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Introduction and Summary

In this paper, p denotes always an odd prime number.

Let K,={K.(n)} be the spectrum such that K,(n) is k-th element of the
Postnikov system over S” (see (1.1) of §1) and S={S"} be the sphere spec-
trum.

In [6: IIT], H. Toda has calculated H*(K;)" for k<2(p*—1)(p—1)—2 as
the module over A*, the Steenrod algebra mod p, by making use of several
exact sequences of A*-modules and by the induction on % using Lemmas 3.3
and 3.4 of [6: III ], which are stated in Proposition 1.2 of §1.

Also in [6: IIT], for k<2p*(p—1)—38, the p-primary component ,7,(S) of
the k-th stable homotopy group 7,(S) of spheres has been determined from
the above results on A*(K,) by use of Lemma 3.1 of [ 6: III ], which is quoted
in (1.4) of §1. Furthermore in [6:IV], he has given the generators of ,7.(S)
by means of the compositions and the secondary ones in the same range of k.

The purpose of this paper is to calculate H*(K,) and ,7.(S) for k<
2(p*+p)(p—1)—3 by use of the methods introduced by H. Toda [6] and some
relations in ,7.(S). “The results are summarized in Theorems 4.1, 4.4, 5.1, 6.2,
7.8 and 7.9. The exact sequences presented in [ 4] together with the ones in
[6:1] are used in these calculations.

The beginning of our calculations is summarized in Theorem 4.1 of §4,
which is due to H. Toda [6: III . For further calculation, we use the
following two relations:

g)lbfglzdl, 4d1=9pzao in H*(KZ(pz-l)(p~1)»2)3

which are given in Lemma 4.2 of §4.

Using these results and the exact sequences in [4] and [6: I7,
H*(Kyp2-1)p-1)-1) s determined (Theorem 4.4), and also H*(K,), 2(p* —1)(p—1)
<k=2(p*+p—2)p—1)—2, in certain dimensional restriction (Theorem 5.1).

These results enable us to calculate the group ,7(S) for £ <2(p*+p—1)-
(p—1)—4 (Theorem 6.2). In addition, theorems presented in §3 give the
description of generators of ,7,(S) based on the compositions and the second-
ary compositions.

1) In this paper, the cohomology H*( ) will be understood to have Z, for coefficients.
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For funrther calculation, it is necessary that the following two coefficients
%3, x4 € Z, are determined :

(71) ﬂ’lep#zzxsbg, .?lde,,_zzx44bg m H*(Kz(p2+p,2)(p_1)_2).

In [7], H. Toda has calculated the (unstable) homotopy groups ,7zu:1:%
(8?1 for k<2(p*+p)(p—1)—5 by the methods which differ from [6]. By
use of the result ,ma¢25 p-1y5-1)-3(S)=0 of [7], we obtain x;=x0 (Lemma 7.1).
To determine x,, in §8, we continue the calculations of [7] and obtain the
partial results on ,mye.pyp-1)-3(S). These imply x,=2x3;20 (Proposition
7.7), and so H*(K,) is determined for 2(p*+p—2)(p—1)—2=<k=<2(p*+ p)(p—1)
—38 under certain dimensional restriction (Theorem 7.8).

In the forthcoming paper of the same title [5], we shall calculate the
module H*(K,) for £<2(p®+3p)(p—1)—4, p>3 and for k<74, p=3, and the
group ,mx(S) for k<2(p*+3p+1)(p—1)—5, p>8 and for k<76, p=3.

The contents of this paper are as follows: In §1, we review the method of
H. Toda [6]. Section 2 is devoted to introducing some known facts on H*(K,)
and ,7,(S), which are used in §§3-4. In §3, we discuss the relationships between
some special relations in H*(K;) and the compositions in ,7,(S). The module
H*(K,) is calculated for £ <2(p*’—1)(p—1)—1 in §4, and for 2(p*—1)(p—1)
<k=2(p*+p—2)(p—1)—2under degree <2(p’+p+1)(p—1)—38 in §5. Using
the results in §§3-5, ,7x(S) is calculated for £#<2(p*+p—1)(p—1)—4 in §6.
In §7, the non-triviality of the coefficients x; and x, is discussed by use of
Propositions 7.5-6, and H*(K;) is calculated for 2(p*+p—2)(p—1)—2<k <
2(p*+p)(p—1)—8. Also ,m4(S) for 2(p*+p—2)(p—1)—8=k=2(p*+p)(p—1)
—83. In §8, by means of the methods established by H. Toda [7], the
unstable group ,7s,.1.4(S*"*") is calculated partially for 2(p*+p)(p—1)—5=<
E<2(p*+p)p—1)—2, and in particular, ,ma2 5 -1)-3(S) is determined for
p=3 (Proposition 7.5). Moreover, by those methods together with the results
of [87][107, the non-triviality of the element a;¢,_, is proved for p >3 (Proposi-

tion 7.6).

§1. Postnikov system over spheres

In this section, we shall review the methods of H. Toda [6:III] (cf. [17]).
Let K,={K,(n)} be the spectrum such that K;(n) is the k-th element of
the Postnikov system over S”. The indexing is given by

i n(Ki(n))=0 for j=k,
(1.1)
ix: iy S") 207 n(Ki(n)) Jor j<k.

Let S={S"} and K(G)={K(G, n)} be the sphere spectrum and the
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Eilenberg-MacLane spectrum respectively. The fibering i: K;.1(n)—>Ki(n)
with the fiber K(7,.:,(S"), n+k) gives rise to an exact sequence of the
cohomology of spectra, which is the sequence (3.1) of [6: III']:

(1.2) IS H(K ) A H (K )2 HH(ma(S) L H i (K )5

where H"(G)=H"(K(G)), ,G denotes the p-component of G for any finitely
generated abelian group G, and the cohomology H*( ) is understood to have
Z, for coefficients.

By (1.1) and (1.2), it follows that

(1.8) ([6: 111, (3.3)]) H(K,)=0 for 0<i<k+1 and J*: H(,m1(8)—>H*'(K})
18 1somorphic. j*: H'(,mi(S))—>H"**(K};) is monomorphic.

Let 4,: H( )nKer 4,_,—H"*'( )/Im4,_, (4,= 4) be the higher Bockstein
operation of r-th kind. The following two statements are Lemmas 3.1 and
3.2 of [6: IIT'] and are used to determine ,7,(S) in this paper.

(1.4) The number of the direct summands of w,(S) which are isomorphic to
Z,r 18 equal to the rank of the image of

4,: H*Y(K) N Kerd,_,—H**Ky)/Imd, ..

(1.5) If H(K)=0 for 0<i<k+r, r>0, then ,7(S)=0 for k<j<k+r
and i*: H¥*(K,)—>H*(K;) is tsomorphic for k<j<k-+r.

The module H*(,7,(S)) is the direct sum of the copies of 4* and 4*/A*4,
where A* denotes the Steenrod algebra mod p. Thus H'(,74(S))=0 for2<i<
2p—38 and H'(,mx(8))=0 (£>0) if and only if ,7,(S)=0. This implies the
following

Lemma 1.1. (i) The map i*: H**'(K,_))>H*'(K,) is epimorphic for
0<=j=2p—4 ,

(i) Let k>1. The map i*: H*"Y(K,_;))—~>H"**(K;_,) 18 monomorphic for
1<;,<2p-38. ™ H*""Y(Ky_1)>H*(K,) 18 so if and only if ,m,_1(S)=0.

We can consider that the vector spaces H**(K,) and H**%(K,) are given
by

H" N K)=Zy{a;, bj; 1<i<r, 1<j=<s},
(1.6)
Hk+2(Kk):Zp{a;’ Ab]’a C1y €255 1§i§r9 1§]§S}9

where 4a;=0, 4,0;=ai(k;=2) and Z,{d,,---, d,} denotes the vector space
over Z, spanned by the elements d,, .., d,. Then we have

H*(pnu(S))= 2 A*j* lai+ 2 A*j*taj+ 3 A%* b,
(L7 (D A/ A% )D(D A* ) 4* )P (D 4*),
pnk<s>z<iéplzzi>@<ézp>, 1= ph.
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To determine the module structure of H*(K,) by the induction on %, we
shall employ the following proposition, which is proved from (1.2) similarly
to Lemmas 3.3 and 3.4 of [ 6:1I1].

Prorosition 1.2.  In the notation (1.6), let
{ Za;,,ai—F Za,’-,;aﬁ—l— Z ﬁjylbj:(); l:1, 2,}'
i i J

be the system of relations in the submodule Y A*a;+ 3 A*ai+ X A*b; of
H*(K,) and let l ' ’

{; Tl,mBl:O; m:]-: 2""}9 Bl:(al,lr"y &r,1y a{,l,"‘a a;,la Bl,h"‘) Bs,l)y

be the system of relations in the submodule Z} A*B; of (EBA*/ A*4)D
(EBA*/A*A)@(EBA*) Then there exist elements

€ H*(Kk+1) and Wy, € H*(Kk)
such that

0*d,= Z a; . j* “la;+ Z al g lai+ Z Big* “1b;, le Timdi=1*w

Let {e,; n=1,2,..} and {r,=0; ¢g=1,2,...} be the systems of generators
and of relations of H*(K.), then H*(K,,,) has the systems of generators
{i*e,, d;} and of relations {i*r,=0, i*a;=1*a;=i%b;=0, Z Timdi—i*w, =0}.

§2. Some known results on H*(K;) and ,7,(S)

Let a be an element of H(K,). Then, following to H. Toda [6: III'], we
denote by a in K; or simply a ({=k) the image of ¢ under the map i*: H*(K,)
—H*(K,). Moreover, when n>i—k, by the stability H*"(K.(n))=H(K,),
we use the same letter « for the corresponding element of H**(Ku(n)). In
particular, let ay € H*(K;)=H"(K\(n))=Z, denote a generator.

