$K_{\text {A }}$-Rings of Lens Spaces $L^{\boldsymbol{n}}(\mathbf{4})$

Teiichi Kobayashi and Masahiro Sugawara

(Received September 20, 1971)

§1. Introduction

Let $L^{n}(k)=L^{n}(k ; 1, \ldots, 1)$ be the ($2 n+1$)-dimensional standard lens space $\bmod k$, where n and k are positive integers and $k \geqq 2$. Denote by Λ the field R of the real numbers or C of the complex numbers. The structure of $K_{A^{-}}$ rings of $L^{n}(k)$ is determined by J. F. Adams [1] when $k=2\left(L^{n}(2)\right.$ is the real projective space), and by T. Kambe [5] when k is an odd prime.

The purpose of this note is to determine the structure of $\tilde{K}_{A}\left(L^{n}(k)\right)$ for the case $k=4$. We use K or $K O$ instead of K_{C} or K_{R}.

Let η be the canonical complex line bundle over $L^{n}(k)$, and set

$$
\sigma=\eta-1 \epsilon \tilde{K}\left(L^{n}(k)\right) .
$$

Then, we have the following theorem ${ }^{1)}$:
Theorem A. (4.6)

$$
\tilde{K}\left(L^{n}(4)\right) \cong Z_{2^{n+1}} \oplus Z_{2[n / 2]} \oplus Z_{2[(n-1) / 2]},
$$

and the direct summands are generated by the three elements

$$
\begin{aligned}
& \sigma, \quad \sigma^{2}+2 \sigma, \quad \sigma^{3}+2 \sigma^{2}+2^{n / 2+1} \sigma \quad \text { (if } n \text { is even), } \\
& \sigma, \quad \sigma^{2}+2 \sigma+2^{[n / 2]+1} \sigma, \quad \sigma^{3}+2 \sigma^{2} \quad \text { (if } n \text { is odd), }
\end{aligned}
$$

respectively. The multiplicative structure is given by

$$
\sigma^{4}=-4 \sigma^{3}-6 \sigma^{2}-4 \sigma, \quad \sigma^{n+1}=0
$$

Let ρ be the non-trivial (real) line bundle over $L^{n}(4)$ and set $\kappa=\rho-1 \epsilon$ $\widetilde{K O}\left(L^{n}(4)\right)$. Let $r \sigma \in \widetilde{K O}\left(L^{n}(4)\right)$ denote the real restriction of σ.

Theorem B. (5.3, 5.6, 5.13, 5.18, 6.1, 6.7)

[^0]for any k.
\[

\widetilde{K O}\left(L^{n}(4)\right) \cong $$
\begin{cases}Z_{2^{n+1}} \oplus Z_{2^{n / 2}} & \text { for even } n>0, \\ Z_{2^{n}} \oplus Z_{2[n / 2]+1} & \text { for } n \equiv 1 \bmod 4, \\ Z_{2^{n}} \oplus Z_{2[n / 2]} & \text { for } n \equiv 3 \bmod 4,\end{cases}
$$
\]

and the first summand is generated by $r \sigma$ and the second by $\kappa+2^{[n / 2]} r \sigma$, where it is able to replace the last element by κ if $n \equiv 1 \bmod 4$.

The multiplicative structure in $\widetilde{K O}\left(L^{n}(4)\right)$ is given by

$$
\begin{aligned}
& (r \sigma)^{2}=-4 r \sigma+2 \kappa, \begin{cases}(r \sigma)^{[n / 2]+1}=0 & \text { if } n \equiv 1 \bmod 4, \\
(r \sigma)^{[n / 2]+2}=0\end{cases} \\
& \text { if } n \equiv 1 \bmod 4 ;
\end{aligned}, ~ \begin{gathered}
\kappa^{2}=\kappa \cdot r \sigma=-2 \kappa, \quad \kappa^{[n / 2]+2}=0 .
\end{gathered}
$$

We can calculate the order of $(r \sigma)^{i}$ by the above theorems, and apply the γ^{i}-operation to the problem of the immersion and the embedding of $L^{n}(4)$ in Euclidean space by making use of the method of M. F. Atiyah (cf. [2] and [5]).

Theorem C. $L^{n}(4)$ cannot be immersed in $R^{2 n+2 L(n, 4)}$, and $L^{n}(4)$ cannot be embedded in $R^{2 n+2 L(n, 4)+1}$, where

$$
L(n, 4)=\left\{\begin{array}{l}
\max \left\{i \left\lvert\, 1 \leqq i \leqq\left[\frac{n}{2}\right]\right., \quad\binom{n+i}{i} \neq 0 \bmod 2^{n-2 i+2}\right\} \text { if } n \equiv 1 \bmod 2, \\
\max \left\{i \left\lvert\, 1 \leqq i \leqq\left[\frac{n}{2}\right]\right., \quad\binom{n+i}{i} \equiv 0 \bmod 2^{n-2 i+3}\right\} \text { if } n \equiv 0 \bmod 2
\end{array}\right.
$$

In §2, we recall the cohomology groups of $L^{n}(k)$. In §3, we consider the element $\sigma(1)=\sigma^{2}+2 \sigma=\eta^{2}-1 \epsilon \tilde{K}\left(L^{n}(4)\right)$, and establish the following formulas:

$$
c r \sigma=2 \sigma+\sigma(1)+\sigma(1) \sigma, \quad c \kappa=\sigma(1)
$$

where $c: \widetilde{K O}\left(L^{n}(4)\right) \rightarrow \widetilde{K}\left(L^{n}(4)\right)$ is the complexification (Lemmas 3.10-11). Theorem A is proved in $\S 4$ by means of the relations:

$$
(\sigma+1)^{4}=1, \quad \sigma^{n+1}=0
$$

and by using the Atiyah-Hirzebruch spectral sequences (cf. [3]). Moreover, we verify that the elements σ^{i} and $\sigma(1)^{i} \sigma^{j}(i \geqq 1)$ in $\widetilde{K}\left(L^{n}(4)\right)$ are of order 2^{2+n-i} and $2^{1+[(n+1-2 i-j) / 2]}$ respectively (Cor. 4.7, Th. 4.8).

The proofs of Theorem B are carried out in §§5-6. The additive structure of $\widetilde{K O}\left(L^{n}(4)\right)$ is determined in $\S 5$, by making use of the complexification c and Theorem A. The multiplicative structure of $\widetilde{K O}\left(L^{n}(4)\right)$ is determined
in §6. In the final section, we give the proof of Theorem C and discuss the immersion problem for $L^{n}(k)$.

The K_{A}-rings of $L^{n}\left(p^{2}\right)$, for p an odd prime, will be considered in a forthcoming paper [6].

§2. Cohomology groups of $\boldsymbol{L}^{\boldsymbol{n}}(\boldsymbol{k})$

Let $S^{2 n+1}$ be the unit $(2 n+1)$-sphere in the complex $(n+1)$-space C^{n+1}, and γ be the rotation of $S^{2 n+1}$ given by

$$
r\left(z_{0}, z_{1}, \cdots, z_{n}\right)=\left(e^{2 \pi i / k} z_{0}, e^{2 \pi i / k} z_{1}, \cdots, e^{2 \pi i / k} z_{n}\right)
$$

Then γ generates the topological transformation group Z_{k} of $S^{2 n+1}$, and the standard lens space $\bmod k$ is

$$
L^{n}(k)=S^{2 n+1} / Z_{k} .
$$

As is well-known, $L^{n}(k)$ has a cell structure

$$
\begin{equation*}
L^{n}(k)=e^{0} \cup e^{1} \cup \cdots \cup e^{2 n} \cup e^{2 n+1} \tag{2.1}
\end{equation*}
$$

and its cohomology groups are given by

$$
\begin{aligned}
& H^{i}\left(L^{n}(k) ; Z\right) \cong \begin{cases}Z_{k} & \text { for } i=2,4, \ldots, 2 n \\
Z & \text { for } i=0,2 n+1 \\
0 & \text { otherwise }\end{cases} \\
& H^{i}\left(L^{n}(2 l) ; Z_{2}\right) \cong Z_{2} \\
& \text { for } 0 \leqq i \leqq 2 n+1
\end{aligned}
$$

Let $\Delta: H^{1}\left(L^{n}(k) ; Z_{2}\right) \rightarrow H^{2}\left(L^{n}(k) ; Z\right)$ be the Bockstein homomorphism associated with the coefficient sequence: $0 \rightarrow Z \rightarrow Z \rightarrow Z_{2} \rightarrow 0$. If $k=2 l$, we have the following lemma easily.

