 is §x-regular with respect to VΓ\Ω. On the other hand, since
£0 is

(1.3) lim Hf*(x) = l.

Since # ? 2 ( * ) ^ 1 , it follows from Lemma 1.2 that H%*(x)<,H\™-**(x) for
xeVΓ\Ω. Since flγ™ *»<:i, (1.3) implies that

lim H\

Hence, by Theorem 1.2, ξQ is fe-regular with respect to Vί\Ω.
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CHAPTER II ^-regularity of ideal boundary points of a

differentiable manifold

§2.1. Harmonic structure «£>9 on a differentiable manifold.

In this chapter, let Ω be a connected non-compact C^-manifold of dimen-
sion oQ>2 and let (g/y) be a symmetric covariant tensor on Ω satisfying: the
following condition (G) (cf. [16])

(G): On each relatively compact coordinate neighborhood U in Ω, each
gij is a bounded measurable function on U and there is λ>0 (which
depends on U and the coordinate) such that

λ Σ £ ? ^ Σ
ij

for all x e C/and real numbers ξu ..., fd.

Let dχ — \jg dxi dxd be the corresponding volume element on i?5 where
#=det(#/) . The Laplace-Beltrami operator Δ determined by (gγ, ) is formally
given by

1 d Q /

=η= Σ -^—(
d

y=i dxj\i = i

where (giJ) is the inverse matrix of (gv/).
We shall use the same notation as in [16] for the following function

spaces on an open set ω in Ω: Lp

loc(ω), CJ(ω), D(ω), D0(ώ) and D\oc(ω). In this
chapter, we shall always assume

(2.1) 1 ί Do(ώ),

i.e., Ω is Δ-semi-adapted in the sense of [16]. We shall also use the notation
Dω[_u, v~] to denote the mutual Dirichlet integral of u, v e D(ω) over an open
set ω (see [16]).

Now, let q be a non-negative measurable function on Λ2 belonging" to
L\OC(Ω) for somep> d/2. A continuous function u on an open set ω is called
a solution of Lqu = Au—qu = 0 on ω, or q-harmonic on ω (with respect to (gv/))
if u e Diodω) and

J ω

for all φ e CJ(α)). (Note that ^-harmonic functions are called Lg-harmonic in
[16].) Let £6q(ω)= {u; g-harmonic on ω}. Then, it is known that φ β = {Mq

(ίθ)}ω:open defines a harmonic structure on Ω satisfying Axioms 1—3 (see [16;
Theorem 2.1], [11; Theoreme 1] or [8; Theorem 3.1]). Also, by v ir tue of
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the assumptions q^>0 and (2.1), we see that Axiom 4 is also satisfied by this
harmonic structure (see [16 Corollary to Proposition 2.5 and Corollary 1 to
Proposition 3.2]; also [11; §3]). For simplicity, we shall use the following
notation: d+(α>) for d£g(α>), §>q for Φ%q and Dq(ω) for DLq>0(ω) (see [16] for
the space DLt0(ω)).

LEMMA 2.1. (cf. [8; Theorem 4.2]) Let ω be an open set in Ω. If qι<,q2

on ω, then

PROOF. It is enough to show that ^^OoOCcJ^Cα)') for any open set
(cf. [12; Proposition 7.2]). If u e ^ ( a / ) , then, for any φ e C\{ωr) with

\
Jω'

dx

= Dω'[_u, φ~]+\ q2uφ dx+\ (qι — q2)u

q2uφ dx.

Hence, u is an Zί2-supersolution on ω' (cf. [16; 2.1]). Since u is continuous,
Proposition 2.5 of [16] implies that u is Z^-superharmonic on ω''.

§2.2. 7^-Green functions.

Since Ω is i^-semiadapted ([16; 3.1]), there is the I^-Green function
gyq(χ) in the notation in [16; 3.4], which will be denoted by Gq(x, γ) in this
paper. Since L* = LQ, Gq(x, γ)=Gq(γ, x) in our case. By a local study of L-
Green function in [11; §9], we see that, given a relatively compact coordinate
neighborhood U in i?, there are constants ku k2>0 such that

τ ^ ^ > y^jx-^if ^
(2.2)

Ai log 1 <Gq(x, y)<k2 log-, 1 . if d = 2
\χ-γ\ — \χ-y\

for all x, yeU. This implies that, for a fixed x e Ω, Gq(x, •) e L\'OC(Ω) for
p'<d/(d — 2). Thus, by Holder's inequality and continuity of the mapping
(x, y)->Gq(x, y) (xφy), we have

LEMMA 2.2. For any f e Lp

loc(Ω) (p>d/2) and for any relatively compact
open set ω in Ω,
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«(χ, y)\f(y)\dy<°o

for all x e Ω and v(x)= \ Gq(x, y)f(y)dy is a continuous function on Ω.
Jω

It also follows that, for / e L\OC(Ω) (p>d/2) with f^>0,\ Gq(x, y)f(y)dy

is finite everywhere on Ω if it is finite at one point.

(2.2) also implies Axiom D for $Qq (cf. [11 p. 338]) in particular, we
have the following maximum principle of Frostman's type:

LEMMA 2.3. If f z L[OC(Ω) (p>d/2) and /:>0 on Ω, then

supf G*(x, y)f(y)dy=suv [ Gq(x9 y)f(y)dy,
xeΩJΩ J χes(f) JΩ

where S(f) is the support of f.

Now we prove

LEMMA 2.4. Let f eL\OC(Ω) (p>d/2), / ^ 0 on Ω and suppose V(Λ;) =

\ G9(x, y)f(y)dy is finite (at one point, and hence at every point). Then v

is a continuous function on Ω belonging to ΦqΓΛDιoc(Ω) and

(2.3) DΩ[_υ, φ]+[qvφ dx = [ fφ dx

for all φ e C\(Ω).

PROOF. By a general theory (cf. e.g., [10; Corollary to Proposition 17.
1]), we see that υ e φq.

First suppose 5(/) is compact. By Lemma 2.2, v is continuous on Ω.