We shall define a map ¢: ,7,(S)—>H"*"'(K,) as follows:

b: p”k(s)‘—z_pnk+1<Kk> S) %’HIHI(KM S; Z)

@.1) ) N
—Hy1(Kyy S)—Hp 1((Kp)—H" (Ky),

where H, p and D denote the Hurewicz homomorphism, the reduction mod p
and the duality map respectively.
Any element a € H**Y(K}), 4,_1a=0, 4,a>%0, gives rise to a direct summ-
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and Z,- of ,7,(S) by (1.4). Then an element 7 € ,7,(S) generates this summand
if ¢(y)=a (see [6: III, pp. 192-1937)).

DerFiniTION 2.1. Any element a ¢ H**'(K,) together with the element
ao € H(K};) forms a subcomplex of K,(n) (up to homotopy type mod p) by the
first statement of (1.3). We denote this complex by P%(a). In more detail,
there exist a complex

Pila)=S"Ue" 1

and a map f,: Pj(a)—>K,(n) such that A*(P}(a)) is spanned by the elements
f¥(ao) and f}¥(a). Moreover we denote by Pi(a)={P%(a)} the spectrum of
these subcomplexes. This spectrum is stable, since SP?(a)=P%?"'(a) for n>
k+1.

Lemma 2.2. Let a € H***(K}) and let 1 € ,m4(S) denote the attaching class
of (n+k~+1)-cell of Pi(a). Then ¢(7)=a.

Proor. Comparing the diagram (2.1) and the diagram which is obtained
by the replacement of K, by P.(a) in (2.1), this lemma follows immediately.
Q.E.D.
Since K, =K(Z), we have

(2.2) The module H*(K,) is generated by a, with the relation da,=0.
By use of (1.4) and (1.5), we have :

(23) H*K,)=~H*K, for k=2p—3, ,mx(8S)=0 for 1=k<2p—4 and
pT2p-3(S) = Z).

Since H**"*(K;,_3)=Z,{?'a,}, we obtain a well-known fact: the generator
ay of ey 3(S)=<Z, is detected by 2* operation.

The module H*(K,), k<2p(p—2)—2, is calculated by H. Toda in
Theorems 3.6, 3.7 and Lemma 3.8 of [6: III].

Treorem 2.3 (Toda). Let 2(p—1) <k =<2p(p—1)—2. Then H*(K,) has a
minimal set of generators which is given by the following

TABLE Al

Range of k£ in which a

Generator a Degree of a exists d*-image of a in K, (4
- a5 o k=1
a, _ 0*a,= R, j* (2la,)
esrzp | 77D F220-Dp-D=hen | Gal 2k o, << p)
a, 2p(p—1+1 k22(p—1)(p—1)=h(a}) | o*a,=42'dj* a,_,
b9 2p(p—1)—1 k=2(p—1)=h(bY) 0*b) = P-1j*-1(plq)

R,=(@+)2'd—rd2).
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The relations in H*(K,) are given by the relations in Table Bl below.

TaBLE Bl

(a-1) day=2'ay=0. (a-2) R,a,=42'da, =da,=4da),=42a,—2'a,=0.

(b-1) 2?Pay— 4b)— PP~%,=0. (b-2) 21b6)=0.

(£) a=0in K, k=deg a, for the generator a=ca, in Table Al.
The relation (b—1) induces the following

(0-3) (22r2'— 2P )AbY=c(2? P~ V)4b3=0 in K, k=4(p—1), where c: A*— A* denotes
the conjugation of A*.

From this theorem and (1.4), ,7.(S) is calculated for £ <2p(p—1)—2.

CoroLrLaRY 2.4.  The group ,m,(S) is isomorphic to Z, for k=2r(p—1)
—1,1=r=p—1, and for k=2p(p—1)—2, and vanishes for other k<2p(p—1)
—2.

Now the element 49 of Table Al gives rise to a generator £, of ,72p5-1)-2
(8S). According to the relation (6—1) of Table Bl1, the generator 5; can be
determined uniquely by the following

(24) (see e.g. [3: Remark in p. 1727, [7: III, p. 102]). A map f:
Sr+2r-1=2_, §" of order p represents B, if and only 1f P?u=(—1)"v in H*(L),
where L=S"Ue""'Ue', i=n+2p(p—1), is a complex such that the map f (resp.
a map S'—>S*! of degree p) is the attaching map of (i—1)-cell (resp. i-cell)
in L (resp. L/S™), and u € H'(L) and v € H'(L) are the generators correspond-
ing to the cells of L.

From the results on ,7,(S) of Corollary 2.4, we have the following facts
about the element g;.

Lemma 2.5 (see [6:1V, Lemma 4.107]). (i) For 0 <i<p, there exists a
complex L= S"\Ue" 2@\ y...Ue " ¥ =D gych that H" **¢~(LH)=7Z, is span-
ned by 2*u for u e H'(L?), 0 <k <i.

(ii) There exist maps A: L3*33—S" and B: S"20(0-1D=2 [2%20=3 gych
that the composition AB represents an element x 31, x>0 mod p, and that both
Aj and 7B represent «, where j: S"—>L? and w: Li—S"***~D denote the in-
clusion and the projection respectively.

(iii) There exist maps A': L3*4P~°—~ L% and B': S"20(-D-2 [n+47=5 gych,
that A'B’ represents js(yB1), y=0 mod p, and that both wA'j and 7B’ repre-
sent a;.

Proor. (i) and (ii) are proved in [6: 1V, Lemma 4.10]. The maps A’
and B’ are constructed by the following homotopy commutative diagram of
cofiberings:
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point Sn+2p(p—1)42 id Sn+2p(p—1)_2

B B’

Sn+2p 3 Ln+2ﬂ 3____>Ln+41> 5__ Ln+2p S/Sn+Zp 3
id A lA'
Sn+2p 3 a S~ J Lrlz’

which is obtained from (i) and (ii), and so (iii) follows from this diagram.
Q.E.D.

§8. Some relations on H*(K,) and the compositions in ,7;(S)

Let X,={X,(n)} be the spectrum such that X,(n)=R2(K,(n), S*), the
space of paths in K,(n) starting from the base point and ending in S”. Then
pr: Xp(n)—S” is an (n+k—1)-connective fiber space over S” with the fiber
£2K;(n). The inclusion iy: Ky(n)—(K(n), S”) induces isomorphisms

31) [(6:1V, 4D]) i H(X)—2 H(QK,)«~——H* ' (Ky).
Lemma 3.1. The map ¢ of (2.1) coincides with the following composition.
bi () <2y (X)L Hy(X 5 2)—t— Hy( X)L HH (X )——H** (K.

Proor. The following diagram is commutative:

(Qig)*

Dr* H
Ta(S)——  pmu(Xp) —L—’Hk(xk) ~— H(2K,)

| A -

p”k(s)"%_pnk+l(Kka $)-L2L > H, (K, S)‘—i:—HkJrl(Kk),

where all maps except pH are isomorphic. Then this lemma is immediate.
Q.E.D.

ProrosiTion 3.2. Let f: S"*—>S" be a representative of 7 € ,m(S), and
assume ¢(7)=a=>x0. Then there is a map F: S"**—>X,(n) such that p.F=f,
F*(r7'a) 20 and F*(H" *(Xi(n))/Zy{r*a})=0.

Proor. By the covering homotopy property, there is a map F such that
peF=f. Consider the map Fy: H, «(S"*)—>H,, (Xy(n)). Let¢€m, «(S"*)
be the class of the identity map and ¢/ =pH¢ € H,,,(S"**) be the generator.
Then ka f implies (pk*) 7=Fy. By Lemma 3.1, D't la=pH(pisx) 7.
Thus, D't la=pHFyc=Fy. This implies the rest of the assertions.

Q.E.D.

The following theorems give the information about the compositions
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with the elements «; and 8; in ,7.(S).

Tueorem 3.3. Let a € H*''(K}) and 7 € ,m4(S), and assume that

1) ¢(r)=a=x0,

(2) 2a=0 in K
Then there is an element b € H****~*(K, ) such that 0*b=2"*"'a by Proposi-
tion 1.2. Furthermore such b satisfies:

bAFO m Kk+zp_3 and ¢(CK1T): +b.

THEOREM 3.4. In the above theorem, assume also

(3) .@p_lb:O m Kk+2p,3.
Then 317 =50 in p77-'k+21>(p—1)—2(S)-

Let c € H*"20=D-Y(K, . ,, ») be an element such that 0*c=2?"1j*"1b.
Assume further

(4) PP2p #O n Kk+zp_3.

B) =0 Ky zpp-1)-2-
Then ¢(B1r)==xc for some x=0 mod p.

Proor or Turorem 3.3. By Lemma 1.1, 620 in K;,,, 4. Assume that
b=0 in K]H_z[,_g. Then by (13), b=2xi4riu,~, A,i_luizo (lf rt-g2), A,iuiﬁFO,
for some x; € Z, and r;—>1, where H****=3(K,.5,_4)=2Z,{u;}. By Lemma 1.1,
u; exists in K, and 4,,_,u;=0, 4, u;>0in K,. Thus & (in K;,,) is con-
tained in Imi*. This contradicts to 0*6=¢0. Thus 620 in K., 3.

Now put L=Pj}.3, 5(b), M=P%(a), and let f': L—>K; 1, 3(n), g’ M—
Ki(n) be the inclusions (see Definition 2.1) and f=if": L—>K;.1(n).

Consider the cofibering of spectra K, .- K, -Q, where Q=1{Q,} is the
spectrum such that Q,=K(,7,,:(S*), n+k+1). Since the element y generates
a direct summand Z,- of ,7,(S) for some r, we have Q,=0Q,%xQ., Q,=K(Z,r,
n+k+1), Q)=K(G, n+k+1) for the decomposition: ,7,(S)~Z,-PG, and so
H*(Q') is generated by the elements ¢ and ¢'=4,¢ which correspond to a
and 4,a, where Q'={Q;}. The element & corresponds to 2'q, since 0*b=
2'j* 'a. Thus the cell of Q corresponding to & attaches only to the cell
corresponding to ¢, since H*(Q’) is a direct summand (as 4*-module) of
H*(Q). This implies that the map if: L—K,(n) passes through the subcomplex
M (up to homotopy). In other words, there is a map [: L—M such that the
following diagram is homotopy commutative:

L f—’KkJrl(n)
] i
M»‘g—»Kk(n).