Lemma 2.2.

$$
\Delta x=l y,
$$

where x and y are generators of $H^{1}\left(L^{n}(2 l) ; Z_{2}\right) \cong Z_{2}$ and $H^{2}\left(L^{n}(2 l) ; Z\right) \cong Z_{2 l}$, respectively.

Let P be a single point, then it is well-known that K - and $K O$-groups of P are given by

$$
\begin{aligned}
K^{-p}(P) & \cong Z(p \text { even }), \quad \cong 0(p \text { odd }) \\
K O^{-p}(P) & \cong Z(p \equiv 0,4 \bmod 8), \quad \cong Z_{2}(p \equiv 1,2 \bmod 8) \\
& \cong 0(\text { otherwise })
\end{aligned}
$$

Let $C P^{n}$ be the n-dimensional complex projective space, and

$$
\pi: L^{n}(k) \rightarrow C P^{n}=S^{2 n+1} / S^{1}
$$

be the natural projection. Then
Lemma 2.3. $\quad \pi^{*}: \tilde{H}^{p}\left(C P^{n} ; K^{-p}(P)\right) \rightarrow \tilde{H}^{p}\left(L^{n}(k) ; K^{-p}(P)\right)$ is an epimorphism.
Proof. It is trivial for odd p. For even p, the result follows from the Gysin exact sequence.
q. e. d.

The following are easy.

$$
\begin{align*}
& \tilde{H}^{p}\left(L^{n}(k) ; K^{-q}(P)\right) \cong \begin{cases}Z_{k} & \text { for } p \text { and } q \text { even, } 0<p \leqq 2 n \\
0 & \text { otherwise },\end{cases} \tag{2.4}\\
& \tilde{H}^{p}\left(L^{n}(2 l) ; K O^{-p}(P)\right) \cong \begin{cases}Z_{2 l} & \text { for } p \equiv 0,4 \bmod 8,0<p \leqq 2 n \\
Z_{2} & \text { for } p \equiv 1,2 \bmod 8,0<p \leqq 2 n+1, \\
0 & \text { otherwise }\end{cases} \tag{2.5}
\end{align*}
$$

Lemma 2.6. The induced homomorphism

$$
i^{*}: \tilde{H}^{p}\left(L^{n+1}(2 l) ; K O^{-p}(P)\right) \rightarrow \tilde{H}^{p}\left(L^{n}(2 l) ; K O^{-p}(P)\right)
$$

by the inclusion i is an epimorphism for any p.
Consider the $2 n$-skeleton

$$
\begin{equation*}
L_{0}^{n}(k)=e^{0} \cup e^{1} \cup \cdots \cup e^{2 n} \tag{2.7}
\end{equation*}
$$

of the $C W$-complex $L^{n}(k)$ of (2.1). Then

$$
\begin{equation*}
L^{n}(k) / L_{0}^{n}(k)=S^{2 n+1}, \quad L_{0}^{n+1}(k) / L_{0}^{n}(k)=S^{2 n+1} \bigcup_{k} e^{2 n+2} \tag{2.8}
\end{equation*}
$$

where the attaching map $k: S^{2 n+1} \rightarrow S^{2 n+1}$ means the map of degree k.
Also $\tilde{H}^{i}\left(L_{0}^{n}(k) ; Z\right) \cong Z_{k}$ for $i=2,4, \ldots, 2 n$ and $\cong 0$ otherwise, and $\tilde{H}^{i}\left(L_{0}^{n}(2 l) ;\right.$ $\left.Z_{2}\right) \cong Z_{2}$ for $0<i \leqq 2 n$. Furthermore, we have

$$
\begin{equation*}
\tilde{H}^{p}\left(L_{0}^{n}(2 l) ; K O^{-p}(P)\right) \cong \tilde{H}^{p}\left(L^{n}(2 l) ; K O^{-p}(P)\right) \tag{2.9}
\end{equation*}
$$

for $n \neq 0 \bmod 4$.

§3. Non-trivial line bundle over $\boldsymbol{L}^{\boldsymbol{n}}(\boldsymbol{k})$

Let ρ be the non-trivial line bundle over $L^{n}(2 l)$, i. e., ρ is the line bundle such that the first Stiefel-Whitney class $w_{1}(\rho) \in H^{1}\left(L^{n}(2 l) ; Z_{2}\right) \cong Z_{2}$ is nonzero.

Lemma 3.1. The Euler class $x(2 \rho)$ of the two-fold Whitney sum 2ρ of ρ is non-zero.

Proof. By the relation between the Euler class and Bockstein homomorphism and by Lemma 2.2, we have $x(2 \rho)=\Delta\left(w_{1}(\rho)\right)=l y \neq 0$. q. e. d.

Let η be the canonical complex line bundle over $L^{n}(k)$. The first Chern class $c_{1}(\eta)$ is a generator of $H^{2}\left(L^{n}(k) ; Z\right) \cong Z_{k}$. Let

$$
c: \widetilde{K O}(X) \rightarrow \widetilde{K}(X), \quad r: \widetilde{K}(X) \rightarrow \widetilde{K O}(X)
$$

be the complexification and the real restriction respectively. Then it is wellknown that

$$
\begin{equation*}
r c=2, \quad c r=1+t, \tag{3.2}
\end{equation*}
$$

where t denotes the complex conjugation (cf. [1]).
Proposition 3.3. For $L^{n}(2 l)$, we have

$$
c \rho=\eta^{l}=\eta \otimes \cdots \otimes \eta \quad(l-\text {-fold tensor product })
$$

Proof. By Lemma 3.1 and (3.2), $x(r c \rho) \neq 0$. Thus $c \rho$ is non-trivial.
Denote by C the total Chern class. Then, by (3.2), $C(c r(c \rho))=C(c \rho \oplus t c \rho)$ $=C(c \rho) C(t c \rho)=\left(1+c_{1}(c \rho)\right)\left(1-c_{1}(c \rho)\right)=1-c_{1}(c \rho)^{2}$, while $C(c r(c \rho))=C(c(2 \rho))$ $=C(2 c \rho)=\left(1+c_{1}(c \rho)\right)^{2}=1+2 c_{1}(c \rho)+c_{1}(c \rho)^{2}$. Therefore we obtain $2 c_{1}(c \rho)=0$. Since complex line bundles are classified by the first Chern classes, the relation $c \rho=\eta^{l}$ follows from $c_{1}(c \rho)=l c_{1}(\eta)=c_{1}\left(\eta^{l}\right)$. q.e.d.