By Sobolev's lemma (see e.g., Q19; Lemma 1.3]), we see that the mapping 0—•

[fψdx is continuous on D0(Ω), and hence on D9

0(Ω). Hence, there is v\ 6 Dq

Q(Ω)

such that

(2.4) DΩ\juu φΊ + [ qviφ dx = \ fφ
JΩX JΩ

dx

for all 0 6 DfcΩ). Let φ e C\{Ω) and consider Gq(φ)^GL«>Ω(φ) in the notation
of [16]. Then, by definition, Gq(φ) e Dq

0(Ω) and

qvxG
q{φ) dx = [ υxφ dx.

Ω JΩ

Thus, taking φ = Gq(φ) in (2.4), we have

(2.5) [ υiφ dx = [ fGq(φ) dx
JΩ JΩ

for all φ e Cl(Ω). On the other hand, by Theorem 3.1 of [14],
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\Ω

9(x, y)Φ(χ)dx.

Hence, (2.5) implies

[ v1(x)φ(x)dx=[[ Gq(x, y)φ(x)f(y)dy dx = { v(x)φ(x) dx
J Ω J J Ω xΩ J Ω

for any φ e C\(Ω). This implies that v = vχ almost everywhere on Ω. Hence,
v e Dq

0(Ω)CD{oc(Ω) and (2.4) shows that v satisfies (2.3).
Next let / be arbitrary (^>0). Let ω be a relatively compact open set in

Ω and let xω be the characteristic function of ω. Then vω(x)=\ Gq(x, y)

f(y)%ω(y)dy belongs to D9

0(Ω) by the above result. Obviously, v — vω is q-
harmonic on ω. Hence, v e D\oc(ω). Since ω is arbitrary, we have v e D\OC(Ω).
Given φ e CJ(ώ), choose ω such that ωZ> S(φ). Since v — vω is ^-harmonic on ω,

(2.6) DΏ£υ, φ} + ^gqυφ dx = DΩ[_vω, φj + ^qv^ dx.

By the above result for compact S(/), we see that the right hand side of

(2.6) is equal to \ fxωφ dx = \ fφ dx. Hence, we obtain (2.3).

LEMMA 2.5. / / qι^q2 on Ω, then GQl(x,y)^G92(x, y).

PROOF. Let / 6 C\(Ω) and f^>0. By the previous lemma, both vx 0 0 =
9l(x, y)f(y) dy and v2{x) = ̂ Gq'{x, y)f(y) dy belong to Dioc(Ω) and

iViφ dx = \ fφ dx

for any φ e C\{Ω), ί = l9 2. Hence, if 0^0, then

This means that vx — v2 is an L^-supersolution on Ω. Since v2 e Dq

0

2(Ω) (see
the proof of the previous lemma), it follows from Proposition 3.1 of [16J that
vι^>v2. Since / ( e C\(Ω), ^>0) is arbitrary, we conclude that G9l(x, y)^>

§2.3. Dirichlet solution Hq and ^-regular ideal boundary points.

Now we consider a §0-resolutive compactification Ω* of Ω. By Lemmas
1.4 and 2.1, it is also ξ^-resolutive for any <7̂ >0. For a ξ)?-resolutive function
a on d*ω (resp. on Γ = Ω*-Ω), the Dirichlet solution # ^ < r e s p . H$q) will
be denoted by HZ*9 (resp. H£), for simplicity.
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We shall need the following result to prove our main theorem in the
next section:

PROPOSITION 2.1. Let qi<^q2 on Ω and let ΰ be a bounded non-negative $QQl-
resolutive function on Γ. Then

(2.7) Hp(x)^:HlKx)+\GqKx, y){q2(y)-qi(y)}Hp(y) dy

for all x e Ω. If, furthermoreλ Gq>(x, y){q2(y)-qι(y)} H\'(y)dy<°° for

some x 6 Ω, then

(2.8) H«Xχ) = HqXχ)+ \&Kχ, γ){q2(y)-qι(y)}HXy) dy

for all x e Ω.

The proof of this proposition will be given in the Appendix at the end of
this chapter. Remark that, in case Ω is a locally Euclidean space and qY and
q2 are locally Holder continuous, this is an easy consequence of the results in
[14 §3.4 and §3.5]. Also, inequality (2.7) is given in [3 Lemma 4] for a
special case.

ξ^-regular (resp. locally §?-regular) boundary points will be simply
called q-regular (resp. locally q-regular). By virtue of Lemma 2.1, the results
in Chapter I can be stated as follows:

THEOREM 2.1. Let ω be an open set in Ω and ζ e d*ω. Ifqi^q2 on ω and
$ is q2-regular with respect to ω, then ξ is q-regular with respect to ω.

COROLLARY. / / there is a neighborhood V of ξ e Γ such that qi<Lq2 on
VΓ\Ω and if ξ is locally q2-regular, then ξ is locally q-regular.

THEOREM 2.2. (cf. [4; n° 12]) Let ω be an open set in Ω and suppose qi<^q2

on ω. If ξ e d*ω is q-regular with respect to ω and

lim HΐMx) = l

for some ΰ\ e C(d*ω) such that 0"i(?) = l, then ζ is q2-regular with respect to ω.

PROPOSITION 2.2. Suppose there is a neighborhood V of ξ e Γ such that
qι<,q2 on VΓ\Ω. If ξ is locally q-regular and q2-regular, then it is locally q2-
regular,

§2.4. Criterions for ^-regularity.

Let f0 * Γ = Ω*-Ω. The filter of all neighborhoods of ξ0 will be denoted
by 9Sfn. First, we prepare
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LEMMA 2.6. Let f be a non-negative function in L\OC(Ω) withp>d/2. If
there is Vo e ̂ Sξ such that

then

(2.9) lim^ ^ G*(*, y)f(y)dy = O,

lim supf Gq(x, γ)f (γ)dy=O.

PROOF. By Lemma 2.3,

y)f{y) dy=*
Hence, for any V e 5βf0 such that VC Vo,

ί*, y)f{y)dy

= sup [ G'(x, y)f(y)dy

G'(x, y)f(y) dy.