Let 0 € ,mr.2,-3(S) and 7y € ,7:(S) be the classes of the attaching maps
of (n+k+2p—2)-and (n+k~+1)-cellsof L and M respectively. From the
above discussions, we have § = +71a,= +a;7;. By Lémma 2.2, ¢(0)=>5, ¢(r1)
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=a=¢(7). The kernel of ¢ consists of all p-divisible elements. Hence ¢{a:17)
=+b. Q.E.D.

Proor or Tueorem 3.4. First we shall prove 5,7=0. Assume that
Bir=0. Let g: S""*—>S” be a representative of y. Then (gA4)B is null homo-
topic for the maps 4, B of Lemma 2.5, so there is a map f: Lz472#~3— S” such
that £|S"*#*?/=3 represents +ayy. Let F: Li*5*% 35X, », 4(n) be a lifting of
f. By Proposition 8.2, F*(c"'b)=u for a generator u of H"*k+2t-3(Lrtk+2p-3)
Hence, F*(r Y(2?715))=2?"142=0. This contradicts to 2?'6=0. Thus
B1r =0.

Let us put L=P%}.2p-1y-2(c), Mi=P?%,;, 3(b), N=P%a), and denote the
inclusions by f': L—>Kj.opp-1y-2(n), g1: Mi—>K;,3, 3(n) and h: N>K(n)
(see Definition 2.1).

From the discussion of Theorem 3.3, the attaching map of (n+£+2p—2)
-cell of M, represents +a;y by the replacement of this map if necessary.
Then there is a homotopy commutative diagram of cofiberings:

Sn+k j L;lﬁk L Sn+k+2p—2

l Jo

i’ 7
Sn J M1 L3 Sn+k+2p72,

where the left vertical arrow represents +7 and L? is in Lemma 2.5. Let
Ai € pﬂ'n+k+2(z’+1)(p—1)71(L’,?+k) be the attaching class of the top cell of L?% Then
for 1<<i<<p—1, we can construct inductively a complex M;=S"\e"**+2r-2
U \Ue"t R and a map g;: L¥**— M; such that for i <p—1 the following
is a homotopy commutative diagram of cofiberings:

SAHE2GH1(0-1)=1_ N L’z“k 7 L'fi’f ™ §rtke2(i+1)(0-1)

lqi l“h'n

i —1y— N ’ ’ ; _
Sn+k+2(;+1)(p -1 4 Mi j Mi+1 L3 Sn+k+2(z+l)(p 1).

By Lemma 25 (ii), wi(qid))=m4(1;) generates ,m., 3(S), hence H*(M;) is
spanned by the elements u, v, 2'v,..., 2"'v, where degu=n, degv=n-+k+
2p—2.

Set M=M,_,. The map g, has an extension g': M—>K,,z, 3s(n) by (1.1).
Then H*(M) is spanned by the g'*-images of the elements ao, b, 25, ..,
PP-2p. Put f =if': L>Kj.2p-2(n) and g=ig’: M—>K;.1(n).

By the similar discussions in the above proof of Theorem 3.3, we obtain
the following

(8.2) There exist maps l: LM and m : M— N such that the following diagrams
are homotopy commutative for some x1, x2>0 mod p:
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S”+k+2p(p‘1)*l:L/S"<—”Lf—>Kk+zp,,2(n)
%1B ! i

Lyth+2r=2=M/S" = M -£5Ky,25-3(n),

Lpter2r=2=M/S" " M€ Ky, 1(n)
%A m i

S’H}Hl :N/S”J——Nh—ka(n),

where A, B and L? are in Lemma 2.5, and © denotes the projection.
By this, we have a homotopy commutative diagram:

Sn+k+2p(p—1)71 [ f Kk+2p—2(n)
c lml i
Sn+k+l L3 N h Kk(n),

where C represents yS3; for some y=<0 mod p.
Let 7, be the class of the attaching map of (n +%-+1)-cell of N. Then by
this diagram, ¢(8:171)=xc for some x=0 mod p. Since y;=7-+pi for some

1, we obtain the equality ¢(8.7)==xc. Q.E.D.
Similarly to the above theorems, we obtain the following

Tueorem 8.5. Let o' € H**'(K,) and 7' € ymx(S) with
1) ¢(r)=a, ary’'=0, 2?°a’=0 in K,.
Then the secondary composition {r’, a,, a;} does not contain zero.
Let b’ € H***?~'(K},1) be an element such that 0*b'=2%*"'a’. Assume also
(2) b/AFO mn Kk+4p_5.
Then there is an element ¢ € {r', a1, a1} such that ¢(e)=+b'.
Assume further
8) 2272 =0 in K, 4p_s.
Then B.7 0.
Let ¢’ € H**2P*"D"Y(K, 45 4) be an element satisfing 0*c'=2?~*p*'b". In
addition, assume
(4) 9”‘31)’#0 m Kk+4p_5, >0 Kk+2p(p~1)—2-
Then ¢(B17')=x'c’ for some x'=0 mod p.

Proor. Assume that {y’, ay, @;} 30. Then there is a map F: Li**—
X;(n) such that p,F|S"** represents y’. By Proposition 3.2, F*(r~'a’)=u for
a generator u of H***(L3**). Then F*(r Y(2%'))=2%u 0. This contradicts
to 2%a’=0. Thus {7/, a1, ay} » 0.

The assumption a;7'=0 implies 2'a’20 in K;,. From the discussion of
Theorem 3.4, there exist a complex M= P%(a’)\Je" **??~! gatisfying M/S"=
Ly***1 and a map g: M—K(n) such that H*(M) is spanned by g*a,, g*d/,
P'g*a/. Put L=P7,4, 5(b") and let f: L>K;.4, 5(n) be a map such that
H*(L) is spanned by f*a, and f*b'.
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By the similar argument of the above theorems, we have a map {: L—>M
and a homotopy commutative diagram:

Sn+k+4p74 ~ [ f Kk+4p—5(n)
3 li
Sn+k+2p~1 =M g Kk(n),

where the left vertical arrow represents +a;. This implies ¢(e)= +b" for
some ¢ € {7', a1, a;}.
The rest of the assertions is proved similarly to Theorem 3.4, by use of
Lemma 2.5 (iii) instead of (ii). Q.E.D.
The following theorem is obtained similarly to the previous theorems
and the proof is omitted.

Tueorem 3.6. Let o € H*''(K;) and 7" € ,uu(S) with ¢(v")=a", and
assume that 4a”" 20, 2'4a”"=0. Then{y", p¢, a\} is defined and does not con-
tain zero (¢ denotes the class of the identity map). Let b € H*+***~' (K, ) with

0*b"=2'4j*a", and assume also b0 in Ky 25 5. Then there exists an
element 2 € {v", pt, a,} such that ¢(2)= +b".

§4. H*(Ky) for k<2(p*—1)(p—1)—1

In this section, we shall compute H*(K}), k<2(p*—1)(p—1)—1, continued
from Theorem 2.3 of §2, for our further calculation.
For any non-zero element a € H(K,), i >0, we define

h(a)= min {I: there is o’ € H'(K,) such that o’ =a in K,}.

We put ¢=2(p—1) in the rest of this paper.
Almost all of the following theorem is occupied in Theorem 3.10 of
[6:II17].

Tueorem 4.1. Let pg—1<k=<(p*—1)q—2. In degree <(2p°>+p)g—2,
H*(K};) has a minimal set of generators given by the following table:

TABLE A2
Generator a Degree of a h(a) o*-image of a in K, (4
,,a; ; } .
o - R,_yj*a,_y for r==1 mod p
(psr=p’-1) r (r=1q l A2 j*la,,— P j*1al, for r=sp+1

(1§s<;s)" spq+1 ‘ (sp—1)q | A2t 4j*1a,,_,
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(rz0, s=1,r+s<p)

‘ 2Pl =1 (plg) for r=0, s=1

by ((r+s)p+s—1)q
—2r—1

(s—1)p+s—2)g—1 ‘ Wy j*160_, for r=0, s=2

((r+s—1)p+s)qg—2r ’ pr-1jk=ict=1 for r=1

(r20, szl r+s<p),

cr ! ((r+s)p+s)q2

—2r—

((T+3)P+S:21r)zl ‘ P j-1pr

d; _‘ qu—li

pq—1

c(@r D)4 jE1Y

d, ‘ (p*+p)g+1

(pt—2)g—1

| dprridpa iy

Here Ri=(t+1)P'd—td2?', W,=(+1)P?P'd— 12?4+ (t—1)42**L, and c:
A*— A* denotes the conjugation of A*.
The relations in H*(K,), degree<(2p°+p)q—2, are given by the following

(@1
(@-2)
6-1)

(6-1y
(6-2)

(6-3)
(6-4)
(6-5)
(©

(d-1)

(d-1y
(d-2)
O]

day=2'ay=PPa;— 4b{=0.

TABLE B2

R,a,=da;,=4da,,=4d2'a,,— 2'a,,= 42 ' Ja,,_;=0.

2B =21;=0 (r=1, (r, s)>(p—1, 1)), 26 —W,c?_ =0 2<s<p-1),

2163 — Woel_, =0 mod A*b2-1.

P02 —x,d, =0 for some x, € Z,.

Wlb?:()s W.\'b‘?_AsCsU—lEO IIlOd A*axfl+s—1 (2§S§P_l)’
Wyb)— Ayl =0 mod A*a,:_,+ A*bY1.

c(? #=1) 451 =0.

dr+1d 1 AbY_ — AcY_y—Aia,— A, =0, 2,=0 if p>3.

421 4b3=0 mod A*a,._,+ A*b21,
P2P=1cr=0.