Let X and Y be finite $C W$-complexes and $f: Y \rightarrow X$ be a map. Let $\left\{E_{r}^{p, q}\right\}$ be the Atiyah-Hirzebruch spectral sequence for $\tilde{K}_{A}(X)$, i.e., $E_{2}^{p, q} \cong \tilde{H}^{p}\left(X ; K_{A}^{q}(P)\right)$ and $E_{\infty}^{p,-p}$ is the graded group associated to $\tilde{K}_{A}(X)$, and also $\left\{{ }^{\prime} E_{r}^{p, q}\right\}$ be that for $\tilde{K}_{A}(Y)$ (cf. [3]). Then

Proposition 3.4. Assume that there is an integer $r \geqq 2$ such that $E_{r}^{p,-p}=$ $E_{r+1}^{p,-p}=\cdots=E_{\infty}^{p,-p}$ and $f_{r}^{*}: E_{r}^{p,-p} \rightarrow^{\prime} E_{r}^{p,-p}$ is an epimorphism for any p. Then the induced homomorphism $f^{!}: \widetilde{K}_{A}(X) \rightarrow \widetilde{K}_{A}(Y)$ is an epimorphism.

Proof. By the assumptions it follows that $f_{\infty}^{*}: E_{\infty}^{p,-p} \rightarrow^{\prime} E_{\infty}^{p,-p}$ is an epimorphism for each p. Then we have the result by the five lemma. q.e.d.

Lemma 3.5. $\quad \pi^{\prime}: \tilde{K}\left(C P^{n}\right) \rightarrow \tilde{K}\left(L^{n}(k)\right)$ is an epimorphism, where π is the natural projection.

Proof. Since the Atiyah-Hirzebruch spectral sequence for $\tilde{K}\left(C P^{n}\right)$ is trivial, we have the desired result by Lemma 2.3 and Prop. 3.4. q.e.d.

Let $\sigma=\eta-1 \epsilon \widetilde{K}\left(L^{n}(k)\right)$ denote the stable class of η. Then we have
Lemma 3.6. In $\tilde{K}\left(L^{n}(k)\right)$, it holds

$$
\begin{equation*}
(\sigma+1)^{k}=1, \quad \sigma^{n+1}=0 \tag{3.7}
\end{equation*}
$$

F urthermore, the elements $\sigma, \sigma^{2}, \ldots, \sigma^{k-1}$ generate $\tilde{K}\left(L^{n}(k)\right)$ additively.
Proof. The first equality of (3.7) follows from $c_{1}\left(\eta^{k}\right)=k c_{1}(\eta)=0$ in H^{2} $\left(L^{n}(k)\right) \cong Z_{k}$.

Consider the canonical complex line bundle over $C P^{n}$ and denote it also by η, then $\pi!\eta=\eta$. Furthermore, it is well-known that the ring $\tilde{K}\left(C P^{n}\right)$ is generated by the element $\eta-1$ and $(\eta-1)^{n+1}=0$ (e.g. [1, Th. 7.2]). Thus we have the lemma using Lemma 3.5.
q.e.d.

Denote by $\# A$ the number of the elements of a finite set A.
Lemma 3.8. \# $\quad \#\left(L^{n}(k)\right)=k^{n}$.
Proof. Let $\left\{E_{r}^{p, q}\right\}$ be the Atiyah-Hirzebruch spectral sequence for $\tilde{K}\left(L^{n}\right.$ $(k))$. Then $E_{2}^{p,-q} \cong \tilde{H}^{p}\left(L^{n}(k) ; K^{-q}(P)\right)$ is given by (2.4). Therefore this spectral sequence is trivial and the lemma follows.
q.e.d.

Henceforth, we consider the case $k=4$. Put

$$
\sigma(1)=(\sigma+1)^{2}-1=\sigma^{2}+2 \sigma \epsilon \tilde{K}\left(L^{n}(4)\right) .
$$

The relation $(\sigma+1)^{4}=1$ of (3.7) is equivalent to $(\sigma(1)+1)^{2}=1$, and so we have

$$
\begin{equation*}
\sigma(1)^{i+1}=(-1)^{i} 2^{i} \sigma(1) \quad \text { for } i \geqq 0 \tag{3.9}
\end{equation*}
$$

Lemma 3.10. $\quad c r \sigma=\sigma^{2} /(\sigma+1)=2 \sigma+\sigma(1)+\sigma(1) \sigma$.
Proof. The first equality is proved in the proof of [5, Lemma (3.5), ii)]. The second follows from (3.7) and (3.9).
q.e.d.

Let $\kappa=\rho-1 \epsilon \widetilde{K O}\left(L^{n}(4)\right)$ denote the stable class of ρ. Then we have
Lemma 3.11.

$$
c \kappa=\sigma(1)
$$

Proof. By Prop. 3.3, $c \rho=\eta^{2}$. Therefore $c \kappa=\eta^{2}-1=\sigma(1)$.
q.e.d.

§4. The structure of $\tilde{\boldsymbol{K}}\left(\boldsymbol{L}^{n}(4)\right)$

Lemma 4.1. $\quad 2^{i+2} \sigma^{n-i}=0 \quad$ for $i=0,1, \ldots, n-1$.
Proof. Multiplying σ^{n-1} to the relation

$$
\begin{equation*}
\sigma^{4}+4 \sigma^{3}+6 \sigma^{2}+4 \sigma=0 \tag{4.2}
\end{equation*}
$$

we have $4 \sigma^{n}=0$, because $\sigma^{n+i}=0$ for $i>0$ by (3.7). Assume that $2^{i+2} \sigma^{n-i}=0$ for $0 \leqq i<n-1$. Multiplying $2^{i+1} \sigma^{n-i-2}$ to the equation (4.2), we have

$$
2^{i+1} \sigma^{n-i+2}+2^{i+3} \sigma^{n-i+1}+3 \cdot 2^{i+2} \sigma^{n-i}+2^{i+3} \sigma^{n-i-1}=0
$$

By the assumption, we have $2^{i+3} \sigma^{n-i-1}=0$.
q.e.d.

Lemma 4.3. For $i=0,1, \ldots, n-2$,

$$
2^{i+1} \sigma^{n-i}=2^{i+2} \sigma^{n-i-1}=-2^{i+2} \sigma^{n-i-1}, \quad 2^{i+1} \sigma(1) \sigma^{n-i-2}=0 .
$$

Proof. If we multiply $2^{i} \sigma^{n-i-2}$ to the equation (4.2), we have

$$
2^{i} \sigma^{n-i+2}+2^{i+2} \sigma^{n-i+1}+3 \cdot 2^{i+1} \sigma^{n-i}+2^{i+2} \sigma^{n-i-1}=0
$$

By Lemma 4.1, we have the desired result.
q.e.d.

Lemma 4.4. If $n=2 m$, then

$$
2^{m} \sigma(1)=0, \quad 2^{m-1}\left(\sigma(1) \sigma+2^{m+1} \sigma\right)=0
$$

Proof. By the definition of $\sigma(1)$, (3.7) and Lemma 4.1, we have

$$
\sigma(1)^{m+1}=\left(\sigma^{2}+2 \sigma\right)^{m+1}=\sum_{i=0}^{m+1}\binom{m+1}{i} 2^{i} \sigma^{n-i+2}=0
$$

Thus the first result follows from (3.9).
Next, by the definition of $\sigma(1),(3.9)$ and Lemma 4.3, we have

$$
\begin{aligned}
2^{m-1} \sigma(1) \sigma & =(-1)^{m-1} \sigma(1)^{m} \sigma=(-1)^{m-1} \sigma(1)\left(\sigma^{2}+2 \sigma\right)^{m-1} \sigma \\
& =(-1)^{m-1} \sum_{i=0}^{m-1}\binom{m-1}{i} 2^{i} \sigma(1) \sigma^{n-i-1} \\
& =(-1)^{m-1} \sigma(1) \sigma^{n-1}=2 \sigma^{n}=-2^{n} \sigma
\end{aligned}
$$

Therefore we have the second result.
q.e.d.