The last term tends to 0 along V e %$ξ0 by virtue of the assumption (2.9).

In case # = 0, the corresponding Green function G°(x, y) will be denoted
by G(x, y). We have

THEOREM 2.3. / / ζQ is q-regular, then

(2.10) limί G(x, y)q(y) dy=0

for some Vo 6 9Sf o and

lim sup\ G(x9 y)q(γ) dγ=0.
" ' « * xeΩ JVr\Ω J 7 y J

PROOF. By virtue of the previous lemma, it is enough to prove (2.10).
Since lim*_>fo #10*0 = 1, there is Vo e SSfo such that H{{y)>X/2 for ye VQΓ\Ω.
On the other hand, by Proposition 2.1 (applied for qι = 0 and qi = q),

l-H\(x)^>\G(x, y)q(y)HKy) dy.

Hence,

0^\τ^ G(x, y)q(y)dy
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G{x,y)q{y)H\(y)dy

(x, y)q(γ)HKγ) dy <2(l-H{(x)).

The last term tends to 0 as χ->ξQ. Hence, we have (2.10).

COROLLARY 1. (cf. [5; n° 4]) // every ξ e Γ is q-regular, then\ G(x, y)

q(y)dy<o°.

COROLLARY 2. if ζ0 is q-regular, then, for any qr e Lp

loc(Ω)(p> d/2) such
that q'^Q on Ω and q'<*q on a neighborhood of ξ0,

limί G'Xx, y){q(y)-qXy)} dy=0

for some Vo e %$ξQ and

lim supί G*'(x, y)iq(y)-qXy)} dy=0.

PROOF. By Lemma 2.5, GqXx, y)<^G(x, y). Thus, this corollary imme-
diately follows from the theorem.

As for the converse direction, we have the following result, which is our
main theorem in this chapter.

THEOREM 2.4. Suppose qι<,q2 on VQΓ\Ω for some Vo e 3^o. / / ξ0 is locally
qi-regular and if either

dy =0

for some Vf

0 e SSf0 such that V'o C Vθ9 or

(2.11) lim sup^G<i(* , y){q2(y)-qi(γ)} dy - 0 ,

then ξ0 is locally q2-regular (and hence q2-regular).

PROOF. By virtue of Lemma 2.6, it is enough to prove the theorem under
the assumption (2.11). First remark that, by (2.11), there is Vx e 5^0 such
that Γi C Vo and

(2.12) supί G*(*, y){q2(y)-qi(y)} dy <oo.
Xζ ΩJV^Ω

For any ε>0 (ε<l), choose Vs e 93fo such that VfCVi and

(2.13) supί GHx, y){qάy)-qι(y)} dy <ε.
X€ Ω JVεΓ\Ω
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Let / I = %VJΛS and/ £ = x^eΛβ(the characteristic functions of FiΠi2and VeΓ\Ω).
By Proposition 2.1 and (2.12), we have

(2.14) H\Kx) = H{^'^-^){x)

Now,

\ dy

Hχ, y) iq2(y)-qi(y)}fe(y) Hϊ+t>«>-™(y) dy

χ, y) iqs(y)-qi(y)} iMy)-fs(y)} H\*^-f•"<>-*(y) dy

+ ( GHx, y) iqziy) - qi(y)} dy.
JΩΓ\Vt

By (2.7) and (2.13), the last expression is less than

Hence, (2.14) implies

(2.15) Hl^f^-^ixY^Hl^^-^^-^ (x)-ε

for all x e Ω. Since gi + (/i—/g)(?2 —?i) = ?i on VεΓ\Ω and f0 is locally gΊ-
regualr, we see that f0 is locally qι + (fι— fe)(q2 — #i)-regular, and hence it is
gi + (/i —fa) (?2 — ̂ i)-regular. Hence,

lim

Hence, by (2.15),

liminf

Since ε>0 is arbitrary and Hl1+fl{q2~Ql) <Ξ1, we conclude that

Thus, by Theorem 2.2, ξ0 is qi+fi (92 — gi)-regular. Then, by Proposition
2.2, f0 is locally qi+fi (q2 — qι)-regulατ. Since ? i + / i (q2 — qθ = q2 on VXΓ\Ω,
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it follows that ξ0 is locally ^-regular.

Combining the above theorem with Corollary 2 to Theorem 2.3, we obtain

COROLLARY 1. Suppose qi<=q2 on VQΓ\Ω for some Vo € S?̂ o and suppose
ξ0 is locally qι-regular. Then the following four assertions are equivalent:

(a) ξ0 is locally q2-regular;
(b) ζ0 is q2-regular;

(c) limί , Gq>(x, γ){q2(γ)-qι(γ)} dy=0 for some V'Q such thatV'0C Vo
x-+ξQJVQr\Ω

(d) lim supί GHx, y) iq2(γ)-qi(γ)} dy =0.
Ves&ξQ xeΩJVr\Ω

COROLLARY 2. // ξ0 is locally q-regular and if qf^λq on V0Γ\Ω for
some Vo 6 %$ξQ and A>0, then ζ0 is locally q'-regular.

PROOF. By Theorem 2.3, lim( , G(x, γ)q(γ)dγ=0 for some V'o € SSfo

contained in Vo. Then, by the assumption q'<=λq on V0Γ\Ω,

limim( , G(χ, y)q'(y) dy =0.

Since ξ0 is locally 0-regular (Corollary to Theorem 2.1), it is locally ^'-regular
by Theorem 2.4.

By a similar method, we also have

COROLLARY 3. If ζ0 is locally qι-regular as well as locally q2-regular,
then it is locally (λiqι + λ2q2)-regular for any nonnegative numbers λι and λ2.

COROLLARY 4. Let qu q2Q>0) be given. If ζo is locally qι-regular and if
either

limί GHx, y) max {q2(y)-qι(y\ 0} dy=0
x-+ξoJVor\Ω

for some VQ e %$ξ 0, or

lim sup\ Gq'{x, y) max {q2(y)-qι(y), 0}dy=0>
vessχe Ω JVr\Ω

then ξQ is locally q2-regular.