2'd;— Bye}— B,b}=0 mod A*a,+ A*d),
2P41d, — B;c}— Beb3=0 mod A*a,+ Ad*a,
222d,— B¢} —Bybi =0 mod A*a,+ A*a,

4d,—x,27"ay—Bc} —B,b=0 mod A*a,+ A*a) for some xy€¢ Z,.
dd,=2'd,—Cc)_,=27d;— Db =0 mod A*a,:_,+ A*bP~1.

p-17=
’,

a=0in K, kzdeg a—1, for a=a;,,
a=0 in Ky, k=deg a, for other a in Table A2 with 0< deg a<(p?—1) g—2.

Here W, A,, A, B;, C and D are elements of A* such that

PW _ =W, 2%,
de(#? PV A =B, 2"+ B,W,,

WsWs—lesyly

AdPr 4 PVUAW = AP,
Ple(p?P-NYd=B,2'+ B, W,

PPH(PP@-DYI =B, 2+ B, W, 2Wc(#?0-0)I=B,2+B,W,,
PUUPPHAPIA=CP, PPAPP AP A=DW,_,.

ReEMARK.

(s—1)

The element b7 (resp. c?) corresponds to b,

(resp.c

(s—1)
r+s

) of

[6: III, pp. 201-202] so that our &7 (resp. cZ) corresponds to the element 875,
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(resp. a1 P;B;) of ,7:(S) by the map ¢ of (2.1). The element d, corresponds

to d of [6: III]. The elements 5 and d, do not appear in [6: III'] by the
dimensional reason.

Proor or THEOREM 4.1. Except the relations about the elements 49, d;
and d,, this theorem is proved in Theorem 3.10 of [6: III].

Let r=pg—2. By Theorem 2.3, H""'(K,)=Z,{b}}, and the submodule
A*bY has the relations:

Bl (6-2) 2'b1=0, (b-3) Wb =c(2?*-D)4p3=0.

By Proposition 1.2, these relations give the elements c?, 5% and d, of H*(K,,1).

Now we consider the relation a2'+pW,+7c(2??)4=0 in 4*. The
exact sequence (4.11) of [4] implies y =74+ 7,2 + 732" +1,2% for some
v; € A*, and the following relations in A4*:

Ac(PPP"NY—B P — B, W,=0, 2'c(2**Ng—B;2'—B,W,=0,
PP (PPN Y— BsP'— B W, =0, Pic(PP-4— B, 2'—BsW,=0,

for some B; € A*. We can check that these four relations generate the rela-
tions in A*P'4+ A*W,+ A*c(2?P" VY4 A* which contain the element

c(2?*~04, Hence, by Proposition 1.2, we obtain the relations about the
element d;:

Adl—Blc‘{—sz‘z’:i*wl, g’ldl—B3c‘{—B4bg:i*wz,

9P+1d1—B5C({—B5bg:i*w;§, Wzﬂdl—‘B7C({—ngg:i*W4,

for some w; € H*(K,).

By Theorem 2.3, *H*(K,), i: K,,1—K,, is generated by a, a,, a, with
the relations dao=2'ao=2%a=da,=da,=42'a,— 2?'a;=0. Thus the rela-
tions (d—1) and (d—1)" are obtained.

The relations about 5y and d, are obtained similarly by making use of
the exact sequences (4.8) and (4.14) of [4]. Q.E.D.

Let t=(p®—1)g—2 in the rest of this section.

To compute H*(K,,,), it is necessary that the coefficients x, and x. in
the relations B2(6—1)" and (d—1) are determined.

H. Gershenson has proved the non-triviality of x, [1: Lemma 4.27),
from the triviality of the mod Hopf invariant.

H. Toda has proved the relation «a;5?=0 in ,7;,,(S) ((8]and[9: Theorem
87]). The element 5%~ gives rise to the generator f{=p0---0f; (p-fold com-
position) of ,7,(S)=~Z,, and so the relation «;37=0 implies 267120 by
Theorem 3.3.

Since a,=a;=c{=03=0 in K, by B2(l), by the suitable replacement of
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the generators, we have
Lemma 4.2. Let t=(p*—1)q—2, then
(b—1)Y 2%’ '=d, K, (d—1) dd,=2"a, in K,.

Now let y6771=0, v € 4*, be any relation of 4*6?~' in H*(K,). Then y=
712, 11d1=0, by B2(b—1), and r1=7:d+ 132+ 7,22 4152, 1,20, =0,
by B2(d—1) and (d—1). The element 7, is contained in the kernel of the
right translation:

(PPYR: A* > A*[(A* 4+ A* P+ A*P?),

hence 7,=7s4+ 772"+ 752" in degree <(p?+ p)g by Proposition 1.7 of [6: I].
Using the Adem relations, we have y=0,2%+ 0,224+ 0:2? " 2+ 0,2%? 2!, in
degree <(p*+p+1)g+1, for some 0; € 4*. Conversely 2?6 '=2%4b% 1=
PPiIplpt-l= 2 p'p?1=( in K,. Therefore the following lemma is obtained.

Lemma 4.3, Let t=(p*—1)q—2. In degree <(2p*+p)q—1, the submodule
A*bY71 of H*(K,) has the relations given by

PO =P AbY I =P P = M p 1 =),
From this lemma, we calculate H*(K,, ).

Tueorem 4.4. In degree <(2p*+p)g—3, H*(K_1y,-1) has a minimal
set of generators:

{ao, ap_1, bf_s(2§3§P)> e, e1, dz, o, ds},

where the new generators are given by

TaABLE A3
_ Generator a o »_lséé‘ree of ;f |_ T h(;)- ' 5*(a) -
€y (p*+1)g—2 l (pt—1)g—1 P2 jA-1pp-1
B €1 .—(PZ‘H)‘]—I {_ (p*—1)g—1 224 j¥-1bp-1
8o (P*+p+1g—2 ] (p*—1)g—1 prHipljr-1pp-1
4 (p*+2p)g—2 { (p—1)g—1 ; ey

The relations of H*(Ky2_1y,-1) are given by

TABLE B3

(a-1) day=2'ay=PPa;=2P’a;=0. (@-2) Ry:qa,:y=42'da,:_=0.
®)  Pbrr=dP A=W ,b=0.  (d-1) ddy='dy=2?d,—DbL=0.
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(e-1) —R,ei+2'e;=0 if p>3,
Ple,—x303=0 mod A*bL_, for some x5€ Z, if p=3.
(e-2) —242'de{+214e;=0 if p>3,
A2t e+ de;—x,4b3=0 for some x,€ Z, if p=3.
(e-3) 27 %¢;=0mod A*b._, if p>3, 2le{=0 ifp=3.
() P'go—Aiei—Aag—2Abi=2'4g,—Aye| — Aye; — 2303 —2,63=0,
2, € A%, 2;=0 if p>3.
(d-2) If p>3, 2'd;—A'e} — A5 gy=0 mod A*b}_,,
PP+id,— Ae) — A go=0,
Wids— Ase{— Ase,— A5 g,=0,
Prw-2d; — 4 e]=0 mod A*b}_,.
If p=3, 2'dy— A e} — A;g,=0 mod A*a,+ A*b},
2%d;— Ay, =0 mod A*az+ A*b},
24P 4ds— A%es — Are,— A gy=0 mod A*az+ A*b}+ A*b3.
Here D, A, A; and A satisfy the following.
PPAPPIAPA=DW,_,, P PP PI1=A12%, PIUAPPIP =A, P+ A, 224,
PP P = A, PP+ AJ PP 1P, PP Pl= A\ P14 A PP P,
W22 P = A P24+ A, P2 A+ A PP+l 22 (-2 222 p1 = ' P2,
PUAPUP P = A, 2%+ A, P2 A+ A2 2 (p=3).

Proor. The existence of the elements e, ei, go and d; follows from
Lemma 4.3. The relations B3(a-1), (a-2), (b) and (d-1) follow from Theorem
4.1 and Lemma 4.2. To investigate the relations related with new generators,
we consider the relations in the submodule

A*P*+ A* PP A+ A* PP P+ A* PP Pt of A*.
By (4.13) of [4], we have the following relations in 4*:
P PVP = A, P* + A PP A+ A3 PP P,
PPIP Pl = A PP+ Ay PP A+ A PP P! for p>3,
(*) WP Pt = ALP*+ As P> A+ ALP?+ip? for p>3,

gﬂ(iz—z)gzﬂgl:Aé92+A6924+Aggp+1g,1’
PUAP NP P = A1 P° + A, P° A+ 432 Pt for p=3.

By the Adem relations, we can put
Ay=—22%, A3=0, Ay=2°, Aj=—122%, 4,=0, A;=32%,
, p—2 ) s
Ay= — (PP A+BAPY), A;=30%, M1=342%, A3=2 3 (—1) L pr-ipi-1,
i=1 r.

Ag=A}=0, A,=424, A;=24, A)=—42"4.
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Let a??+ P24+ 12?12+ 02222 =0 be any relation in A*2%+ A*2%4
+ A*P? P+ 4* P22, Then, by (4.13) of [47],

0=012 + 0,2 1+ 03 Wy+ 0, PP "D+ 0,2 424, 0; € A%,
where 0, =05=0 for p=3, 0;=0 for p>3".
Hence we have
/' PE+ R P4+ PP =0,
& =+ 0144+ 0, A4+ 03 AL+ 0, AL+ 05 A

3/=3+53A5+65A7
7' =7+0145+ 0,45+ 0545+ 0545

By (4.12) of [4] and the Adem relations, we have the following relations:

1
PIPTIP = AP, A= — 5 PP,

()
PHAPP P = Ay PP+ A, P24, Ay=PP" 1A —2PP P A+ 24P Ay= PP+,

Furthermore y'=7:2'+7.2'4 in degree <(p*—1)¢® for some r; € A*. Hence
(@' + 7141+ 71245)P* + (B +71242)2*4=0.