The following lemma is verified quite similarly as the above lemma.
Lemma 4.5. If $n=2 m+1$, then

$$
2^{m}\left(\sigma(1)+2^{m+1} \sigma\right)=0, \quad 2^{m} \sigma(1) \sigma=0
$$

The following theorem is one of our main theorems.
Theorem 4.6.

$$
\tilde{K}\left(L^{n}(4)\right) \cong Z_{2^{n+1}} \oplus Z_{2^{m}} \oplus Z_{2^{m-1}}, \quad \text { for } n=2 m>0
$$

whose direct summands are generated by $\sigma, \sigma(1)$ and $\sigma(1) \sigma+2^{m+1} \sigma$ respectively.

$$
\widetilde{K}\left(L^{n}(4)\right) \cong Z_{2^{n+1}} \oplus Z_{2^{m}} \oplus Z_{2^{m}}, \quad \text { for } n=2 m+1
$$

whose direct summands are generated by $\sigma, \sigma(1)+2^{m+1} \sigma$ and $\sigma(1) \sigma$ respectively.
The multiplicative structure is given by

$$
\sigma^{4}=-4 \sigma^{3}-6 \sigma^{2}-4 \sigma, \quad \sigma^{n+1}=0
$$

Proof. According to Lemma 3.6, we see that the elements σ, σ^{2} and σ^{3} generate $\tilde{K}\left(L^{n}(4)\right)$ additively. Thus it is clear that $\sigma, \sigma(1)$ and $\sigma(1) \sigma+2^{m+1} \sigma$ (or $\sigma, \sigma(1)+2^{m+1} \sigma$ and $\left.\sigma(1) \sigma\right)$ generate $\tilde{K}\left(L^{n}(4)\right)$ additively. Then our results follow from Lemmas 4.4-5, 3.8 and (3.7).
q.e.d.

Corollary 4.7. The element $\sigma^{i} \epsilon \tilde{K}\left(L^{n}(4)\right)$ is of order 2^{n-i+2} for $1 \leqq i \leqq n$, and $\sigma^{n+1}=0$.

Proof. Th. 4.6 shows that the element σ is of order 2^{n+1}. Suppose that σ^{i} is of order 2^{n-i+2} for $1 \leqq i<n$. By Lemma 4.3, $2^{n-i} \sigma^{i+1}=2^{n-i+1} \sigma^{i} \neq 0$. On the other hand, $2^{n-i+1} \sigma^{i+1}=0$ by Lemma 4.1. Thus the order of σ^{i+1} is equal to 2^{n-i+1}. q.e.d.

Theorem 4.8. The element $\sigma(1)^{i} \sigma^{j} \in \tilde{K}\left(L^{n}(4)\right)$ is of order $2^{1+[(n+1-2 i-j) / 2]}$ for any i, j with $1 \leqq i \leqq 1+[(n-j-1) / 2]$.

Proof. Since $\sigma(1)^{i} \sigma^{j}=(-1)^{i-1} 2^{i-1} \sigma(1) \sigma^{j}$ by (3.9), it is sufficient to prove that

$$
\begin{equation*}
\sigma(1) \sigma^{j} \text { is of order } 2^{1+[(n-j-1) / 2]} \text { for } 0 \leqq j<n . \tag{4.9}
\end{equation*}
$$

Put $[(n-j-1) / 2]=h$. Then $j=n-2 h-1$ or $j=n-2 h-2$. In order to prove (4.9), it is sufficient to show

$$
2^{h+1} \sigma(1) \sigma^{n-2 h-2}=0, \quad 2^{h} \sigma(1) \sigma^{n-2 h-1} \neq 0 .
$$

Now, by (3.9), Lemma 4.1 and (3.7), we have

$$
\begin{aligned}
2^{h+1} \sigma(1) \sigma^{n-2 h-2} & =(-1)^{h+1} \sigma^{n-2 h-2} \\
& =(-1)^{h+1}\left(\sigma^{2}+2 \sigma\right)^{h+2} \sigma^{n-2 h-2} \\
& =(-1)^{h+1} \sum_{k=0}^{h+2}\binom{h+2}{k} 2^{k} \sigma^{n-k+2}=0 .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
2^{h} \sigma(1) \sigma^{n-2 h-1} & =(-1)^{h} \sigma(1)^{h+1} \sigma^{n-2 h-1} \\
& =(-1)^{h} \sigma(1)\left(\sigma^{2}+2 \sigma\right)^{h} \sigma^{n-2 h-1} \\
& =(-1)^{h} \sum_{k=0}^{n}\binom{h}{k} 2^{k} \sigma(1) \sigma^{n-k-1} \\
& =(-1)^{h} \sigma(1) \sigma^{n-1}=(-1)^{h} 2 \sigma^{n} \neq 0
\end{aligned}
$$

using Lemma 4.3 and Cor. 4.7. Therefore, we have (4.9).
q.e.d.

The following two corollaries are immediate consequences.
Corollary 4.10. The element $\sigma(1)^{i}$ is of order $2^{1+[(n+1-2 i) / 2]}$ for $1 \leqq i \leqq$ $[(n+1) / 2]$, and $\sigma(1)^{1+[(n+1) / 2]}=0$.

Corollary 4.11. The element $\sigma(1) \sigma$ is of order $2^{[n / 2]}$.
Finally, we notice that

$$
\begin{equation*}
j^{!}: \tilde{K}\left(L^{n}(4)\right) \cong \tilde{K}\left(L_{0}^{n}(4)\right) \tag{4.12}
\end{equation*}
$$

where $L_{0}^{n}(4)$ is the subcomplex of (2.7) and j is the inclusion, and hence the above results hold also for $L_{0}^{n}(4)$ taking into account the element $\sigma=j!\sigma$. In fact, consider the Puppe exact sequence (cf. [3, Prop. 1.4])

$$
\tilde{K}\left(S^{2 n+1}\right) \longrightarrow \tilde{K}\left(L^{n}(4)\right) \xrightarrow{j^{1}} \tilde{K}\left(L_{0}^{n}(4)\right) \longrightarrow \tilde{K}^{1}\left(S^{2 n+1}\right)
$$

of $L^{n}(4) / L_{0}^{n}(4)=S^{2 n+1}$ of (2.8), where the first term is 0 and the last term is Z. Then, (4.12) follows from the fact that $\tilde{K}\left(L_{0}^{n}(4)\right)$ is finite, which is seen similarly as Lemma 3.8.

§5. The additive structure of $\widetilde{K_{O}}\left(L^{n}(4)\right)$

Lemma 5.1. $\widetilde{K O}\left(L^{n}(4)\right)$ has only 2-component, and

$$
\# \widetilde{K O}\left(L^{n}(4)\right) \leqq \begin{cases}2^{6 t+1} & \text { for } n=4 t, \\ 2^{6 t+2} & \text { for } n=4 t+1, \\ 2^{6 t+4} & \text { for } n=4 t+2 \\ 2^{6 t+4} & \text { for } n=4 t+3\end{cases}
$$

Proof. We make use of the Atiyah-Hirzebruch spectral sequence for $\widetilde{K O}\left(L^{n}(4)\right)$. The terms $E_{2}^{p,-p} \cong \tilde{H}^{p}\left(L^{n}(4) ; K O^{-p}(P)\right)$ are given by (2.5), and so we have the desired result.
q.e.d.

Case 1. $n=4 t+3$.

Lemma 5.2. For the case $n=2 s+1>1$, the elements cr σ and $c(\kappa+$ $\left.2^{[n / 2]} r \sigma\right)$ of $\widetilde{K}\left(L^{n}(4)\right)$ are of order 2^{n} and $2^{[n / 2]}$, respectively, and these elements generate a subgroup $Z_{2^{n}} \bigoplus Z_{2[n / 2]}$ of $\widetilde{K}\left(L^{n}(4)\right)$.