PROOF. Since max {g 2 (y)-? i( j ) , 0}= max {q2(y\ gi(y)}—gi(j), The-
orem 2.4 implies that ζ0 is locally max(^i, ^2)-regular. Hence, by the cor-
ollary to Theorem 2.1, £0 is locally ^-regular.

§2.5. An application to Dirichlet problems of non-homogeneous

equations.

Let i2* be a ξ>0-r6solutive compactification again and we consider a
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boundary value problem

I LQu = Au—qu = f on Ω

u = 0on Γ.

By a solution of (2.16), we mean a continuous function u on j?* such that

u\Ωe Di

\ 9 ^ ^ <i# = — \ fφ dx

for all φ € Cl(Ω) and u = 0 on Γ.
As an application of the results in the previous section, we have the

following theorem (cf. [_4Γ\):

THEOREM 2.5. Suppose f e L\OC(Ω) with p> d/2.
(a) If every ξzΓ is locally q-regular and (q-{- \f\)-regular (or, equi-

valently, if every ζeΓ is locally (q+\f\)-regular), then the boundary value
problem (2.16) has a (unique) solution.

(b) / / every ξ e Γ is locally q-regular and if (2.16) has a solution for a
given / ^ 0 , then every ξ e Γ is (q+f)-regular.

PROOF, (a) By Corollary 1 to Theorem 2.3,( Gq(x, y)\f(y)\dy <oo for

any x e Ω. By assumption, Hl(x)->1 and Hl+[fl(x)-+l as x->ξ for any ξ e Γ.

It also follows from Harnack's principle that a = intxeΩHl+lfl(x)>0. Then,

using Proposition 2.1, we have

i.e.,

for any ξ e Γ. Hence, the function

10 if x e Γ

is continuous on Ω* and, by virtue of Lemma 2.4 (considering / + and / " ) , it
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is a solution of (2.16).

(b) Let u be a solution of (2.16) for a given /2>0. Then

for any 0 e C\(Ω) with <?C>0. Therefore, — u is Z^-superharmonic on i? (Pro-
position 2.5 of [16]). Since u = 0 o n Γ , — ι* e $>β. Then we can show t h a t

for * e β (cf. [11] and [16]). Therefore,

limί Gq(x, y)f(y) dy =0

for all f e f . Then, by Theorem 2.4, every f e Γ is (^+/)-regular.

COROLLARY. Let f e L\OC(Ω) (p>d/2) and σ e C(Γ). If every ξ e Γ is
locally q-regular and (q-\- \f\)-regular (or, equivalently, if every ζ e Γ is locally
(q+ \f\)-regular), then the boundary value problem

I Lqu = Au — qu=f on Ω

u=σ on Γ

has a solution which is continuous on Ω*.

PROOF. Let uλ be the solution of (2.16). Then u = uι + HΪ is the re-
quired solution.

Appendix: Proof of Proposition 2.1.

We prepare five propositions, which are known in case Ω is a locally
Euclidean space and q's are locally Holder continuous (see [14]).

PROPOSITION A-1. For any x e Ω,

PROOF. First, suppose S(q) is compact. Then, by Lemma 2.4, v(x) =
q(x, y)q(y) dy belongs to §>qΓ\Dιoc(Q) and

\ qvΦ dx = \ qφ dx
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for all φ e Cl(Ω). Hence, DΩ[l-υ, φJ+\ q(l-v)φdx = 0 for all φ e Cι

0(Ω), i.e.,

1 — v is ^-harmonic on Ω. Since v e §>q^ we have 1 — v^>0.
Next, let q be arbitrary. Since Ω is countable at infinity (cf. C16]),

there is a sequence {xn} of non-negative measurable functions on Ω such that
each S(xn) is compact and xn(x) f 1 (/&-><*>) for each Λ e i2. By the above
result,

dy ^ 1 .

By Lemma 2.5, C?%»O, J ) ^ C ? ( Λ ; , y). Hence,

Letting ^->oo5 we obtain the proposition.

PROPOSITION A-2. // qι^q2 on Ω and σ^O is tQQl-resolutive, then the
greatest q2-harmonic mίnorant of HI1 is equal to Hp.

Proof of this proposition is similar to [ΊL4; Lemma 3.8].

PROPOSITION A-3. Let qι<,q2 on Ω and σ be a bounded &q-resolutive
function on Γ. Then

PROOF. It is enough to prove this for σ^>0. By Proposition A-l,

(χ, y) iq2(y)-qi(y)} H*Λy) dy <oo.

Hence, by Lemma 2.4, υ is continuous and

q2-qi)Hq

σiφ dx

for all φ e C\{Ω). On the other hand, since Hq

σ

ι is ^i-harmonic,

DΩlHl\ Φi + \Ωq2Hpφ dx = \(q2-qϊ)Hpφ dx.

Hence,

for any φ e C\{Ω), i.e., HI1 — v is ^-harmonic. Since υe^Q2, it follows that
Hq

σ

ι — v is the greatest </2-harmonic minorant of Hi1. Hence, by the above
proposition, Hiι — v=Hp.
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PROPOSITION A-4. Let {qn} be a monotone increasing sequence converg-
ing to q. (We are assuming that qn, q are non-negative and belong to
Lfoc(i2), p>d/2.) Then, for any ξ)Ql-resolutive non-negative function 6 on Γ',

Hi* (x) I Hi(x) ( ^ c o )

at every point x e Ω.

Proof is similar to [14 Theorem 3.4],. by the aid of Proposition A-3.

PROPOSITION A-5. // qi<,q2 on Ω and qι = q2 outside a compact set in Ω
and if σ̂ >0 is bounded ξ)Ql-resolutive, then the least qι-harmonic majorant of
Hp is equal toHp.

PROOF. Let u be the least ^-harmonic majorant of Hp. Obviously,
Hp^u^Hp. Let v e W^dUS'^W*)- Then v-Hp e d+(#). Since q i = q2

on Ω — Kίor some compact set K in Ω, v — Hp e cϋ^iΩ—K). Let M=sup σ
and choose w e §>Qι such that w>M on a neighborhood of K. Then v ^ m i n
(M, v-Hp + w)e βl(Ω) and Vl + u^vλ + Hp>mm (M, υ). Hence, vλ + u a Ui^\
i.e., viΛ-u^Hp. Taking infimum of v, we have

min (M,

Since min (M, w) € φqi, it follows that u^>Hp. Hence u = Hp.