By (1.1) and (8.4) of [4] and the Adem relations, the relations in 4*2%-+
A*2*4 are generated by the following ones:

PrEipr=0,
(eix) § P'P*4—eR,2*°=0, e¢=0 for p=3, e=1 for p>3,
PLAP* 4 —24P 42 =0.
Thus we have
&'+ 714+ 1245+ B1Ry+ 2B 4P A=, 2?2,
Bl"'TzAz:BlWl‘Fﬁzgld, for some a1, B € A*, 61:0 for p:3

From the above calculations, «, 8, y and ¢ are determined :

5
a=a,P" =B 1Ry —2B,4P'd— 7y, A{ — 7245 — ZlaiA§+2

B=F1P + 2P d— 734, —03A5— 054,

1) In the case p=3 of (4.13) of [4], we can omit the term  (244)*, since 2*4d =2'42° ¢ A*P°.

2) For degree =(p?—1)g, this relation is understood up to modulo A*2?’-1  and so there is a new
relation in A* g, of degree (2p*+ p)g—2. This gives no effect for the calculation of H*(K}) under
degree <(2p*+p)q—3.
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T:Tlgl+Tz.@ld—6114,:;’—62141—63/4,5,—6514,7’
0=01P 4+ 022" 1+ 03 W+ 0, PP~ D+ 552 4P 4,
where 8,=0,=0;=0 for p=3, 0;=0 for p>3.

Thus, it follows that the relations (x), (%) and (#*x) generate the relations
in A*P*+ A* PP 4+ A*P? T P} + A* PP P
By Proposition 1.2, there are elements w; € H*(K,2_1y,-2) such that

_ . 1 .
PP el =i%w, Pre1—eRqe] =i*w,,
y1461‘24.@1461:i*1ﬂ3, ﬂlgo—A{e{=i*uJ4,

- 1 .
P dgy— Aje)— Azer=i*ws, P ds3— Afgo— Abe1=i*ws,

PPy — Al go— Arei = i*w,(p>3), Wads— Asgo— Aser — Aje; = i*ws(p>3),
PPy — ALel=i*wy, P'AP'Adds— A}go— Are1— Abel=i*w, (p=3).

By Theorem 4.1, i*H*(K(;2_1),-2) is generated by ao, ay_1, b275(2<s<p)
and d; with the relations B3(a-1), (a-2), () and (d-1). By the dimensional
reason and the relation 2'6}_ =0, w;=x2'4b}_, for some x € Z,. For p=3,
replacing e} by ej—x4b}_,, we obtain the relation (e-3)V. By dimensional
reason, (e-1) is obtained. For p>38, 2'di*w;=2'4(P'de,—24P2 de}) =
AP 4P e;=AP ' ARse;=0. For p=3, Rii*w;= R,(P'de,+ 42 'de})=0. Set
wy= yPay_1+ x44b%, x,=0 for p>3. Then 2'42%,:_12=0(p>8) and R, 2*
ay_12%0 (p=3) imply y=0, and (e-2) is obtained.

The relations (g) and (d-2) are obtained similarly. Q.E.D.

§5. H*(K;) for k<2(p’+p—2)(p—1)—2

In this section, we shall continue the calculations of A*(K,) in certain
dimensional restriction. Results are stated as follows.

Turorem 5.1. Let (p*—1)qg=<k=<(p*+p—2)g—2. In degree < (p*+p+1)g
—3, H*(K}) has a minimal set of generators:

{ao, a,(P*=r=p’+p—2), ap, BIU(2=s=p), b, bi'Gfp>3),

d7@=s=p—1), ei(l=i=p—-2), e(l=i=p-—2), d.(if p>3)}

1) If we use a result of §6: ¢(8,8,-1)=b}_;, then xx0 mod p implies {B;8,-1, p¢, a;} 0 by
Theorem 3.6. But 0=8,_; {By, p¢, @} C{f18p-1, p¢; @1}, hence x =0 mod p.
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The new generators are given by

TABLE A4
B Generator a Degree of a h(a) 0*(a)
(Pzérg}l;z +p-2) & (r=byg 5;11]{:-_11,;1:_(;;12_12(, =p*+1)
a5 Plg+1 ‘ (p*—1)q 421 4j* ey,
b2 (P+p-Dg=3 | (p+lg-2 | orrjeie
by~ (p*+p)g—1 (p*+1)q PPTIreR
cP (25 s<p) (pP+s—1)g+2s—4| (p*+s—2)q+2s—3 P1j*-1pp-s
£@sisp-2) | (PHig-2 | (pi-Dg-1 | #re,
e.(2Si<p—2) (p*+i)g—1 ( (pPP+i—l)g—1 | 21djx-e,_,

The relations in the submodule of H*(K,) generated by the above elements
are given by Table B3 and the following

TABLE B4

(a) R,a,=da,:=4d):= 42— 2} =0, pP+1<r<p’+p—2.
(6-1) 22?=0mod Im i*. (b-2) 2'62-1=0 mod Im i*.
(¢) If p>3, #771c}72=0, 2?-'cP~*=0mod Im i* 3<s=<p-—1). If p=3, 2%}=0.
(e-1) (p>3) —R,ej+2'e;=0, 2<i<p-—3,
—Rie, s+ Ple, 3 —x,b3=0 for some x5 € Z,.
(e-2) (p>3) —d2'de;+21de;=0,2<5i<p-3,
—d2ide,_+ 2 de, ,— x,4b3=0 for some x, € Z,.
(e-3) (p>3) #7-'e;=0mod Im i*, 2<i<p—2.
) a;z=0 in Ky, k= pq,
a=0 in Ky, k=deg a, for the above generator aﬂea;z with deg a< (p*+p—1)g—4.

Proor. The proof is done by the induction on k. The following cases
are considered.
() HYYK)=Z,{a,} for k=deg a,—1, p*—1<r<p*+p—38,raxp*+1.
(1) H*YK,)=Zp{ap.1, ch %} for k=(p®+1)g—1.
(1il) H*Y(K,)=Z,{b%*} for k=deg b2-°—1, 2<s<p—1.
(iv) H*Y(Kp)=Z,{ct"*} for k=deg c2~°—1, 2<s<p—2.
(v) HMYK,)=Z,{e}} for k=deg e/ —1, 1 p—3.
(vi) H*YK,)=Z,{e:} for k=deg e;—1, 1 p—3.
(vii) H**'(K;)=0 for other .

Assume that the theorem is true for K, in each case of the above. In
the case (vii), the theorem is true for K., obviously. In the case (i), by
Proposition 1.2, new generators of H*(K,.,) are a,,, and aj (if r=p®—1),

IA A
I

A

i
i
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and by Proposition 1.5 of [6: 1], new relations are the following:
Rr+ 18y 1= i*wl(r >p2 + 1), Aal,z = i*wz, 4022 = i*w3, A.@l(lpl _91(1;2 == i*’W4.

Since w; and w, belong to H**D* YK, _1),1), t==p? and i*HE DT (K_1y,-1)
=0 from the assumption of the induction, we see i*w;,=i*w;=0. Since i*w,
€ *H P (K 1),-1)=2Z,{b57 %} and i*w; € i*H P 2(K o 1y,-1)=Z,{ 4657 %} (+
Zy{et} if p=3), the possibility of i*w,20 or i*w;=0 is the following.

day=i*w,=xb%"%, dayp=i*w;= ydb} *+ ze].

Hence x4b5*=44a,,=0, z4de}=44a,:— y44b5~*=0, and it follows from 455~*
20 and de;=x0 that x=2z=0. Thus i*w,=0. By the replacement of a}: by
aj— yb5~?, we have i*w;=0.

Consequently, by a suitable choice of a}:, the relations (a) are established.
Thus, the theorem is true for K,,, in the case (i).

Next we consider the case (iii). Since A*p25(2<s<p—1) has the
relations generated by 2'62-°=0, new generator of H*(K;,;) is 27 5(2<s<
p—1), and by (1.1) of [4], new relation is given by the form 2?~'c2 *=i*w.
But for s=3(p>3) the degree of this relation exceeds the range of degree
in this theorem?. For s=2, the possibility of i*w=x0 is i*w=x2?"'as,;.
Replacing c47% by ¢} *—=xay,;, we obtain i*w=0. Thus the relations (c)
are obtained, and the theorem is true for K,, .

The cases (ii) and (iv) are similar to (i) and (iii).

Next we consider the case (vi). By Theorem 4.4 and the assumption of
the induction, A*e; (in H*(K;)) has the relations 2!e;=2'4e;=0 and new
generators e},; and e;.; of H*(K,,,) are obtained. By (1.1) and (3.3) of [4]]
and the Adem relations, new relations are

! 1 — 1 1 . -1 .
—R16i+1+9 e,-+1—z*w1, — 42 A€;+1+9 A€i+1:l*’wZ, gp e§+1=z*1,t)3.

The possibility of i*w; =20 or i*w,=0 is as follows:
Ffwi=x4P'4by_1+ x3b) for i+1=p—2 (*w,=0 for i+1<p—2),
1 *we = y.@zapz+i(+x44b2 if l+1=p—2)

Since R14+42'4=0, i*w;=x3b} for i+1=p—2 by a suitable choice of e}_,.
Since ﬂld(z*wz)=9’14(—dﬂ IAe§+1+9 1A€i+1):AW ‘4 16i+1:A.@1A(R1€,‘+1+
i*w,)=0 and 2'42%a,. 0, we have y=0. Thus (e-1) and (e-2) are obtained
and the theorem is true for K,.;.

Finally, we consider the case (v). A*e] has the relation #?-%¢;=0 in K,
(k= deg e;—1), and the new generator of H*(K,.,) is b2. By (1.1) of [4],

1) In this case, the proof of i*w =0 will be given in [5: Theorem 13.1]. Also in [5: Theorems 10.1
and 13.1], we shall discuss the relations B4 (b-1), (b-2) and (e-3).
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the new relation is 2%6?=i*w. For i>1, A*e; has the relation of the form
P?le;=i*w’ and this gives no new generators in degree <(p’+p+1)g—3.
Thus, the theorem is true for K., ;. Q.E.D.