Proof. We notice that $1 \pm 2^{[n / 2]}$ is odd by the assumption $n>1$. Using Lemmas 3.10-11 and Th. 4.6, we have

$$
\begin{gathered}
c r \sigma=2\left(1-2^{[n / 2\rceil}\right) \sigma+\left(\sigma(1)+2^{[n / 2]+1} \sigma\right)+\sigma(1) \sigma, \\
c\left(\kappa+2^{[n / 2]} r \sigma\right)=-2^{n} \sigma+\left(1+2^{[n / 2]}\right)\left(\sigma(1)+2^{[n / 2]+1} \sigma\right) .
\end{gathered}
$$

Therefore, the order of these elements are 2^{n} and $2^{[n / 2]}$ by Th. 4.6.
Suppose $\alpha c r \sigma+\beta c\left(\kappa+2^{[n / 2]} r \sigma\right)=0$. Then,

$$
\begin{gathered}
2\left(1-2^{[n / 2\rfloor}\right) \alpha-2^{n} \beta \equiv 0 \bmod 2^{n+1} \\
\alpha+\left(1+2^{[n / 2]}\right) \beta \equiv 0, \quad \alpha \equiv 0 \bmod 2^{[n / 2]}
\end{gathered}
$$

by the above equalities and Th. 4.6. These congruences imply that $\alpha \equiv 0$ $\bmod 2^{n}$ and $\beta \equiv 0 \bmod 2^{[n / 2]}$, and so we have the desired results. q.e.d.

Theorem 5.3. If $n=4 t+3$, we have

$$
\widetilde{K O}\left(L^{n}(4)\right) \cong Z_{2^{n}} \oplus Z_{2\left[n^{\prime 2}\right]}
$$

where the direct summands are generated by r σ and $\kappa+2^{[n / 2\rceil} r \sigma$, respectively.
Proof. For the homomorphism $c: \widetilde{K O}\left(L^{n}(4)\right) \rightarrow \tilde{K}\left(L^{n}(4)\right)$,

$$
2^{6 t+4} \geqq \# \widetilde{K O}\left(L^{n}(4)\right) \geqq \# \operatorname{Im} c \geqq \#\left(Z_{2^{n}} \bigoplus Z_{2[n / 2]}\right)=2^{6 t+4},
$$

by the above two lemmas. Therefore, $\# \widetilde{K O}\left(L^{n}(4)\right)=2^{6 t+4}, \operatorname{Im} c$ is the subgroup of Lemma 5.2 and c is monomorphic, and so we have the theorem. q.e.d.

Corollary 5.4. The complexification

$$
c: \widetilde{K O}\left(L^{4 t+3}(4)\right) \rightarrow \widetilde{K}\left(L^{4 t+3}(4)\right)
$$

is a monomorphism.
Case 2. $\quad n=4 t+2$.
Let $i: L^{n}(4) \rightarrow L^{n+1}(4)$ be the inclusion.
Lemma 5.5. If $n=4 t+2, i^{!}: \widetilde{K O}\left(L^{n+1}(4)\right) \rightarrow \widetilde{K O}\left(L^{n}(4)\right)$ is an isomorphism.
Proof. Consider the Puppe exact sequence (cf. [3, Prop. 1.4]):

$$
\widetilde{K O}\left(L^{n+1}(4) / L^{n}(4)\right) \longrightarrow \widetilde{K O}\left(L^{n+1}(4)\right) i^{i^{\prime}} \widetilde{K O}\left(L^{n}(4)\right) \longrightarrow \widetilde{K O^{1}}\left(L^{n+1}(4) / L^{n}(4)\right) .
$$

It is easily seen that the first term is $\widetilde{K O}\left(S^{8+6} \cup e^{8 t+7}\right) \cong 0$ and the last term is $\widetilde{K O}\left(S^{8 t+5} \cup e^{8 t+6}\right) \cong 0$. Hence $i^{!}$is an isomorphism.
q.e.d.

By the above lemma and Th. 5.3, we have
Theorem 5.6. If $n=4 t+2$,

$$
\widetilde{K O}\left(L^{n}(4)\right) \cong Z_{2^{n+1}} \oplus Z_{2^{n / 2}},
$$

where the first summand is generated by $r \sigma$, and the second by $\kappa+2^{n \mid 2} r \sigma$.
Corollary 5.7. If $n=4 t+2$ or $4 t+3$, then $\widetilde{K o}\left(L^{n}(4)\right)$ is generated by the elements $r \sigma$ and κ, and the order of κ is equal to $2^{[n / 2]+1}$.

Case 3. $n=4 t+1$.
Consider the following commutative diagram

where i, i^{\prime}, j and j^{\prime} are the inclusions, and the lower sequence is the Puppe exact sequence of (2.8). Then we have the following lemmas.

Lemma 5.9. $i^{\text {! }}$ is epimorphic.
Proof. Let $\left\{E_{r}^{p, q}\right\}$ and $\left\{E_{r}^{p, q}\right\}$ be the spectral sequence for $\widetilde{K O}\left(L^{4 t+2}(4)\right)$ and $\widetilde{K O}\left(L^{4 t+1}(4)\right)$, respectively. Then, $i^{*}: E_{2}^{p,-p} \rightarrow E_{2}^{p,-p}$ is epimorphic by Lemma 2.6, and $E_{2}^{p,-p}=\cdots=E_{\infty}^{p,-p}$ by Th. 5.6 and Lemma 5.1. Therefore, we have the lemma by Prop. 3.4.
q.e.d.

Lemma 5.10. $\quad j^{\prime \prime}$ is an isomorphism.
Proof. Consider the Puppe exact sequence

$$
\widetilde{K O}\left(S^{8 t+5}\right) \longrightarrow \widetilde{K O}\left(L^{4 t+2}(4)\right) \xrightarrow{j^{\prime \prime}} \widetilde{K O}\left(L_{0}^{4 t+2}(4)\right) \longrightarrow \widetilde{K O}{ }^{1}\left(S^{8 t+5}\right)
$$

of (2.8), where $\widetilde{K O}\left(S^{8 t+5}\right) \cong 0$ and $\widetilde{K O^{1}}\left(S^{8 t+5}\right) \cong Z$. We see that $\widetilde{K O}\left(L_{0}^{4 t+2}(4)\right)$ is finite similarly as Lemma 5.1 by (2.9), and so $j^{\prime \prime}$ is isomorphic. q.e.d.

Lemma 5.11. $i^{i^{\prime}}$ is epimorphic and $\# \widetilde{K O}\left(L_{0}^{4 t+1}(4)\right)=2^{6 t+2}$.

Proof. The Puppe exact sequence of $\left(S^{8 t+3} \bigcup_{4} e^{8 t+4}\right) / S^{8 t+3}=S^{8 t+4}$ is the following

$$
\widetilde{K O}\left(S^{8 t+4}\right) \xrightarrow{\times 4} \widetilde{K O}\left(S^{8 t+4}\right) \longrightarrow \widetilde{K O}\left(S^{8 t+3} \bigcup_{4} e^{8 t+4}\right) \longrightarrow \widetilde{K O}\left(S^{8 t+3}\right),
$$

since the degree of the attaching map is 4 . Therefore $\widetilde{K O}\left(S^{8 t+3} \bigcup_{4} e^{8 t+4}\right) \cong Z_{4}$.
On the other hand, $\# \widetilde{K O}\left(L_{0}^{4 t+2}(4)\right)=2^{6 t+4}$ by the above lemma, and so we can prove that $i^{\prime \prime}$ is epic similarly as Lemma 5.9. Also we have $\# \widetilde{K O}\left(L_{0}^{4 t+1}(4)\right)$ $\leqq 2^{6 t+2}$ similarly as Lemma 5.1 by (2.9), and so the lemma. q.e.d.