PROOF of PROPOSITION 2.1. First suppose qι = q2 outside a compact set in
Ω. Then, by Lemma 2.2,\ GQl(x, y) {q2(y) — qi(y)} dy<co and an argument
similar to the proof of Proposition A-3 gives (2.8), by the aid of Proposition
A-5.

Next, we prove the general case. Let xn be as in the proof of Proposi-
tion A-l. By the above result, we have

Since Hp+X^~q^m\ (*) implies

x, y)xn(y) {q2(y)~qι(y)} Hp(y) dy.

Letting ra—•oo, we obtain (2.7).

Now, since
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^(sup <j)GHχ, y) {q2(y)-

the condition \ GQl(x, y) {^2(7) — qi(y)} Hl1(γ)dy<o° guarantees the applica-

tion of Lebesgue's convergence theorem on letting n-+oo in (*). Thus, since

jjQi+χn«i2-<ii) 1 up by Proposition A-4, we obtain (2.8).

CHAPTER III Conditions for g-regularity of relative boundary points

In this chapter, we consider a bounded domain Ω in the Euclidean space

Rd and the usual closure Ω in Rd as a compactification of Ω. For simplicity,

we shall consider only the case (#ίy) = (ί/y), so that Δ is the ordinary Laplacian.

We shall always assume that q is a non-negative function on Ω belonging to

L{oc(Ω\p>d/2.
It is well-known that Ω is a resolutive compactification of Ω (see, e.g.,

[9; Theorem 8.11]). Also, as remarked in Chapter I (Remark 1.1), if ξ e dΩ

= Ω — Ω is regular ( = 0-regular), then it is also locally regular. Thus, by

Theorem 2.1 and Corollary 1 to Theorem 2.4, we have

THEOREM 3.1. (a) ξ0 e dΩ is locally q-regular if and only if it is q-

regular.

(b) Suppose ξ0 e dΩ is regular. Then it is q-regular if and only if either

or, for some r o>O

lim sup\ G(χ9 y)q(y) dγ=0,
r-o xeΩ J ΩrλB(ξQ',r)

lim \ G(x, y)α(y) dγ=Q.
x^ξQ,X€Ω JΩr\B(ξo;rQ)

§3.1. The case where there is no condition on the boundary.

First, we state a theorem, which is a consequence of a general theory

(see [19; Theoreme 10.2] and [11; Theoreme 3]; also cf. [12; Corollary 7.7]):

THEOREM 3.2. / / ξ0 e dΩ is regular and if qe Lp(ΩίΛ V), p>d/2, for

some neighorhood V of £0? then ξ0 is q-regular.

We can give an elementary proof to this theorem using Theorem 3.1 and

Holder's inequality. Note that a result in [5; n° 6] is an immediate con-

sequence of this theorem.

T H E O R E M 3.3. / / q(x)<>φ(\ x - ξ Q\) on B(ξ 0 r 0 ) Γ\ Ω ( r 0 > 0) for anon-
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negative locally summable function φ on (0, r 0 ] such that

(r°
\ tφ(t)dt < oo, if d^S
Jo

(3.1)
\ °ίlog φ(t)dt <oo, if d = 2,
Jo t

then $o is q-regular whenever it is regular.

P R O O F . L e t F(x, y) = \ x-y\2~d if e & 3 , F ( * , y) = \og(k/\x-y\) i f J = 2,

where A:>0 is so chosen that F(>, y)^>2πG(x, y) for all Λ, ytΩ. For
0<ί<r, let

where S(0; 1) is the unit sphere and dS is the surface element on 5(0; 1).
By a classical theory, it is known that Ut is constant on B (ξ0 t) and

sup Ut(x)=Ut(ξ0)

i<rdt
2-d

F(0;
5 ( 0 ; 1 ) [2π log (*/0 (<*=2),

where σd=[ dS(β). Let cd = (d-2)σd if d^>3, cd=2π if d=2. Then
JS(O I)

F(x,y)^>cdG(x, y) for ail x, y€ Ω. Hence, for O<r<r θ 5

2π[T φ(t) (log—Xdt (d = 2)
Jo \ t /

for any x e Ω. By (3.1), the last term tends to 0 as r—•(). Hence, Theorem
3.1 implies that £0 is ^-regular if it is regular.

REMARK 3.1. Either Theorem 3.2 or Theorem 3.3 implies that if ξ0 is
regular and q(χ)<lλ\x — ζo\~2+£ on B(i0; rQ)r\Ω for some ΛΞ>0 and ε > 0 , then
f o is ^-regular. Applying this result to the corollary to Theorem 2.5, we
obtain a theorem given by K. Miller pL7; Theorem 4]. We can improve it
by using Theorem 3.5 below (§3.3).
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§3.2. The case where the boundary is a Liapunov-Dini surface.

A non-negative continuous function ε(t) defined on QO, to~](to>O) is called

a Dini function (C22H) if it is monotone increasing on [0, toj, e(t)/t is mono-

tone decreasing on (0, ί0H and\ [XOΛH dt<o°. Given a bounded domain Ω
Jo

and $o €" dΩ, we shall say (following K.-O. Widman [22]) that the part of the
boundary dΩΓ\B (ξo; r0) (ro>O) is a Liapunov-Dini surface if there are a C1-
function F on B(ξ0; r0) and a Dini function e(ί) on [0, rol] satisfying the
following two conditions:

(a) S=dΩίλB(ξ0; r0) is a Cx-surface represented by /% i.e., S = { f e

= 0} and grad F=[-^9 ...9-£-)φ0on S;

(b) For any ξu ξ2 e 5,

F,*, OF

THEOREM 3.4. Suppose S=dΩΓΛB(ζo;ro) is a Liapunov-Dini surface for
some r0 > 0. Let φ be a non-negative locally summable function on (0, r0H such
that

(3.2) [°tφ(t) dt <oo
Jo

f be a Cλ-function on B(ζ0; r0) ŝ cfe that f(x) = 0 on 5, Ωr\B(ξo; ro) =
x e 5(?o; 7*o); / ( ^ ) > 0 } and grad /(ίo) :τ^O. //, /or swcfc 0 and /, we

(3.3) ? ( Λ ) ^ φ(f(χ))

for all x e ΩΓ\B(ξQ\ro), then ξ0 is q-regular.