§6. ,7i(S) for k<2(p*+p—1)(p—1)—3

In this section, we shall compute the group ,7.(S) for £<(p*+p—1)g—3,
using the results on H*(K,) in previous sections.

In [7], H. Toda has calculated the unstable group ,7s,.1,,(S***'), hence
the stable group ,7x(S), for k<(p®+p)g—>5. Our results in this section are
independent of his results.

Proposition 6.1 (cf. [6: 111, Proposition 8.117)). The vector space H**(K}),
k<(p*+p—1)g—38, 1s as follows:

Z P}, 42" a0, for k=g—1.
Zy{a,}, da,>0(r=<0 mod p), 4sa,,°0(r=sp=<0 mod p?), dsa,>x0 (r=p?),
for k=rqg—1, 2§r§pz+p—2, r#pz—p, pz—i-l.

Zylap_p, 777}, dzap 560, 4272260,  for k=(p*—p)g—1.

Zylay 1, 572}, day, 150, 4c5722:0,  for k=(p*+1)g—1.

Z,{b7}, 4670, fork=((r+s)p+s—1)g—2r—2,r=0,1<s<p—1,

r+s<p and (r, s)=(p, 1).

Zy{ct}, det=x0, for k=((r+s)p+s)g—2r—3, r=0,1<s<p—1,
r+s=p, (r,s)>x(p—2,1),(p—1,1), (p—2, 2).

Z{el}, dei=>c0, for k=(p’+i)g—38,1<i<p—2. .

Zy{e}y, de;>60, for k=(p’+i)q—2,1=i=p-2.

0 for other value of k.

Proor. For k<(p’+p—2)g—2, H*"'(K;) is computed directly from
(2.2), (2.3), Theorems 2.3,4.1,4.4 and 5.1. For (p*+p—2)q—1<k<(p*+p—1)q
—3, it is computed easily.

The assertions on the Bockstein operations 4, and 4; follow quite simi-
larly to Lemma 8.12 of [6: IIT]. Q.E.D.

By (1.4) and this proposition, the group ,7,(S) is calculated.
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THEOREM 6.2. Let k<(p*+p—1)g—38. The group ,m:(S) is the direct sum
of the cyclic groups generated by the following elements of degree k:

Generator 7 ’ 7 I;ergr_;:w(‘)fv ;' Vi(izk)i 7 ! Or;ier of y ' ()
« N Play(r=1)
(r0 mod p) rg—1 P a, (r>1)
agy _1 2 @
(S"'r:O mod P) spq P sp
(rgofgié’sq) ((r+s)p+s—1)g—2r—-2 P by
a5 B .
(r=0,1<s<p, (1, )5 (p—1, 1) (+Op+slg—2r—3 P o
¢’ | (p*+1)g—3 P €}
(1;;';};_2) (p*+i)g—2 14 e
a €, 2 . - ,
(1<i<p-3) (p*+it+1)g-3 P €is1

The elements «,, at}y, 'y, & and &; (i>1) are given by the following form-
ulas:

(6.1) o, € {ar—ly )42 Cxl}) as.b:Pa;[” a;Z :Pazz'
(6.2) ¢'={B%, a1, au}.
(63) Ei:{E;_l, 42 041}, 2§L§p—2

For p=3 the following relation is satisfied :
(6.4) ([7:1II, Lemma 15.57]) (p=3) aie'= +41.

Remark. We shall prove in [5: Corollary 12.47] that the element ¢, is
chosen so that it satisfies the following

(65) 81:{“1’ P‘s B{) al})
where the right side is a tertiary composition (for the definition see e.g. [2]).

Remark. In our situation, the element «, is determined up to the in-
determinacy of the secondary composition and the element B, of ,7(pss-1y4-2
S)=~7Z,, 1<s<p, is determined up to a multiple of the non-zero element of
Zy. In[107] these elements are determined uniquely.

Remark. The generator ¢} in [7: III] correspond to ¢ (for i=1) and
ae;_1 (for i>1). The non-triviality of a,¢; and the relations (6.2) (for p>3)
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and (6.3) do not appear in [ 7], and appear in[8: Proposition 1] without proof.

Proor or THEOrREM 6.2. By Proposition 6.1, it follows directly that the
group ,mx(S) is the direct sum of the cyclic groups generated by ¢ '(2'a),
¢ (a,), ¢71(b7), ¢7'(ct), ¢7'(e}) and ¢ '(ey).

By Theorem 3.3 and the relation 2'67=0, #(g;8.)=>57 implies ¢(c18%5;)
==+c] for (r,s)>(p—1,1). By Theorem 3.4 and the relation 2?7 'c;=0,
#a1P;Bs)=c’ implies ¢(B; '8 )=xb7"", x>0 mod p. By Theorem 3.5 and the
relations 2?62~ 1=2?"%e/ =0, ¢(8Y)=0b2"" implies ¢(¢')= +e; and ¢(B*)=xb%,
x20 mod p, where the indeterminacy of {8%, ai, @1} is trivial and ¢’ satisfies
(6.2). By Theorem 8.3 and 2'e;=0, ¢(c;)=e; implies ¢(a¢;) = +e},; for 1=<i
<p—38. By Theorem 3.6 and 2'de;=0, ¢(¢;)=e; implies ¢(e;,1)= +e;,; for
1<i < p—3, where ¢;,; satisfies (6.3).

The relation (6.1) is quite similar to (4.11-12) of [6:1V ], and (6.4) follows
from Theorem 3.3 and 2'e]=0. Q.E.D.

§7. H*(K,) and ,7,(S) for k <2(p*+p)(p—1)—3

We shall start from the discussion on the following coefficients x3,
x4 € Z,, in the relations B3 (e-1), B3 (e-2), B4 (e-1) and B4 (e-2):

(7.1) Pley s=x3b} P'de, r=x,4b% in H*(Kiypyp2yg-2)-

Set t=(p®’+p—2)q—2 throughout this section.

H. Toda has proved ,msu.s:(S**™1)=0 for n>p®—1 hence ,7,.,-1(S)=0
[7: III]. By Theorem 3.3, x3=0 implies «;¢e, =50 in ,7; , 1(S). Thus
x3>%0. Replacing 6% by (1/x3)b9, we have the following

LemMa 7.1, 2Ple,_»=0% in K,, t=(p*+p—2)q—2.

Let R=x,42'—2'4. Since the submodule 4*69 of H*(K,) has the rela-
tions 2'6=42'4b3=W,b3=0 in degree <(2p*+p)q by B2(b-1), (6-2) and
(b-5), we obtain the following

Lemma 7.2. In degree <(2p*+p)q, the submodule A*e, , of H*(K,), t=
(p*+p—2)q—2, has the relations P’e,_ r=Re, ,= W ,P'e; »=0.

Proor. Let 7e, :=0. Then 7=7,2'+7,2'4, and r, and 7, satisfy
(114 24724)03=0, 71+ x4724=732' +1:42*'d+ 75 W,. Then

T=(—=2472d+73P + 74, dP A+ 75 W) P 7.2 4
:(—')’2+(1/2)')’4(JC4914 —491))R+2)’3.@2+ Ts Wp.@l.

Thus the lemma follows from this relation. Q.E.D.
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Let e,_; and f be elements of H*(K;, ) such that
(7.2) 6*31;__1:1{].*_16#_2, 6*f:92j*ﬁlep,2.

The.following lemma is used to determine the relations related with e,_;
and f, and follows from routine calculations by making use of the methods
employed in [47].

LemMma 7.3. The kernel of R*: A*— A*, the right translation by R, is
equal to

A*¥(x4—2)P 4+ 421 if x42<1, 2 mod p,
AX(AP— P M)+ A% 4P 4 if x4=1 mod p,
A*4 P+ A* 42 4 if x4=2 mod p.

The kernel of (2%)*: A*—A*/ A*R is equal to

AX(224—8)P A — (x4 —2)dPV) + A*PP% if x,2<0, 2, 3/2 mod p,

A* 4+ A* PP if x4=2 mod p,
A*Ry+ A* P2 if x4=0 mod p, =3/2 mod p, p>3,
A¥ AP+ A AP 44 A* PP if %4=3/2 mod p.

ProrosiTioN 7.4, Let t+1<k<t+2¢—1, t=(p°+p—2)q—2. In degree
<t+2q+2, H(K;) has minimal sets of generators:

{ao, @pipo2y, Gpep-1, cho1, bE, BTN, ep1, f, S}
and of relations:
{day=P'ay=P’ay=P"a,=0, Ryrip 2apip 2=0, 2 c}=0 (if p=3),
(AP + (2, —2)P A)e, =0, Af—(1/2)P'e,-1=0 if x,=2 mod p,
a=0in K;, k=>deg a, for a=ap. s 3, apip1, ch_1, b2, €5 1}.
Here ay.,_, and f’ are given by
0%aprip-1=Rypoj* ap.p 2,
O = (4P + (34— 2)P' A)j* ey 1.

Proor. The new generators of H*(K,.,) are e,_; and f of (7.2). From
the above lemma and the Adem relations, the relations in the submodule
A*R+ A*P* of A*, degree <3q, are given by
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(42 +(x4—2)2*'4)R=0,
42°—(1/2)2'R=0 if x,=2 mod p,
42'4R=0 if x,=1, 2 mod p.

Hence, the new relations are the following:

Af—(1/2)P e)y=i*w, if x4=2 mod p,
(A.@l"l‘(.’)64—2).914)61,_121'*’1,02,
A.@ldei,_lzi*fm if x4El, 2 mod p-

The degree of the last relation exceeds our restriction of the degree. The
possibility of i*w,2c0 or i*w;>c0 is the following:

Fw=x 4P 460+ ybi ' (y=0 if p=3),
HFwy=2z4b57 (z=0 if p=3).

By the replacement of f by f+x2'4b%, we have i*w,= yb}~'.