Lemma 5.12. $j^{!}$is isomorphic and $\# \widetilde{K O}\left(L^{4 t+1}(4)\right)=2^{6 t+2}$.
Proof. $\# \widetilde{K O}\left(L^{4 t+1}(4)\right) \leqq 2^{6 t+2}$ by Lemma 5.1 , and $j^{!}$is epic by the commutativity of (5.8) and Lemmas 5.10-11. Therefore we have the desired results by the above lemma.
q.e.d.

Now, we have the following
Theorem 5.13. If $n=4 t+1$, then

$$
\widetilde{K O}\left(L^{n}(4)\right) \cong Z_{2^{n}} \bigoplus Z_{2[n / 2]+1}
$$

and the first summand is generated by $r \sigma$ and the second by κ, where the latter can be replaced by $\kappa+2^{[n / 2]} r \sigma$.

Proof. By Th. 5.6, the equality

$$
2^{2 t+1} \kappa+2^{4 t+2} r \sigma=0
$$

holds in $\widetilde{K O}\left(L^{4 t+2}(4)\right)$, and so in $\widetilde{K O}\left(L^{4 t+1}(4)\right)$. Also,

$$
2^{2 t+1} \kappa+2^{4 t+1} r \sigma=0 \quad \text { if } t>0
$$

in $\widetilde{K O}\left(L^{4 t+1}(4)\right)$. In fact, the left hand side is equal to $2^{[n / 2\rfloor} r c\left(\kappa+2^{[n / 2\rceil} r \sigma\right)=0$ by (3.2) and Lemma 5.2. These two equalities imply that

$$
2^{4 t+1} r \sigma=0, \quad 2^{2 t+1} \kappa=0, \quad \text { if } t>0
$$

These hold for the case $t=0$, since $2 r \sigma=\operatorname{rcr} \sigma=r\left(\sigma^{2} /(\sigma+1)\right)$ and $\sigma^{2}=0$ in $\tilde{K}\left(L^{1}(4)\right)$ by Lemma 3.10 and (3.7).

On the other hand, $\widetilde{K O}\left(L^{4 t+1}(4)\right)$ is generated by $r \sigma$ and κ additively, by Cor. 5.7 and Lemma 5.9. Therefore, we have the theorem by Lemma 5.12 and the last equalities.
q.e.d.

Corollary 5.14. For the complexification $c: \widetilde{K O}\left(L^{4 t+1}(4)\right) \rightarrow \widetilde{K}\left(L^{4 t+1}(4)\right)$,

Ker $c \cong Z_{2}$ is generated by $2^{2 t}\left(\kappa+2^{2 t} r \sigma\right)$, if $t>0$.
Proof. This is an immediate consequence of the above theorem and Lemma 5.2.
q.e.d.

Case 4. $n=4 t(>0)$.
Consider the commutative diagram

where the lower sequence is the Puppe exact sequence of $L_{0}^{4 t+1}(4) / L^{4 t}(4)=S^{8 t+2}$, and i, j are the inclusions.

Lemma 5.15. $i^{!}$is an epimorphism.
Proof. This can be proved similarly as Lemma 5.9, using the above theorem.
q.e.d.

Lemma 5.16. In the lower exact sequence, $k^{!}$is epimorphic, $p^{!}$is monomorphic and $\# \widetilde{K O}\left(L^{4 t}(4)\right)=2^{6 t+1}$.

Proof. The exactness shows the lemma, since $\# \widetilde{K O}\left(L_{0}^{4 t+1}(4)\right)=2^{6 t+2}$ by Lemma 5.11, \# $\widetilde{K O}\left(L^{4 t}(4)\right) \leqq 2^{6 t+1}$ by Lemma 5.1, and $\widetilde{K O}\left(S^{8 t+2}\right) \cong Z_{2}$. q.e.d.

Lemma 5.17. Ker $i^{!}=\operatorname{Ker} c$ in $\widetilde{K O}\left(L^{4 t+1}(4)\right)$.
Proof. Since the two homomorphisms $j^{!}$are isomorphic by Lemma 5.12 and (4.12), it is sufficient to prove $\operatorname{Im} p^{!}=\operatorname{Ker} c$ in $\widetilde{K O}\left(L_{0}^{4 t+1}(4)\right)$. Since c : $\widetilde{K O}\left(S^{8 t+2}\right) \cong Z_{2} \rightarrow \widetilde{K}\left(S^{8 t+2}\right) \cong Z$ is 0 , we have $c \circ p^{!}=0$ and $\operatorname{Im} p^{!} \subset$ Ker c. Also, $\operatorname{Im} p^{!} \cong Z_{2}$ by the above lemma, and Ker $c \cong Z_{2}$ by Cor. 5.14. Thus we have $\operatorname{Im} p^{!}=\operatorname{Ker} c$.
q.e.d.

By Th. 5.13, Lemmas 5.15, 5.17 and Cor. 5.14, we have the following
Theorem 5.18. If $n=4 t>0$, then

$$
\widetilde{K O}\left(L^{n}(4)\right) \cong Z_{2^{n+1}} \oplus Z_{2^{n / 2}}
$$

where the first summand is generated by r σ and the second by $\kappa+2^{n / 2} r \sigma$. Also the order of κ is equal to $2^{n / 2+1}$.

Thus the additive structures of $\widetilde{K O}\left(L^{n}(4)\right)$ in $\mathrm{Th} . \mathrm{B}$ of $\S 1$ are obtained completely.

In the rest of this section, we are concerned with $\widetilde{K O}\left(L_{0}^{n}(4)\right)$. If $n \neq 0$ $\bmod 4$, the induced homomorphism

$$
j^{\prime}: \widetilde{K O}\left(L^{n}(4)\right) \rightarrow \widetilde{K O}\left(L_{0}^{n}(4)\right)
$$

is isomorphic, where j is the inclusion. In fact, it is proved in Lemmas 5.12 and 5.10 if $n \equiv 1,2 \bmod 4$, and it follows immediately from the Puppe exact sequence and $\widetilde{K O}\left(S^{2 n+1}\right) \cong \widetilde{K O}\left(S^{2 n}\right) \cong 0$ if $n \equiv 3 \bmod 4$.

To consider the case $n \equiv 0 \bmod 4$, we use the following
Lemma 5.19. If $n=2 s>0$, the elements cr σ and $c\left(\kappa+2^{n / 2} r \sigma\right)$ of $\tilde{K}\left(L^{n}(4)\right)$ are of order 2^{n} and $2^{n / 2}$, respectively, and these elements generate a subgroup $Z_{2^{n}} \oplus Z_{2^{n / 2}}$ of $\tilde{K}\left(L^{n}(4)\right)$.

Proof. By the similar way to the proof of Lemma 5.2, we have

$$
\begin{aligned}
& c r \sigma=2\left(1-2^{n / 2}\right) \sigma+\sigma(1)+\left(\sigma(1) \sigma+2^{n / 2+1} \sigma\right), \\
& c\left(\kappa+2^{n / 2} r \sigma\right)=2^{n / 2+1} \sigma+\left(1+2^{n / 2}\right) \sigma(1),
\end{aligned}
$$

and so the desired results, using Lemmas $3.10-11$ and Th. 4.6. q.e.d.

By this lemma and Th. 5.6 and 5.18 , we have immediately
Corollary 5.20. For the complexification $c: \widetilde{K O}\left(L^{2 s}(4)\right) \rightarrow \tilde{K}\left(L^{2 s}(4)\right)(s>0)$, Ker $c \cong Z_{2}$ is generated by $2^{2 s} r \sigma$.