PROOF. It is easy to see that the boundary dΩ satisfies the Poincare ex-
terior cone condition at ζ0, and hence ζ0 is regular.

Without loss of generality, we may assume that ζo — O and grad /(0) =
(5, 0, ..., 0) with d>0. For χ = (χu •••, Xd) * Rd, let x' = (χ2, •••, ̂ r f ) . We write
ρ r = {Λ;; | # i | < r , \x'\ <r} andQϊ = {x eQr; Λ ; I > 0 } . Since grad f(0)Φ09 there
is p 0 > 0 (po^^o/2) such that by the mapping

\ ro/2), df/dxι^d/2 on 2)^ and (̂  is one-to-one on DPQ. Since
D/Oo is a neighborhood of ξ0, it is enough to prove that f 0 is ^-regular with
respect to D+o = DPoΓ\Ω (Theorem 3.1, (a)), i.e., we may assume that Ω = DpQ.
Thus, let G(Λ;, y) be the Green function of D+

PQ. For 0 < r < ρ 0 ? let Dr = Φ1(Qr)
and Di = 0-\Qt). Obviously, D^ = Drr\Ω and {^r}o<r</)o is a fundamental
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system of neighborhoods of ?0 = 0. By virtue of Theorem 3.1, (b), it suffices
to show

(3.4) limsupf G(x, y)q(y) dy=0.
r-^0 xe Ω JDr

Let φ-ί(v) = (h(v), v) for υ c QPo. Then A is a Cι-ϊ unction on QPQ,

(3.5) O < £ W = ( ^ ) 1

and SΓΛDPo={(h(O, i/), υ')\ \υ'\ <p0}. By condition (3.3) and by the change
of variables υ = Φ(y), we have

+ G(x, γ)q(y) dγ<,\ G(x, γ)φ(f(γ)) dy

+

Qr

~—(v) dυ

^-f-Γ'0(0 dt\ G(x,φ-\υ))dυ',

where, in the last inequality, we used (3.5). Now we put

Ut(x)=[ G{x,φ-\v))dvr

Jϋ1=ί,|ϋ/|</o0/2

for 0<ί<p 0/2. We shall show that there is &>0, independent of x, t, such
that

(3.6) Ut(x) ̂  kt

for all x a Ω and 0<t<ρ0/2. Then, for 0<r<p0/2,

G(*, y)q(y) dy^^-^tφ{t) dt.

Condition (3.2) implies that the right hand side tends to 0 as r->0. There-
fore, we obtain (3.4) and the theorem is proved.

To prove (3.6), we consider two cases.
The case d^>3: In this case, first we remark that

(3.7) I 2-d

for all x, y£Ω, where kx — ci1 is independent of x, y. On the other hand,
since 5 is a Liapunov-Dini surface, the arguments in the proof of Theorem
2.3 of [22] can be repeated and we obtain
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(3.8) G(x, y ) ^ k 2 d i s t (*, 5 ) d i s t (y, S ) \ x - y \ ~ d

for all x, y e D^l2, where &2>0 is independent of x, y. Now

dist O, 5) ̂  Xl-h(0, x') <,^-f(x).

Hence, (3.8) implies

(3.9) G(x, y) ̂  hf(x)f(y)\x-y\ ~d

for all x, yeDp0i2, where k3>0 is independent of x, y. Let S, = {x; f{x) — t,
\x'\<po/2}. For 0< ί <po/2, 5, C D+

Hl2. If « e St (0 < ί <po/2), then, by (3.7)
and (3.9), we have

[ G(x, Φ~\v)) dυ'
,\x'-v'\s,t,\v'\<pal2

G(x, Φ~\v)) dv'
1 = t,\x/-v/\yt,\υ/\<PQl2

\χ-φ-\v)\2-ddvr

Λ ' ' ^ t | / | < / 2

-ddυ'+ k3t
2\ \x-φ-\v)\-ddυ

\x'-v'\2-ddvr

\x'-υ'\%t

\ \ - d d v f

'-v'\>t
+ k3t

2[ \x'-vr\
J\x'-v'\>t

rt CΌo

d^λ dp+ks(ϊd-it2\ p~2dp = kt,
Jo Jt

where k = (kι + k3)(Td-i is independent of x, t. Hence

sup Ut(x) ^ kt
xe st

for all t a (0, po/2). Now (3.6) follows from Lemma 2.3.
The case d=2: In this case, we identify R2 with a complex plane, so

that x = (xι, x2) £ R2 is identified with z = xι + ίx2. Let w = ζ(z) be a confor-
mal mapping of the simply connected domain DpQ onto the right half plane
{Re w>0} such that ζ has a continuous extension to DpQ for which ζ(0) = 0.
Then, by a theorem of S. Warschawski ([21 Zusatz 1 zum Satze 10] also
cf. [20; Theorem IX. 9, (ii)]),

(3.10)
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for all z e D^Ql2. On the other hand, since G(ζ~λ(w\ C-1(zO) is the Green func-
tion of {Re w>0},

w + U =4-k>g [ l + 4(Re w) (Re u) \ u-w\ ~2J.
w—u

Hence,

G(x, y) = Λ-log [ l + 4(Re ζ(x)) (Re

If x, j e i ) ; / 2 , then, by (3.10),

Re ζ(χ)<;

and

Hence, if x, ye St (0<ί<p0/2), then

where M=(4β2)/(δβi) is independent of *, 7. Hence, for x e St (0<ί<po/2),

G(X, Φ-\V)) dv2

2

<: MtΓlog
Jo

Therefore, we obtain (3.6) also for the case d=2.