Before proving y=z=0 for p>3, we shall prove the proposition for
k>t+1. Since H'"*(K;,1)=Z,{ay ., 2}(+ Z,{c}} if p=3), the new generators
of H*(K,,.) are ay,,-1 and b% in addition for p=3, and new relations are
Ry, p_yap, - 1=0 mod Imi*, 42 da e, , ;=0 mod Imi* and 2'63=0 mod Imi*.
These are of degree —>¢+2¢+2. Thus the proposition is true for £=:-+2.
For k>t +2, the proposition is proved rather easily.

Consequently, if x422 mod p, p>8, H' """ (K, 2,)=Z,{b5"'}, 465 '=0 or
=Z,{b57, f'}, 4b57'2:0 according as z=:0 or z=0. Since ¢(B2'B,)=>b5"" and
pR:1B,=0, it follows from 464 '2:0 that z=0. If x,=2 mod p, p>3, the
triviality of y is equivalent to z=0, by comparing 4i*w, and i*w:, and so
H'"* 24 (K, 5,)=0 for the case y=0. By Theorem 3.4, 527 '£,°50 in ,7,,(S),
hence y=2z=0. Q.E.D.

By this proposition, H**"*Y(K,, ) =Z,{ep-1}, H "**(K,,2,-1)=Z,{ f}. Hence
2714 4(S) and ,7,. 2, 1(S) are the cyclic groups generated by the elements ¢,_;
and ¢ such that ¢(c,-1)=e€,_1 and ¢(p)=1.

The following two propositions are proved in the next section.

Prorosition 7.5. For p=3, 3745(S) s itsomorphic to Z,.
ProrositioN 7.6. For p>3, aiep_1-%0.

Using these propositions, we determine the coefficient x4 in (7.1).
ProrositiOoN 7.7, x4=2 mod p.

Proor. By Proposition 7.4, it follows that
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4f=0 f and only if x,=2 mod p.

For p=3, by use of (1.4) and Proposition 7.5, x4=2 mod 3 holds.

For the case p>3, since the indeterminacy of {e,», a1, @i} is the
subgroup generated by «¢, ;, which is isomorphic to Z, by Proposition 7.6
and pa;=0, and since {e,_;, @1, @1} does not contain zero by Theorem 3.5,
the group ,7,,2,-1(S) consists of more than p elements. Thus x,=2 mod p.

Q.E.D.

By a little calculation of H*(K,) and the above propositions. we have the
following

Tueorem 7.8. Let (p*+p—2)g—1<k<(p*+p)g—38. In degree <(p*+p
+1)g—4, H*(K,) has a system of generators:

@o, @pripoz, Cho1, OF,  do(if p>3),

and the following elements

TABLE A5
Generator a ’ De-gree of a: h(a) 7 R 5*(a)- B
Gy | (PHP—1g (p*+p—2)g Ryreyof™tayess s
byt ‘ (p?’+p)g—1 (p+1l)g 7 pp-1jk-1cp-2
e [ (p*+p—Dg-1 (p*+p—2)g—1 Rysj*leps -
f | (-2 (Prp-2g-1 | otrie,,
f ‘ (p*+p)g—1 (p?+p—1)g—1 ‘ dptj*-te,
Ap2ip l (p*+p)g (p*+p—1)g { Rprip-1j*aprspy
B apep ' (p*+p)g+1 ‘ (p?*+p—1)g ] A2 dj*ay,, , o

where by the dimensional reason we take off the last two elements if p=3, and
we add the element dj such that 0*d;=d42'4j* e, 1, h(d})=(p*+p—1)g—1
and deg d}=(p*+p)g if p>3and x5=0 in the relation (e-2) in Table BS below.

The relations in the submodule of H*(K,) generated by the above elements
(except dj) are given by

TaBLE B5

(a-1) day=2lay=2Pa,=2?’a;=0.

(@-2) Rypryp-28p24p-2=0,
Ryprip18pripy=4P daye,py=AMday:, ,=4da,2,,=0 if p>3,
42y, ,— Py =0 mod Im i* if p>3,
Rya,,=42'4a,,=0 mod Im i* if p=3.

() 2262=0 mod Im i*, 2!62-1=0 mod Im i*.

(¢) 27-1cl_=0mod Im i* if p>3, £2}=0 ifp=3.
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(d) 4dd,=2'dy=27d,=0.

(e-1) dole,_,=0.

(e-2) do'de, —x5d;=0mod A*ay2,,_, for some x5€ Z, if p>3,
d2'de,=0 mod Im i* if p=3.

(f-1) 4f—(Q1/2)2'e,_,=0, 2?7"2f=0mod Im i*.

(f-2) 4f'=0, 2'42?-1f'=0 mod Im i*.

() a=0in Ki, k=deg a, for a=a,oyp_g aprip-y, %, €54, f,
a=0in K;, k=deg a—1, fora=f",
d,=0in Ky, k= (p*+p—1)g—1, if p>3 and x,=0.
Furthermore the following relation holds.

(f-3) dof=(/D)f in Ke, k= (p*+p—1)g—1.

Proor. By use of Lemma 3.5. i) of [6:III], the relation (f-3) follows
from the first relation of (f-1). The first relation of (f-2) follows from
(f-8). The second relation of (f-2) follows from (3.10) of [4]].

Others are proved from Proposition 7.4 and Theorem 5.1 by a little

calculation. Q.E.D.

Tueorem 7.9. The group ,mx(S), (p*+p—1)—3=k=<(p*+p)g—38, is as
JSollows :

7(S)=Z, generated by e, , for k=(p*+p—1)g—2,
~Z, generated by ., 1 for k=(p*+p—1)g—1,
~Z, generated by ¢ for k=(p*+p)g—38,

=0  for other k.

The generators are given by

(7.3) ep-1=1{8p-2, p¢, a1}.
(7.4) Qprip-1={Cp2s p-2, pt; A1}
(7.5) Q€ {617—27 a, al}.

And the following relations are satisfied :
(7.6) PP=a1€p_1, 2ep_1=1{ep_2, a1, pt}.
Proor. By Theorem 7.8, we have easily

H*YK) =Zy{ep-1}, dep_160, for k=(p*+p—1)g—2,
=Z,{f}, 4f=0, 4,0, for k=(p®+p)q—3,
=Zy{ap.p1}, dag 150, for k=(p’+p—1)g—1,
=0 for other £.
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Then, using (1.4), the group ,7,(S) is determined immediately.

The secondary composition{e,_», p¢, a1} consists of single element, since
it has zero indeterminacy. Assume that {e,_», p¢, a;}=0. Then any
representative h: S"*'—>S", t=(p’+p—2)qg—2, of ¢, , is extended to K=
SHH ettt ettt el with 2'4H"(K)=H"""*?*1 (K). The extension H: K—
S” is liftable to X,(n) of §3. By Proposition 3.2, the lifting H satisfies A*
(t7'ey_2)=u for a generator u of H"''(K)=Z, Then H*(t (R, se, 2))=
Ry u=—2"4u>:0. This contradicts to R, se, »=0. Thus {¢,_», p¢, a1}=%0,
and we can choose ¢,_; so that it satisfies (7.3).

(7.4) is similar to (7.3). (7.5) is an easy consequence of Theorem 3.5.
The secondary composition {e,_,, a1, p¢} consists of single element, hence ae,_,
={e,_2, a1, p¢} for some a € Z,. Similarly to Theorem 4.14. ii) of [6:IV], the
relation R, je, ;=0 implies a=2. By Theorem 4.4 of [6: IV, {a1, p¢, €5_2}
= —¢p_1 and {p¢, gp_2, A1} = —¢p_1. By (4.4). 1) of [6: IV, po=pe{es_z,a1, a1}
= —{p¢, ep_2, 1y =¢p_ 11 =a18,_;. Thus (7.6) is established. Q.E.D.

§8. Some relations in ,7,(S)

In this section, we shall prove Propositions 7.5-6 in §7, by making use of
the methods of [7].

The inclusion S**"!'—>0228%***! induces the homomorphism of homotopy
groups, which is equivalent to the double suspension S?: 7;(S*"~1)—m;, 2(S*"*1),
and the fibering p: Q3"'—>S**~! with the fiber 2°S***' gives rise to an exact
sequence

8.1) (@7 of [7:1])
e (QF D)L (S S, (SN E D  (QF ) —s

where Q3" =Q(Q*S*"*+, §** 1),
For the k-fold suspension S*, this sequence is generalized as follows:

8.2) ((1.7)of [7:1])

QL (S-S, (S E 7, Q) —-,

where Q7= 2(2*S"+* S™).
The main tools of [7] are these sequences and the following exact
sequence :

83) ((25)of [7:1])
ooy a (S PP 2 s o (S22 (QF ) Lo iy 5(SPMP )

Following to H. Toda, we use the notation: for y € ,7:(S), 7(no) € p7isn
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(S™) denotes an element such that S*y(no)=7 and r(n,) ¢ ImS, and y(n) denotes
(n —no)-fold suspension of r(n,) for n=n, Also we use the notations Q"(r)
and Q"(0) to the elements of ,7,(Q%"') for some elements 7 € ,7;_2mp.3(S) and
0 € 4Ti_amp+2(S) such that Q"(y)=I'(y(2mp—1)) and I(Q"(9))=0 (2mp+1) (see
6.3) of [7:1)).

The map 4 of (8.3) satisfies (2.7) of [7:1] and Corollaries 9.4-5 of [7:I17],
which are important properties for the determination of 4. By use of
these properties, the sequence (8.3) and the results for ,mam.1.;(S*""),
j<(p*+p—1)g, of [7], we have the following

(84) The group pmwan1:4(Q3" 1), | —6=k=<1—2, I=(p*+p)g, s the direct

sum of cyclic groups of order p generated by the following elements:

(k=1—6) Q' (B1*"), QP * D& e, 8,8,) (1=5<p),
QW=D 3 ) (1 <s<p),

and Q' a11-)(1<i=<10), Q''(¢) in addition for p=3.