Let $n=4 t>0$ and consider the commutative diagram

where the upper sequence is the Puppe exact sequence.
Lemma 5.21. $j^{!}$is epimorphic and $\operatorname{Ker} j^{!}=\operatorname{Im} p^{!}=\operatorname{Ker} c \cong Z_{2}$ is generated by $2^{4 t} r \sigma$ in $\widetilde{K O}\left(L^{4 t}(4)\right)$.

Proof. Similarly as Lemma 5.1, we see $\# \widetilde{K O}\left(L_{0}^{4 t}(4)\right) \leqq 2^{6 t}$ by (2.9), and so $j^{!}$is epimorphic since $\widetilde{K O}{ }^{1}\left(S^{8 t+1}\right) \cong Z$. Also, $\# \widetilde{K O}\left(L^{4 t}(4)\right)=2^{6 t+1}$ by Lemma 5 . 16 , and $\widetilde{K O}\left(S^{8 t+1}\right) \cong Z_{2}$. Hence, the exactness shows that $\# \widetilde{K O}\left(L_{0}^{4 t}(4)\right)=2^{6 t}$ and $p^{!}$is monomorphic, and Ker $j^{!}=\operatorname{Im} p^{!} \cong Z_{2}$. On the other hand, by the commutativity of the diagram and $\tilde{K}\left(S^{8 t+1}\right)=0$, we have $c \circ p^{!}=0$ and $\operatorname{Im} p^{!} \subset \mathrm{Ker}$ c, and so the desired results by the above corollary.
q.e.d.

By this lemma, Th. 5.18 and the above considerations, we have the following

Theorem 5.22.

$$
\widetilde{K O}\left(L_{0}^{n}(4)\right) \cong \widetilde{K O}\left(L^{n}(4)\right)
$$

for $n \neq 0 \bmod 4$, by the induced homomorphism j ' of the inclusion j.
If $n=4 t>0$, then

$$
\widetilde{K O}\left(L_{0}^{n}(4)\right) \cong Z_{2^{n}} \oplus Z_{2^{n / 2}}
$$

and the first summand is generated by $r \sigma$ and the second by κ (or $\kappa+2^{n / 2} r \sigma$), where $r \sigma$ and κ are the elements $j!r \sigma$ and $j!\kappa$ respectively.

§6. The multipilcative structure of $\widetilde{K_{O}}\left(L^{\boldsymbol{n}}(4)\right)$

We preserve the notations of the previous sections.
Theorem 6.1. The multiplicative structure of $\widetilde{K O}\left(L^{n}(4)\right)$ is given by

$$
\begin{align*}
& (r \sigma)^{2}=-4 r \sigma+2 \kappa \tag{6.2}\\
& \kappa^{2}=-2 \kappa=\kappa \cdot r \sigma \tag{6.3}
\end{align*}
$$

Proof. It is sufficient to prove these equalities for $n=4 t+3$, mapping by the monomorphism c of Cor. 5.4. Now, by Lemmas $3.10-11$ and (3.9), we have

$$
\begin{aligned}
c(r \sigma)^{2} & =(c r \sigma)^{2}=(2 \sigma+\sigma(1)+\sigma(1) \sigma)^{2} \\
& =-4(2 \sigma+\sigma(1)+\sigma(1) \sigma)+2 \sigma(1)=c(-4 r \sigma+2 \kappa), \\
c(\kappa \cdot r \sigma) & =c(\kappa) c(r \sigma)=\sigma(1)(2 \sigma+\sigma(1)+\sigma(1) \sigma) \\
& =-2 \sigma(1)=c(-2 \kappa) \\
& =\sigma(1)^{2}=(c \kappa)^{2}=c\left(\kappa^{2}\right) .
\end{aligned}
$$

q.e.d.

By the above theorem and the induction, we have

$$
\begin{align*}
\kappa^{i}= & (-1)^{i-1} 2^{i-1} \kappa, \tag{6.4}\\
(r \sigma)^{i}= & (-1)^{i+1} 2^{2 i-2} r \sigma+(-1)^{i}\left(2^{2 i-2}-2^{i-1}\right) \kappa \tag{6.5}\\
= & (-1)^{i+1} 2^{i-1}\left\{2^{i-1}+2^{[n / 2\rfloor}\left(2^{i-1}-1\right)\right\} r \sigma \\
& +(-1)^{i} 2^{i-1}\left(2^{i-1}-1\right)\left(\kappa+2^{[n / 2]} r \sigma\right),
\end{align*}
$$

for $i \geqq 1$.

Then we have the following corollaries by these equalities, Cor. 5.7 and Th. 5.3, 5.6, 5.13, 5.18.

Corollary 6.6. The element $\kappa^{i} \epsilon \widetilde{K O}\left(L^{n}(4)\right)$ is of order $2^{[n / 2]+2-i}$ for $1 \leqq$ $i \leqq[n / 2]+1$, and $\kappa^{[n / 2]+2}=0$.

Corollary 6.7. The order of the element $(r \sigma)^{i}$ of $\widetilde{K O}\left(L^{n}(4)\right)$ is equal to

$$
2^{n-2 i+2} \text { if } n \text { is odd, } 2^{n-2 i+3} \text { if } n \text { is even, }
$$

for $1 \leqq i \leqq[n / 2]$ or $i=[n / 2]+1$ and $n \equiv 1 \bmod 4$. Also

$$
\begin{array}{ll}
(r \sigma)^{[n / 2]+1}=0 & \text { if } n \equiv 1 \bmod 4, \\
(r \sigma)^{[n / 2]+2}=0 & \text { if } n \equiv 1 \bmod 4 .
\end{array}
$$

§7. Applications

We study the problem of the immersion and the embedding of the lens space $L^{n}(k)$ in Euclidean space. The following two results are due to [2, Th. 3.3 and 4.3]. Let $\gamma^{i}: K O(X) \rightarrow K O(X)$ be the r-operation.
(7.1) If an n-dimensional differentiable manifold M^{n} is immersed in $(n+k)$-dimensional Euclidean space $R^{n+k}(k>0)$, then $\gamma^{i}\left(n-\tau\left(M^{n}\right)\right)=0$ for all $i>k$, where $\tau\left(M^{n}\right)$ denotes the tangent bundle of M^{n}.
(7.2) If M^{n} is embedded in R^{n+k}, then $\gamma^{i}\left(n-\tau\left(M^{n}\right)\right)=0$ for all $i \geqq k$.

According to [10, Cor. 3.2], it is known that

$$
\begin{equation*}
\tau\left(L^{n}(k)\right) \oplus 1=(n+1) r \eta \tag{7.3}
\end{equation*}
$$

Lemma 7.4.

$$
2 n+1-\tau\left(L^{n}(k)\right)=-(n+1) r \sigma
$$

Proof. By (7.3), $2 n+1-\tau\left(L^{n}(k)\right)=2 n+2-(n+1) r \eta=-(n+1)(r \eta-2)$ $=-(n+1) r \sigma$.
q.e.d.

Let γ_{t} be the operation defined by $\gamma_{t}(\zeta)=\sum_{i=0}^{\infty} \gamma^{i}(\zeta) t^{i}$.
Lemma 7.5.

$$
\gamma_{t}(r \sigma)=1+r \sigma \cdot t-r \sigma \cdot t^{2}
$$

Proof. We carry out the proof in the same way as that of [5, Lemma 4.8].
q.e.d.