COROLLARY 1. Suppose S=dΩΓ\B(ζ0; r0) is a Liapunov-Dinί surface
for some r0 > 0. If

(3.11) q(χ) ^ φ (dist (*, 5)) /or all x e Ωί\B(ξ0; r0)

/or α non-negative monotone decreasing function ψ on (0, r0H satisfying (3.2),
f 0 ̂  q-regular.

PROOF. Let 5 be represented by a C^-function F satisfying condition (a)
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for a Liapunov-Dini surface. We may assume that F(x)>0 on ΩΓ\B(ξo\ r0).
It is easy to see that there is #i>0 such that distO, S)^>διF(x) for all
x 6 Ωr\B(ξ0; ro/2). Since φ is monotone decreasing,

q(x) ^ φ(di*t(x, S)) ^φ{δλF{x))

for x 6 ΩΓ\B(ξ0 ro/2). Hence, taking f(χ) =δ1F(x) in the theorem, we
obtain this corollary.

COROLLARY 2. Suppose S=dΩΓ\B(ζ0; r0) is a C2-surface for some ro>O.
/ / (3.11) holds for a non-negative locally summable function φ on (0, r 0] satis-
fying (3.2), ίfeew f o is q-regular.

PROOF. Obviously, a C2-surface is a Liapunov-Dini surface with a Dini
function ε(t)=at (a: const.>0). Furthermore, if 5 is a C2-surface, then

f dist(#, 5) for x e ΩΓΛB(ξ0; r0)

( -dist(Λ;, 5) for x e 5(? 0; r o)-i2

is a C^-function on fi(f rλ) for a sufficiently small r i>0 (ri^r 0) and grad
Hence this corollary follows from the theorem.

REMARK 3.2. As an immediate consequence of Corollary 1 above, we see
that if Ω is bounded by a closed Liapunov-Dini surface 5(i.e., dΩ = S) and if

q(χ) ^ k {dist (*, 5)}-2 + f

for all x e Ω for some £>0 and ε>0, then every point of dΩ is ^-regular.
Thus, applying Theorem 2.5, (a), we have the following result:

If dΩ is a Liapunov-Dini surface and if

(3.12) I f{x) I ̂  k {dist (*, 5)}" 2 + £

for all # e i2 with A;>0 and ε>0, then the boundary value problem

Au=fonΩ and ^ = 0onδ*i2

has a continuous solution.

In this connection, we remark that G. Prodi [[18] gave an existence
theorem for a similar problem under the assumption (3.12).

§3.3. The case where the boundary satisfies cone conditions.

We shall say that the boundary dΩ satisfies the exterior (resp. interior)
cone condition at ξ0 6 dΩ if there exists a truncated circular open cone C with
vertex at ξ0 such that ΩίλC=0 (resp. CCΩ). In this section, we give con-
ditions for gr-regularity of ξQ when dΩ satisfies such cone conditions at f 0
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LEMMA 3.1. Let Co be the cone

C0 = {x = (χu x')6 Rd; Xl>a\x'\} (α>0)

and let C$ = Rd — C0. Let G0(x, y) and G$(x, y) be the Green functions of Co

and C f, respectively. Also, let e = (l, 0, ..., 0), S={x e Co; \x | = 1, x\^ka\ x'\ }
with k>l and S* = {x e Rd — C0; \x\—l}. Then, for some constants α o > 0 ,
/?o>O, c i>0 and c 2 >0, we have

c {cι\χ\a° for x€C*ίλB(0; 1)
(3.13) \ Gt(x,θ)dS(θ)<:\

)s* [Cl\x\-^-d+2 fσrx€C*-B(0;l),

and

(3.14) G0(te, θ) ̂  c2r
β°-d+2 fort^l

for all θ 6 5.

PROOF. Let u be the harmonic measure of 5* with respect to the doma-
in C0*Λ5(0; 1). For 0<£<:i? let ω(t) = suiρθ(:s*u(tΘ). Obviously, α)(l) = l and

for 0 < ί < l . By the maximum principle, we have

u(x) <; ω(t)-u(x/t)

for I x I < t. Hence, if t'< ί, then

ω(tr) ^

It follows that ω(t) <,2a°ta° for 0 < ί ^ l , where αo>O is so chosen that 2a° =

lω(l/2)y\ Therefore, u(x)<,2a° \ x \ α° for 0< | x \ ^ 1 . Now, w(χ) = \ Gξ(x, Θ)
s*

dS(Θ) is non-negative harmonic on C$ΓλB(0; 1), w = 0 on dC$ΓΛB(0; 1) and w
is bounded on 5*. Hence, w<,cu on C$Γ\B(0; 1) for some c'>0. Thus we
obtain (3.13) for x e C$Γ\B(0; 1). By considering the Kelvin transformation
of u, we similarly obtain (3.13) for x a C$-B(0; 1).

Next, let βo = ma,x {2, (d — I)α2 + 1} and consider the function

v(x) = (xl-a21 x' I 2 ) ^ 2 I x - e \ -***-*+*

on Co — {e}. v is a C°°-function on C0 — {e} and, by a direct computation, we
see that Δι;̂ >0 on Co — {e}, so that v is subharmonic there. Let U be a neigh-
borhood of 5 such that ϊ/CCΌandlet β = inΐx€dUfθeS G0(χ9 θ) and λ =
Then, 0 < A , A<oo and

(3.15) Go(*, θ) ^
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for all x e 9Z7and Θ e S. Since v is subharmonic on Co — U, v = 0 on dC0 and
v(x)^0 as I x I ^CXD, (3.15) holds for all x e C o - U and Θ e 5. Thus we obtain
(3.14), since

for ^

Next, we prepare an elementary lemma:

LEMMA 3.2. Let f be a non-negative locally summable function on (0,
(ίo>O) and let

^yf(s) ds (a>0)

and

^*f(s) ds

for 0<t<^t0. Then, given a, /2>0, limt_+0Fa(t) = 0 if and only if limt^0Gβ(t)
= 0. Hence, if limt^0Fa(t) = 0 for some α > 0 , then it holds for all a>0 and
limt^oGβ(t) = O for all β>0; if limt^0Gβ(t) = 0 for some /?>0, then it holds for
all /?>0 and l im^ 0^α(0 = 0 for all a>0.