(k=1-5) Qauep 1) @=i=p—2), Q' '(¢"), QU ="V D*2(gB)(1=s<p),
QU= (e p) 1=s<p), Q'(BL™).
(k=1—4) Qaigp14) C=i=p—2), Q"' ), u=IpQ"(), Q"B
QU IR ) (1=s< p), QP9 D (1B,) (1 =s<p),
(k=1-38) Q(apip-i) (=0mod p), Q. jp) C=j=p), Q")
Q* M1l B2), QPTH(BY), QF(anBiTY), QUTIPHDI(B) (1 =s<p).
(k=1-2) QNapip-i)y Q" HarPR™?B2), Q(BY7%B2), Q*(arBi™), Q*'(Bi™Y),
QP *2(¢), and Q*(B%) in addition for p=3.
In the above, we use the notations ¢’ and «;¢; instead of ¢} of [7: III] (see the
third remark after Theorem 6.2).
By Lemma 6.1 of [7: I'], the p,-images of the following elements are
trivial:
QDI @ipg,), QU (@) (s>1), QI (iBy),
Q*(asp1™), QP HauBi ?R2),

and also the p,-images of the following elements are the unstable elements
of first type :

1) The classification of the unstable elements (S*-kernel) of ,7;,414%(S?"*!) is due to H. Toda
([7: 1, p. 88]).
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Qe IR R ) (s>1), Qan-p), Q'(e), QU IV (s>1),
Q(Pfs)(p+1)+1(ﬂs), sz+1(311>_1).

By Proposition 8.8 of [7: II], the following elements give the unstable
elements of second type" of ,ms,. 1., 2(S*"1):

Qi p NE=p*+p—2), Qapipip)y QNay), @y y Ni=3), Q**(0).

By Theorems 10.3 and 10.6 of [7:II], the following elements give the
unstable elements of third type® of ,ma,.1,(S**1):

Q" (B3, Q" HawB1), QV(RL), QP Naw), QPTHRY), QBT
Q*(BY7282).
Consequently we obtain the following

Lemma 8.1, Let t=(p*+p)g—38and 1’ =Q (c1ep_1-:), Q* (&), uor Q***(BY).
If pyr'=0, then there is an element 1 € yTou1+:(S**) such that H®y=7" and
S*r20 i ,7,(S). Furthermore ,m,(S) is generated by such elements S 7.

Now we shall prove Proposition 7.5 of §7.

Proor or ProrosiTioN 7.5. By the relation (6.4) of §6, Lemma 6.1 (i) (ii)
of [7:1] also holds for ¢’ and B¢ instead of B73, and a,B;@;, and so p,Q*(¢)
20. By the discussion previous to Lemma 8.1, there is no element
7€37m45(S%) such that S*r=0. By (2.11) and (2.13) of [7:17], a:54(8)=+GQ*(B%)
0. Since S”a181(8)=(18)B:1=0, pxQ*(") = =a181(3)=c0. Thus, by (8.1),
sT49(S%)=3m51(S")=0, and p,u=0, p,Q*(83)=0. Then ;7,5(S) is of order 9 by
Lemma 8.1. It is also cyclic as is seen after Proposition 7.4, and the
proposition follows. Q.E.D.

For any map f: S”*"—S”, the map Q*S*f: Q¢S™*"+k— Q*kS"+* induces a
map Qx(f): Q7*"—Q%, and for the class « € 7,,.,(S") of f, we denote by Q(«)
the class of Qx(f). Then we have

(85) HO(S*ao @) =Qu@)HM(B) for a € m,(S™), B € n(S7*H),

where H®: 7, (S"™*) =~ n,(2*S"*)—>n,(2*S"**, S™)~r;_1(Q?) is the homo-
morphism in (8.2).

Furthermore, for the inclusion j: Q}—Q%,, the following is verified
easily.

1) The classification of the unstable elements (S”-kernel) of ,my,, 1.5 (S2"*!) is due to H. Toda
([7: 1, p. 88]).
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(8.6) (i) H*(Sa)y=jH® (@) for aemi(S™),
(1) jxQu(B)r=0Qu+i(B)jsr  Sor B € mm n(S™), 1 €m(QF").

Let Vipme1,:=02m+1)/0(2m —1) denote the Stiefel manifold. This is an
S?# -1 bundle over S*” with the characteristic class 2¢2m_1 € T2m_1(S?""1). Let
p: 258521 be a map such that p, is equivalent to the boundary homo-
morphism & of the homotopy sequence of the fibering V3, .—>S*", i.e., the
following diagram commutes:

(25 -Le(S2m1)

=| 2

w1 (S 2m)
Then the following proposition is established.

ProrosiTion 8.2.  There exists a map Q::(0): 20%—Q37~' such that the

following are satisfied :
(i) The following diagram is homotopy commutative :

Q2k+252m+2k ‘QQ%ZL gszm 92k+152m+2k

Q%k+lp Q21 (P) P 2%%p

92k+lszm+2k—1 Q%Zz—l SZm—l 92k52m+2k—1’

where the horizontal lines are sequences of fiberings giving the exact sequence

(8.2).
(ii) The following diagram is commutative :

7fi+l(Q§2”)——zo—+7[i(,QQ m) M*_, 1(02"’ 1

lj* J(Qj)* lj*

Q2r+21(P) _
7i1(Q%7 +21)*‘"_"7T (2037 21 e T (Q37 1)

(iii) Let 0: n(Q3 ")—>m;1(Q%) be the homomorphism induced by the inclu-
ston Q32" '—>20Q%:. Then

Q02:(0)520(0c) =2 Sfor a € m(Q¥~HYNIm HEP,

Proor. Using the map SV, 12> V32,3, of Proposition 2.1 of [87], we
have a map f: Vou.1,2> 2% Vo, 26.1,2 and a homotopy commutative diagram

of fiberings:
S2mA1 s V2m+1,2_—_) SZm
i1 f i1

2k G2m+2k—1 2% 2k G2m+2k
245" ——> 2%V oy ohr1,2 > LS,
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where i;: S'— 2”S"*' denotes the inclusion. By this diagram, we have a
homotopy commutative diagram:

gszm P __)Swn—l
.Qi1l lil
2k+1 Q2m+2k  Q%p 2k Q2m+2k—1
2 S 2P 5 0Q°FS .

Then 2% defines
sz(p) . QQ%?: g(g2k+152m+2k, .Qszm)__)g(Qstszer-l, SZm—l)zogzkl.

Then we see easily that this map Q..(p) satisfies (i) and (ii). Since the
characteristic class of the sphere bundle V.12 is 2¢5m_1 € Tom_1(S*" ) =< Z,

05x20Sa=2a for any a € ,(S*"1).

Then (iii) follows from this and (i). Q.E.D.
Now we shall give the proof of Proposition 7.6 of §7.

Proor or ProrosiTion 7.6. Set r=(p’+p—1)g—2. Theorem 15.2 of
[7:.IIT] states the following

(8.7) There exists an element c¢=¢, 1(2p+3) € ,m25.3.,(S**%) of order p such
that S=e=¢p_1 and H®e=a,0""'(8,-1), a12<0 mod p.

Since the suspension S: 725, 2,,(S°)—>,725:3.,(S®) is monomorphic, there
is an element x4 € ,m35,2,,(S°) such that Sy=S*40c and S*u=a,¢, 1, where
A € ,m2,(S?) is an element such that S*4=aq;.

By (8.5) and (8.6) (i), j«H®u=Q.(A4)H™(Se), where j: Q3—>Q3. By Pro-
position 8.2 (iii),

2/ H® 11=0Q4(0)x200(Q4(A)H(Se)).
Since 0 (Qs(A)H™(Se))=Q4(SA)HP(S%), it follows from (8.6) that
0(Qu(A)HW(Se))=jxQ2(SA)H®e. Thus, from Proposition 8.2 (ii),

2jxH® = jQ2(0)5(2Q2(SA))52,H P (e).
Since ,725.,.2(Q3) is generated by Q% (. ,-3) and p4Q (. ,-3)=0, the map
j is monomorphic by (3.3), (3.4) and (5.2) of [7:1]. Thus we obtain the
following

(8.8) 2H(2)ﬂZQZ(O)*(QQZ(SA))*-QOH(z)S-

Now let M"=S"Ue""' be the Moore space of type (Z,, n), i.e., the
mapping cone of a map S”—S” of degree p. Then we have a cofibering:

Sn i Mn T Sn+1

Also let &, (M)=lim[ M"*', M*]. N. Yamamoto [10] has proved that there

n
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exist uniquely the elements a ¢/ (M) and (€ & (spis-1y0-1(MA=s<p)
such that zai =i, 785i=Fs, aBsy= B x=0.
By the definition of Q™( ), Lemma 2.5 of [7:1] and (8.7), we have

H(z)ezagG*(,@(pAl)i), azéEO mod P>

where G: M?"*~"30"Q%"~1 is the map of Lemma 2.5 of [7:1].

The map Q:(0)(2Q:(SA)) coincides with the map Q.(p,) of [3:(8.8)] up to
a multiple by non-zero element of Z,, by Definition 2.2 of [3] and the defini-
tion of Q.(p,) of [3: pp. 171-1727]. Therefore by (3.8) and (4.22) of [3],

(8.9) 02(0)x(2Q:2(SA))x20HPe=a36.(2B,-1)i) for some a32<0 mod p,

A=Buy+ra for some 7€ L 1y,-1(M).
By Lemma 4.2 of [107], we have
B -1t = BwBp-1i={B1, pt, Bp-1}

By (15.6) of [7: II1], {81, p¢, By-1} =ast1e,_5 for some a,=0 mod p. Using
Lemma 2.5 of [7: I, we get G.(18(,-1)i) =asQ*(a¢,_3) for some as>0 mod p.
Thus, from (8.8) and (8.9), we obtain
H®p=x0Q%ae,-3) for some x=<0 mod p.
By use of Lemma 8.1, it follows that aje, ;=S~x=¢0. Q.E.D.

Remark. For p=3, the above proof is not valid, since the element
¢,-1(2p+3) of (8.7) does not exist. In this case, the element ¢,(11) exists.
This satisfies HPe,(11)= +Q°(a,8?) and S~e,(11)=¢, (see [ 7: III, Proposition
15.67)).
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