Proposition 7.6. For any $k, L^{n}(k)$ cannot be immersed in $R^{2 n+2 L(n, k)}$, and $L^{n}(k)$ cannot be embedded in $R^{2 n+2 L(n, k)+1}$, where

$$
L(n, k)=\max \left\{i \left\lvert\,\binom{ n+i}{i}(r \sigma)^{i} \neq 0\right.\right\} .
$$

Proof. By Lemmas 7.4-5, we have

$$
\begin{aligned}
& \gamma_{t}\left(2 n+1-\tau\left(L^{n}(k)\right)\right)=\gamma_{t}(-(n+1) r \sigma)=\gamma_{t}(r \sigma)^{-n-1} \\
& =\left(1+r \sigma \cdot t-r \sigma \cdot t^{2}\right)^{-n-1}=\left(1+r \sigma\left(t-t^{2}\right)\right)^{-n-1} \\
& =\sum_{i=0}^{\infty}\binom{-n-1}{i}(r \sigma)^{i}\left(t-t^{2}\right)^{i}=\sum_{i=0}^{\infty}(-1)^{i}\binom{n+i}{i}(r \sigma)^{i}\left(t-t^{2}\right)^{i} .
\end{aligned}
$$

Therefore, we obtain

$$
\begin{array}{ll}
\gamma^{i}\left(2 n+1-\tau\left(L^{n}(k)\right)\right) \neq 0 & \text { for } i=2 L(n, k), \\
\gamma^{i}\left(2 n+1-\tau\left(L^{n}(k)\right)\right)=0 & \text { for } i>2 L(n, k) .
\end{array}
$$

By (7.1-2) we have the desired results.
q.e.d.

For the case $k=4$, the above proposition is Theorem C of $\S 1$, by Cor. 6.7.
The next theorem reduces the immersion problem for $L^{n}(k)$ to the crosssection problem for the bundle $m r \eta$ (the m-fold Whitney sum of $r \eta$).

Theorem 7.7. Let n and l be integers with $0<l \leqq 2 n+1$. Suppose $N \geqq 2 n$ +2 , where N is an integer such that $N r \sigma=0$. Then there is an immersion of $L^{n}(k)$ in $(2 n+1+l)$-dimensional Euclidean space $R^{2 n+1+l}$ if and only if the vector bundle ($N-n-1$)ry has ($2 N-2 n-l-2$)-independent cross-sections.

This theorem is a slight generalization of [7, I, Th. 1].
There is an integer N such that $N r \sigma=0$, because $\widetilde{K O}\left(L^{n}(k)\right)$ is a finite group.

Proof. Suppose that $L^{n}(k)$ is immersible in $R^{2 n+1+l}$. Let ν be a normal bundle of an immersion. Then ν is l-dimensional, and it holds that

$$
\tau\left(L^{n}(k)\right) \oplus \nu=2 n+1+l .
$$

Since $N r \sigma=N(r \eta-2)=0$ by the assumption, we have by (7.3)

$$
\nu+(2 N-2 n-2-l)=(N-n-1) r \eta \text { in } K O\left(L^{n}(k)\right) .
$$

But the dimension of the bundle of both sides is greater than $2 n+1$, since $N \geqq 2 n+2$. So we obtain the Whitney sum decomposition: $\nu \oplus(2 N-2 n-2$ $-l)=(N-n-1) r \eta$.

Conversely, assume that there exists a vector bundle α of dimension l such that $(N-n-1) r \eta=\alpha \oplus(2 N-2 n-2-l)$. Then $2 n+1-\tau\left(L^{n}(k)\right)=\alpha-k$
$\epsilon \widetilde{K O}\left(L^{n}(k)\right)$. Therefore, by the theorem of M. W. Hirsch (cf. [4, Th. 6.4] and [2, Prop. 3.2]), we see that $L^{n}(k)$ is immersible in $R^{2 n+1+l}$. q.e.d.

Corollary 7.8. Let p be an odd prime, and a be an integer such that ap $p^{r+[(n-2) /(p-1)]} \geqq 2 n+2$, where $r \geqq 1$. Then there is an immersion of $L^{n}\left(p^{r}\right)$ in $R^{2 n+1+l}(0<l \leqq 2 n+1)$ if and only if the vector bundle $\left(a^{r+[(n-2) /(p-1)]}-n-1\right) r \eta$ has ($\left.2 a^{r+[(n-2) /(p-1)]}-2 n-l-2\right)-$ independent cross-sections.

Proof. Since $p^{\gamma+[(n-2) /(p-1)]} r \sigma=0$ by [6, Th. 1.1, (ii)], the result follows from Th. 7.7.

Finally, we give a non-immersion theorem for $L^{n}(k)$.
Theorem 7.9. Suppose that p is an odd prime. Let $k=u p^{r}$, where $r \geqq 1$ and $(u, p)=1$. Let n and m be integers with $0<m \leqq[n / 2]$. Assume that the following two conditions are satisfied:
(i) $\quad\binom{n+m}{m} \equiv 0 \quad \bmod p$,
(ii) $n+m+1 \neq 0 \quad \bmod p^{[(n-m-1) /(p-1)]}$.

Then $L^{n}(k)$ is not immersible in $R^{2 n+2 m+1}$.
If $u=1$ and $r=1$, this theorem coincides with [7, II, Th. C]. The assumption $m<n$ of Th. C and (6.2) in [7, II] should be $m \leqq[n / 2]$.

Proof. The natural projection $L^{n}(p) \rightarrow L^{n}(k)$ is a covering projection. Therefore, if $L^{n}(k)$ is immersible in R^{N}, then $L^{n}(p)$ is immersible in R^{N}. Thus the result is a consequence of $[7, \mathrm{II}, \mathrm{Th} . \mathrm{C}]$.
q.e.d.

The next corollaries are immediate consequences.
Corollary 7.10. Assume that p is a prime >3, and that k is divisible by p. Then $L^{n}(k)$ is not immersible in $R^{3 n+1}$ for $n=2 p^{t}, t \geqq 1$.

Corollary 7.11. Under the assumptions of Cor. 7.10, $L^{n}(k)$ is not immersible in $R^{3 n}$ for $n=2 p^{t}+1, t \geqq 1$.

According to D. Sjerve (cf. [9]), $L^{n}(k)$ is immersible in $R^{2 n+2[n / 2]+2}$ if k is odd. This result is seen to be best possible by the above corollaries (cf. also [7, II, Cor. D-E]).

References

[1] J. F. Adams, Vector fields on spheres, Ann. of Math., 75 (1962), 603-632.
[2] M. F. Atiyah, Immersions and embeddings of manifolds, Topology, 1 (1962), 125-132.
[3] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Symposia in Pure Math. Vol. III, Amer. Math. Soc. (1961), 7-38.
[4] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc., 93 (1959), 242-276.
[5] T. Kambe, The structure of K_{A}-rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135-146.
[6] T. Kawaguchi and M. Sugawara, K- and KO-rings of lens spaces $L^{n}\left(p^{2}\right)$ for odd prime p, this journal, 273-286.
[7] T. Kobayashi, Non-immersion theorems for lens spaces, J. Math. Kyoto Univ., 6 (1966), 91-108; II, J. Sci. Hiroshima Univ., Ser. A-I, 32 (1968), 285-292.
[8] N. Mahammed, A propos de la K-théorie des espaces lenticulaires, C.R. Acad. Sc. Paris, 271 (1970), 639-642.
[9] D. Sjerve, Vector bundles over orbit manifolds, Trans. Amer. Math. Soc., 138 (1969), 97-106.
[10] R. H. Szczarba, On tangent bundles of fibre spaces and quotient spaces, Amer. J. Math., 86 (1964), 685-697.

Department of Mathematics,
Faculty of Science, Hiroshima University

[^0]: ${ }^{1)}$ According to N . Mahammed [8], it is announced that

 $$
 K\left(L^{n}(k)\right) \cong Z[\eta] /<(\eta-1)^{n+1}, \eta^{k}-1>
 $$