PROOF. First, we assume that limsup^o Gβ(t) < oo ( ? and hence Gβ(t) <
for each t e (0, ί0H). We have

= ^s-"f(s) ds

and

(2t)βGβ(2t) - tβGβ(t) = J 2 ' sβf(s) ds

for t e (0, ίo/2]. Since

^s~af(s)ds ^ t-<a+β^'sβf(s) ds

and

we have

and
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for t e (0, ίo/2]. It then follows that limsup^0 Fa(t)<oo,

(1-2"") limsup Fa(t) ^ 2β limsup Gβ(t)
t -»• 0 f -+ 0

and

(1 — 2-/3) limsup Gβ(t) ^ 2α limsup Fa(t)

under the assumption limsup^o 6^(0 <°° Hence, we obtain the lemma
under this assumption.

We shall next show that limsup,_>0 G^(0 = °° implies limsup^o Fa(t)
= 00. If limsup^o Gβ(t) = 00, then, given M>0, we can find a sequence
{ί«}C(0, to/22 such that ίn->0 and

Γ2ί

For, otherwise, there is t' a (0, ί0U such that \ sβf(s) ds ^ 2a+βMtβ for all ί

(0, ί'], so that

Γ ^ sβf(s)ds

^ Σ (

for all t e (0, ί'], which is a contradiction. Now,

ds

Hence, limsup^o Fa(t)~^>M. Since M is arbitrary, limsup^0 Fa(t) = oo,

REMARK 3.3. By the above proof, we see that limsup^0 ^ ( 0 = °° if

f(s) ds is

finite, then lim^0 Fa(t) = O and lim^0 6^(0 = 0 for all a, β>0. The converse
is not always true; for example, if f(t) = \j log(Vί)]]-1, then lim^0 ^ ( 0 = 0

but ( f{s)ds = 00.
Jo

THEOREM 3.5. // dΩ satisfies the exterior cone condition at ξQ e dΩ and if
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(3.16) q(χ)^=Φ(\χ~ζo\)

for all x e ΩΓ\B(ξ0; ro)(ro>O) for a non-negative locally summable function φ
on (0, roll such that

(3.17) lim Γa<\rι + aφ(r)dr = 0

for some α>0, then ζ0 is q-regular.

PROOF. We may assume that ξ0 = 0 and C$ίλ B(0 r0) 2> Ωn B(0 r0), where
C$ is the set defined in Lemma 3.1. Obviously, ζo = O is regular. By virtue of
Theorem 3.1 and our assumption (3.16), it is enough to prove

(3.18) limf , G*(x, y)φ{\y\)dγ = 0 .
x-+0 JC0ΓΛB(0;rQ)

Using the relation G$(x, rθ) = r2'dGf(x/r, θ) for r>0 and (3.13), we have

( + G$(x, y)φ(\y\)dy

= [r\d~ιφ(r)dr [ G$(x, rθ) dS(β)
Jo Js*

= \r°rψ(r)dr [ G*(x/r, θ) dS (θ)
Jo Js*

Applying Lemma 3.2 with f(t) = tφ(t), we see that the last expression tends
to zero as #-*0, by virtue of the assumption (3.17). Hence we have (3.18).

COROLLARY. If dΩ satisfies the exterior cone condition at ξQ and if

lim \x-$0\
2q(x) = 0,

then ζ0 is q-regular.

Finally, we give a sufficient condition for ^-irregularity of ζ0 e dΩ, which
shows that the results in this chapter (Theorems 3.2, 3.3, 3.4 and 3.5) are
fairly sharp (cf. Corollaries 1 and 2 below).

THEOREM 3.6. Suppose dΩ satisfies the interior cone condition at ξQ e dΩ

and let C be a truncated circular open cone with vertex at ξQ such that

If
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(3.19) limsupί-*( | χ-ξo\
 β~d+2q(χ) dx > 0

t-0 JC'ΓΛB(ξ,;t)

for some β>0 and a truncated circular closed cone C with vertex at ζ0 such
that C' — {0} CC, then ζ0 is q-irregular.

PROOF. We may assume that £0 = 0, C=C0Γ\B(0; n) and C
= {χ; \χ\<LrQ, x{^ka\x'\} with 0 < r 0 < r i and k>l. By Theorem 3.1, it is
enough to prove that, for any p with 0<p<Ξr0,

limsupί G0(χ, γ)q(γ) dy >0,
x-*0 J CΓ\B(O;p)

or,

(3.20) limsupίV'1 dr[ G0(te, rθ)q(rθ)dS(Θ) > 0,
t-+o Jo Js

in the notation of Lemma 3.1. Since G0(te, rθ) = r2'dG0((t/r)e, θ\ (3.14) of
Lemma 3.1 implies that, for 0<ί<p,

V" 1 dr[ G0(ίe, rθ)q(rθ)dS(θ)
o Js

Let f(r) = r\ q(rθ)dS(β\ which is defined almost everywhere and is locally

summable on (0, rQ~] by Fubini's theorem. By (3.19),

limsup Γβ(\rβ f(r) dr > 0.

Hence, by Lemma 3.2,

limsup rβ°-d+2 ΓΓ

1 +^^-2 if q(rΘ)dS(Θ)\dr > 0.

Thus we have (3.20).

COROLLARY 1. If dΏ satisfies the interior cone condition at ξ0 6 dΩ and

if

for all x e C for a truncated circular cone C with vertex at ξ0 such that
and for a non-negative locally summable function ψ on (0, r 0] such that

limsup rβ \ rι+β 0(r) dr >0
f->0 Jθ

for some /?>0, then ξ0 is q-irregular.
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COROLLARY 2. // dΩ satisfies the interior cone condition at ξQ er dΩ and
ί / l iminf^^ecl^ — io|2^(^)>O for a truncated circular cone C with vertex
at ξ0 such that CCΩ, then ξ0 is q-irregular.
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